tcp_minisocks.c revision 9b717a8d245075ffb8e95a2dfb4ee97ce4747457
1/*
2 * INET		An implementation of the TCP/IP protocol suite for the LINUX
3 *		operating system.  INET is implemented using the  BSD Socket
4 *		interface as the means of communication with the user level.
5 *
6 *		Implementation of the Transmission Control Protocol(TCP).
7 *
8 * Authors:	Ross Biro
9 *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 *		Mark Evans, <evansmp@uhura.aston.ac.uk>
11 *		Corey Minyard <wf-rch!minyard@relay.EU.net>
12 *		Florian La Roche, <flla@stud.uni-sb.de>
13 *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14 *		Linus Torvalds, <torvalds@cs.helsinki.fi>
15 *		Alan Cox, <gw4pts@gw4pts.ampr.org>
16 *		Matthew Dillon, <dillon@apollo.west.oic.com>
17 *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18 *		Jorge Cwik, <jorge@laser.satlink.net>
19 */
20
21#include <linux/mm.h>
22#include <linux/module.h>
23#include <linux/slab.h>
24#include <linux/sysctl.h>
25#include <linux/workqueue.h>
26#include <net/tcp.h>
27#include <net/inet_common.h>
28#include <net/xfrm.h>
29
30int sysctl_tcp_syncookies __read_mostly = 1;
31EXPORT_SYMBOL(sysctl_tcp_syncookies);
32
33int sysctl_tcp_abort_on_overflow __read_mostly;
34
35struct inet_timewait_death_row tcp_death_row = {
36	.sysctl_max_tw_buckets = NR_FILE * 2,
37	.period		= TCP_TIMEWAIT_LEN / INET_TWDR_TWKILL_SLOTS,
38	.death_lock	= __SPIN_LOCK_UNLOCKED(tcp_death_row.death_lock),
39	.hashinfo	= &tcp_hashinfo,
40	.tw_timer	= TIMER_INITIALIZER(inet_twdr_hangman, 0,
41					    (unsigned long)&tcp_death_row),
42	.twkill_work	= __WORK_INITIALIZER(tcp_death_row.twkill_work,
43					     inet_twdr_twkill_work),
44/* Short-time timewait calendar */
45
46	.twcal_hand	= -1,
47	.twcal_timer	= TIMER_INITIALIZER(inet_twdr_twcal_tick, 0,
48					    (unsigned long)&tcp_death_row),
49};
50EXPORT_SYMBOL_GPL(tcp_death_row);
51
52static bool tcp_in_window(u32 seq, u32 end_seq, u32 s_win, u32 e_win)
53{
54	if (seq == s_win)
55		return true;
56	if (after(end_seq, s_win) && before(seq, e_win))
57		return true;
58	return seq == e_win && seq == end_seq;
59}
60
61/*
62 * * Main purpose of TIME-WAIT state is to close connection gracefully,
63 *   when one of ends sits in LAST-ACK or CLOSING retransmitting FIN
64 *   (and, probably, tail of data) and one or more our ACKs are lost.
65 * * What is TIME-WAIT timeout? It is associated with maximal packet
66 *   lifetime in the internet, which results in wrong conclusion, that
67 *   it is set to catch "old duplicate segments" wandering out of their path.
68 *   It is not quite correct. This timeout is calculated so that it exceeds
69 *   maximal retransmission timeout enough to allow to lose one (or more)
70 *   segments sent by peer and our ACKs. This time may be calculated from RTO.
71 * * When TIME-WAIT socket receives RST, it means that another end
72 *   finally closed and we are allowed to kill TIME-WAIT too.
73 * * Second purpose of TIME-WAIT is catching old duplicate segments.
74 *   Well, certainly it is pure paranoia, but if we load TIME-WAIT
75 *   with this semantics, we MUST NOT kill TIME-WAIT state with RSTs.
76 * * If we invented some more clever way to catch duplicates
77 *   (f.e. based on PAWS), we could truncate TIME-WAIT to several RTOs.
78 *
79 * The algorithm below is based on FORMAL INTERPRETATION of RFCs.
80 * When you compare it to RFCs, please, read section SEGMENT ARRIVES
81 * from the very beginning.
82 *
83 * NOTE. With recycling (and later with fin-wait-2) TW bucket
84 * is _not_ stateless. It means, that strictly speaking we must
85 * spinlock it. I do not want! Well, probability of misbehaviour
86 * is ridiculously low and, seems, we could use some mb() tricks
87 * to avoid misread sequence numbers, states etc.  --ANK
88 *
89 * We don't need to initialize tmp_out.sack_ok as we don't use the results
90 */
91enum tcp_tw_status
92tcp_timewait_state_process(struct inet_timewait_sock *tw, struct sk_buff *skb,
93			   const struct tcphdr *th)
94{
95	struct tcp_options_received tmp_opt;
96	const u8 *hash_location;
97	struct tcp_timewait_sock *tcptw = tcp_twsk((struct sock *)tw);
98	bool paws_reject = false;
99
100	tmp_opt.saw_tstamp = 0;
101	if (th->doff > (sizeof(*th) >> 2) && tcptw->tw_ts_recent_stamp) {
102		tcp_parse_options(skb, &tmp_opt, &hash_location, 0, NULL);
103
104		if (tmp_opt.saw_tstamp) {
105			tmp_opt.rcv_tsecr	-= tcptw->tw_ts_offset;
106			tmp_opt.ts_recent	= tcptw->tw_ts_recent;
107			tmp_opt.ts_recent_stamp	= tcptw->tw_ts_recent_stamp;
108			paws_reject = tcp_paws_reject(&tmp_opt, th->rst);
109		}
110	}
111
112	if (tw->tw_substate == TCP_FIN_WAIT2) {
113		/* Just repeat all the checks of tcp_rcv_state_process() */
114
115		/* Out of window, send ACK */
116		if (paws_reject ||
117		    !tcp_in_window(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq,
118				   tcptw->tw_rcv_nxt,
119				   tcptw->tw_rcv_nxt + tcptw->tw_rcv_wnd))
120			return TCP_TW_ACK;
121
122		if (th->rst)
123			goto kill;
124
125		if (th->syn && !before(TCP_SKB_CB(skb)->seq, tcptw->tw_rcv_nxt))
126			goto kill_with_rst;
127
128		/* Dup ACK? */
129		if (!th->ack ||
130		    !after(TCP_SKB_CB(skb)->end_seq, tcptw->tw_rcv_nxt) ||
131		    TCP_SKB_CB(skb)->end_seq == TCP_SKB_CB(skb)->seq) {
132			inet_twsk_put(tw);
133			return TCP_TW_SUCCESS;
134		}
135
136		/* New data or FIN. If new data arrive after half-duplex close,
137		 * reset.
138		 */
139		if (!th->fin ||
140		    TCP_SKB_CB(skb)->end_seq != tcptw->tw_rcv_nxt + 1) {
141kill_with_rst:
142			inet_twsk_deschedule(tw, &tcp_death_row);
143			inet_twsk_put(tw);
144			return TCP_TW_RST;
145		}
146
147		/* FIN arrived, enter true time-wait state. */
148		tw->tw_substate	  = TCP_TIME_WAIT;
149		tcptw->tw_rcv_nxt = TCP_SKB_CB(skb)->end_seq;
150		if (tmp_opt.saw_tstamp) {
151			tcptw->tw_ts_recent_stamp = get_seconds();
152			tcptw->tw_ts_recent	  = tmp_opt.rcv_tsval;
153		}
154
155		if (tcp_death_row.sysctl_tw_recycle &&
156		    tcptw->tw_ts_recent_stamp &&
157		    tcp_tw_remember_stamp(tw))
158			inet_twsk_schedule(tw, &tcp_death_row, tw->tw_timeout,
159					   TCP_TIMEWAIT_LEN);
160		else
161			inet_twsk_schedule(tw, &tcp_death_row, TCP_TIMEWAIT_LEN,
162					   TCP_TIMEWAIT_LEN);
163		return TCP_TW_ACK;
164	}
165
166	/*
167	 *	Now real TIME-WAIT state.
168	 *
169	 *	RFC 1122:
170	 *	"When a connection is [...] on TIME-WAIT state [...]
171	 *	[a TCP] MAY accept a new SYN from the remote TCP to
172	 *	reopen the connection directly, if it:
173	 *
174	 *	(1)  assigns its initial sequence number for the new
175	 *	connection to be larger than the largest sequence
176	 *	number it used on the previous connection incarnation,
177	 *	and
178	 *
179	 *	(2)  returns to TIME-WAIT state if the SYN turns out
180	 *	to be an old duplicate".
181	 */
182
183	if (!paws_reject &&
184	    (TCP_SKB_CB(skb)->seq == tcptw->tw_rcv_nxt &&
185	     (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq || th->rst))) {
186		/* In window segment, it may be only reset or bare ack. */
187
188		if (th->rst) {
189			/* This is TIME_WAIT assassination, in two flavors.
190			 * Oh well... nobody has a sufficient solution to this
191			 * protocol bug yet.
192			 */
193			if (sysctl_tcp_rfc1337 == 0) {
194kill:
195				inet_twsk_deschedule(tw, &tcp_death_row);
196				inet_twsk_put(tw);
197				return TCP_TW_SUCCESS;
198			}
199		}
200		inet_twsk_schedule(tw, &tcp_death_row, TCP_TIMEWAIT_LEN,
201				   TCP_TIMEWAIT_LEN);
202
203		if (tmp_opt.saw_tstamp) {
204			tcptw->tw_ts_recent	  = tmp_opt.rcv_tsval;
205			tcptw->tw_ts_recent_stamp = get_seconds();
206		}
207
208		inet_twsk_put(tw);
209		return TCP_TW_SUCCESS;
210	}
211
212	/* Out of window segment.
213
214	   All the segments are ACKed immediately.
215
216	   The only exception is new SYN. We accept it, if it is
217	   not old duplicate and we are not in danger to be killed
218	   by delayed old duplicates. RFC check is that it has
219	   newer sequence number works at rates <40Mbit/sec.
220	   However, if paws works, it is reliable AND even more,
221	   we even may relax silly seq space cutoff.
222
223	   RED-PEN: we violate main RFC requirement, if this SYN will appear
224	   old duplicate (i.e. we receive RST in reply to SYN-ACK),
225	   we must return socket to time-wait state. It is not good,
226	   but not fatal yet.
227	 */
228
229	if (th->syn && !th->rst && !th->ack && !paws_reject &&
230	    (after(TCP_SKB_CB(skb)->seq, tcptw->tw_rcv_nxt) ||
231	     (tmp_opt.saw_tstamp &&
232	      (s32)(tcptw->tw_ts_recent - tmp_opt.rcv_tsval) < 0))) {
233		u32 isn = tcptw->tw_snd_nxt + 65535 + 2;
234		if (isn == 0)
235			isn++;
236		TCP_SKB_CB(skb)->when = isn;
237		return TCP_TW_SYN;
238	}
239
240	if (paws_reject)
241		NET_INC_STATS_BH(twsk_net(tw), LINUX_MIB_PAWSESTABREJECTED);
242
243	if (!th->rst) {
244		/* In this case we must reset the TIMEWAIT timer.
245		 *
246		 * If it is ACKless SYN it may be both old duplicate
247		 * and new good SYN with random sequence number <rcv_nxt.
248		 * Do not reschedule in the last case.
249		 */
250		if (paws_reject || th->ack)
251			inet_twsk_schedule(tw, &tcp_death_row, TCP_TIMEWAIT_LEN,
252					   TCP_TIMEWAIT_LEN);
253
254		/* Send ACK. Note, we do not put the bucket,
255		 * it will be released by caller.
256		 */
257		return TCP_TW_ACK;
258	}
259	inet_twsk_put(tw);
260	return TCP_TW_SUCCESS;
261}
262EXPORT_SYMBOL(tcp_timewait_state_process);
263
264/*
265 * Move a socket to time-wait or dead fin-wait-2 state.
266 */
267void tcp_time_wait(struct sock *sk, int state, int timeo)
268{
269	struct inet_timewait_sock *tw = NULL;
270	const struct inet_connection_sock *icsk = inet_csk(sk);
271	const struct tcp_sock *tp = tcp_sk(sk);
272	bool recycle_ok = false;
273
274	if (tcp_death_row.sysctl_tw_recycle && tp->rx_opt.ts_recent_stamp)
275		recycle_ok = tcp_remember_stamp(sk);
276
277	if (tcp_death_row.tw_count < tcp_death_row.sysctl_max_tw_buckets)
278		tw = inet_twsk_alloc(sk, state);
279
280	if (tw != NULL) {
281		struct tcp_timewait_sock *tcptw = tcp_twsk((struct sock *)tw);
282		const int rto = (icsk->icsk_rto << 2) - (icsk->icsk_rto >> 1);
283		struct inet_sock *inet = inet_sk(sk);
284
285		tw->tw_transparent	= inet->transparent;
286		tw->tw_rcv_wscale	= tp->rx_opt.rcv_wscale;
287		tcptw->tw_rcv_nxt	= tp->rcv_nxt;
288		tcptw->tw_snd_nxt	= tp->snd_nxt;
289		tcptw->tw_rcv_wnd	= tcp_receive_window(tp);
290		tcptw->tw_ts_recent	= tp->rx_opt.ts_recent;
291		tcptw->tw_ts_recent_stamp = tp->rx_opt.ts_recent_stamp;
292		tcptw->tw_ts_offset	= tp->tsoffset;
293
294#if IS_ENABLED(CONFIG_IPV6)
295		if (tw->tw_family == PF_INET6) {
296			struct ipv6_pinfo *np = inet6_sk(sk);
297			struct inet6_timewait_sock *tw6;
298
299			tw->tw_ipv6_offset = inet6_tw_offset(sk->sk_prot);
300			tw6 = inet6_twsk((struct sock *)tw);
301			tw6->tw_v6_daddr = np->daddr;
302			tw6->tw_v6_rcv_saddr = np->rcv_saddr;
303			tw->tw_tclass = np->tclass;
304			tw->tw_ipv6only = np->ipv6only;
305		}
306#endif
307
308#ifdef CONFIG_TCP_MD5SIG
309		/*
310		 * The timewait bucket does not have the key DB from the
311		 * sock structure. We just make a quick copy of the
312		 * md5 key being used (if indeed we are using one)
313		 * so the timewait ack generating code has the key.
314		 */
315		do {
316			struct tcp_md5sig_key *key;
317			tcptw->tw_md5_key = NULL;
318			key = tp->af_specific->md5_lookup(sk, sk);
319			if (key != NULL) {
320				tcptw->tw_md5_key = kmemdup(key, sizeof(*key), GFP_ATOMIC);
321				if (tcptw->tw_md5_key && tcp_alloc_md5sig_pool(sk) == NULL)
322					BUG();
323			}
324		} while (0);
325#endif
326
327		/* Linkage updates. */
328		__inet_twsk_hashdance(tw, sk, &tcp_hashinfo);
329
330		/* Get the TIME_WAIT timeout firing. */
331		if (timeo < rto)
332			timeo = rto;
333
334		if (recycle_ok) {
335			tw->tw_timeout = rto;
336		} else {
337			tw->tw_timeout = TCP_TIMEWAIT_LEN;
338			if (state == TCP_TIME_WAIT)
339				timeo = TCP_TIMEWAIT_LEN;
340		}
341
342		inet_twsk_schedule(tw, &tcp_death_row, timeo,
343				   TCP_TIMEWAIT_LEN);
344		inet_twsk_put(tw);
345	} else {
346		/* Sorry, if we're out of memory, just CLOSE this
347		 * socket up.  We've got bigger problems than
348		 * non-graceful socket closings.
349		 */
350		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPTIMEWAITOVERFLOW);
351	}
352
353	tcp_update_metrics(sk);
354	tcp_done(sk);
355}
356
357void tcp_twsk_destructor(struct sock *sk)
358{
359#ifdef CONFIG_TCP_MD5SIG
360	struct tcp_timewait_sock *twsk = tcp_twsk(sk);
361
362	if (twsk->tw_md5_key) {
363		tcp_free_md5sig_pool();
364		kfree_rcu(twsk->tw_md5_key, rcu);
365	}
366#endif
367}
368EXPORT_SYMBOL_GPL(tcp_twsk_destructor);
369
370static inline void TCP_ECN_openreq_child(struct tcp_sock *tp,
371					 struct request_sock *req)
372{
373	tp->ecn_flags = inet_rsk(req)->ecn_ok ? TCP_ECN_OK : 0;
374}
375
376/* This is not only more efficient than what we used to do, it eliminates
377 * a lot of code duplication between IPv4/IPv6 SYN recv processing. -DaveM
378 *
379 * Actually, we could lots of memory writes here. tp of listening
380 * socket contains all necessary default parameters.
381 */
382struct sock *tcp_create_openreq_child(struct sock *sk, struct request_sock *req, struct sk_buff *skb)
383{
384	struct sock *newsk = inet_csk_clone_lock(sk, req, GFP_ATOMIC);
385
386	if (newsk != NULL) {
387		const struct inet_request_sock *ireq = inet_rsk(req);
388		struct tcp_request_sock *treq = tcp_rsk(req);
389		struct inet_connection_sock *newicsk = inet_csk(newsk);
390		struct tcp_sock *newtp = tcp_sk(newsk);
391		struct tcp_sock *oldtp = tcp_sk(sk);
392		struct tcp_cookie_values *oldcvp = oldtp->cookie_values;
393
394		/* TCP Cookie Transactions require space for the cookie pair,
395		 * as it differs for each connection.  There is no need to
396		 * copy any s_data_payload stored at the original socket.
397		 * Failure will prevent resuming the connection.
398		 *
399		 * Presumed copied, in order of appearance:
400		 *	cookie_in_always, cookie_out_never
401		 */
402		if (oldcvp != NULL) {
403			struct tcp_cookie_values *newcvp =
404				kzalloc(sizeof(*newtp->cookie_values),
405					GFP_ATOMIC);
406
407			if (newcvp != NULL) {
408				kref_init(&newcvp->kref);
409				newcvp->cookie_desired =
410						oldcvp->cookie_desired;
411				newtp->cookie_values = newcvp;
412			} else {
413				/* Not Yet Implemented */
414				newtp->cookie_values = NULL;
415			}
416		}
417
418		/* Now setup tcp_sock */
419		newtp->pred_flags = 0;
420
421		newtp->rcv_wup = newtp->copied_seq =
422		newtp->rcv_nxt = treq->rcv_isn + 1;
423
424		newtp->snd_sml = newtp->snd_una =
425		newtp->snd_nxt = newtp->snd_up =
426			treq->snt_isn + 1 + tcp_s_data_size(oldtp);
427
428		tcp_prequeue_init(newtp);
429		INIT_LIST_HEAD(&newtp->tsq_node);
430
431		tcp_init_wl(newtp, treq->rcv_isn);
432
433		newtp->srtt = 0;
434		newtp->mdev = TCP_TIMEOUT_INIT;
435		newicsk->icsk_rto = TCP_TIMEOUT_INIT;
436
437		newtp->packets_out = 0;
438		newtp->retrans_out = 0;
439		newtp->sacked_out = 0;
440		newtp->fackets_out = 0;
441		newtp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
442		tcp_enable_early_retrans(newtp);
443		newtp->tlp_high_seq = 0;
444
445		/* So many TCP implementations out there (incorrectly) count the
446		 * initial SYN frame in their delayed-ACK and congestion control
447		 * algorithms that we must have the following bandaid to talk
448		 * efficiently to them.  -DaveM
449		 */
450		newtp->snd_cwnd = TCP_INIT_CWND;
451		newtp->snd_cwnd_cnt = 0;
452
453		newtp->frto_counter = 0;
454		newtp->frto_highmark = 0;
455
456		if (newicsk->icsk_ca_ops != &tcp_init_congestion_ops &&
457		    !try_module_get(newicsk->icsk_ca_ops->owner))
458			newicsk->icsk_ca_ops = &tcp_init_congestion_ops;
459
460		tcp_set_ca_state(newsk, TCP_CA_Open);
461		tcp_init_xmit_timers(newsk);
462		skb_queue_head_init(&newtp->out_of_order_queue);
463		newtp->write_seq = newtp->pushed_seq =
464			treq->snt_isn + 1 + tcp_s_data_size(oldtp);
465
466		newtp->rx_opt.saw_tstamp = 0;
467
468		newtp->rx_opt.dsack = 0;
469		newtp->rx_opt.num_sacks = 0;
470
471		newtp->urg_data = 0;
472
473		if (sock_flag(newsk, SOCK_KEEPOPEN))
474			inet_csk_reset_keepalive_timer(newsk,
475						       keepalive_time_when(newtp));
476
477		newtp->rx_opt.tstamp_ok = ireq->tstamp_ok;
478		if ((newtp->rx_opt.sack_ok = ireq->sack_ok) != 0) {
479			if (sysctl_tcp_fack)
480				tcp_enable_fack(newtp);
481		}
482		newtp->window_clamp = req->window_clamp;
483		newtp->rcv_ssthresh = req->rcv_wnd;
484		newtp->rcv_wnd = req->rcv_wnd;
485		newtp->rx_opt.wscale_ok = ireq->wscale_ok;
486		if (newtp->rx_opt.wscale_ok) {
487			newtp->rx_opt.snd_wscale = ireq->snd_wscale;
488			newtp->rx_opt.rcv_wscale = ireq->rcv_wscale;
489		} else {
490			newtp->rx_opt.snd_wscale = newtp->rx_opt.rcv_wscale = 0;
491			newtp->window_clamp = min(newtp->window_clamp, 65535U);
492		}
493		newtp->snd_wnd = (ntohs(tcp_hdr(skb)->window) <<
494				  newtp->rx_opt.snd_wscale);
495		newtp->max_window = newtp->snd_wnd;
496
497		if (newtp->rx_opt.tstamp_ok) {
498			newtp->rx_opt.ts_recent = req->ts_recent;
499			newtp->rx_opt.ts_recent_stamp = get_seconds();
500			newtp->tcp_header_len = sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
501		} else {
502			newtp->rx_opt.ts_recent_stamp = 0;
503			newtp->tcp_header_len = sizeof(struct tcphdr);
504		}
505		newtp->tsoffset = 0;
506#ifdef CONFIG_TCP_MD5SIG
507		newtp->md5sig_info = NULL;	/*XXX*/
508		if (newtp->af_specific->md5_lookup(sk, newsk))
509			newtp->tcp_header_len += TCPOLEN_MD5SIG_ALIGNED;
510#endif
511		if (skb->len >= TCP_MSS_DEFAULT + newtp->tcp_header_len)
512			newicsk->icsk_ack.last_seg_size = skb->len - newtp->tcp_header_len;
513		newtp->rx_opt.mss_clamp = req->mss;
514		TCP_ECN_openreq_child(newtp, req);
515		newtp->fastopen_rsk = NULL;
516		newtp->syn_data_acked = 0;
517
518		TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_PASSIVEOPENS);
519	}
520	return newsk;
521}
522EXPORT_SYMBOL(tcp_create_openreq_child);
523
524/*
525 * Process an incoming packet for SYN_RECV sockets represented as a
526 * request_sock. Normally sk is the listener socket but for TFO it
527 * points to the child socket.
528 *
529 * XXX (TFO) - The current impl contains a special check for ack
530 * validation and inside tcp_v4_reqsk_send_ack(). Can we do better?
531 *
532 * We don't need to initialize tmp_opt.sack_ok as we don't use the results
533 */
534
535struct sock *tcp_check_req(struct sock *sk, struct sk_buff *skb,
536			   struct request_sock *req,
537			   struct request_sock **prev,
538			   bool fastopen)
539{
540	struct tcp_options_received tmp_opt;
541	const u8 *hash_location;
542	struct sock *child;
543	const struct tcphdr *th = tcp_hdr(skb);
544	__be32 flg = tcp_flag_word(th) & (TCP_FLAG_RST|TCP_FLAG_SYN|TCP_FLAG_ACK);
545	bool paws_reject = false;
546
547	BUG_ON(fastopen == (sk->sk_state == TCP_LISTEN));
548
549	tmp_opt.saw_tstamp = 0;
550	if (th->doff > (sizeof(struct tcphdr)>>2)) {
551		tcp_parse_options(skb, &tmp_opt, &hash_location, 0, NULL);
552
553		if (tmp_opt.saw_tstamp) {
554			tmp_opt.ts_recent = req->ts_recent;
555			/* We do not store true stamp, but it is not required,
556			 * it can be estimated (approximately)
557			 * from another data.
558			 */
559			tmp_opt.ts_recent_stamp = get_seconds() - ((TCP_TIMEOUT_INIT/HZ)<<req->num_timeout);
560			paws_reject = tcp_paws_reject(&tmp_opt, th->rst);
561		}
562	}
563
564	/* Check for pure retransmitted SYN. */
565	if (TCP_SKB_CB(skb)->seq == tcp_rsk(req)->rcv_isn &&
566	    flg == TCP_FLAG_SYN &&
567	    !paws_reject) {
568		/*
569		 * RFC793 draws (Incorrectly! It was fixed in RFC1122)
570		 * this case on figure 6 and figure 8, but formal
571		 * protocol description says NOTHING.
572		 * To be more exact, it says that we should send ACK,
573		 * because this segment (at least, if it has no data)
574		 * is out of window.
575		 *
576		 *  CONCLUSION: RFC793 (even with RFC1122) DOES NOT
577		 *  describe SYN-RECV state. All the description
578		 *  is wrong, we cannot believe to it and should
579		 *  rely only on common sense and implementation
580		 *  experience.
581		 *
582		 * Enforce "SYN-ACK" according to figure 8, figure 6
583		 * of RFC793, fixed by RFC1122.
584		 *
585		 * Note that even if there is new data in the SYN packet
586		 * they will be thrown away too.
587		 */
588		inet_rtx_syn_ack(sk, req);
589		return NULL;
590	}
591
592	/* Further reproduces section "SEGMENT ARRIVES"
593	   for state SYN-RECEIVED of RFC793.
594	   It is broken, however, it does not work only
595	   when SYNs are crossed.
596
597	   You would think that SYN crossing is impossible here, since
598	   we should have a SYN_SENT socket (from connect()) on our end,
599	   but this is not true if the crossed SYNs were sent to both
600	   ends by a malicious third party.  We must defend against this,
601	   and to do that we first verify the ACK (as per RFC793, page
602	   36) and reset if it is invalid.  Is this a true full defense?
603	   To convince ourselves, let us consider a way in which the ACK
604	   test can still pass in this 'malicious crossed SYNs' case.
605	   Malicious sender sends identical SYNs (and thus identical sequence
606	   numbers) to both A and B:
607
608		A: gets SYN, seq=7
609		B: gets SYN, seq=7
610
611	   By our good fortune, both A and B select the same initial
612	   send sequence number of seven :-)
613
614		A: sends SYN|ACK, seq=7, ack_seq=8
615		B: sends SYN|ACK, seq=7, ack_seq=8
616
617	   So we are now A eating this SYN|ACK, ACK test passes.  So
618	   does sequence test, SYN is truncated, and thus we consider
619	   it a bare ACK.
620
621	   If icsk->icsk_accept_queue.rskq_defer_accept, we silently drop this
622	   bare ACK.  Otherwise, we create an established connection.  Both
623	   ends (listening sockets) accept the new incoming connection and try
624	   to talk to each other. 8-)
625
626	   Note: This case is both harmless, and rare.  Possibility is about the
627	   same as us discovering intelligent life on another plant tomorrow.
628
629	   But generally, we should (RFC lies!) to accept ACK
630	   from SYNACK both here and in tcp_rcv_state_process().
631	   tcp_rcv_state_process() does not, hence, we do not too.
632
633	   Note that the case is absolutely generic:
634	   we cannot optimize anything here without
635	   violating protocol. All the checks must be made
636	   before attempt to create socket.
637	 */
638
639	/* RFC793 page 36: "If the connection is in any non-synchronized state ...
640	 *                  and the incoming segment acknowledges something not yet
641	 *                  sent (the segment carries an unacceptable ACK) ...
642	 *                  a reset is sent."
643	 *
644	 * Invalid ACK: reset will be sent by listening socket.
645	 * Note that the ACK validity check for a Fast Open socket is done
646	 * elsewhere and is checked directly against the child socket rather
647	 * than req because user data may have been sent out.
648	 */
649	if ((flg & TCP_FLAG_ACK) && !fastopen &&
650	    (TCP_SKB_CB(skb)->ack_seq !=
651	     tcp_rsk(req)->snt_isn + 1 + tcp_s_data_size(tcp_sk(sk))))
652		return sk;
653
654	/* Also, it would be not so bad idea to check rcv_tsecr, which
655	 * is essentially ACK extension and too early or too late values
656	 * should cause reset in unsynchronized states.
657	 */
658
659	/* RFC793: "first check sequence number". */
660
661	if (paws_reject || !tcp_in_window(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq,
662					  tcp_rsk(req)->rcv_nxt, tcp_rsk(req)->rcv_nxt + req->rcv_wnd)) {
663		/* Out of window: send ACK and drop. */
664		if (!(flg & TCP_FLAG_RST))
665			req->rsk_ops->send_ack(sk, skb, req);
666		if (paws_reject)
667			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
668		return NULL;
669	}
670
671	/* In sequence, PAWS is OK. */
672
673	if (tmp_opt.saw_tstamp && !after(TCP_SKB_CB(skb)->seq, tcp_rsk(req)->rcv_nxt))
674		req->ts_recent = tmp_opt.rcv_tsval;
675
676	if (TCP_SKB_CB(skb)->seq == tcp_rsk(req)->rcv_isn) {
677		/* Truncate SYN, it is out of window starting
678		   at tcp_rsk(req)->rcv_isn + 1. */
679		flg &= ~TCP_FLAG_SYN;
680	}
681
682	/* RFC793: "second check the RST bit" and
683	 *	   "fourth, check the SYN bit"
684	 */
685	if (flg & (TCP_FLAG_RST|TCP_FLAG_SYN)) {
686		TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_ATTEMPTFAILS);
687		goto embryonic_reset;
688	}
689
690	/* ACK sequence verified above, just make sure ACK is
691	 * set.  If ACK not set, just silently drop the packet.
692	 *
693	 * XXX (TFO) - if we ever allow "data after SYN", the
694	 * following check needs to be removed.
695	 */
696	if (!(flg & TCP_FLAG_ACK))
697		return NULL;
698
699	/* Got ACK for our SYNACK, so update baseline for SYNACK RTT sample. */
700	if (tmp_opt.saw_tstamp && tmp_opt.rcv_tsecr)
701		tcp_rsk(req)->snt_synack = tmp_opt.rcv_tsecr;
702	else if (req->num_retrans) /* don't take RTT sample if retrans && ~TS */
703		tcp_rsk(req)->snt_synack = 0;
704
705	/* For Fast Open no more processing is needed (sk is the
706	 * child socket).
707	 */
708	if (fastopen)
709		return sk;
710
711	/* While TCP_DEFER_ACCEPT is active, drop bare ACK. */
712	if (req->num_timeout < inet_csk(sk)->icsk_accept_queue.rskq_defer_accept &&
713	    TCP_SKB_CB(skb)->end_seq == tcp_rsk(req)->rcv_isn + 1) {
714		inet_rsk(req)->acked = 1;
715		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDEFERACCEPTDROP);
716		return NULL;
717	}
718
719	/* OK, ACK is valid, create big socket and
720	 * feed this segment to it. It will repeat all
721	 * the tests. THIS SEGMENT MUST MOVE SOCKET TO
722	 * ESTABLISHED STATE. If it will be dropped after
723	 * socket is created, wait for troubles.
724	 */
725	child = inet_csk(sk)->icsk_af_ops->syn_recv_sock(sk, skb, req, NULL);
726	if (child == NULL)
727		goto listen_overflow;
728
729	inet_csk_reqsk_queue_unlink(sk, req, prev);
730	inet_csk_reqsk_queue_removed(sk, req);
731
732	inet_csk_reqsk_queue_add(sk, req, child);
733	return child;
734
735listen_overflow:
736	if (!sysctl_tcp_abort_on_overflow) {
737		inet_rsk(req)->acked = 1;
738		return NULL;
739	}
740
741embryonic_reset:
742	if (!(flg & TCP_FLAG_RST)) {
743		/* Received a bad SYN pkt - for TFO We try not to reset
744		 * the local connection unless it's really necessary to
745		 * avoid becoming vulnerable to outside attack aiming at
746		 * resetting legit local connections.
747		 */
748		req->rsk_ops->send_reset(sk, skb);
749	} else if (fastopen) { /* received a valid RST pkt */
750		reqsk_fastopen_remove(sk, req, true);
751		tcp_reset(sk);
752	}
753	if (!fastopen) {
754		inet_csk_reqsk_queue_drop(sk, req, prev);
755		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_EMBRYONICRSTS);
756	}
757	return NULL;
758}
759EXPORT_SYMBOL(tcp_check_req);
760
761/*
762 * Queue segment on the new socket if the new socket is active,
763 * otherwise we just shortcircuit this and continue with
764 * the new socket.
765 *
766 * For the vast majority of cases child->sk_state will be TCP_SYN_RECV
767 * when entering. But other states are possible due to a race condition
768 * where after __inet_lookup_established() fails but before the listener
769 * locked is obtained, other packets cause the same connection to
770 * be created.
771 */
772
773int tcp_child_process(struct sock *parent, struct sock *child,
774		      struct sk_buff *skb)
775{
776	int ret = 0;
777	int state = child->sk_state;
778
779	if (!sock_owned_by_user(child)) {
780		ret = tcp_rcv_state_process(child, skb, tcp_hdr(skb),
781					    skb->len);
782		/* Wakeup parent, send SIGIO */
783		if (state == TCP_SYN_RECV && child->sk_state != state)
784			parent->sk_data_ready(parent, 0);
785	} else {
786		/* Alas, it is possible again, because we do lookup
787		 * in main socket hash table and lock on listening
788		 * socket does not protect us more.
789		 */
790		__sk_add_backlog(child, skb);
791	}
792
793	bh_unlock_sock(child);
794	sock_put(child);
795	return ret;
796}
797EXPORT_SYMBOL(tcp_child_process);
798