tcp_minisocks.c revision a915da9b69273815527ccb3789421cb7027b545b
1/*
2 * INET		An implementation of the TCP/IP protocol suite for the LINUX
3 *		operating system.  INET is implemented using the  BSD Socket
4 *		interface as the means of communication with the user level.
5 *
6 *		Implementation of the Transmission Control Protocol(TCP).
7 *
8 * Authors:	Ross Biro
9 *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 *		Mark Evans, <evansmp@uhura.aston.ac.uk>
11 *		Corey Minyard <wf-rch!minyard@relay.EU.net>
12 *		Florian La Roche, <flla@stud.uni-sb.de>
13 *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14 *		Linus Torvalds, <torvalds@cs.helsinki.fi>
15 *		Alan Cox, <gw4pts@gw4pts.ampr.org>
16 *		Matthew Dillon, <dillon@apollo.west.oic.com>
17 *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18 *		Jorge Cwik, <jorge@laser.satlink.net>
19 */
20
21#include <linux/mm.h>
22#include <linux/module.h>
23#include <linux/slab.h>
24#include <linux/sysctl.h>
25#include <linux/workqueue.h>
26#include <net/tcp.h>
27#include <net/inet_common.h>
28#include <net/xfrm.h>
29
30int sysctl_tcp_syncookies __read_mostly = 1;
31EXPORT_SYMBOL(sysctl_tcp_syncookies);
32
33int sysctl_tcp_abort_on_overflow __read_mostly;
34
35struct inet_timewait_death_row tcp_death_row = {
36	.sysctl_max_tw_buckets = NR_FILE * 2,
37	.period		= TCP_TIMEWAIT_LEN / INET_TWDR_TWKILL_SLOTS,
38	.death_lock	= __SPIN_LOCK_UNLOCKED(tcp_death_row.death_lock),
39	.hashinfo	= &tcp_hashinfo,
40	.tw_timer	= TIMER_INITIALIZER(inet_twdr_hangman, 0,
41					    (unsigned long)&tcp_death_row),
42	.twkill_work	= __WORK_INITIALIZER(tcp_death_row.twkill_work,
43					     inet_twdr_twkill_work),
44/* Short-time timewait calendar */
45
46	.twcal_hand	= -1,
47	.twcal_timer	= TIMER_INITIALIZER(inet_twdr_twcal_tick, 0,
48					    (unsigned long)&tcp_death_row),
49};
50EXPORT_SYMBOL_GPL(tcp_death_row);
51
52/* VJ's idea. Save last timestamp seen from this destination
53 * and hold it at least for normal timewait interval to use for duplicate
54 * segment detection in subsequent connections, before they enter synchronized
55 * state.
56 */
57
58static int tcp_remember_stamp(struct sock *sk)
59{
60	const struct inet_connection_sock *icsk = inet_csk(sk);
61	struct tcp_sock *tp = tcp_sk(sk);
62	struct inet_peer *peer;
63	bool release_it;
64
65	peer = icsk->icsk_af_ops->get_peer(sk, &release_it);
66	if (peer) {
67		if ((s32)(peer->tcp_ts - tp->rx_opt.ts_recent) <= 0 ||
68		    ((u32)get_seconds() - peer->tcp_ts_stamp > TCP_PAWS_MSL &&
69		     peer->tcp_ts_stamp <= (u32)tp->rx_opt.ts_recent_stamp)) {
70			peer->tcp_ts_stamp = (u32)tp->rx_opt.ts_recent_stamp;
71			peer->tcp_ts = tp->rx_opt.ts_recent;
72		}
73		if (release_it)
74			inet_putpeer(peer);
75		return 1;
76	}
77
78	return 0;
79}
80
81static int tcp_tw_remember_stamp(struct inet_timewait_sock *tw)
82{
83	struct sock *sk = (struct sock *) tw;
84	struct inet_peer *peer;
85
86	peer = twsk_getpeer(sk);
87	if (peer) {
88		const struct tcp_timewait_sock *tcptw = tcp_twsk(sk);
89
90		if ((s32)(peer->tcp_ts - tcptw->tw_ts_recent) <= 0 ||
91		    ((u32)get_seconds() - peer->tcp_ts_stamp > TCP_PAWS_MSL &&
92		     peer->tcp_ts_stamp <= (u32)tcptw->tw_ts_recent_stamp)) {
93			peer->tcp_ts_stamp = (u32)tcptw->tw_ts_recent_stamp;
94			peer->tcp_ts	   = tcptw->tw_ts_recent;
95		}
96		inet_putpeer(peer);
97		return 1;
98	}
99	return 0;
100}
101
102static __inline__ int tcp_in_window(u32 seq, u32 end_seq, u32 s_win, u32 e_win)
103{
104	if (seq == s_win)
105		return 1;
106	if (after(end_seq, s_win) && before(seq, e_win))
107		return 1;
108	return seq == e_win && seq == end_seq;
109}
110
111/*
112 * * Main purpose of TIME-WAIT state is to close connection gracefully,
113 *   when one of ends sits in LAST-ACK or CLOSING retransmitting FIN
114 *   (and, probably, tail of data) and one or more our ACKs are lost.
115 * * What is TIME-WAIT timeout? It is associated with maximal packet
116 *   lifetime in the internet, which results in wrong conclusion, that
117 *   it is set to catch "old duplicate segments" wandering out of their path.
118 *   It is not quite correct. This timeout is calculated so that it exceeds
119 *   maximal retransmission timeout enough to allow to lose one (or more)
120 *   segments sent by peer and our ACKs. This time may be calculated from RTO.
121 * * When TIME-WAIT socket receives RST, it means that another end
122 *   finally closed and we are allowed to kill TIME-WAIT too.
123 * * Second purpose of TIME-WAIT is catching old duplicate segments.
124 *   Well, certainly it is pure paranoia, but if we load TIME-WAIT
125 *   with this semantics, we MUST NOT kill TIME-WAIT state with RSTs.
126 * * If we invented some more clever way to catch duplicates
127 *   (f.e. based on PAWS), we could truncate TIME-WAIT to several RTOs.
128 *
129 * The algorithm below is based on FORMAL INTERPRETATION of RFCs.
130 * When you compare it to RFCs, please, read section SEGMENT ARRIVES
131 * from the very beginning.
132 *
133 * NOTE. With recycling (and later with fin-wait-2) TW bucket
134 * is _not_ stateless. It means, that strictly speaking we must
135 * spinlock it. I do not want! Well, probability of misbehaviour
136 * is ridiculously low and, seems, we could use some mb() tricks
137 * to avoid misread sequence numbers, states etc.  --ANK
138 */
139enum tcp_tw_status
140tcp_timewait_state_process(struct inet_timewait_sock *tw, struct sk_buff *skb,
141			   const struct tcphdr *th)
142{
143	struct tcp_options_received tmp_opt;
144	const u8 *hash_location;
145	struct tcp_timewait_sock *tcptw = tcp_twsk((struct sock *)tw);
146	int paws_reject = 0;
147
148	tmp_opt.saw_tstamp = 0;
149	if (th->doff > (sizeof(*th) >> 2) && tcptw->tw_ts_recent_stamp) {
150		tcp_parse_options(skb, &tmp_opt, &hash_location, 0);
151
152		if (tmp_opt.saw_tstamp) {
153			tmp_opt.ts_recent	= tcptw->tw_ts_recent;
154			tmp_opt.ts_recent_stamp	= tcptw->tw_ts_recent_stamp;
155			paws_reject = tcp_paws_reject(&tmp_opt, th->rst);
156		}
157	}
158
159	if (tw->tw_substate == TCP_FIN_WAIT2) {
160		/* Just repeat all the checks of tcp_rcv_state_process() */
161
162		/* Out of window, send ACK */
163		if (paws_reject ||
164		    !tcp_in_window(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq,
165				   tcptw->tw_rcv_nxt,
166				   tcptw->tw_rcv_nxt + tcptw->tw_rcv_wnd))
167			return TCP_TW_ACK;
168
169		if (th->rst)
170			goto kill;
171
172		if (th->syn && !before(TCP_SKB_CB(skb)->seq, tcptw->tw_rcv_nxt))
173			goto kill_with_rst;
174
175		/* Dup ACK? */
176		if (!th->ack ||
177		    !after(TCP_SKB_CB(skb)->end_seq, tcptw->tw_rcv_nxt) ||
178		    TCP_SKB_CB(skb)->end_seq == TCP_SKB_CB(skb)->seq) {
179			inet_twsk_put(tw);
180			return TCP_TW_SUCCESS;
181		}
182
183		/* New data or FIN. If new data arrive after half-duplex close,
184		 * reset.
185		 */
186		if (!th->fin ||
187		    TCP_SKB_CB(skb)->end_seq != tcptw->tw_rcv_nxt + 1) {
188kill_with_rst:
189			inet_twsk_deschedule(tw, &tcp_death_row);
190			inet_twsk_put(tw);
191			return TCP_TW_RST;
192		}
193
194		/* FIN arrived, enter true time-wait state. */
195		tw->tw_substate	  = TCP_TIME_WAIT;
196		tcptw->tw_rcv_nxt = TCP_SKB_CB(skb)->end_seq;
197		if (tmp_opt.saw_tstamp) {
198			tcptw->tw_ts_recent_stamp = get_seconds();
199			tcptw->tw_ts_recent	  = tmp_opt.rcv_tsval;
200		}
201
202		if (tcp_death_row.sysctl_tw_recycle &&
203		    tcptw->tw_ts_recent_stamp &&
204		    tcp_tw_remember_stamp(tw))
205			inet_twsk_schedule(tw, &tcp_death_row, tw->tw_timeout,
206					   TCP_TIMEWAIT_LEN);
207		else
208			inet_twsk_schedule(tw, &tcp_death_row, TCP_TIMEWAIT_LEN,
209					   TCP_TIMEWAIT_LEN);
210		return TCP_TW_ACK;
211	}
212
213	/*
214	 *	Now real TIME-WAIT state.
215	 *
216	 *	RFC 1122:
217	 *	"When a connection is [...] on TIME-WAIT state [...]
218	 *	[a TCP] MAY accept a new SYN from the remote TCP to
219	 *	reopen the connection directly, if it:
220	 *
221	 *	(1)  assigns its initial sequence number for the new
222	 *	connection to be larger than the largest sequence
223	 *	number it used on the previous connection incarnation,
224	 *	and
225	 *
226	 *	(2)  returns to TIME-WAIT state if the SYN turns out
227	 *	to be an old duplicate".
228	 */
229
230	if (!paws_reject &&
231	    (TCP_SKB_CB(skb)->seq == tcptw->tw_rcv_nxt &&
232	     (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq || th->rst))) {
233		/* In window segment, it may be only reset or bare ack. */
234
235		if (th->rst) {
236			/* This is TIME_WAIT assassination, in two flavors.
237			 * Oh well... nobody has a sufficient solution to this
238			 * protocol bug yet.
239			 */
240			if (sysctl_tcp_rfc1337 == 0) {
241kill:
242				inet_twsk_deschedule(tw, &tcp_death_row);
243				inet_twsk_put(tw);
244				return TCP_TW_SUCCESS;
245			}
246		}
247		inet_twsk_schedule(tw, &tcp_death_row, TCP_TIMEWAIT_LEN,
248				   TCP_TIMEWAIT_LEN);
249
250		if (tmp_opt.saw_tstamp) {
251			tcptw->tw_ts_recent	  = tmp_opt.rcv_tsval;
252			tcptw->tw_ts_recent_stamp = get_seconds();
253		}
254
255		inet_twsk_put(tw);
256		return TCP_TW_SUCCESS;
257	}
258
259	/* Out of window segment.
260
261	   All the segments are ACKed immediately.
262
263	   The only exception is new SYN. We accept it, if it is
264	   not old duplicate and we are not in danger to be killed
265	   by delayed old duplicates. RFC check is that it has
266	   newer sequence number works at rates <40Mbit/sec.
267	   However, if paws works, it is reliable AND even more,
268	   we even may relax silly seq space cutoff.
269
270	   RED-PEN: we violate main RFC requirement, if this SYN will appear
271	   old duplicate (i.e. we receive RST in reply to SYN-ACK),
272	   we must return socket to time-wait state. It is not good,
273	   but not fatal yet.
274	 */
275
276	if (th->syn && !th->rst && !th->ack && !paws_reject &&
277	    (after(TCP_SKB_CB(skb)->seq, tcptw->tw_rcv_nxt) ||
278	     (tmp_opt.saw_tstamp &&
279	      (s32)(tcptw->tw_ts_recent - tmp_opt.rcv_tsval) < 0))) {
280		u32 isn = tcptw->tw_snd_nxt + 65535 + 2;
281		if (isn == 0)
282			isn++;
283		TCP_SKB_CB(skb)->when = isn;
284		return TCP_TW_SYN;
285	}
286
287	if (paws_reject)
288		NET_INC_STATS_BH(twsk_net(tw), LINUX_MIB_PAWSESTABREJECTED);
289
290	if (!th->rst) {
291		/* In this case we must reset the TIMEWAIT timer.
292		 *
293		 * If it is ACKless SYN it may be both old duplicate
294		 * and new good SYN with random sequence number <rcv_nxt.
295		 * Do not reschedule in the last case.
296		 */
297		if (paws_reject || th->ack)
298			inet_twsk_schedule(tw, &tcp_death_row, TCP_TIMEWAIT_LEN,
299					   TCP_TIMEWAIT_LEN);
300
301		/* Send ACK. Note, we do not put the bucket,
302		 * it will be released by caller.
303		 */
304		return TCP_TW_ACK;
305	}
306	inet_twsk_put(tw);
307	return TCP_TW_SUCCESS;
308}
309EXPORT_SYMBOL(tcp_timewait_state_process);
310
311/*
312 * Move a socket to time-wait or dead fin-wait-2 state.
313 */
314void tcp_time_wait(struct sock *sk, int state, int timeo)
315{
316	struct inet_timewait_sock *tw = NULL;
317	const struct inet_connection_sock *icsk = inet_csk(sk);
318	const struct tcp_sock *tp = tcp_sk(sk);
319	int recycle_ok = 0;
320
321	if (tcp_death_row.sysctl_tw_recycle && tp->rx_opt.ts_recent_stamp)
322		recycle_ok = tcp_remember_stamp(sk);
323
324	if (tcp_death_row.tw_count < tcp_death_row.sysctl_max_tw_buckets)
325		tw = inet_twsk_alloc(sk, state);
326
327	if (tw != NULL) {
328		struct tcp_timewait_sock *tcptw = tcp_twsk((struct sock *)tw);
329		const int rto = (icsk->icsk_rto << 2) - (icsk->icsk_rto >> 1);
330
331		tw->tw_transparent	= inet_sk(sk)->transparent;
332		tw->tw_rcv_wscale	= tp->rx_opt.rcv_wscale;
333		tcptw->tw_rcv_nxt	= tp->rcv_nxt;
334		tcptw->tw_snd_nxt	= tp->snd_nxt;
335		tcptw->tw_rcv_wnd	= tcp_receive_window(tp);
336		tcptw->tw_ts_recent	= tp->rx_opt.ts_recent;
337		tcptw->tw_ts_recent_stamp = tp->rx_opt.ts_recent_stamp;
338
339#if IS_ENABLED(CONFIG_IPV6)
340		if (tw->tw_family == PF_INET6) {
341			struct ipv6_pinfo *np = inet6_sk(sk);
342			struct inet6_timewait_sock *tw6;
343
344			tw->tw_ipv6_offset = inet6_tw_offset(sk->sk_prot);
345			tw6 = inet6_twsk((struct sock *)tw);
346			tw6->tw_v6_daddr = np->daddr;
347			tw6->tw_v6_rcv_saddr = np->rcv_saddr;
348			tw->tw_tclass = np->tclass;
349			tw->tw_ipv6only = np->ipv6only;
350		}
351#endif
352
353#ifdef CONFIG_TCP_MD5SIG
354		/*
355		 * The timewait bucket does not have the key DB from the
356		 * sock structure. We just make a quick copy of the
357		 * md5 key being used (if indeed we are using one)
358		 * so the timewait ack generating code has the key.
359		 */
360		do {
361			struct tcp_md5sig_key *key;
362			tcptw->tw_md5_key = NULL;
363			key = tp->af_specific->md5_lookup(sk, sk);
364			if (key != NULL) {
365				tcptw->tw_md5_key = kmemdup(key, sizeof(*key), GFP_ATOMIC);
366				if (tcptw->tw_md5_key && tcp_alloc_md5sig_pool(sk) == NULL)
367					BUG();
368			}
369		} while (0);
370#endif
371
372		/* Linkage updates. */
373		__inet_twsk_hashdance(tw, sk, &tcp_hashinfo);
374
375		/* Get the TIME_WAIT timeout firing. */
376		if (timeo < rto)
377			timeo = rto;
378
379		if (recycle_ok) {
380			tw->tw_timeout = rto;
381		} else {
382			tw->tw_timeout = TCP_TIMEWAIT_LEN;
383			if (state == TCP_TIME_WAIT)
384				timeo = TCP_TIMEWAIT_LEN;
385		}
386
387		inet_twsk_schedule(tw, &tcp_death_row, timeo,
388				   TCP_TIMEWAIT_LEN);
389		inet_twsk_put(tw);
390	} else {
391		/* Sorry, if we're out of memory, just CLOSE this
392		 * socket up.  We've got bigger problems than
393		 * non-graceful socket closings.
394		 */
395		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPTIMEWAITOVERFLOW);
396	}
397
398	tcp_update_metrics(sk);
399	tcp_done(sk);
400}
401
402void tcp_twsk_destructor(struct sock *sk)
403{
404#ifdef CONFIG_TCP_MD5SIG
405	struct tcp_timewait_sock *twsk = tcp_twsk(sk);
406	if (twsk->tw_md5_key) {
407		tcp_free_md5sig_pool();
408		kfree_rcu(twsk->tw_md5_key, rcu);
409	}
410#endif
411}
412EXPORT_SYMBOL_GPL(tcp_twsk_destructor);
413
414static inline void TCP_ECN_openreq_child(struct tcp_sock *tp,
415					 struct request_sock *req)
416{
417	tp->ecn_flags = inet_rsk(req)->ecn_ok ? TCP_ECN_OK : 0;
418}
419
420/* This is not only more efficient than what we used to do, it eliminates
421 * a lot of code duplication between IPv4/IPv6 SYN recv processing. -DaveM
422 *
423 * Actually, we could lots of memory writes here. tp of listening
424 * socket contains all necessary default parameters.
425 */
426struct sock *tcp_create_openreq_child(struct sock *sk, struct request_sock *req, struct sk_buff *skb)
427{
428	struct sock *newsk = inet_csk_clone_lock(sk, req, GFP_ATOMIC);
429
430	if (newsk != NULL) {
431		const struct inet_request_sock *ireq = inet_rsk(req);
432		struct tcp_request_sock *treq = tcp_rsk(req);
433		struct inet_connection_sock *newicsk = inet_csk(newsk);
434		struct tcp_sock *newtp = tcp_sk(newsk);
435		struct tcp_sock *oldtp = tcp_sk(sk);
436		struct tcp_cookie_values *oldcvp = oldtp->cookie_values;
437
438		/* TCP Cookie Transactions require space for the cookie pair,
439		 * as it differs for each connection.  There is no need to
440		 * copy any s_data_payload stored at the original socket.
441		 * Failure will prevent resuming the connection.
442		 *
443		 * Presumed copied, in order of appearance:
444		 *	cookie_in_always, cookie_out_never
445		 */
446		if (oldcvp != NULL) {
447			struct tcp_cookie_values *newcvp =
448				kzalloc(sizeof(*newtp->cookie_values),
449					GFP_ATOMIC);
450
451			if (newcvp != NULL) {
452				kref_init(&newcvp->kref);
453				newcvp->cookie_desired =
454						oldcvp->cookie_desired;
455				newtp->cookie_values = newcvp;
456			} else {
457				/* Not Yet Implemented */
458				newtp->cookie_values = NULL;
459			}
460		}
461
462		/* Now setup tcp_sock */
463		newtp->pred_flags = 0;
464
465		newtp->rcv_wup = newtp->copied_seq =
466		newtp->rcv_nxt = treq->rcv_isn + 1;
467
468		newtp->snd_sml = newtp->snd_una =
469		newtp->snd_nxt = newtp->snd_up =
470			treq->snt_isn + 1 + tcp_s_data_size(oldtp);
471
472		tcp_prequeue_init(newtp);
473
474		tcp_init_wl(newtp, treq->rcv_isn);
475
476		newtp->srtt = 0;
477		newtp->mdev = TCP_TIMEOUT_INIT;
478		newicsk->icsk_rto = TCP_TIMEOUT_INIT;
479
480		newtp->packets_out = 0;
481		newtp->retrans_out = 0;
482		newtp->sacked_out = 0;
483		newtp->fackets_out = 0;
484		newtp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
485
486		/* So many TCP implementations out there (incorrectly) count the
487		 * initial SYN frame in their delayed-ACK and congestion control
488		 * algorithms that we must have the following bandaid to talk
489		 * efficiently to them.  -DaveM
490		 */
491		newtp->snd_cwnd = TCP_INIT_CWND;
492		newtp->snd_cwnd_cnt = 0;
493		newtp->bytes_acked = 0;
494
495		newtp->frto_counter = 0;
496		newtp->frto_highmark = 0;
497
498		if (newicsk->icsk_ca_ops != &tcp_init_congestion_ops &&
499		    !try_module_get(newicsk->icsk_ca_ops->owner))
500			newicsk->icsk_ca_ops = &tcp_init_congestion_ops;
501
502		tcp_set_ca_state(newsk, TCP_CA_Open);
503		tcp_init_xmit_timers(newsk);
504		skb_queue_head_init(&newtp->out_of_order_queue);
505		newtp->write_seq = newtp->pushed_seq =
506			treq->snt_isn + 1 + tcp_s_data_size(oldtp);
507
508		newtp->rx_opt.saw_tstamp = 0;
509
510		newtp->rx_opt.dsack = 0;
511		newtp->rx_opt.num_sacks = 0;
512
513		newtp->urg_data = 0;
514
515		if (sock_flag(newsk, SOCK_KEEPOPEN))
516			inet_csk_reset_keepalive_timer(newsk,
517						       keepalive_time_when(newtp));
518
519		newtp->rx_opt.tstamp_ok = ireq->tstamp_ok;
520		if ((newtp->rx_opt.sack_ok = ireq->sack_ok) != 0) {
521			if (sysctl_tcp_fack)
522				tcp_enable_fack(newtp);
523		}
524		newtp->window_clamp = req->window_clamp;
525		newtp->rcv_ssthresh = req->rcv_wnd;
526		newtp->rcv_wnd = req->rcv_wnd;
527		newtp->rx_opt.wscale_ok = ireq->wscale_ok;
528		if (newtp->rx_opt.wscale_ok) {
529			newtp->rx_opt.snd_wscale = ireq->snd_wscale;
530			newtp->rx_opt.rcv_wscale = ireq->rcv_wscale;
531		} else {
532			newtp->rx_opt.snd_wscale = newtp->rx_opt.rcv_wscale = 0;
533			newtp->window_clamp = min(newtp->window_clamp, 65535U);
534		}
535		newtp->snd_wnd = (ntohs(tcp_hdr(skb)->window) <<
536				  newtp->rx_opt.snd_wscale);
537		newtp->max_window = newtp->snd_wnd;
538
539		if (newtp->rx_opt.tstamp_ok) {
540			newtp->rx_opt.ts_recent = req->ts_recent;
541			newtp->rx_opt.ts_recent_stamp = get_seconds();
542			newtp->tcp_header_len = sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
543		} else {
544			newtp->rx_opt.ts_recent_stamp = 0;
545			newtp->tcp_header_len = sizeof(struct tcphdr);
546		}
547#ifdef CONFIG_TCP_MD5SIG
548		newtp->md5sig_info = NULL;	/*XXX*/
549		if (newtp->af_specific->md5_lookup(sk, newsk))
550			newtp->tcp_header_len += TCPOLEN_MD5SIG_ALIGNED;
551#endif
552		if (skb->len >= TCP_MSS_DEFAULT + newtp->tcp_header_len)
553			newicsk->icsk_ack.last_seg_size = skb->len - newtp->tcp_header_len;
554		newtp->rx_opt.mss_clamp = req->mss;
555		TCP_ECN_openreq_child(newtp, req);
556
557		TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_PASSIVEOPENS);
558	}
559	return newsk;
560}
561EXPORT_SYMBOL(tcp_create_openreq_child);
562
563/*
564 *	Process an incoming packet for SYN_RECV sockets represented
565 *	as a request_sock.
566 */
567
568struct sock *tcp_check_req(struct sock *sk, struct sk_buff *skb,
569			   struct request_sock *req,
570			   struct request_sock **prev)
571{
572	struct tcp_options_received tmp_opt;
573	const u8 *hash_location;
574	struct sock *child;
575	const struct tcphdr *th = tcp_hdr(skb);
576	__be32 flg = tcp_flag_word(th) & (TCP_FLAG_RST|TCP_FLAG_SYN|TCP_FLAG_ACK);
577	int paws_reject = 0;
578
579	tmp_opt.saw_tstamp = 0;
580	if (th->doff > (sizeof(struct tcphdr)>>2)) {
581		tcp_parse_options(skb, &tmp_opt, &hash_location, 0);
582
583		if (tmp_opt.saw_tstamp) {
584			tmp_opt.ts_recent = req->ts_recent;
585			/* We do not store true stamp, but it is not required,
586			 * it can be estimated (approximately)
587			 * from another data.
588			 */
589			tmp_opt.ts_recent_stamp = get_seconds() - ((TCP_TIMEOUT_INIT/HZ)<<req->retrans);
590			paws_reject = tcp_paws_reject(&tmp_opt, th->rst);
591		}
592	}
593
594	/* Check for pure retransmitted SYN. */
595	if (TCP_SKB_CB(skb)->seq == tcp_rsk(req)->rcv_isn &&
596	    flg == TCP_FLAG_SYN &&
597	    !paws_reject) {
598		/*
599		 * RFC793 draws (Incorrectly! It was fixed in RFC1122)
600		 * this case on figure 6 and figure 8, but formal
601		 * protocol description says NOTHING.
602		 * To be more exact, it says that we should send ACK,
603		 * because this segment (at least, if it has no data)
604		 * is out of window.
605		 *
606		 *  CONCLUSION: RFC793 (even with RFC1122) DOES NOT
607		 *  describe SYN-RECV state. All the description
608		 *  is wrong, we cannot believe to it and should
609		 *  rely only on common sense and implementation
610		 *  experience.
611		 *
612		 * Enforce "SYN-ACK" according to figure 8, figure 6
613		 * of RFC793, fixed by RFC1122.
614		 */
615		req->rsk_ops->rtx_syn_ack(sk, req, NULL);
616		return NULL;
617	}
618
619	/* Further reproduces section "SEGMENT ARRIVES"
620	   for state SYN-RECEIVED of RFC793.
621	   It is broken, however, it does not work only
622	   when SYNs are crossed.
623
624	   You would think that SYN crossing is impossible here, since
625	   we should have a SYN_SENT socket (from connect()) on our end,
626	   but this is not true if the crossed SYNs were sent to both
627	   ends by a malicious third party.  We must defend against this,
628	   and to do that we first verify the ACK (as per RFC793, page
629	   36) and reset if it is invalid.  Is this a true full defense?
630	   To convince ourselves, let us consider a way in which the ACK
631	   test can still pass in this 'malicious crossed SYNs' case.
632	   Malicious sender sends identical SYNs (and thus identical sequence
633	   numbers) to both A and B:
634
635		A: gets SYN, seq=7
636		B: gets SYN, seq=7
637
638	   By our good fortune, both A and B select the same initial
639	   send sequence number of seven :-)
640
641		A: sends SYN|ACK, seq=7, ack_seq=8
642		B: sends SYN|ACK, seq=7, ack_seq=8
643
644	   So we are now A eating this SYN|ACK, ACK test passes.  So
645	   does sequence test, SYN is truncated, and thus we consider
646	   it a bare ACK.
647
648	   If icsk->icsk_accept_queue.rskq_defer_accept, we silently drop this
649	   bare ACK.  Otherwise, we create an established connection.  Both
650	   ends (listening sockets) accept the new incoming connection and try
651	   to talk to each other. 8-)
652
653	   Note: This case is both harmless, and rare.  Possibility is about the
654	   same as us discovering intelligent life on another plant tomorrow.
655
656	   But generally, we should (RFC lies!) to accept ACK
657	   from SYNACK both here and in tcp_rcv_state_process().
658	   tcp_rcv_state_process() does not, hence, we do not too.
659
660	   Note that the case is absolutely generic:
661	   we cannot optimize anything here without
662	   violating protocol. All the checks must be made
663	   before attempt to create socket.
664	 */
665
666	/* RFC793 page 36: "If the connection is in any non-synchronized state ...
667	 *                  and the incoming segment acknowledges something not yet
668	 *                  sent (the segment carries an unacceptable ACK) ...
669	 *                  a reset is sent."
670	 *
671	 * Invalid ACK: reset will be sent by listening socket
672	 */
673	if ((flg & TCP_FLAG_ACK) &&
674	    (TCP_SKB_CB(skb)->ack_seq !=
675	     tcp_rsk(req)->snt_isn + 1 + tcp_s_data_size(tcp_sk(sk))))
676		return sk;
677
678	/* Also, it would be not so bad idea to check rcv_tsecr, which
679	 * is essentially ACK extension and too early or too late values
680	 * should cause reset in unsynchronized states.
681	 */
682
683	/* RFC793: "first check sequence number". */
684
685	if (paws_reject || !tcp_in_window(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq,
686					  tcp_rsk(req)->rcv_isn + 1, tcp_rsk(req)->rcv_isn + 1 + req->rcv_wnd)) {
687		/* Out of window: send ACK and drop. */
688		if (!(flg & TCP_FLAG_RST))
689			req->rsk_ops->send_ack(sk, skb, req);
690		if (paws_reject)
691			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
692		return NULL;
693	}
694
695	/* In sequence, PAWS is OK. */
696
697	if (tmp_opt.saw_tstamp && !after(TCP_SKB_CB(skb)->seq, tcp_rsk(req)->rcv_isn + 1))
698		req->ts_recent = tmp_opt.rcv_tsval;
699
700	if (TCP_SKB_CB(skb)->seq == tcp_rsk(req)->rcv_isn) {
701		/* Truncate SYN, it is out of window starting
702		   at tcp_rsk(req)->rcv_isn + 1. */
703		flg &= ~TCP_FLAG_SYN;
704	}
705
706	/* RFC793: "second check the RST bit" and
707	 *	   "fourth, check the SYN bit"
708	 */
709	if (flg & (TCP_FLAG_RST|TCP_FLAG_SYN)) {
710		TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_ATTEMPTFAILS);
711		goto embryonic_reset;
712	}
713
714	/* ACK sequence verified above, just make sure ACK is
715	 * set.  If ACK not set, just silently drop the packet.
716	 */
717	if (!(flg & TCP_FLAG_ACK))
718		return NULL;
719
720	/* While TCP_DEFER_ACCEPT is active, drop bare ACK. */
721	if (req->retrans < inet_csk(sk)->icsk_accept_queue.rskq_defer_accept &&
722	    TCP_SKB_CB(skb)->end_seq == tcp_rsk(req)->rcv_isn + 1) {
723		inet_rsk(req)->acked = 1;
724		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDEFERACCEPTDROP);
725		return NULL;
726	}
727	if (tmp_opt.saw_tstamp && tmp_opt.rcv_tsecr)
728		tcp_rsk(req)->snt_synack = tmp_opt.rcv_tsecr;
729	else if (req->retrans) /* don't take RTT sample if retrans && ~TS */
730		tcp_rsk(req)->snt_synack = 0;
731
732	/* OK, ACK is valid, create big socket and
733	 * feed this segment to it. It will repeat all
734	 * the tests. THIS SEGMENT MUST MOVE SOCKET TO
735	 * ESTABLISHED STATE. If it will be dropped after
736	 * socket is created, wait for troubles.
737	 */
738	child = inet_csk(sk)->icsk_af_ops->syn_recv_sock(sk, skb, req, NULL);
739	if (child == NULL)
740		goto listen_overflow;
741
742	inet_csk_reqsk_queue_unlink(sk, req, prev);
743	inet_csk_reqsk_queue_removed(sk, req);
744
745	inet_csk_reqsk_queue_add(sk, req, child);
746	return child;
747
748listen_overflow:
749	if (!sysctl_tcp_abort_on_overflow) {
750		inet_rsk(req)->acked = 1;
751		return NULL;
752	}
753
754embryonic_reset:
755	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_EMBRYONICRSTS);
756	if (!(flg & TCP_FLAG_RST))
757		req->rsk_ops->send_reset(sk, skb);
758
759	inet_csk_reqsk_queue_drop(sk, req, prev);
760	return NULL;
761}
762EXPORT_SYMBOL(tcp_check_req);
763
764/*
765 * Queue segment on the new socket if the new socket is active,
766 * otherwise we just shortcircuit this and continue with
767 * the new socket.
768 */
769
770int tcp_child_process(struct sock *parent, struct sock *child,
771		      struct sk_buff *skb)
772{
773	int ret = 0;
774	int state = child->sk_state;
775
776	if (!sock_owned_by_user(child)) {
777		ret = tcp_rcv_state_process(child, skb, tcp_hdr(skb),
778					    skb->len);
779		/* Wakeup parent, send SIGIO */
780		if (state == TCP_SYN_RECV && child->sk_state != state)
781			parent->sk_data_ready(parent, 0);
782	} else {
783		/* Alas, it is possible again, because we do lookup
784		 * in main socket hash table and lock on listening
785		 * socket does not protect us more.
786		 */
787		__sk_add_backlog(child, skb);
788	}
789
790	bh_unlock_sock(child);
791	sock_put(child);
792	return ret;
793}
794EXPORT_SYMBOL(tcp_child_process);
795