tcp_minisocks.c revision a928630a2ffeaf6aa9a6b78456935b6ab1be3066
1/*
2 * INET		An implementation of the TCP/IP protocol suite for the LINUX
3 *		operating system.  INET is implemented using the  BSD Socket
4 *		interface as the means of communication with the user level.
5 *
6 *		Implementation of the Transmission Control Protocol(TCP).
7 *
8 * Version:	$Id: tcp_minisocks.c,v 1.15 2002/02/01 22:01:04 davem Exp $
9 *
10 * Authors:	Ross Biro
11 *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 *		Mark Evans, <evansmp@uhura.aston.ac.uk>
13 *		Corey Minyard <wf-rch!minyard@relay.EU.net>
14 *		Florian La Roche, <flla@stud.uni-sb.de>
15 *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
16 *		Linus Torvalds, <torvalds@cs.helsinki.fi>
17 *		Alan Cox, <gw4pts@gw4pts.ampr.org>
18 *		Matthew Dillon, <dillon@apollo.west.oic.com>
19 *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
20 *		Jorge Cwik, <jorge@laser.satlink.net>
21 */
22
23#include <linux/mm.h>
24#include <linux/module.h>
25#include <linux/sysctl.h>
26#include <linux/workqueue.h>
27#include <net/tcp.h>
28#include <net/inet_common.h>
29#include <net/xfrm.h>
30
31#ifdef CONFIG_SYSCTL
32#define SYNC_INIT 0 /* let the user enable it */
33#else
34#define SYNC_INIT 1
35#endif
36
37int sysctl_tcp_syncookies __read_mostly = SYNC_INIT;
38int sysctl_tcp_abort_on_overflow __read_mostly;
39
40struct inet_timewait_death_row tcp_death_row = {
41	.sysctl_max_tw_buckets = NR_FILE * 2,
42	.period		= TCP_TIMEWAIT_LEN / INET_TWDR_TWKILL_SLOTS,
43	.death_lock	= __SPIN_LOCK_UNLOCKED(tcp_death_row.death_lock),
44	.hashinfo	= &tcp_hashinfo,
45	.tw_timer	= TIMER_INITIALIZER(inet_twdr_hangman, 0,
46					    (unsigned long)&tcp_death_row),
47	.twkill_work	= __WORK_INITIALIZER(tcp_death_row.twkill_work,
48					     inet_twdr_twkill_work,
49					     &tcp_death_row),
50/* Short-time timewait calendar */
51
52	.twcal_hand	= -1,
53	.twcal_timer	= TIMER_INITIALIZER(inet_twdr_twcal_tick, 0,
54					    (unsigned long)&tcp_death_row),
55};
56
57EXPORT_SYMBOL_GPL(tcp_death_row);
58
59static __inline__ int tcp_in_window(u32 seq, u32 end_seq, u32 s_win, u32 e_win)
60{
61	if (seq == s_win)
62		return 1;
63	if (after(end_seq, s_win) && before(seq, e_win))
64		return 1;
65	return (seq == e_win && seq == end_seq);
66}
67
68/*
69 * * Main purpose of TIME-WAIT state is to close connection gracefully,
70 *   when one of ends sits in LAST-ACK or CLOSING retransmitting FIN
71 *   (and, probably, tail of data) and one or more our ACKs are lost.
72 * * What is TIME-WAIT timeout? It is associated with maximal packet
73 *   lifetime in the internet, which results in wrong conclusion, that
74 *   it is set to catch "old duplicate segments" wandering out of their path.
75 *   It is not quite correct. This timeout is calculated so that it exceeds
76 *   maximal retransmission timeout enough to allow to lose one (or more)
77 *   segments sent by peer and our ACKs. This time may be calculated from RTO.
78 * * When TIME-WAIT socket receives RST, it means that another end
79 *   finally closed and we are allowed to kill TIME-WAIT too.
80 * * Second purpose of TIME-WAIT is catching old duplicate segments.
81 *   Well, certainly it is pure paranoia, but if we load TIME-WAIT
82 *   with this semantics, we MUST NOT kill TIME-WAIT state with RSTs.
83 * * If we invented some more clever way to catch duplicates
84 *   (f.e. based on PAWS), we could truncate TIME-WAIT to several RTOs.
85 *
86 * The algorithm below is based on FORMAL INTERPRETATION of RFCs.
87 * When you compare it to RFCs, please, read section SEGMENT ARRIVES
88 * from the very beginning.
89 *
90 * NOTE. With recycling (and later with fin-wait-2) TW bucket
91 * is _not_ stateless. It means, that strictly speaking we must
92 * spinlock it. I do not want! Well, probability of misbehaviour
93 * is ridiculously low and, seems, we could use some mb() tricks
94 * to avoid misread sequence numbers, states etc.  --ANK
95 */
96enum tcp_tw_status
97tcp_timewait_state_process(struct inet_timewait_sock *tw, struct sk_buff *skb,
98			   const struct tcphdr *th)
99{
100	struct tcp_timewait_sock *tcptw = tcp_twsk((struct sock *)tw);
101	struct tcp_options_received tmp_opt;
102	int paws_reject = 0;
103
104	tmp_opt.saw_tstamp = 0;
105	if (th->doff > (sizeof(*th) >> 2) && tcptw->tw_ts_recent_stamp) {
106		tcp_parse_options(skb, &tmp_opt, 0);
107
108		if (tmp_opt.saw_tstamp) {
109			tmp_opt.ts_recent	= tcptw->tw_ts_recent;
110			tmp_opt.ts_recent_stamp	= tcptw->tw_ts_recent_stamp;
111			paws_reject = tcp_paws_check(&tmp_opt, th->rst);
112		}
113	}
114
115	if (tw->tw_substate == TCP_FIN_WAIT2) {
116		/* Just repeat all the checks of tcp_rcv_state_process() */
117
118		/* Out of window, send ACK */
119		if (paws_reject ||
120		    !tcp_in_window(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq,
121				   tcptw->tw_rcv_nxt,
122				   tcptw->tw_rcv_nxt + tcptw->tw_rcv_wnd))
123			return TCP_TW_ACK;
124
125		if (th->rst)
126			goto kill;
127
128		if (th->syn && !before(TCP_SKB_CB(skb)->seq, tcptw->tw_rcv_nxt))
129			goto kill_with_rst;
130
131		/* Dup ACK? */
132		if (!after(TCP_SKB_CB(skb)->end_seq, tcptw->tw_rcv_nxt) ||
133		    TCP_SKB_CB(skb)->end_seq == TCP_SKB_CB(skb)->seq) {
134			inet_twsk_put(tw);
135			return TCP_TW_SUCCESS;
136		}
137
138		/* New data or FIN. If new data arrive after half-duplex close,
139		 * reset.
140		 */
141		if (!th->fin ||
142		    TCP_SKB_CB(skb)->end_seq != tcptw->tw_rcv_nxt + 1) {
143kill_with_rst:
144			inet_twsk_deschedule(tw, &tcp_death_row);
145			inet_twsk_put(tw);
146			return TCP_TW_RST;
147		}
148
149		/* FIN arrived, enter true time-wait state. */
150		tw->tw_substate	  = TCP_TIME_WAIT;
151		tcptw->tw_rcv_nxt = TCP_SKB_CB(skb)->end_seq;
152		if (tmp_opt.saw_tstamp) {
153			tcptw->tw_ts_recent_stamp = xtime.tv_sec;
154			tcptw->tw_ts_recent	  = tmp_opt.rcv_tsval;
155		}
156
157		/* I am shamed, but failed to make it more elegant.
158		 * Yes, it is direct reference to IP, which is impossible
159		 * to generalize to IPv6. Taking into account that IPv6
160		 * do not understand recycling in any case, it not
161		 * a big problem in practice. --ANK */
162		if (tw->tw_family == AF_INET &&
163		    tcp_death_row.sysctl_tw_recycle && tcptw->tw_ts_recent_stamp &&
164		    tcp_v4_tw_remember_stamp(tw))
165			inet_twsk_schedule(tw, &tcp_death_row, tw->tw_timeout,
166					   TCP_TIMEWAIT_LEN);
167		else
168			inet_twsk_schedule(tw, &tcp_death_row, TCP_TIMEWAIT_LEN,
169					   TCP_TIMEWAIT_LEN);
170		return TCP_TW_ACK;
171	}
172
173	/*
174	 *	Now real TIME-WAIT state.
175	 *
176	 *	RFC 1122:
177	 *	"When a connection is [...] on TIME-WAIT state [...]
178	 *	[a TCP] MAY accept a new SYN from the remote TCP to
179	 *	reopen the connection directly, if it:
180	 *
181	 *	(1)  assigns its initial sequence number for the new
182	 *	connection to be larger than the largest sequence
183	 *	number it used on the previous connection incarnation,
184	 *	and
185	 *
186	 *	(2)  returns to TIME-WAIT state if the SYN turns out
187	 *	to be an old duplicate".
188	 */
189
190	if (!paws_reject &&
191	    (TCP_SKB_CB(skb)->seq == tcptw->tw_rcv_nxt &&
192	     (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq || th->rst))) {
193		/* In window segment, it may be only reset or bare ack. */
194
195		if (th->rst) {
196			/* This is TIME_WAIT assassination, in two flavors.
197			 * Oh well... nobody has a sufficient solution to this
198			 * protocol bug yet.
199			 */
200			if (sysctl_tcp_rfc1337 == 0) {
201kill:
202				inet_twsk_deschedule(tw, &tcp_death_row);
203				inet_twsk_put(tw);
204				return TCP_TW_SUCCESS;
205			}
206		}
207		inet_twsk_schedule(tw, &tcp_death_row, TCP_TIMEWAIT_LEN,
208				   TCP_TIMEWAIT_LEN);
209
210		if (tmp_opt.saw_tstamp) {
211			tcptw->tw_ts_recent	  = tmp_opt.rcv_tsval;
212			tcptw->tw_ts_recent_stamp = xtime.tv_sec;
213		}
214
215		inet_twsk_put(tw);
216		return TCP_TW_SUCCESS;
217	}
218
219	/* Out of window segment.
220
221	   All the segments are ACKed immediately.
222
223	   The only exception is new SYN. We accept it, if it is
224	   not old duplicate and we are not in danger to be killed
225	   by delayed old duplicates. RFC check is that it has
226	   newer sequence number works at rates <40Mbit/sec.
227	   However, if paws works, it is reliable AND even more,
228	   we even may relax silly seq space cutoff.
229
230	   RED-PEN: we violate main RFC requirement, if this SYN will appear
231	   old duplicate (i.e. we receive RST in reply to SYN-ACK),
232	   we must return socket to time-wait state. It is not good,
233	   but not fatal yet.
234	 */
235
236	if (th->syn && !th->rst && !th->ack && !paws_reject &&
237	    (after(TCP_SKB_CB(skb)->seq, tcptw->tw_rcv_nxt) ||
238	     (tmp_opt.saw_tstamp &&
239	      (s32)(tcptw->tw_ts_recent - tmp_opt.rcv_tsval) < 0))) {
240		u32 isn = tcptw->tw_snd_nxt + 65535 + 2;
241		if (isn == 0)
242			isn++;
243		TCP_SKB_CB(skb)->when = isn;
244		return TCP_TW_SYN;
245	}
246
247	if (paws_reject)
248		NET_INC_STATS_BH(LINUX_MIB_PAWSESTABREJECTED);
249
250	if(!th->rst) {
251		/* In this case we must reset the TIMEWAIT timer.
252		 *
253		 * If it is ACKless SYN it may be both old duplicate
254		 * and new good SYN with random sequence number <rcv_nxt.
255		 * Do not reschedule in the last case.
256		 */
257		if (paws_reject || th->ack)
258			inet_twsk_schedule(tw, &tcp_death_row, TCP_TIMEWAIT_LEN,
259					   TCP_TIMEWAIT_LEN);
260
261		/* Send ACK. Note, we do not put the bucket,
262		 * it will be released by caller.
263		 */
264		return TCP_TW_ACK;
265	}
266	inet_twsk_put(tw);
267	return TCP_TW_SUCCESS;
268}
269
270/*
271 * Move a socket to time-wait or dead fin-wait-2 state.
272 */
273void tcp_time_wait(struct sock *sk, int state, int timeo)
274{
275	struct inet_timewait_sock *tw = NULL;
276	const struct inet_connection_sock *icsk = inet_csk(sk);
277	const struct tcp_sock *tp = tcp_sk(sk);
278	int recycle_ok = 0;
279
280	if (tcp_death_row.sysctl_tw_recycle && tp->rx_opt.ts_recent_stamp)
281		recycle_ok = icsk->icsk_af_ops->remember_stamp(sk);
282
283	if (tcp_death_row.tw_count < tcp_death_row.sysctl_max_tw_buckets)
284		tw = inet_twsk_alloc(sk, state);
285
286	if (tw != NULL) {
287		struct tcp_timewait_sock *tcptw = tcp_twsk((struct sock *)tw);
288		const int rto = (icsk->icsk_rto << 2) - (icsk->icsk_rto >> 1);
289
290		tw->tw_rcv_wscale	= tp->rx_opt.rcv_wscale;
291		tcptw->tw_rcv_nxt	= tp->rcv_nxt;
292		tcptw->tw_snd_nxt	= tp->snd_nxt;
293		tcptw->tw_rcv_wnd	= tcp_receive_window(tp);
294		tcptw->tw_ts_recent	= tp->rx_opt.ts_recent;
295		tcptw->tw_ts_recent_stamp = tp->rx_opt.ts_recent_stamp;
296
297#if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
298		if (tw->tw_family == PF_INET6) {
299			struct ipv6_pinfo *np = inet6_sk(sk);
300			struct inet6_timewait_sock *tw6;
301
302			tw->tw_ipv6_offset = inet6_tw_offset(sk->sk_prot);
303			tw6 = inet6_twsk((struct sock *)tw);
304			ipv6_addr_copy(&tw6->tw_v6_daddr, &np->daddr);
305			ipv6_addr_copy(&tw6->tw_v6_rcv_saddr, &np->rcv_saddr);
306			tw->tw_ipv6only = np->ipv6only;
307		}
308#endif
309
310#ifdef CONFIG_TCP_MD5SIG
311		/*
312		 * The timewait bucket does not have the key DB from the
313		 * sock structure. We just make a quick copy of the
314		 * md5 key being used (if indeed we are using one)
315		 * so the timewait ack generating code has the key.
316		 */
317		do {
318			struct tcp_md5sig_key *key;
319			memset(tcptw->tw_md5_key, 0, sizeof(tcptw->tw_md5_key));
320			tcptw->tw_md5_keylen = 0;
321			key = tp->af_specific->md5_lookup(sk, sk);
322			if (key != NULL) {
323				memcpy(&tcptw->tw_md5_key, key->key, key->keylen);
324				tcptw->tw_md5_keylen = key->keylen;
325				if (tcp_alloc_md5sig_pool() == NULL)
326					BUG();
327			}
328		} while(0);
329#endif
330
331		/* Linkage updates. */
332		__inet_twsk_hashdance(tw, sk, &tcp_hashinfo);
333
334		/* Get the TIME_WAIT timeout firing. */
335		if (timeo < rto)
336			timeo = rto;
337
338		if (recycle_ok) {
339			tw->tw_timeout = rto;
340		} else {
341			tw->tw_timeout = TCP_TIMEWAIT_LEN;
342			if (state == TCP_TIME_WAIT)
343				timeo = TCP_TIMEWAIT_LEN;
344		}
345
346		inet_twsk_schedule(tw, &tcp_death_row, timeo,
347				   TCP_TIMEWAIT_LEN);
348		inet_twsk_put(tw);
349	} else {
350		/* Sorry, if we're out of memory, just CLOSE this
351		 * socket up.  We've got bigger problems than
352		 * non-graceful socket closings.
353		 */
354		if (net_ratelimit())
355			printk(KERN_INFO "TCP: time wait bucket table overflow\n");
356	}
357
358	tcp_update_metrics(sk);
359	tcp_done(sk);
360}
361
362void tcp_twsk_destructor(struct sock *sk)
363{
364#ifdef CONFIG_TCP_MD5SIG
365	struct tcp_timewait_sock *twsk = tcp_twsk(sk);
366	if (twsk->tw_md5_keylen)
367		tcp_put_md5sig_pool();
368#endif
369}
370
371EXPORT_SYMBOL_GPL(tcp_twsk_destructor);
372
373/* This is not only more efficient than what we used to do, it eliminates
374 * a lot of code duplication between IPv4/IPv6 SYN recv processing. -DaveM
375 *
376 * Actually, we could lots of memory writes here. tp of listening
377 * socket contains all necessary default parameters.
378 */
379struct sock *tcp_create_openreq_child(struct sock *sk, struct request_sock *req, struct sk_buff *skb)
380{
381	struct sock *newsk = inet_csk_clone(sk, req, GFP_ATOMIC);
382
383	if (newsk != NULL) {
384		const struct inet_request_sock *ireq = inet_rsk(req);
385		struct tcp_request_sock *treq = tcp_rsk(req);
386		struct inet_connection_sock *newicsk = inet_csk(sk);
387		struct tcp_sock *newtp;
388
389		/* Now setup tcp_sock */
390		newtp = tcp_sk(newsk);
391		newtp->pred_flags = 0;
392		newtp->rcv_nxt = treq->rcv_isn + 1;
393		newtp->snd_nxt = newtp->snd_una = newtp->snd_sml = treq->snt_isn + 1;
394
395		tcp_prequeue_init(newtp);
396
397		tcp_init_wl(newtp, treq->snt_isn, treq->rcv_isn);
398
399		newtp->srtt = 0;
400		newtp->mdev = TCP_TIMEOUT_INIT;
401		newicsk->icsk_rto = TCP_TIMEOUT_INIT;
402
403		newtp->packets_out = 0;
404		newtp->left_out = 0;
405		newtp->retrans_out = 0;
406		newtp->sacked_out = 0;
407		newtp->fackets_out = 0;
408		newtp->snd_ssthresh = 0x7fffffff;
409
410		/* So many TCP implementations out there (incorrectly) count the
411		 * initial SYN frame in their delayed-ACK and congestion control
412		 * algorithms that we must have the following bandaid to talk
413		 * efficiently to them.  -DaveM
414		 */
415		newtp->snd_cwnd = 2;
416		newtp->snd_cwnd_cnt = 0;
417		newtp->bytes_acked = 0;
418
419		newtp->frto_counter = 0;
420		newtp->frto_highmark = 0;
421
422		newicsk->icsk_ca_ops = &tcp_init_congestion_ops;
423
424		tcp_set_ca_state(newsk, TCP_CA_Open);
425		tcp_init_xmit_timers(newsk);
426		skb_queue_head_init(&newtp->out_of_order_queue);
427		newtp->rcv_wup = treq->rcv_isn + 1;
428		newtp->write_seq = treq->snt_isn + 1;
429		newtp->pushed_seq = newtp->write_seq;
430		newtp->copied_seq = treq->rcv_isn + 1;
431
432		newtp->rx_opt.saw_tstamp = 0;
433
434		newtp->rx_opt.dsack = 0;
435		newtp->rx_opt.eff_sacks = 0;
436
437		newtp->rx_opt.num_sacks = 0;
438		newtp->urg_data = 0;
439
440		if (sock_flag(newsk, SOCK_KEEPOPEN))
441			inet_csk_reset_keepalive_timer(newsk,
442						       keepalive_time_when(newtp));
443
444		newtp->rx_opt.tstamp_ok = ireq->tstamp_ok;
445		if((newtp->rx_opt.sack_ok = ireq->sack_ok) != 0) {
446			if (sysctl_tcp_fack)
447				newtp->rx_opt.sack_ok |= 2;
448		}
449		newtp->window_clamp = req->window_clamp;
450		newtp->rcv_ssthresh = req->rcv_wnd;
451		newtp->rcv_wnd = req->rcv_wnd;
452		newtp->rx_opt.wscale_ok = ireq->wscale_ok;
453		if (newtp->rx_opt.wscale_ok) {
454			newtp->rx_opt.snd_wscale = ireq->snd_wscale;
455			newtp->rx_opt.rcv_wscale = ireq->rcv_wscale;
456		} else {
457			newtp->rx_opt.snd_wscale = newtp->rx_opt.rcv_wscale = 0;
458			newtp->window_clamp = min(newtp->window_clamp, 65535U);
459		}
460		newtp->snd_wnd = ntohs(skb->h.th->window) << newtp->rx_opt.snd_wscale;
461		newtp->max_window = newtp->snd_wnd;
462
463		if (newtp->rx_opt.tstamp_ok) {
464			newtp->rx_opt.ts_recent = req->ts_recent;
465			newtp->rx_opt.ts_recent_stamp = xtime.tv_sec;
466			newtp->tcp_header_len = sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
467		} else {
468			newtp->rx_opt.ts_recent_stamp = 0;
469			newtp->tcp_header_len = sizeof(struct tcphdr);
470		}
471#ifdef CONFIG_TCP_MD5SIG
472		newtp->md5sig_info = NULL;	/*XXX*/
473		if (newtp->af_specific->md5_lookup(sk, newsk))
474			newtp->tcp_header_len += TCPOLEN_MD5SIG_ALIGNED;
475#endif
476		if (skb->len >= TCP_MIN_RCVMSS+newtp->tcp_header_len)
477			newicsk->icsk_ack.last_seg_size = skb->len - newtp->tcp_header_len;
478		newtp->rx_opt.mss_clamp = req->mss;
479		TCP_ECN_openreq_child(newtp, req);
480
481		TCP_INC_STATS_BH(TCP_MIB_PASSIVEOPENS);
482	}
483	return newsk;
484}
485
486/*
487 *	Process an incoming packet for SYN_RECV sockets represented
488 *	as a request_sock.
489 */
490
491struct sock *tcp_check_req(struct sock *sk,struct sk_buff *skb,
492			   struct request_sock *req,
493			   struct request_sock **prev)
494{
495	struct tcphdr *th = skb->h.th;
496	u32 flg = tcp_flag_word(th) & (TCP_FLAG_RST|TCP_FLAG_SYN|TCP_FLAG_ACK);
497	int paws_reject = 0;
498	struct tcp_options_received tmp_opt;
499	struct sock *child;
500
501	tmp_opt.saw_tstamp = 0;
502	if (th->doff > (sizeof(struct tcphdr)>>2)) {
503		tcp_parse_options(skb, &tmp_opt, 0);
504
505		if (tmp_opt.saw_tstamp) {
506			tmp_opt.ts_recent = req->ts_recent;
507			/* We do not store true stamp, but it is not required,
508			 * it can be estimated (approximately)
509			 * from another data.
510			 */
511			tmp_opt.ts_recent_stamp = xtime.tv_sec - ((TCP_TIMEOUT_INIT/HZ)<<req->retrans);
512			paws_reject = tcp_paws_check(&tmp_opt, th->rst);
513		}
514	}
515
516	/* Check for pure retransmitted SYN. */
517	if (TCP_SKB_CB(skb)->seq == tcp_rsk(req)->rcv_isn &&
518	    flg == TCP_FLAG_SYN &&
519	    !paws_reject) {
520		/*
521		 * RFC793 draws (Incorrectly! It was fixed in RFC1122)
522		 * this case on figure 6 and figure 8, but formal
523		 * protocol description says NOTHING.
524		 * To be more exact, it says that we should send ACK,
525		 * because this segment (at least, if it has no data)
526		 * is out of window.
527		 *
528		 *  CONCLUSION: RFC793 (even with RFC1122) DOES NOT
529		 *  describe SYN-RECV state. All the description
530		 *  is wrong, we cannot believe to it and should
531		 *  rely only on common sense and implementation
532		 *  experience.
533		 *
534		 * Enforce "SYN-ACK" according to figure 8, figure 6
535		 * of RFC793, fixed by RFC1122.
536		 */
537		req->rsk_ops->rtx_syn_ack(sk, req, NULL);
538		return NULL;
539	}
540
541	/* Further reproduces section "SEGMENT ARRIVES"
542	   for state SYN-RECEIVED of RFC793.
543	   It is broken, however, it does not work only
544	   when SYNs are crossed.
545
546	   You would think that SYN crossing is impossible here, since
547	   we should have a SYN_SENT socket (from connect()) on our end,
548	   but this is not true if the crossed SYNs were sent to both
549	   ends by a malicious third party.  We must defend against this,
550	   and to do that we first verify the ACK (as per RFC793, page
551	   36) and reset if it is invalid.  Is this a true full defense?
552	   To convince ourselves, let us consider a way in which the ACK
553	   test can still pass in this 'malicious crossed SYNs' case.
554	   Malicious sender sends identical SYNs (and thus identical sequence
555	   numbers) to both A and B:
556
557		A: gets SYN, seq=7
558		B: gets SYN, seq=7
559
560	   By our good fortune, both A and B select the same initial
561	   send sequence number of seven :-)
562
563		A: sends SYN|ACK, seq=7, ack_seq=8
564		B: sends SYN|ACK, seq=7, ack_seq=8
565
566	   So we are now A eating this SYN|ACK, ACK test passes.  So
567	   does sequence test, SYN is truncated, and thus we consider
568	   it a bare ACK.
569
570	   If icsk->icsk_accept_queue.rskq_defer_accept, we silently drop this
571	   bare ACK.  Otherwise, we create an established connection.  Both
572	   ends (listening sockets) accept the new incoming connection and try
573	   to talk to each other. 8-)
574
575	   Note: This case is both harmless, and rare.  Possibility is about the
576	   same as us discovering intelligent life on another plant tomorrow.
577
578	   But generally, we should (RFC lies!) to accept ACK
579	   from SYNACK both here and in tcp_rcv_state_process().
580	   tcp_rcv_state_process() does not, hence, we do not too.
581
582	   Note that the case is absolutely generic:
583	   we cannot optimize anything here without
584	   violating protocol. All the checks must be made
585	   before attempt to create socket.
586	 */
587
588	/* RFC793 page 36: "If the connection is in any non-synchronized state ...
589	 *                  and the incoming segment acknowledges something not yet
590	 *                  sent (the segment carries an unacceptable ACK) ...
591	 *                  a reset is sent."
592	 *
593	 * Invalid ACK: reset will be sent by listening socket
594	 */
595	if ((flg & TCP_FLAG_ACK) &&
596	    (TCP_SKB_CB(skb)->ack_seq != tcp_rsk(req)->snt_isn + 1))
597		return sk;
598
599	/* Also, it would be not so bad idea to check rcv_tsecr, which
600	 * is essentially ACK extension and too early or too late values
601	 * should cause reset in unsynchronized states.
602	 */
603
604	/* RFC793: "first check sequence number". */
605
606	if (paws_reject || !tcp_in_window(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq,
607					  tcp_rsk(req)->rcv_isn + 1, tcp_rsk(req)->rcv_isn + 1 + req->rcv_wnd)) {
608		/* Out of window: send ACK and drop. */
609		if (!(flg & TCP_FLAG_RST))
610			req->rsk_ops->send_ack(skb, req);
611		if (paws_reject)
612			NET_INC_STATS_BH(LINUX_MIB_PAWSESTABREJECTED);
613		return NULL;
614	}
615
616	/* In sequence, PAWS is OK. */
617
618	if (tmp_opt.saw_tstamp && !after(TCP_SKB_CB(skb)->seq, tcp_rsk(req)->rcv_isn + 1))
619			req->ts_recent = tmp_opt.rcv_tsval;
620
621		if (TCP_SKB_CB(skb)->seq == tcp_rsk(req)->rcv_isn) {
622			/* Truncate SYN, it is out of window starting
623			   at tcp_rsk(req)->rcv_isn + 1. */
624			flg &= ~TCP_FLAG_SYN;
625		}
626
627		/* RFC793: "second check the RST bit" and
628		 *	   "fourth, check the SYN bit"
629		 */
630		if (flg & (TCP_FLAG_RST|TCP_FLAG_SYN)) {
631			TCP_INC_STATS_BH(TCP_MIB_ATTEMPTFAILS);
632			goto embryonic_reset;
633		}
634
635		/* ACK sequence verified above, just make sure ACK is
636		 * set.  If ACK not set, just silently drop the packet.
637		 */
638		if (!(flg & TCP_FLAG_ACK))
639			return NULL;
640
641		/* If TCP_DEFER_ACCEPT is set, drop bare ACK. */
642		if (inet_csk(sk)->icsk_accept_queue.rskq_defer_accept &&
643		    TCP_SKB_CB(skb)->end_seq == tcp_rsk(req)->rcv_isn + 1) {
644			inet_rsk(req)->acked = 1;
645			return NULL;
646		}
647
648		/* OK, ACK is valid, create big socket and
649		 * feed this segment to it. It will repeat all
650		 * the tests. THIS SEGMENT MUST MOVE SOCKET TO
651		 * ESTABLISHED STATE. If it will be dropped after
652		 * socket is created, wait for troubles.
653		 */
654		child = inet_csk(sk)->icsk_af_ops->syn_recv_sock(sk, skb,
655								 req, NULL);
656		if (child == NULL)
657			goto listen_overflow;
658#ifdef CONFIG_TCP_MD5SIG
659		else {
660			/* Copy over the MD5 key from the original socket */
661			struct tcp_md5sig_key *key;
662			struct tcp_sock *tp = tcp_sk(sk);
663			key = tp->af_specific->md5_lookup(sk, child);
664			if (key != NULL) {
665				/*
666				 * We're using one, so create a matching key on the
667				 * newsk structure. If we fail to get memory then we
668				 * end up not copying the key across. Shucks.
669				 */
670				char *newkey = kmalloc(key->keylen, GFP_ATOMIC);
671				if (newkey) {
672					if (!tcp_alloc_md5sig_pool())
673						BUG();
674					memcpy(newkey, key->key, key->keylen);
675					tp->af_specific->md5_add(child, child,
676								 newkey,
677								 key->keylen);
678				}
679			}
680		}
681#endif
682
683		inet_csk_reqsk_queue_unlink(sk, req, prev);
684		inet_csk_reqsk_queue_removed(sk, req);
685
686		inet_csk_reqsk_queue_add(sk, req, child);
687		return child;
688
689	listen_overflow:
690		if (!sysctl_tcp_abort_on_overflow) {
691			inet_rsk(req)->acked = 1;
692			return NULL;
693		}
694
695	embryonic_reset:
696		NET_INC_STATS_BH(LINUX_MIB_EMBRYONICRSTS);
697		if (!(flg & TCP_FLAG_RST))
698			req->rsk_ops->send_reset(sk, skb);
699
700		inet_csk_reqsk_queue_drop(sk, req, prev);
701		return NULL;
702}
703
704/*
705 * Queue segment on the new socket if the new socket is active,
706 * otherwise we just shortcircuit this and continue with
707 * the new socket.
708 */
709
710int tcp_child_process(struct sock *parent, struct sock *child,
711		      struct sk_buff *skb)
712{
713	int ret = 0;
714	int state = child->sk_state;
715
716	if (!sock_owned_by_user(child)) {
717		ret = tcp_rcv_state_process(child, skb, skb->h.th, skb->len);
718
719		/* Wakeup parent, send SIGIO */
720		if (state == TCP_SYN_RECV && child->sk_state != state)
721			parent->sk_data_ready(parent, 0);
722	} else {
723		/* Alas, it is possible again, because we do lookup
724		 * in main socket hash table and lock on listening
725		 * socket does not protect us more.
726		 */
727		sk_add_backlog(child, skb);
728	}
729
730	bh_unlock_sock(child);
731	sock_put(child);
732	return ret;
733}
734
735EXPORT_SYMBOL(tcp_check_req);
736EXPORT_SYMBOL(tcp_child_process);
737EXPORT_SYMBOL(tcp_create_openreq_child);
738EXPORT_SYMBOL(tcp_timewait_state_process);
739