tcp_minisocks.c revision a3a858ff18a72a8d388e31ab0d98f7e944841a62
1/*
2 * INET		An implementation of the TCP/IP protocol suite for the LINUX
3 *		operating system.  INET is implemented using the  BSD Socket
4 *		interface as the means of communication with the user level.
5 *
6 *		Implementation of the Transmission Control Protocol(TCP).
7 *
8 * Authors:	Ross Biro
9 *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 *		Mark Evans, <evansmp@uhura.aston.ac.uk>
11 *		Corey Minyard <wf-rch!minyard@relay.EU.net>
12 *		Florian La Roche, <flla@stud.uni-sb.de>
13 *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14 *		Linus Torvalds, <torvalds@cs.helsinki.fi>
15 *		Alan Cox, <gw4pts@gw4pts.ampr.org>
16 *		Matthew Dillon, <dillon@apollo.west.oic.com>
17 *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18 *		Jorge Cwik, <jorge@laser.satlink.net>
19 */
20
21#include <linux/mm.h>
22#include <linux/module.h>
23#include <linux/sysctl.h>
24#include <linux/workqueue.h>
25#include <net/tcp.h>
26#include <net/inet_common.h>
27#include <net/xfrm.h>
28
29int sysctl_tcp_syncookies __read_mostly = 1;
30EXPORT_SYMBOL(sysctl_tcp_syncookies);
31
32int sysctl_tcp_abort_on_overflow __read_mostly;
33
34struct inet_timewait_death_row tcp_death_row = {
35	.sysctl_max_tw_buckets = NR_FILE * 2,
36	.period		= TCP_TIMEWAIT_LEN / INET_TWDR_TWKILL_SLOTS,
37	.death_lock	= __SPIN_LOCK_UNLOCKED(tcp_death_row.death_lock),
38	.hashinfo	= &tcp_hashinfo,
39	.tw_timer	= TIMER_INITIALIZER(inet_twdr_hangman, 0,
40					    (unsigned long)&tcp_death_row),
41	.twkill_work	= __WORK_INITIALIZER(tcp_death_row.twkill_work,
42					     inet_twdr_twkill_work),
43/* Short-time timewait calendar */
44
45	.twcal_hand	= -1,
46	.twcal_timer	= TIMER_INITIALIZER(inet_twdr_twcal_tick, 0,
47					    (unsigned long)&tcp_death_row),
48};
49
50EXPORT_SYMBOL_GPL(tcp_death_row);
51
52static __inline__ int tcp_in_window(u32 seq, u32 end_seq, u32 s_win, u32 e_win)
53{
54	if (seq == s_win)
55		return 1;
56	if (after(end_seq, s_win) && before(seq, e_win))
57		return 1;
58	return (seq == e_win && seq == end_seq);
59}
60
61/*
62 * * Main purpose of TIME-WAIT state is to close connection gracefully,
63 *   when one of ends sits in LAST-ACK or CLOSING retransmitting FIN
64 *   (and, probably, tail of data) and one or more our ACKs are lost.
65 * * What is TIME-WAIT timeout? It is associated with maximal packet
66 *   lifetime in the internet, which results in wrong conclusion, that
67 *   it is set to catch "old duplicate segments" wandering out of their path.
68 *   It is not quite correct. This timeout is calculated so that it exceeds
69 *   maximal retransmission timeout enough to allow to lose one (or more)
70 *   segments sent by peer and our ACKs. This time may be calculated from RTO.
71 * * When TIME-WAIT socket receives RST, it means that another end
72 *   finally closed and we are allowed to kill TIME-WAIT too.
73 * * Second purpose of TIME-WAIT is catching old duplicate segments.
74 *   Well, certainly it is pure paranoia, but if we load TIME-WAIT
75 *   with this semantics, we MUST NOT kill TIME-WAIT state with RSTs.
76 * * If we invented some more clever way to catch duplicates
77 *   (f.e. based on PAWS), we could truncate TIME-WAIT to several RTOs.
78 *
79 * The algorithm below is based on FORMAL INTERPRETATION of RFCs.
80 * When you compare it to RFCs, please, read section SEGMENT ARRIVES
81 * from the very beginning.
82 *
83 * NOTE. With recycling (and later with fin-wait-2) TW bucket
84 * is _not_ stateless. It means, that strictly speaking we must
85 * spinlock it. I do not want! Well, probability of misbehaviour
86 * is ridiculously low and, seems, we could use some mb() tricks
87 * to avoid misread sequence numbers, states etc.  --ANK
88 */
89enum tcp_tw_status
90tcp_timewait_state_process(struct inet_timewait_sock *tw, struct sk_buff *skb,
91			   const struct tcphdr *th)
92{
93	struct tcp_options_received tmp_opt;
94	u8 *hash_location;
95	struct tcp_timewait_sock *tcptw = tcp_twsk((struct sock *)tw);
96	int paws_reject = 0;
97
98	tmp_opt.saw_tstamp = 0;
99	if (th->doff > (sizeof(*th) >> 2) && tcptw->tw_ts_recent_stamp) {
100		tcp_parse_options(skb, &tmp_opt, &hash_location, 0);
101
102		if (tmp_opt.saw_tstamp) {
103			tmp_opt.ts_recent	= tcptw->tw_ts_recent;
104			tmp_opt.ts_recent_stamp	= tcptw->tw_ts_recent_stamp;
105			paws_reject = tcp_paws_reject(&tmp_opt, th->rst);
106		}
107	}
108
109	if (tw->tw_substate == TCP_FIN_WAIT2) {
110		/* Just repeat all the checks of tcp_rcv_state_process() */
111
112		/* Out of window, send ACK */
113		if (paws_reject ||
114		    !tcp_in_window(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq,
115				   tcptw->tw_rcv_nxt,
116				   tcptw->tw_rcv_nxt + tcptw->tw_rcv_wnd))
117			return TCP_TW_ACK;
118
119		if (th->rst)
120			goto kill;
121
122		if (th->syn && !before(TCP_SKB_CB(skb)->seq, tcptw->tw_rcv_nxt))
123			goto kill_with_rst;
124
125		/* Dup ACK? */
126		if (!th->ack ||
127		    !after(TCP_SKB_CB(skb)->end_seq, tcptw->tw_rcv_nxt) ||
128		    TCP_SKB_CB(skb)->end_seq == TCP_SKB_CB(skb)->seq) {
129			inet_twsk_put(tw);
130			return TCP_TW_SUCCESS;
131		}
132
133		/* New data or FIN. If new data arrive after half-duplex close,
134		 * reset.
135		 */
136		if (!th->fin ||
137		    TCP_SKB_CB(skb)->end_seq != tcptw->tw_rcv_nxt + 1) {
138kill_with_rst:
139			inet_twsk_deschedule(tw, &tcp_death_row);
140			inet_twsk_put(tw);
141			return TCP_TW_RST;
142		}
143
144		/* FIN arrived, enter true time-wait state. */
145		tw->tw_substate	  = TCP_TIME_WAIT;
146		tcptw->tw_rcv_nxt = TCP_SKB_CB(skb)->end_seq;
147		if (tmp_opt.saw_tstamp) {
148			tcptw->tw_ts_recent_stamp = get_seconds();
149			tcptw->tw_ts_recent	  = tmp_opt.rcv_tsval;
150		}
151
152		/* I am shamed, but failed to make it more elegant.
153		 * Yes, it is direct reference to IP, which is impossible
154		 * to generalize to IPv6. Taking into account that IPv6
155		 * do not understand recycling in any case, it not
156		 * a big problem in practice. --ANK */
157		if (tw->tw_family == AF_INET &&
158		    tcp_death_row.sysctl_tw_recycle && tcptw->tw_ts_recent_stamp &&
159		    tcp_v4_tw_remember_stamp(tw))
160			inet_twsk_schedule(tw, &tcp_death_row, tw->tw_timeout,
161					   TCP_TIMEWAIT_LEN);
162		else
163			inet_twsk_schedule(tw, &tcp_death_row, TCP_TIMEWAIT_LEN,
164					   TCP_TIMEWAIT_LEN);
165		return TCP_TW_ACK;
166	}
167
168	/*
169	 *	Now real TIME-WAIT state.
170	 *
171	 *	RFC 1122:
172	 *	"When a connection is [...] on TIME-WAIT state [...]
173	 *	[a TCP] MAY accept a new SYN from the remote TCP to
174	 *	reopen the connection directly, if it:
175	 *
176	 *	(1)  assigns its initial sequence number for the new
177	 *	connection to be larger than the largest sequence
178	 *	number it used on the previous connection incarnation,
179	 *	and
180	 *
181	 *	(2)  returns to TIME-WAIT state if the SYN turns out
182	 *	to be an old duplicate".
183	 */
184
185	if (!paws_reject &&
186	    (TCP_SKB_CB(skb)->seq == tcptw->tw_rcv_nxt &&
187	     (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq || th->rst))) {
188		/* In window segment, it may be only reset or bare ack. */
189
190		if (th->rst) {
191			/* This is TIME_WAIT assassination, in two flavors.
192			 * Oh well... nobody has a sufficient solution to this
193			 * protocol bug yet.
194			 */
195			if (sysctl_tcp_rfc1337 == 0) {
196kill:
197				inet_twsk_deschedule(tw, &tcp_death_row);
198				inet_twsk_put(tw);
199				return TCP_TW_SUCCESS;
200			}
201		}
202		inet_twsk_schedule(tw, &tcp_death_row, TCP_TIMEWAIT_LEN,
203				   TCP_TIMEWAIT_LEN);
204
205		if (tmp_opt.saw_tstamp) {
206			tcptw->tw_ts_recent	  = tmp_opt.rcv_tsval;
207			tcptw->tw_ts_recent_stamp = get_seconds();
208		}
209
210		inet_twsk_put(tw);
211		return TCP_TW_SUCCESS;
212	}
213
214	/* Out of window segment.
215
216	   All the segments are ACKed immediately.
217
218	   The only exception is new SYN. We accept it, if it is
219	   not old duplicate and we are not in danger to be killed
220	   by delayed old duplicates. RFC check is that it has
221	   newer sequence number works at rates <40Mbit/sec.
222	   However, if paws works, it is reliable AND even more,
223	   we even may relax silly seq space cutoff.
224
225	   RED-PEN: we violate main RFC requirement, if this SYN will appear
226	   old duplicate (i.e. we receive RST in reply to SYN-ACK),
227	   we must return socket to time-wait state. It is not good,
228	   but not fatal yet.
229	 */
230
231	if (th->syn && !th->rst && !th->ack && !paws_reject &&
232	    (after(TCP_SKB_CB(skb)->seq, tcptw->tw_rcv_nxt) ||
233	     (tmp_opt.saw_tstamp &&
234	      (s32)(tcptw->tw_ts_recent - tmp_opt.rcv_tsval) < 0))) {
235		u32 isn = tcptw->tw_snd_nxt + 65535 + 2;
236		if (isn == 0)
237			isn++;
238		TCP_SKB_CB(skb)->when = isn;
239		return TCP_TW_SYN;
240	}
241
242	if (paws_reject)
243		NET_INC_STATS_BH(twsk_net(tw), LINUX_MIB_PAWSESTABREJECTED);
244
245	if (!th->rst) {
246		/* In this case we must reset the TIMEWAIT timer.
247		 *
248		 * If it is ACKless SYN it may be both old duplicate
249		 * and new good SYN with random sequence number <rcv_nxt.
250		 * Do not reschedule in the last case.
251		 */
252		if (paws_reject || th->ack)
253			inet_twsk_schedule(tw, &tcp_death_row, TCP_TIMEWAIT_LEN,
254					   TCP_TIMEWAIT_LEN);
255
256		/* Send ACK. Note, we do not put the bucket,
257		 * it will be released by caller.
258		 */
259		return TCP_TW_ACK;
260	}
261	inet_twsk_put(tw);
262	return TCP_TW_SUCCESS;
263}
264
265/*
266 * Move a socket to time-wait or dead fin-wait-2 state.
267 */
268void tcp_time_wait(struct sock *sk, int state, int timeo)
269{
270	struct inet_timewait_sock *tw = NULL;
271	const struct inet_connection_sock *icsk = inet_csk(sk);
272	const struct tcp_sock *tp = tcp_sk(sk);
273	int recycle_ok = 0;
274
275	if (tcp_death_row.sysctl_tw_recycle && tp->rx_opt.ts_recent_stamp)
276		recycle_ok = icsk->icsk_af_ops->remember_stamp(sk);
277
278	if (tcp_death_row.tw_count < tcp_death_row.sysctl_max_tw_buckets)
279		tw = inet_twsk_alloc(sk, state);
280
281	if (tw != NULL) {
282		struct tcp_timewait_sock *tcptw = tcp_twsk((struct sock *)tw);
283		const int rto = (icsk->icsk_rto << 2) - (icsk->icsk_rto >> 1);
284
285		tw->tw_rcv_wscale	= tp->rx_opt.rcv_wscale;
286		tcptw->tw_rcv_nxt	= tp->rcv_nxt;
287		tcptw->tw_snd_nxt	= tp->snd_nxt;
288		tcptw->tw_rcv_wnd	= tcp_receive_window(tp);
289		tcptw->tw_ts_recent	= tp->rx_opt.ts_recent;
290		tcptw->tw_ts_recent_stamp = tp->rx_opt.ts_recent_stamp;
291
292#if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
293		if (tw->tw_family == PF_INET6) {
294			struct ipv6_pinfo *np = inet6_sk(sk);
295			struct inet6_timewait_sock *tw6;
296
297			tw->tw_ipv6_offset = inet6_tw_offset(sk->sk_prot);
298			tw6 = inet6_twsk((struct sock *)tw);
299			ipv6_addr_copy(&tw6->tw_v6_daddr, &np->daddr);
300			ipv6_addr_copy(&tw6->tw_v6_rcv_saddr, &np->rcv_saddr);
301			tw->tw_ipv6only = np->ipv6only;
302		}
303#endif
304
305#ifdef CONFIG_TCP_MD5SIG
306		/*
307		 * The timewait bucket does not have the key DB from the
308		 * sock structure. We just make a quick copy of the
309		 * md5 key being used (if indeed we are using one)
310		 * so the timewait ack generating code has the key.
311		 */
312		do {
313			struct tcp_md5sig_key *key;
314			memset(tcptw->tw_md5_key, 0, sizeof(tcptw->tw_md5_key));
315			tcptw->tw_md5_keylen = 0;
316			key = tp->af_specific->md5_lookup(sk, sk);
317			if (key != NULL) {
318				memcpy(&tcptw->tw_md5_key, key->key, key->keylen);
319				tcptw->tw_md5_keylen = key->keylen;
320				if (tcp_alloc_md5sig_pool(sk) == NULL)
321					BUG();
322			}
323		} while (0);
324#endif
325
326		/* Linkage updates. */
327		__inet_twsk_hashdance(tw, sk, &tcp_hashinfo);
328
329		/* Get the TIME_WAIT timeout firing. */
330		if (timeo < rto)
331			timeo = rto;
332
333		if (recycle_ok) {
334			tw->tw_timeout = rto;
335		} else {
336			tw->tw_timeout = TCP_TIMEWAIT_LEN;
337			if (state == TCP_TIME_WAIT)
338				timeo = TCP_TIMEWAIT_LEN;
339		}
340
341		inet_twsk_schedule(tw, &tcp_death_row, timeo,
342				   TCP_TIMEWAIT_LEN);
343		inet_twsk_put(tw);
344	} else {
345		/* Sorry, if we're out of memory, just CLOSE this
346		 * socket up.  We've got bigger problems than
347		 * non-graceful socket closings.
348		 */
349		LIMIT_NETDEBUG(KERN_INFO "TCP: time wait bucket table overflow\n");
350	}
351
352	tcp_update_metrics(sk);
353	tcp_done(sk);
354}
355
356void tcp_twsk_destructor(struct sock *sk)
357{
358#ifdef CONFIG_TCP_MD5SIG
359	struct tcp_timewait_sock *twsk = tcp_twsk(sk);
360	if (twsk->tw_md5_keylen)
361		tcp_free_md5sig_pool();
362#endif
363}
364
365EXPORT_SYMBOL_GPL(tcp_twsk_destructor);
366
367static inline void TCP_ECN_openreq_child(struct tcp_sock *tp,
368					 struct request_sock *req)
369{
370	tp->ecn_flags = inet_rsk(req)->ecn_ok ? TCP_ECN_OK : 0;
371}
372
373/* This is not only more efficient than what we used to do, it eliminates
374 * a lot of code duplication between IPv4/IPv6 SYN recv processing. -DaveM
375 *
376 * Actually, we could lots of memory writes here. tp of listening
377 * socket contains all necessary default parameters.
378 */
379struct sock *tcp_create_openreq_child(struct sock *sk, struct request_sock *req, struct sk_buff *skb)
380{
381	struct sock *newsk = inet_csk_clone(sk, req, GFP_ATOMIC);
382
383	if (newsk != NULL) {
384		const struct inet_request_sock *ireq = inet_rsk(req);
385		struct tcp_request_sock *treq = tcp_rsk(req);
386		struct inet_connection_sock *newicsk = inet_csk(newsk);
387		struct tcp_sock *newtp = tcp_sk(newsk);
388		struct tcp_sock *oldtp = tcp_sk(sk);
389		struct tcp_cookie_values *oldcvp = oldtp->cookie_values;
390
391		/* TCP Cookie Transactions require space for the cookie pair,
392		 * as it differs for each connection.  There is no need to
393		 * copy any s_data_payload stored at the original socket.
394		 * Failure will prevent resuming the connection.
395		 *
396		 * Presumed copied, in order of appearance:
397		 *	cookie_in_always, cookie_out_never
398		 */
399		if (oldcvp != NULL) {
400			struct tcp_cookie_values *newcvp =
401				kzalloc(sizeof(*newtp->cookie_values),
402					GFP_ATOMIC);
403
404			if (newcvp != NULL) {
405				kref_init(&newcvp->kref);
406				newcvp->cookie_desired =
407						oldcvp->cookie_desired;
408				newtp->cookie_values = newcvp;
409			} else {
410				/* Not Yet Implemented */
411				newtp->cookie_values = NULL;
412			}
413		}
414
415		/* Now setup tcp_sock */
416		newtp->pred_flags = 0;
417
418		newtp->rcv_wup = newtp->copied_seq =
419		newtp->rcv_nxt = treq->rcv_isn + 1;
420
421		newtp->snd_sml = newtp->snd_una =
422		newtp->snd_nxt = newtp->snd_up =
423			treq->snt_isn + 1 + tcp_s_data_size(oldtp);
424
425		tcp_prequeue_init(newtp);
426
427		tcp_init_wl(newtp, treq->rcv_isn);
428
429		newtp->srtt = 0;
430		newtp->mdev = TCP_TIMEOUT_INIT;
431		newicsk->icsk_rto = TCP_TIMEOUT_INIT;
432
433		newtp->packets_out = 0;
434		newtp->retrans_out = 0;
435		newtp->sacked_out = 0;
436		newtp->fackets_out = 0;
437		newtp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
438
439		/* So many TCP implementations out there (incorrectly) count the
440		 * initial SYN frame in their delayed-ACK and congestion control
441		 * algorithms that we must have the following bandaid to talk
442		 * efficiently to them.  -DaveM
443		 */
444		newtp->snd_cwnd = 2;
445		newtp->snd_cwnd_cnt = 0;
446		newtp->bytes_acked = 0;
447
448		newtp->frto_counter = 0;
449		newtp->frto_highmark = 0;
450
451		newicsk->icsk_ca_ops = &tcp_init_congestion_ops;
452
453		tcp_set_ca_state(newsk, TCP_CA_Open);
454		tcp_init_xmit_timers(newsk);
455		skb_queue_head_init(&newtp->out_of_order_queue);
456		newtp->write_seq = newtp->pushed_seq =
457			treq->snt_isn + 1 + tcp_s_data_size(oldtp);
458
459		newtp->rx_opt.saw_tstamp = 0;
460
461		newtp->rx_opt.dsack = 0;
462		newtp->rx_opt.num_sacks = 0;
463
464		newtp->urg_data = 0;
465
466		if (sock_flag(newsk, SOCK_KEEPOPEN))
467			inet_csk_reset_keepalive_timer(newsk,
468						       keepalive_time_when(newtp));
469
470		newtp->rx_opt.tstamp_ok = ireq->tstamp_ok;
471		if ((newtp->rx_opt.sack_ok = ireq->sack_ok) != 0) {
472			if (sysctl_tcp_fack)
473				tcp_enable_fack(newtp);
474		}
475		newtp->window_clamp = req->window_clamp;
476		newtp->rcv_ssthresh = req->rcv_wnd;
477		newtp->rcv_wnd = req->rcv_wnd;
478		newtp->rx_opt.wscale_ok = ireq->wscale_ok;
479		if (newtp->rx_opt.wscale_ok) {
480			newtp->rx_opt.snd_wscale = ireq->snd_wscale;
481			newtp->rx_opt.rcv_wscale = ireq->rcv_wscale;
482		} else {
483			newtp->rx_opt.snd_wscale = newtp->rx_opt.rcv_wscale = 0;
484			newtp->window_clamp = min(newtp->window_clamp, 65535U);
485		}
486		newtp->snd_wnd = (ntohs(tcp_hdr(skb)->window) <<
487				  newtp->rx_opt.snd_wscale);
488		newtp->max_window = newtp->snd_wnd;
489
490		if (newtp->rx_opt.tstamp_ok) {
491			newtp->rx_opt.ts_recent = req->ts_recent;
492			newtp->rx_opt.ts_recent_stamp = get_seconds();
493			newtp->tcp_header_len = sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
494		} else {
495			newtp->rx_opt.ts_recent_stamp = 0;
496			newtp->tcp_header_len = sizeof(struct tcphdr);
497		}
498#ifdef CONFIG_TCP_MD5SIG
499		newtp->md5sig_info = NULL;	/*XXX*/
500		if (newtp->af_specific->md5_lookup(sk, newsk))
501			newtp->tcp_header_len += TCPOLEN_MD5SIG_ALIGNED;
502#endif
503		if (skb->len >= TCP_MSS_DEFAULT + newtp->tcp_header_len)
504			newicsk->icsk_ack.last_seg_size = skb->len - newtp->tcp_header_len;
505		newtp->rx_opt.mss_clamp = req->mss;
506		TCP_ECN_openreq_child(newtp, req);
507
508		TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_PASSIVEOPENS);
509	}
510	return newsk;
511}
512
513/*
514 *	Process an incoming packet for SYN_RECV sockets represented
515 *	as a request_sock.
516 */
517
518struct sock *tcp_check_req(struct sock *sk, struct sk_buff *skb,
519			   struct request_sock *req,
520			   struct request_sock **prev)
521{
522	struct tcp_options_received tmp_opt;
523	u8 *hash_location;
524	struct sock *child;
525	const struct tcphdr *th = tcp_hdr(skb);
526	__be32 flg = tcp_flag_word(th) & (TCP_FLAG_RST|TCP_FLAG_SYN|TCP_FLAG_ACK);
527	int paws_reject = 0;
528
529	tmp_opt.saw_tstamp = 0;
530	if (th->doff > (sizeof(struct tcphdr)>>2)) {
531		tcp_parse_options(skb, &tmp_opt, &hash_location, 0);
532
533		if (tmp_opt.saw_tstamp) {
534			tmp_opt.ts_recent = req->ts_recent;
535			/* We do not store true stamp, but it is not required,
536			 * it can be estimated (approximately)
537			 * from another data.
538			 */
539			tmp_opt.ts_recent_stamp = get_seconds() - ((TCP_TIMEOUT_INIT/HZ)<<req->retrans);
540			paws_reject = tcp_paws_reject(&tmp_opt, th->rst);
541		}
542	}
543
544	/* Check for pure retransmitted SYN. */
545	if (TCP_SKB_CB(skb)->seq == tcp_rsk(req)->rcv_isn &&
546	    flg == TCP_FLAG_SYN &&
547	    !paws_reject) {
548		/*
549		 * RFC793 draws (Incorrectly! It was fixed in RFC1122)
550		 * this case on figure 6 and figure 8, but formal
551		 * protocol description says NOTHING.
552		 * To be more exact, it says that we should send ACK,
553		 * because this segment (at least, if it has no data)
554		 * is out of window.
555		 *
556		 *  CONCLUSION: RFC793 (even with RFC1122) DOES NOT
557		 *  describe SYN-RECV state. All the description
558		 *  is wrong, we cannot believe to it and should
559		 *  rely only on common sense and implementation
560		 *  experience.
561		 *
562		 * Enforce "SYN-ACK" according to figure 8, figure 6
563		 * of RFC793, fixed by RFC1122.
564		 */
565		req->rsk_ops->rtx_syn_ack(sk, req, NULL);
566		return NULL;
567	}
568
569	/* Further reproduces section "SEGMENT ARRIVES"
570	   for state SYN-RECEIVED of RFC793.
571	   It is broken, however, it does not work only
572	   when SYNs are crossed.
573
574	   You would think that SYN crossing is impossible here, since
575	   we should have a SYN_SENT socket (from connect()) on our end,
576	   but this is not true if the crossed SYNs were sent to both
577	   ends by a malicious third party.  We must defend against this,
578	   and to do that we first verify the ACK (as per RFC793, page
579	   36) and reset if it is invalid.  Is this a true full defense?
580	   To convince ourselves, let us consider a way in which the ACK
581	   test can still pass in this 'malicious crossed SYNs' case.
582	   Malicious sender sends identical SYNs (and thus identical sequence
583	   numbers) to both A and B:
584
585		A: gets SYN, seq=7
586		B: gets SYN, seq=7
587
588	   By our good fortune, both A and B select the same initial
589	   send sequence number of seven :-)
590
591		A: sends SYN|ACK, seq=7, ack_seq=8
592		B: sends SYN|ACK, seq=7, ack_seq=8
593
594	   So we are now A eating this SYN|ACK, ACK test passes.  So
595	   does sequence test, SYN is truncated, and thus we consider
596	   it a bare ACK.
597
598	   If icsk->icsk_accept_queue.rskq_defer_accept, we silently drop this
599	   bare ACK.  Otherwise, we create an established connection.  Both
600	   ends (listening sockets) accept the new incoming connection and try
601	   to talk to each other. 8-)
602
603	   Note: This case is both harmless, and rare.  Possibility is about the
604	   same as us discovering intelligent life on another plant tomorrow.
605
606	   But generally, we should (RFC lies!) to accept ACK
607	   from SYNACK both here and in tcp_rcv_state_process().
608	   tcp_rcv_state_process() does not, hence, we do not too.
609
610	   Note that the case is absolutely generic:
611	   we cannot optimize anything here without
612	   violating protocol. All the checks must be made
613	   before attempt to create socket.
614	 */
615
616	/* RFC793 page 36: "If the connection is in any non-synchronized state ...
617	 *                  and the incoming segment acknowledges something not yet
618	 *                  sent (the segment carries an unacceptable ACK) ...
619	 *                  a reset is sent."
620	 *
621	 * Invalid ACK: reset will be sent by listening socket
622	 */
623	if ((flg & TCP_FLAG_ACK) &&
624	    (TCP_SKB_CB(skb)->ack_seq !=
625	     tcp_rsk(req)->snt_isn + 1 + tcp_s_data_size(tcp_sk(sk))))
626		return sk;
627
628	/* Also, it would be not so bad idea to check rcv_tsecr, which
629	 * is essentially ACK extension and too early or too late values
630	 * should cause reset in unsynchronized states.
631	 */
632
633	/* RFC793: "first check sequence number". */
634
635	if (paws_reject || !tcp_in_window(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq,
636					  tcp_rsk(req)->rcv_isn + 1, tcp_rsk(req)->rcv_isn + 1 + req->rcv_wnd)) {
637		/* Out of window: send ACK and drop. */
638		if (!(flg & TCP_FLAG_RST))
639			req->rsk_ops->send_ack(sk, skb, req);
640		if (paws_reject)
641			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
642		return NULL;
643	}
644
645	/* In sequence, PAWS is OK. */
646
647	if (tmp_opt.saw_tstamp && !after(TCP_SKB_CB(skb)->seq, tcp_rsk(req)->rcv_isn + 1))
648		req->ts_recent = tmp_opt.rcv_tsval;
649
650	if (TCP_SKB_CB(skb)->seq == tcp_rsk(req)->rcv_isn) {
651		/* Truncate SYN, it is out of window starting
652		   at tcp_rsk(req)->rcv_isn + 1. */
653		flg &= ~TCP_FLAG_SYN;
654	}
655
656	/* RFC793: "second check the RST bit" and
657	 *	   "fourth, check the SYN bit"
658	 */
659	if (flg & (TCP_FLAG_RST|TCP_FLAG_SYN)) {
660		TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_ATTEMPTFAILS);
661		goto embryonic_reset;
662	}
663
664	/* ACK sequence verified above, just make sure ACK is
665	 * set.  If ACK not set, just silently drop the packet.
666	 */
667	if (!(flg & TCP_FLAG_ACK))
668		return NULL;
669
670	/* While TCP_DEFER_ACCEPT is active, drop bare ACK. */
671	if (req->retrans < inet_csk(sk)->icsk_accept_queue.rskq_defer_accept &&
672	    TCP_SKB_CB(skb)->end_seq == tcp_rsk(req)->rcv_isn + 1) {
673		inet_rsk(req)->acked = 1;
674		return NULL;
675	}
676
677	/* OK, ACK is valid, create big socket and
678	 * feed this segment to it. It will repeat all
679	 * the tests. THIS SEGMENT MUST MOVE SOCKET TO
680	 * ESTABLISHED STATE. If it will be dropped after
681	 * socket is created, wait for troubles.
682	 */
683	child = inet_csk(sk)->icsk_af_ops->syn_recv_sock(sk, skb, req, NULL);
684	if (child == NULL)
685		goto listen_overflow;
686
687	inet_csk_reqsk_queue_unlink(sk, req, prev);
688	inet_csk_reqsk_queue_removed(sk, req);
689
690	inet_csk_reqsk_queue_add(sk, req, child);
691	return child;
692
693listen_overflow:
694	if (!sysctl_tcp_abort_on_overflow) {
695		inet_rsk(req)->acked = 1;
696		return NULL;
697	}
698
699embryonic_reset:
700	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_EMBRYONICRSTS);
701	if (!(flg & TCP_FLAG_RST))
702		req->rsk_ops->send_reset(sk, skb);
703
704	inet_csk_reqsk_queue_drop(sk, req, prev);
705	return NULL;
706}
707
708/*
709 * Queue segment on the new socket if the new socket is active,
710 * otherwise we just shortcircuit this and continue with
711 * the new socket.
712 */
713
714int tcp_child_process(struct sock *parent, struct sock *child,
715		      struct sk_buff *skb)
716{
717	int ret = 0;
718	int state = child->sk_state;
719
720	if (!sock_owned_by_user(child)) {
721		ret = tcp_rcv_state_process(child, skb, tcp_hdr(skb),
722					    skb->len);
723		/* Wakeup parent, send SIGIO */
724		if (state == TCP_SYN_RECV && child->sk_state != state)
725			parent->sk_data_ready(parent, 0);
726	} else {
727		/* Alas, it is possible again, because we do lookup
728		 * in main socket hash table and lock on listening
729		 * socket does not protect us more.
730		 */
731		__sk_add_backlog(child, skb);
732	}
733
734	bh_unlock_sock(child);
735	sock_put(child);
736	return ret;
737}
738
739EXPORT_SYMBOL(tcp_check_req);
740EXPORT_SYMBOL(tcp_child_process);
741EXPORT_SYMBOL(tcp_create_openreq_child);
742EXPORT_SYMBOL(tcp_timewait_state_process);
743