tcp_minisocks.c revision 8336886f786fdacbc19b719c1f7ea91eb70706d4
1/*
2 * INET		An implementation of the TCP/IP protocol suite for the LINUX
3 *		operating system.  INET is implemented using the  BSD Socket
4 *		interface as the means of communication with the user level.
5 *
6 *		Implementation of the Transmission Control Protocol(TCP).
7 *
8 * Authors:	Ross Biro
9 *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 *		Mark Evans, <evansmp@uhura.aston.ac.uk>
11 *		Corey Minyard <wf-rch!minyard@relay.EU.net>
12 *		Florian La Roche, <flla@stud.uni-sb.de>
13 *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14 *		Linus Torvalds, <torvalds@cs.helsinki.fi>
15 *		Alan Cox, <gw4pts@gw4pts.ampr.org>
16 *		Matthew Dillon, <dillon@apollo.west.oic.com>
17 *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18 *		Jorge Cwik, <jorge@laser.satlink.net>
19 */
20
21#include <linux/mm.h>
22#include <linux/module.h>
23#include <linux/slab.h>
24#include <linux/sysctl.h>
25#include <linux/workqueue.h>
26#include <net/tcp.h>
27#include <net/inet_common.h>
28#include <net/xfrm.h>
29
30int sysctl_tcp_syncookies __read_mostly = 1;
31EXPORT_SYMBOL(sysctl_tcp_syncookies);
32
33int sysctl_tcp_abort_on_overflow __read_mostly;
34
35struct inet_timewait_death_row tcp_death_row = {
36	.sysctl_max_tw_buckets = NR_FILE * 2,
37	.period		= TCP_TIMEWAIT_LEN / INET_TWDR_TWKILL_SLOTS,
38	.death_lock	= __SPIN_LOCK_UNLOCKED(tcp_death_row.death_lock),
39	.hashinfo	= &tcp_hashinfo,
40	.tw_timer	= TIMER_INITIALIZER(inet_twdr_hangman, 0,
41					    (unsigned long)&tcp_death_row),
42	.twkill_work	= __WORK_INITIALIZER(tcp_death_row.twkill_work,
43					     inet_twdr_twkill_work),
44/* Short-time timewait calendar */
45
46	.twcal_hand	= -1,
47	.twcal_timer	= TIMER_INITIALIZER(inet_twdr_twcal_tick, 0,
48					    (unsigned long)&tcp_death_row),
49};
50EXPORT_SYMBOL_GPL(tcp_death_row);
51
52static bool tcp_in_window(u32 seq, u32 end_seq, u32 s_win, u32 e_win)
53{
54	if (seq == s_win)
55		return true;
56	if (after(end_seq, s_win) && before(seq, e_win))
57		return true;
58	return seq == e_win && seq == end_seq;
59}
60
61/*
62 * * Main purpose of TIME-WAIT state is to close connection gracefully,
63 *   when one of ends sits in LAST-ACK or CLOSING retransmitting FIN
64 *   (and, probably, tail of data) and one or more our ACKs are lost.
65 * * What is TIME-WAIT timeout? It is associated with maximal packet
66 *   lifetime in the internet, which results in wrong conclusion, that
67 *   it is set to catch "old duplicate segments" wandering out of their path.
68 *   It is not quite correct. This timeout is calculated so that it exceeds
69 *   maximal retransmission timeout enough to allow to lose one (or more)
70 *   segments sent by peer and our ACKs. This time may be calculated from RTO.
71 * * When TIME-WAIT socket receives RST, it means that another end
72 *   finally closed and we are allowed to kill TIME-WAIT too.
73 * * Second purpose of TIME-WAIT is catching old duplicate segments.
74 *   Well, certainly it is pure paranoia, but if we load TIME-WAIT
75 *   with this semantics, we MUST NOT kill TIME-WAIT state with RSTs.
76 * * If we invented some more clever way to catch duplicates
77 *   (f.e. based on PAWS), we could truncate TIME-WAIT to several RTOs.
78 *
79 * The algorithm below is based on FORMAL INTERPRETATION of RFCs.
80 * When you compare it to RFCs, please, read section SEGMENT ARRIVES
81 * from the very beginning.
82 *
83 * NOTE. With recycling (and later with fin-wait-2) TW bucket
84 * is _not_ stateless. It means, that strictly speaking we must
85 * spinlock it. I do not want! Well, probability of misbehaviour
86 * is ridiculously low and, seems, we could use some mb() tricks
87 * to avoid misread sequence numbers, states etc.  --ANK
88 */
89enum tcp_tw_status
90tcp_timewait_state_process(struct inet_timewait_sock *tw, struct sk_buff *skb,
91			   const struct tcphdr *th)
92{
93	struct tcp_options_received tmp_opt;
94	const u8 *hash_location;
95	struct tcp_timewait_sock *tcptw = tcp_twsk((struct sock *)tw);
96	bool paws_reject = false;
97
98	tmp_opt.saw_tstamp = 0;
99	if (th->doff > (sizeof(*th) >> 2) && tcptw->tw_ts_recent_stamp) {
100		tcp_parse_options(skb, &tmp_opt, &hash_location, 0, NULL);
101
102		if (tmp_opt.saw_tstamp) {
103			tmp_opt.ts_recent	= tcptw->tw_ts_recent;
104			tmp_opt.ts_recent_stamp	= tcptw->tw_ts_recent_stamp;
105			paws_reject = tcp_paws_reject(&tmp_opt, th->rst);
106		}
107	}
108
109	if (tw->tw_substate == TCP_FIN_WAIT2) {
110		/* Just repeat all the checks of tcp_rcv_state_process() */
111
112		/* Out of window, send ACK */
113		if (paws_reject ||
114		    !tcp_in_window(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq,
115				   tcptw->tw_rcv_nxt,
116				   tcptw->tw_rcv_nxt + tcptw->tw_rcv_wnd))
117			return TCP_TW_ACK;
118
119		if (th->rst)
120			goto kill;
121
122		if (th->syn && !before(TCP_SKB_CB(skb)->seq, tcptw->tw_rcv_nxt))
123			goto kill_with_rst;
124
125		/* Dup ACK? */
126		if (!th->ack ||
127		    !after(TCP_SKB_CB(skb)->end_seq, tcptw->tw_rcv_nxt) ||
128		    TCP_SKB_CB(skb)->end_seq == TCP_SKB_CB(skb)->seq) {
129			inet_twsk_put(tw);
130			return TCP_TW_SUCCESS;
131		}
132
133		/* New data or FIN. If new data arrive after half-duplex close,
134		 * reset.
135		 */
136		if (!th->fin ||
137		    TCP_SKB_CB(skb)->end_seq != tcptw->tw_rcv_nxt + 1) {
138kill_with_rst:
139			inet_twsk_deschedule(tw, &tcp_death_row);
140			inet_twsk_put(tw);
141			return TCP_TW_RST;
142		}
143
144		/* FIN arrived, enter true time-wait state. */
145		tw->tw_substate	  = TCP_TIME_WAIT;
146		tcptw->tw_rcv_nxt = TCP_SKB_CB(skb)->end_seq;
147		if (tmp_opt.saw_tstamp) {
148			tcptw->tw_ts_recent_stamp = get_seconds();
149			tcptw->tw_ts_recent	  = tmp_opt.rcv_tsval;
150		}
151
152		if (tcp_death_row.sysctl_tw_recycle &&
153		    tcptw->tw_ts_recent_stamp &&
154		    tcp_tw_remember_stamp(tw))
155			inet_twsk_schedule(tw, &tcp_death_row, tw->tw_timeout,
156					   TCP_TIMEWAIT_LEN);
157		else
158			inet_twsk_schedule(tw, &tcp_death_row, TCP_TIMEWAIT_LEN,
159					   TCP_TIMEWAIT_LEN);
160		return TCP_TW_ACK;
161	}
162
163	/*
164	 *	Now real TIME-WAIT state.
165	 *
166	 *	RFC 1122:
167	 *	"When a connection is [...] on TIME-WAIT state [...]
168	 *	[a TCP] MAY accept a new SYN from the remote TCP to
169	 *	reopen the connection directly, if it:
170	 *
171	 *	(1)  assigns its initial sequence number for the new
172	 *	connection to be larger than the largest sequence
173	 *	number it used on the previous connection incarnation,
174	 *	and
175	 *
176	 *	(2)  returns to TIME-WAIT state if the SYN turns out
177	 *	to be an old duplicate".
178	 */
179
180	if (!paws_reject &&
181	    (TCP_SKB_CB(skb)->seq == tcptw->tw_rcv_nxt &&
182	     (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq || th->rst))) {
183		/* In window segment, it may be only reset or bare ack. */
184
185		if (th->rst) {
186			/* This is TIME_WAIT assassination, in two flavors.
187			 * Oh well... nobody has a sufficient solution to this
188			 * protocol bug yet.
189			 */
190			if (sysctl_tcp_rfc1337 == 0) {
191kill:
192				inet_twsk_deschedule(tw, &tcp_death_row);
193				inet_twsk_put(tw);
194				return TCP_TW_SUCCESS;
195			}
196		}
197		inet_twsk_schedule(tw, &tcp_death_row, TCP_TIMEWAIT_LEN,
198				   TCP_TIMEWAIT_LEN);
199
200		if (tmp_opt.saw_tstamp) {
201			tcptw->tw_ts_recent	  = tmp_opt.rcv_tsval;
202			tcptw->tw_ts_recent_stamp = get_seconds();
203		}
204
205		inet_twsk_put(tw);
206		return TCP_TW_SUCCESS;
207	}
208
209	/* Out of window segment.
210
211	   All the segments are ACKed immediately.
212
213	   The only exception is new SYN. We accept it, if it is
214	   not old duplicate and we are not in danger to be killed
215	   by delayed old duplicates. RFC check is that it has
216	   newer sequence number works at rates <40Mbit/sec.
217	   However, if paws works, it is reliable AND even more,
218	   we even may relax silly seq space cutoff.
219
220	   RED-PEN: we violate main RFC requirement, if this SYN will appear
221	   old duplicate (i.e. we receive RST in reply to SYN-ACK),
222	   we must return socket to time-wait state. It is not good,
223	   but not fatal yet.
224	 */
225
226	if (th->syn && !th->rst && !th->ack && !paws_reject &&
227	    (after(TCP_SKB_CB(skb)->seq, tcptw->tw_rcv_nxt) ||
228	     (tmp_opt.saw_tstamp &&
229	      (s32)(tcptw->tw_ts_recent - tmp_opt.rcv_tsval) < 0))) {
230		u32 isn = tcptw->tw_snd_nxt + 65535 + 2;
231		if (isn == 0)
232			isn++;
233		TCP_SKB_CB(skb)->when = isn;
234		return TCP_TW_SYN;
235	}
236
237	if (paws_reject)
238		NET_INC_STATS_BH(twsk_net(tw), LINUX_MIB_PAWSESTABREJECTED);
239
240	if (!th->rst) {
241		/* In this case we must reset the TIMEWAIT timer.
242		 *
243		 * If it is ACKless SYN it may be both old duplicate
244		 * and new good SYN with random sequence number <rcv_nxt.
245		 * Do not reschedule in the last case.
246		 */
247		if (paws_reject || th->ack)
248			inet_twsk_schedule(tw, &tcp_death_row, TCP_TIMEWAIT_LEN,
249					   TCP_TIMEWAIT_LEN);
250
251		/* Send ACK. Note, we do not put the bucket,
252		 * it will be released by caller.
253		 */
254		return TCP_TW_ACK;
255	}
256	inet_twsk_put(tw);
257	return TCP_TW_SUCCESS;
258}
259EXPORT_SYMBOL(tcp_timewait_state_process);
260
261/*
262 * Move a socket to time-wait or dead fin-wait-2 state.
263 */
264void tcp_time_wait(struct sock *sk, int state, int timeo)
265{
266	struct inet_timewait_sock *tw = NULL;
267	const struct inet_connection_sock *icsk = inet_csk(sk);
268	const struct tcp_sock *tp = tcp_sk(sk);
269	bool recycle_ok = false;
270
271	if (tcp_death_row.sysctl_tw_recycle && tp->rx_opt.ts_recent_stamp)
272		recycle_ok = tcp_remember_stamp(sk);
273
274	if (tcp_death_row.tw_count < tcp_death_row.sysctl_max_tw_buckets)
275		tw = inet_twsk_alloc(sk, state);
276
277	if (tw != NULL) {
278		struct tcp_timewait_sock *tcptw = tcp_twsk((struct sock *)tw);
279		const int rto = (icsk->icsk_rto << 2) - (icsk->icsk_rto >> 1);
280		struct inet_sock *inet = inet_sk(sk);
281
282		tw->tw_transparent	= inet->transparent;
283		tw->tw_rcv_wscale	= tp->rx_opt.rcv_wscale;
284		tcptw->tw_rcv_nxt	= tp->rcv_nxt;
285		tcptw->tw_snd_nxt	= tp->snd_nxt;
286		tcptw->tw_rcv_wnd	= tcp_receive_window(tp);
287		tcptw->tw_ts_recent	= tp->rx_opt.ts_recent;
288		tcptw->tw_ts_recent_stamp = tp->rx_opt.ts_recent_stamp;
289
290#if IS_ENABLED(CONFIG_IPV6)
291		if (tw->tw_family == PF_INET6) {
292			struct ipv6_pinfo *np = inet6_sk(sk);
293			struct inet6_timewait_sock *tw6;
294
295			tw->tw_ipv6_offset = inet6_tw_offset(sk->sk_prot);
296			tw6 = inet6_twsk((struct sock *)tw);
297			tw6->tw_v6_daddr = np->daddr;
298			tw6->tw_v6_rcv_saddr = np->rcv_saddr;
299			tw->tw_tclass = np->tclass;
300			tw->tw_ipv6only = np->ipv6only;
301		}
302#endif
303
304#ifdef CONFIG_TCP_MD5SIG
305		/*
306		 * The timewait bucket does not have the key DB from the
307		 * sock structure. We just make a quick copy of the
308		 * md5 key being used (if indeed we are using one)
309		 * so the timewait ack generating code has the key.
310		 */
311		do {
312			struct tcp_md5sig_key *key;
313			tcptw->tw_md5_key = NULL;
314			key = tp->af_specific->md5_lookup(sk, sk);
315			if (key != NULL) {
316				tcptw->tw_md5_key = kmemdup(key, sizeof(*key), GFP_ATOMIC);
317				if (tcptw->tw_md5_key && tcp_alloc_md5sig_pool(sk) == NULL)
318					BUG();
319			}
320		} while (0);
321#endif
322
323		/* Linkage updates. */
324		__inet_twsk_hashdance(tw, sk, &tcp_hashinfo);
325
326		/* Get the TIME_WAIT timeout firing. */
327		if (timeo < rto)
328			timeo = rto;
329
330		if (recycle_ok) {
331			tw->tw_timeout = rto;
332		} else {
333			tw->tw_timeout = TCP_TIMEWAIT_LEN;
334			if (state == TCP_TIME_WAIT)
335				timeo = TCP_TIMEWAIT_LEN;
336		}
337
338		inet_twsk_schedule(tw, &tcp_death_row, timeo,
339				   TCP_TIMEWAIT_LEN);
340		inet_twsk_put(tw);
341	} else {
342		/* Sorry, if we're out of memory, just CLOSE this
343		 * socket up.  We've got bigger problems than
344		 * non-graceful socket closings.
345		 */
346		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPTIMEWAITOVERFLOW);
347	}
348
349	tcp_update_metrics(sk);
350	tcp_done(sk);
351}
352
353void tcp_twsk_destructor(struct sock *sk)
354{
355#ifdef CONFIG_TCP_MD5SIG
356	struct tcp_timewait_sock *twsk = tcp_twsk(sk);
357
358	if (twsk->tw_md5_key) {
359		tcp_free_md5sig_pool();
360		kfree_rcu(twsk->tw_md5_key, rcu);
361	}
362#endif
363}
364EXPORT_SYMBOL_GPL(tcp_twsk_destructor);
365
366static inline void TCP_ECN_openreq_child(struct tcp_sock *tp,
367					 struct request_sock *req)
368{
369	tp->ecn_flags = inet_rsk(req)->ecn_ok ? TCP_ECN_OK : 0;
370}
371
372/* This is not only more efficient than what we used to do, it eliminates
373 * a lot of code duplication between IPv4/IPv6 SYN recv processing. -DaveM
374 *
375 * Actually, we could lots of memory writes here. tp of listening
376 * socket contains all necessary default parameters.
377 */
378struct sock *tcp_create_openreq_child(struct sock *sk, struct request_sock *req, struct sk_buff *skb)
379{
380	struct sock *newsk = inet_csk_clone_lock(sk, req, GFP_ATOMIC);
381
382	if (newsk != NULL) {
383		const struct inet_request_sock *ireq = inet_rsk(req);
384		struct tcp_request_sock *treq = tcp_rsk(req);
385		struct inet_connection_sock *newicsk = inet_csk(newsk);
386		struct tcp_sock *newtp = tcp_sk(newsk);
387		struct tcp_sock *oldtp = tcp_sk(sk);
388		struct tcp_cookie_values *oldcvp = oldtp->cookie_values;
389
390		/* TCP Cookie Transactions require space for the cookie pair,
391		 * as it differs for each connection.  There is no need to
392		 * copy any s_data_payload stored at the original socket.
393		 * Failure will prevent resuming the connection.
394		 *
395		 * Presumed copied, in order of appearance:
396		 *	cookie_in_always, cookie_out_never
397		 */
398		if (oldcvp != NULL) {
399			struct tcp_cookie_values *newcvp =
400				kzalloc(sizeof(*newtp->cookie_values),
401					GFP_ATOMIC);
402
403			if (newcvp != NULL) {
404				kref_init(&newcvp->kref);
405				newcvp->cookie_desired =
406						oldcvp->cookie_desired;
407				newtp->cookie_values = newcvp;
408			} else {
409				/* Not Yet Implemented */
410				newtp->cookie_values = NULL;
411			}
412		}
413
414		/* Now setup tcp_sock */
415		newtp->pred_flags = 0;
416
417		newtp->rcv_wup = newtp->copied_seq =
418		newtp->rcv_nxt = treq->rcv_isn + 1;
419
420		newtp->snd_sml = newtp->snd_una =
421		newtp->snd_nxt = newtp->snd_up =
422			treq->snt_isn + 1 + tcp_s_data_size(oldtp);
423
424		tcp_prequeue_init(newtp);
425		INIT_LIST_HEAD(&newtp->tsq_node);
426
427		tcp_init_wl(newtp, treq->rcv_isn);
428
429		newtp->srtt = 0;
430		newtp->mdev = TCP_TIMEOUT_INIT;
431		newicsk->icsk_rto = TCP_TIMEOUT_INIT;
432
433		newtp->packets_out = 0;
434		newtp->retrans_out = 0;
435		newtp->sacked_out = 0;
436		newtp->fackets_out = 0;
437		newtp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
438		tcp_enable_early_retrans(newtp);
439
440		/* So many TCP implementations out there (incorrectly) count the
441		 * initial SYN frame in their delayed-ACK and congestion control
442		 * algorithms that we must have the following bandaid to talk
443		 * efficiently to them.  -DaveM
444		 */
445		newtp->snd_cwnd = TCP_INIT_CWND;
446		newtp->snd_cwnd_cnt = 0;
447		newtp->bytes_acked = 0;
448
449		newtp->frto_counter = 0;
450		newtp->frto_highmark = 0;
451
452		if (newicsk->icsk_ca_ops != &tcp_init_congestion_ops &&
453		    !try_module_get(newicsk->icsk_ca_ops->owner))
454			newicsk->icsk_ca_ops = &tcp_init_congestion_ops;
455
456		tcp_set_ca_state(newsk, TCP_CA_Open);
457		tcp_init_xmit_timers(newsk);
458		skb_queue_head_init(&newtp->out_of_order_queue);
459		newtp->write_seq = newtp->pushed_seq =
460			treq->snt_isn + 1 + tcp_s_data_size(oldtp);
461
462		newtp->rx_opt.saw_tstamp = 0;
463
464		newtp->rx_opt.dsack = 0;
465		newtp->rx_opt.num_sacks = 0;
466
467		newtp->urg_data = 0;
468
469		if (sock_flag(newsk, SOCK_KEEPOPEN))
470			inet_csk_reset_keepalive_timer(newsk,
471						       keepalive_time_when(newtp));
472
473		newtp->rx_opt.tstamp_ok = ireq->tstamp_ok;
474		if ((newtp->rx_opt.sack_ok = ireq->sack_ok) != 0) {
475			if (sysctl_tcp_fack)
476				tcp_enable_fack(newtp);
477		}
478		newtp->window_clamp = req->window_clamp;
479		newtp->rcv_ssthresh = req->rcv_wnd;
480		newtp->rcv_wnd = req->rcv_wnd;
481		newtp->rx_opt.wscale_ok = ireq->wscale_ok;
482		if (newtp->rx_opt.wscale_ok) {
483			newtp->rx_opt.snd_wscale = ireq->snd_wscale;
484			newtp->rx_opt.rcv_wscale = ireq->rcv_wscale;
485		} else {
486			newtp->rx_opt.snd_wscale = newtp->rx_opt.rcv_wscale = 0;
487			newtp->window_clamp = min(newtp->window_clamp, 65535U);
488		}
489		newtp->snd_wnd = (ntohs(tcp_hdr(skb)->window) <<
490				  newtp->rx_opt.snd_wscale);
491		newtp->max_window = newtp->snd_wnd;
492
493		if (newtp->rx_opt.tstamp_ok) {
494			newtp->rx_opt.ts_recent = req->ts_recent;
495			newtp->rx_opt.ts_recent_stamp = get_seconds();
496			newtp->tcp_header_len = sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
497		} else {
498			newtp->rx_opt.ts_recent_stamp = 0;
499			newtp->tcp_header_len = sizeof(struct tcphdr);
500		}
501#ifdef CONFIG_TCP_MD5SIG
502		newtp->md5sig_info = NULL;	/*XXX*/
503		if (newtp->af_specific->md5_lookup(sk, newsk))
504			newtp->tcp_header_len += TCPOLEN_MD5SIG_ALIGNED;
505#endif
506		if (skb->len >= TCP_MSS_DEFAULT + newtp->tcp_header_len)
507			newicsk->icsk_ack.last_seg_size = skb->len - newtp->tcp_header_len;
508		newtp->rx_opt.mss_clamp = req->mss;
509		TCP_ECN_openreq_child(newtp, req);
510		newtp->fastopen_rsk = NULL;
511
512		TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_PASSIVEOPENS);
513	}
514	return newsk;
515}
516EXPORT_SYMBOL(tcp_create_openreq_child);
517
518/*
519 * Process an incoming packet for SYN_RECV sockets represented as a
520 * request_sock. Normally sk is the listener socket but for TFO it
521 * points to the child socket.
522 *
523 * XXX (TFO) - The current impl contains a special check for ack
524 * validation and inside tcp_v4_reqsk_send_ack(). Can we do better?
525 */
526
527struct sock *tcp_check_req(struct sock *sk, struct sk_buff *skb,
528			   struct request_sock *req,
529			   struct request_sock **prev,
530			   bool fastopen)
531{
532	struct tcp_options_received tmp_opt;
533	const u8 *hash_location;
534	struct sock *child;
535	const struct tcphdr *th = tcp_hdr(skb);
536	__be32 flg = tcp_flag_word(th) & (TCP_FLAG_RST|TCP_FLAG_SYN|TCP_FLAG_ACK);
537	bool paws_reject = false;
538
539	BUG_ON(fastopen == (sk->sk_state == TCP_LISTEN));
540
541	tmp_opt.saw_tstamp = 0;
542	if (th->doff > (sizeof(struct tcphdr)>>2)) {
543		tcp_parse_options(skb, &tmp_opt, &hash_location, 0, NULL);
544
545		if (tmp_opt.saw_tstamp) {
546			tmp_opt.ts_recent = req->ts_recent;
547			/* We do not store true stamp, but it is not required,
548			 * it can be estimated (approximately)
549			 * from another data.
550			 */
551			tmp_opt.ts_recent_stamp = get_seconds() - ((TCP_TIMEOUT_INIT/HZ)<<req->retrans);
552			paws_reject = tcp_paws_reject(&tmp_opt, th->rst);
553		}
554	}
555
556	/* Check for pure retransmitted SYN. */
557	if (TCP_SKB_CB(skb)->seq == tcp_rsk(req)->rcv_isn &&
558	    flg == TCP_FLAG_SYN &&
559	    !paws_reject) {
560		/*
561		 * RFC793 draws (Incorrectly! It was fixed in RFC1122)
562		 * this case on figure 6 and figure 8, but formal
563		 * protocol description says NOTHING.
564		 * To be more exact, it says that we should send ACK,
565		 * because this segment (at least, if it has no data)
566		 * is out of window.
567		 *
568		 *  CONCLUSION: RFC793 (even with RFC1122) DOES NOT
569		 *  describe SYN-RECV state. All the description
570		 *  is wrong, we cannot believe to it and should
571		 *  rely only on common sense and implementation
572		 *  experience.
573		 *
574		 * Enforce "SYN-ACK" according to figure 8, figure 6
575		 * of RFC793, fixed by RFC1122.
576		 *
577		 * Note that even if there is new data in the SYN packet
578		 * they will be thrown away too.
579		 */
580		req->rsk_ops->rtx_syn_ack(sk, req, NULL);
581		return NULL;
582	}
583
584	/* Further reproduces section "SEGMENT ARRIVES"
585	   for state SYN-RECEIVED of RFC793.
586	   It is broken, however, it does not work only
587	   when SYNs are crossed.
588
589	   You would think that SYN crossing is impossible here, since
590	   we should have a SYN_SENT socket (from connect()) on our end,
591	   but this is not true if the crossed SYNs were sent to both
592	   ends by a malicious third party.  We must defend against this,
593	   and to do that we first verify the ACK (as per RFC793, page
594	   36) and reset if it is invalid.  Is this a true full defense?
595	   To convince ourselves, let us consider a way in which the ACK
596	   test can still pass in this 'malicious crossed SYNs' case.
597	   Malicious sender sends identical SYNs (and thus identical sequence
598	   numbers) to both A and B:
599
600		A: gets SYN, seq=7
601		B: gets SYN, seq=7
602
603	   By our good fortune, both A and B select the same initial
604	   send sequence number of seven :-)
605
606		A: sends SYN|ACK, seq=7, ack_seq=8
607		B: sends SYN|ACK, seq=7, ack_seq=8
608
609	   So we are now A eating this SYN|ACK, ACK test passes.  So
610	   does sequence test, SYN is truncated, and thus we consider
611	   it a bare ACK.
612
613	   If icsk->icsk_accept_queue.rskq_defer_accept, we silently drop this
614	   bare ACK.  Otherwise, we create an established connection.  Both
615	   ends (listening sockets) accept the new incoming connection and try
616	   to talk to each other. 8-)
617
618	   Note: This case is both harmless, and rare.  Possibility is about the
619	   same as us discovering intelligent life on another plant tomorrow.
620
621	   But generally, we should (RFC lies!) to accept ACK
622	   from SYNACK both here and in tcp_rcv_state_process().
623	   tcp_rcv_state_process() does not, hence, we do not too.
624
625	   Note that the case is absolutely generic:
626	   we cannot optimize anything here without
627	   violating protocol. All the checks must be made
628	   before attempt to create socket.
629	 */
630
631	/* RFC793 page 36: "If the connection is in any non-synchronized state ...
632	 *                  and the incoming segment acknowledges something not yet
633	 *                  sent (the segment carries an unacceptable ACK) ...
634	 *                  a reset is sent."
635	 *
636	 * Invalid ACK: reset will be sent by listening socket.
637	 * Note that the ACK validity check for a Fast Open socket is done
638	 * elsewhere and is checked directly against the child socket rather
639	 * than req because user data may have been sent out.
640	 */
641	if ((flg & TCP_FLAG_ACK) && !fastopen &&
642	    (TCP_SKB_CB(skb)->ack_seq !=
643	     tcp_rsk(req)->snt_isn + 1 + tcp_s_data_size(tcp_sk(sk))))
644		return sk;
645
646	/* Also, it would be not so bad idea to check rcv_tsecr, which
647	 * is essentially ACK extension and too early or too late values
648	 * should cause reset in unsynchronized states.
649	 */
650
651	/* RFC793: "first check sequence number". */
652
653	if (paws_reject || !tcp_in_window(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq,
654					  tcp_rsk(req)->rcv_nxt, tcp_rsk(req)->rcv_nxt + req->rcv_wnd)) {
655		/* Out of window: send ACK and drop. */
656		if (!(flg & TCP_FLAG_RST))
657			req->rsk_ops->send_ack(sk, skb, req);
658		if (paws_reject)
659			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
660		return NULL;
661	}
662
663	/* In sequence, PAWS is OK. */
664
665	if (tmp_opt.saw_tstamp && !after(TCP_SKB_CB(skb)->seq, tcp_rsk(req)->rcv_nxt))
666		req->ts_recent = tmp_opt.rcv_tsval;
667
668	if (TCP_SKB_CB(skb)->seq == tcp_rsk(req)->rcv_isn) {
669		/* Truncate SYN, it is out of window starting
670		   at tcp_rsk(req)->rcv_isn + 1. */
671		flg &= ~TCP_FLAG_SYN;
672	}
673
674	/* RFC793: "second check the RST bit" and
675	 *	   "fourth, check the SYN bit"
676	 */
677	if (flg & (TCP_FLAG_RST|TCP_FLAG_SYN)) {
678		TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_ATTEMPTFAILS);
679		goto embryonic_reset;
680	}
681
682	/* ACK sequence verified above, just make sure ACK is
683	 * set.  If ACK not set, just silently drop the packet.
684	 *
685	 * XXX (TFO) - if we ever allow "data after SYN", the
686	 * following check needs to be removed.
687	 */
688	if (!(flg & TCP_FLAG_ACK))
689		return NULL;
690
691	/* For Fast Open no more processing is needed (sk is the
692	 * child socket).
693	 */
694	if (fastopen)
695		return sk;
696
697	/* While TCP_DEFER_ACCEPT is active, drop bare ACK. */
698	if (req->retrans < inet_csk(sk)->icsk_accept_queue.rskq_defer_accept &&
699	    TCP_SKB_CB(skb)->end_seq == tcp_rsk(req)->rcv_isn + 1) {
700		inet_rsk(req)->acked = 1;
701		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDEFERACCEPTDROP);
702		return NULL;
703	}
704	if (tmp_opt.saw_tstamp && tmp_opt.rcv_tsecr)
705		tcp_rsk(req)->snt_synack = tmp_opt.rcv_tsecr;
706	else if (req->retrans) /* don't take RTT sample if retrans && ~TS */
707		tcp_rsk(req)->snt_synack = 0;
708
709	/* OK, ACK is valid, create big socket and
710	 * feed this segment to it. It will repeat all
711	 * the tests. THIS SEGMENT MUST MOVE SOCKET TO
712	 * ESTABLISHED STATE. If it will be dropped after
713	 * socket is created, wait for troubles.
714	 */
715	child = inet_csk(sk)->icsk_af_ops->syn_recv_sock(sk, skb, req, NULL);
716	if (child == NULL)
717		goto listen_overflow;
718
719	inet_csk_reqsk_queue_unlink(sk, req, prev);
720	inet_csk_reqsk_queue_removed(sk, req);
721
722	inet_csk_reqsk_queue_add(sk, req, child);
723	return child;
724
725listen_overflow:
726	if (!sysctl_tcp_abort_on_overflow) {
727		inet_rsk(req)->acked = 1;
728		return NULL;
729	}
730
731embryonic_reset:
732	if (!(flg & TCP_FLAG_RST)) {
733		/* Received a bad SYN pkt - for TFO We try not to reset
734		 * the local connection unless it's really necessary to
735		 * avoid becoming vulnerable to outside attack aiming at
736		 * resetting legit local connections.
737		 */
738		req->rsk_ops->send_reset(sk, skb);
739	} else if (fastopen) { /* received a valid RST pkt */
740		reqsk_fastopen_remove(sk, req, true);
741		tcp_reset(sk);
742	}
743	if (!fastopen) {
744		inet_csk_reqsk_queue_drop(sk, req, prev);
745		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_EMBRYONICRSTS);
746	}
747	return NULL;
748}
749EXPORT_SYMBOL(tcp_check_req);
750
751/*
752 * Queue segment on the new socket if the new socket is active,
753 * otherwise we just shortcircuit this and continue with
754 * the new socket.
755 *
756 * For the vast majority of cases child->sk_state will be TCP_SYN_RECV
757 * when entering. But other states are possible due to a race condition
758 * where after __inet_lookup_established() fails but before the listener
759 * locked is obtained, other packets cause the same connection to
760 * be created.
761 */
762
763int tcp_child_process(struct sock *parent, struct sock *child,
764		      struct sk_buff *skb)
765{
766	int ret = 0;
767	int state = child->sk_state;
768
769	if (!sock_owned_by_user(child)) {
770		ret = tcp_rcv_state_process(child, skb, tcp_hdr(skb),
771					    skb->len);
772		/* Wakeup parent, send SIGIO */
773		if (state == TCP_SYN_RECV && child->sk_state != state)
774			parent->sk_data_ready(parent, 0);
775	} else {
776		/* Alas, it is possible again, because we do lookup
777		 * in main socket hash table and lock on listening
778		 * socket does not protect us more.
779		 */
780		__sk_add_backlog(child, skb);
781	}
782
783	bh_unlock_sock(child);
784	sock_put(child);
785	return ret;
786}
787EXPORT_SYMBOL(tcp_child_process);
788