tcp_minisocks.c revision c887e6d2d9aee56ee7c9f2af4cec3a5efdcc4c72
1/*
2 * INET		An implementation of the TCP/IP protocol suite for the LINUX
3 *		operating system.  INET is implemented using the  BSD Socket
4 *		interface as the means of communication with the user level.
5 *
6 *		Implementation of the Transmission Control Protocol(TCP).
7 *
8 * Authors:	Ross Biro
9 *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 *		Mark Evans, <evansmp@uhura.aston.ac.uk>
11 *		Corey Minyard <wf-rch!minyard@relay.EU.net>
12 *		Florian La Roche, <flla@stud.uni-sb.de>
13 *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14 *		Linus Torvalds, <torvalds@cs.helsinki.fi>
15 *		Alan Cox, <gw4pts@gw4pts.ampr.org>
16 *		Matthew Dillon, <dillon@apollo.west.oic.com>
17 *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18 *		Jorge Cwik, <jorge@laser.satlink.net>
19 */
20
21#include <linux/mm.h>
22#include <linux/module.h>
23#include <linux/sysctl.h>
24#include <linux/workqueue.h>
25#include <net/tcp.h>
26#include <net/inet_common.h>
27#include <net/xfrm.h>
28
29#ifdef CONFIG_SYSCTL
30#define SYNC_INIT 0 /* let the user enable it */
31#else
32#define SYNC_INIT 1
33#endif
34
35int sysctl_tcp_syncookies __read_mostly = SYNC_INIT;
36EXPORT_SYMBOL(sysctl_tcp_syncookies);
37
38int sysctl_tcp_abort_on_overflow __read_mostly;
39
40struct inet_timewait_death_row tcp_death_row = {
41	.sysctl_max_tw_buckets = NR_FILE * 2,
42	.period		= TCP_TIMEWAIT_LEN / INET_TWDR_TWKILL_SLOTS,
43	.death_lock	= __SPIN_LOCK_UNLOCKED(tcp_death_row.death_lock),
44	.hashinfo	= &tcp_hashinfo,
45	.tw_timer	= TIMER_INITIALIZER(inet_twdr_hangman, 0,
46					    (unsigned long)&tcp_death_row),
47	.twkill_work	= __WORK_INITIALIZER(tcp_death_row.twkill_work,
48					     inet_twdr_twkill_work),
49/* Short-time timewait calendar */
50
51	.twcal_hand	= -1,
52	.twcal_timer	= TIMER_INITIALIZER(inet_twdr_twcal_tick, 0,
53					    (unsigned long)&tcp_death_row),
54};
55
56EXPORT_SYMBOL_GPL(tcp_death_row);
57
58static __inline__ int tcp_in_window(u32 seq, u32 end_seq, u32 s_win, u32 e_win)
59{
60	if (seq == s_win)
61		return 1;
62	if (after(end_seq, s_win) && before(seq, e_win))
63		return 1;
64	return (seq == e_win && seq == end_seq);
65}
66
67/*
68 * * Main purpose of TIME-WAIT state is to close connection gracefully,
69 *   when one of ends sits in LAST-ACK or CLOSING retransmitting FIN
70 *   (and, probably, tail of data) and one or more our ACKs are lost.
71 * * What is TIME-WAIT timeout? It is associated with maximal packet
72 *   lifetime in the internet, which results in wrong conclusion, that
73 *   it is set to catch "old duplicate segments" wandering out of their path.
74 *   It is not quite correct. This timeout is calculated so that it exceeds
75 *   maximal retransmission timeout enough to allow to lose one (or more)
76 *   segments sent by peer and our ACKs. This time may be calculated from RTO.
77 * * When TIME-WAIT socket receives RST, it means that another end
78 *   finally closed and we are allowed to kill TIME-WAIT too.
79 * * Second purpose of TIME-WAIT is catching old duplicate segments.
80 *   Well, certainly it is pure paranoia, but if we load TIME-WAIT
81 *   with this semantics, we MUST NOT kill TIME-WAIT state with RSTs.
82 * * If we invented some more clever way to catch duplicates
83 *   (f.e. based on PAWS), we could truncate TIME-WAIT to several RTOs.
84 *
85 * The algorithm below is based on FORMAL INTERPRETATION of RFCs.
86 * When you compare it to RFCs, please, read section SEGMENT ARRIVES
87 * from the very beginning.
88 *
89 * NOTE. With recycling (and later with fin-wait-2) TW bucket
90 * is _not_ stateless. It means, that strictly speaking we must
91 * spinlock it. I do not want! Well, probability of misbehaviour
92 * is ridiculously low and, seems, we could use some mb() tricks
93 * to avoid misread sequence numbers, states etc.  --ANK
94 */
95enum tcp_tw_status
96tcp_timewait_state_process(struct inet_timewait_sock *tw, struct sk_buff *skb,
97			   const struct tcphdr *th)
98{
99	struct tcp_timewait_sock *tcptw = tcp_twsk((struct sock *)tw);
100	struct tcp_options_received tmp_opt;
101	int paws_reject = 0;
102
103	tmp_opt.saw_tstamp = 0;
104	if (th->doff > (sizeof(*th) >> 2) && tcptw->tw_ts_recent_stamp) {
105		tcp_parse_options(skb, &tmp_opt, 0);
106
107		if (tmp_opt.saw_tstamp) {
108			tmp_opt.ts_recent	= tcptw->tw_ts_recent;
109			tmp_opt.ts_recent_stamp	= tcptw->tw_ts_recent_stamp;
110			paws_reject = tcp_paws_reject(&tmp_opt, th->rst);
111		}
112	}
113
114	if (tw->tw_substate == TCP_FIN_WAIT2) {
115		/* Just repeat all the checks of tcp_rcv_state_process() */
116
117		/* Out of window, send ACK */
118		if (paws_reject ||
119		    !tcp_in_window(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq,
120				   tcptw->tw_rcv_nxt,
121				   tcptw->tw_rcv_nxt + tcptw->tw_rcv_wnd))
122			return TCP_TW_ACK;
123
124		if (th->rst)
125			goto kill;
126
127		if (th->syn && !before(TCP_SKB_CB(skb)->seq, tcptw->tw_rcv_nxt))
128			goto kill_with_rst;
129
130		/* Dup ACK? */
131		if (!after(TCP_SKB_CB(skb)->end_seq, tcptw->tw_rcv_nxt) ||
132		    TCP_SKB_CB(skb)->end_seq == TCP_SKB_CB(skb)->seq) {
133			inet_twsk_put(tw);
134			return TCP_TW_SUCCESS;
135		}
136
137		/* New data or FIN. If new data arrive after half-duplex close,
138		 * reset.
139		 */
140		if (!th->fin ||
141		    TCP_SKB_CB(skb)->end_seq != tcptw->tw_rcv_nxt + 1) {
142kill_with_rst:
143			inet_twsk_deschedule(tw, &tcp_death_row);
144			inet_twsk_put(tw);
145			return TCP_TW_RST;
146		}
147
148		/* FIN arrived, enter true time-wait state. */
149		tw->tw_substate	  = TCP_TIME_WAIT;
150		tcptw->tw_rcv_nxt = TCP_SKB_CB(skb)->end_seq;
151		if (tmp_opt.saw_tstamp) {
152			tcptw->tw_ts_recent_stamp = get_seconds();
153			tcptw->tw_ts_recent	  = tmp_opt.rcv_tsval;
154		}
155
156		/* I am shamed, but failed to make it more elegant.
157		 * Yes, it is direct reference to IP, which is impossible
158		 * to generalize to IPv6. Taking into account that IPv6
159		 * do not understand recycling in any case, it not
160		 * a big problem in practice. --ANK */
161		if (tw->tw_family == AF_INET &&
162		    tcp_death_row.sysctl_tw_recycle && tcptw->tw_ts_recent_stamp &&
163		    tcp_v4_tw_remember_stamp(tw))
164			inet_twsk_schedule(tw, &tcp_death_row, tw->tw_timeout,
165					   TCP_TIMEWAIT_LEN);
166		else
167			inet_twsk_schedule(tw, &tcp_death_row, TCP_TIMEWAIT_LEN,
168					   TCP_TIMEWAIT_LEN);
169		return TCP_TW_ACK;
170	}
171
172	/*
173	 *	Now real TIME-WAIT state.
174	 *
175	 *	RFC 1122:
176	 *	"When a connection is [...] on TIME-WAIT state [...]
177	 *	[a TCP] MAY accept a new SYN from the remote TCP to
178	 *	reopen the connection directly, if it:
179	 *
180	 *	(1)  assigns its initial sequence number for the new
181	 *	connection to be larger than the largest sequence
182	 *	number it used on the previous connection incarnation,
183	 *	and
184	 *
185	 *	(2)  returns to TIME-WAIT state if the SYN turns out
186	 *	to be an old duplicate".
187	 */
188
189	if (!paws_reject &&
190	    (TCP_SKB_CB(skb)->seq == tcptw->tw_rcv_nxt &&
191	     (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq || th->rst))) {
192		/* In window segment, it may be only reset or bare ack. */
193
194		if (th->rst) {
195			/* This is TIME_WAIT assassination, in two flavors.
196			 * Oh well... nobody has a sufficient solution to this
197			 * protocol bug yet.
198			 */
199			if (sysctl_tcp_rfc1337 == 0) {
200kill:
201				inet_twsk_deschedule(tw, &tcp_death_row);
202				inet_twsk_put(tw);
203				return TCP_TW_SUCCESS;
204			}
205		}
206		inet_twsk_schedule(tw, &tcp_death_row, TCP_TIMEWAIT_LEN,
207				   TCP_TIMEWAIT_LEN);
208
209		if (tmp_opt.saw_tstamp) {
210			tcptw->tw_ts_recent	  = tmp_opt.rcv_tsval;
211			tcptw->tw_ts_recent_stamp = get_seconds();
212		}
213
214		inet_twsk_put(tw);
215		return TCP_TW_SUCCESS;
216	}
217
218	/* Out of window segment.
219
220	   All the segments are ACKed immediately.
221
222	   The only exception is new SYN. We accept it, if it is
223	   not old duplicate and we are not in danger to be killed
224	   by delayed old duplicates. RFC check is that it has
225	   newer sequence number works at rates <40Mbit/sec.
226	   However, if paws works, it is reliable AND even more,
227	   we even may relax silly seq space cutoff.
228
229	   RED-PEN: we violate main RFC requirement, if this SYN will appear
230	   old duplicate (i.e. we receive RST in reply to SYN-ACK),
231	   we must return socket to time-wait state. It is not good,
232	   but not fatal yet.
233	 */
234
235	if (th->syn && !th->rst && !th->ack && !paws_reject &&
236	    (after(TCP_SKB_CB(skb)->seq, tcptw->tw_rcv_nxt) ||
237	     (tmp_opt.saw_tstamp &&
238	      (s32)(tcptw->tw_ts_recent - tmp_opt.rcv_tsval) < 0))) {
239		u32 isn = tcptw->tw_snd_nxt + 65535 + 2;
240		if (isn == 0)
241			isn++;
242		TCP_SKB_CB(skb)->when = isn;
243		return TCP_TW_SYN;
244	}
245
246	if (paws_reject)
247		NET_INC_STATS_BH(twsk_net(tw), LINUX_MIB_PAWSESTABREJECTED);
248
249	if (!th->rst) {
250		/* In this case we must reset the TIMEWAIT timer.
251		 *
252		 * If it is ACKless SYN it may be both old duplicate
253		 * and new good SYN with random sequence number <rcv_nxt.
254		 * Do not reschedule in the last case.
255		 */
256		if (paws_reject || th->ack)
257			inet_twsk_schedule(tw, &tcp_death_row, TCP_TIMEWAIT_LEN,
258					   TCP_TIMEWAIT_LEN);
259
260		/* Send ACK. Note, we do not put the bucket,
261		 * it will be released by caller.
262		 */
263		return TCP_TW_ACK;
264	}
265	inet_twsk_put(tw);
266	return TCP_TW_SUCCESS;
267}
268
269/*
270 * Move a socket to time-wait or dead fin-wait-2 state.
271 */
272void tcp_time_wait(struct sock *sk, int state, int timeo)
273{
274	struct inet_timewait_sock *tw = NULL;
275	const struct inet_connection_sock *icsk = inet_csk(sk);
276	const struct tcp_sock *tp = tcp_sk(sk);
277	int recycle_ok = 0;
278
279	if (tcp_death_row.sysctl_tw_recycle && tp->rx_opt.ts_recent_stamp)
280		recycle_ok = icsk->icsk_af_ops->remember_stamp(sk);
281
282	if (tcp_death_row.tw_count < tcp_death_row.sysctl_max_tw_buckets)
283		tw = inet_twsk_alloc(sk, state);
284
285	if (tw != NULL) {
286		struct tcp_timewait_sock *tcptw = tcp_twsk((struct sock *)tw);
287		const int rto = (icsk->icsk_rto << 2) - (icsk->icsk_rto >> 1);
288
289		tw->tw_rcv_wscale	= tp->rx_opt.rcv_wscale;
290		tcptw->tw_rcv_nxt	= tp->rcv_nxt;
291		tcptw->tw_snd_nxt	= tp->snd_nxt;
292		tcptw->tw_rcv_wnd	= tcp_receive_window(tp);
293		tcptw->tw_ts_recent	= tp->rx_opt.ts_recent;
294		tcptw->tw_ts_recent_stamp = tp->rx_opt.ts_recent_stamp;
295
296#if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
297		if (tw->tw_family == PF_INET6) {
298			struct ipv6_pinfo *np = inet6_sk(sk);
299			struct inet6_timewait_sock *tw6;
300
301			tw->tw_ipv6_offset = inet6_tw_offset(sk->sk_prot);
302			tw6 = inet6_twsk((struct sock *)tw);
303			ipv6_addr_copy(&tw6->tw_v6_daddr, &np->daddr);
304			ipv6_addr_copy(&tw6->tw_v6_rcv_saddr, &np->rcv_saddr);
305			tw->tw_ipv6only = np->ipv6only;
306		}
307#endif
308
309#ifdef CONFIG_TCP_MD5SIG
310		/*
311		 * The timewait bucket does not have the key DB from the
312		 * sock structure. We just make a quick copy of the
313		 * md5 key being used (if indeed we are using one)
314		 * so the timewait ack generating code has the key.
315		 */
316		do {
317			struct tcp_md5sig_key *key;
318			memset(tcptw->tw_md5_key, 0, sizeof(tcptw->tw_md5_key));
319			tcptw->tw_md5_keylen = 0;
320			key = tp->af_specific->md5_lookup(sk, sk);
321			if (key != NULL) {
322				memcpy(&tcptw->tw_md5_key, key->key, key->keylen);
323				tcptw->tw_md5_keylen = key->keylen;
324				if (tcp_alloc_md5sig_pool() == NULL)
325					BUG();
326			}
327		} while (0);
328#endif
329
330		/* Linkage updates. */
331		__inet_twsk_hashdance(tw, sk, &tcp_hashinfo);
332
333		/* Get the TIME_WAIT timeout firing. */
334		if (timeo < rto)
335			timeo = rto;
336
337		if (recycle_ok) {
338			tw->tw_timeout = rto;
339		} else {
340			tw->tw_timeout = TCP_TIMEWAIT_LEN;
341			if (state == TCP_TIME_WAIT)
342				timeo = TCP_TIMEWAIT_LEN;
343		}
344
345		inet_twsk_schedule(tw, &tcp_death_row, timeo,
346				   TCP_TIMEWAIT_LEN);
347		inet_twsk_put(tw);
348	} else {
349		/* Sorry, if we're out of memory, just CLOSE this
350		 * socket up.  We've got bigger problems than
351		 * non-graceful socket closings.
352		 */
353		LIMIT_NETDEBUG(KERN_INFO "TCP: time wait bucket table overflow\n");
354	}
355
356	tcp_update_metrics(sk);
357	tcp_done(sk);
358}
359
360void tcp_twsk_destructor(struct sock *sk)
361{
362#ifdef CONFIG_TCP_MD5SIG
363	struct tcp_timewait_sock *twsk = tcp_twsk(sk);
364	if (twsk->tw_md5_keylen)
365		tcp_put_md5sig_pool();
366#endif
367}
368
369EXPORT_SYMBOL_GPL(tcp_twsk_destructor);
370
371static inline void TCP_ECN_openreq_child(struct tcp_sock *tp,
372					 struct request_sock *req)
373{
374	tp->ecn_flags = inet_rsk(req)->ecn_ok ? TCP_ECN_OK : 0;
375}
376
377/* This is not only more efficient than what we used to do, it eliminates
378 * a lot of code duplication between IPv4/IPv6 SYN recv processing. -DaveM
379 *
380 * Actually, we could lots of memory writes here. tp of listening
381 * socket contains all necessary default parameters.
382 */
383struct sock *tcp_create_openreq_child(struct sock *sk, struct request_sock *req, struct sk_buff *skb)
384{
385	struct sock *newsk = inet_csk_clone(sk, req, GFP_ATOMIC);
386
387	if (newsk != NULL) {
388		const struct inet_request_sock *ireq = inet_rsk(req);
389		struct tcp_request_sock *treq = tcp_rsk(req);
390		struct inet_connection_sock *newicsk = inet_csk(newsk);
391		struct tcp_sock *newtp;
392
393		/* Now setup tcp_sock */
394		newtp = tcp_sk(newsk);
395		newtp->pred_flags = 0;
396		newtp->rcv_wup = newtp->copied_seq = newtp->rcv_nxt = treq->rcv_isn + 1;
397		newtp->snd_sml = newtp->snd_una = newtp->snd_nxt = treq->snt_isn + 1;
398		newtp->snd_up = treq->snt_isn + 1;
399
400		tcp_prequeue_init(newtp);
401
402		tcp_init_wl(newtp, treq->rcv_isn);
403
404		newtp->srtt = 0;
405		newtp->mdev = TCP_TIMEOUT_INIT;
406		newicsk->icsk_rto = TCP_TIMEOUT_INIT;
407
408		newtp->packets_out = 0;
409		newtp->retrans_out = 0;
410		newtp->sacked_out = 0;
411		newtp->fackets_out = 0;
412		newtp->snd_ssthresh = 0x7fffffff;
413
414		/* So many TCP implementations out there (incorrectly) count the
415		 * initial SYN frame in their delayed-ACK and congestion control
416		 * algorithms that we must have the following bandaid to talk
417		 * efficiently to them.  -DaveM
418		 */
419		newtp->snd_cwnd = 2;
420		newtp->snd_cwnd_cnt = 0;
421		newtp->bytes_acked = 0;
422
423		newtp->frto_counter = 0;
424		newtp->frto_highmark = 0;
425
426		newicsk->icsk_ca_ops = &tcp_init_congestion_ops;
427
428		tcp_set_ca_state(newsk, TCP_CA_Open);
429		tcp_init_xmit_timers(newsk);
430		skb_queue_head_init(&newtp->out_of_order_queue);
431		newtp->write_seq = treq->snt_isn + 1;
432		newtp->pushed_seq = newtp->write_seq;
433
434		newtp->rx_opt.saw_tstamp = 0;
435
436		newtp->rx_opt.dsack = 0;
437		newtp->rx_opt.num_sacks = 0;
438
439		newtp->urg_data = 0;
440
441		if (sock_flag(newsk, SOCK_KEEPOPEN))
442			inet_csk_reset_keepalive_timer(newsk,
443						       keepalive_time_when(newtp));
444
445		newtp->rx_opt.tstamp_ok = ireq->tstamp_ok;
446		if ((newtp->rx_opt.sack_ok = ireq->sack_ok) != 0) {
447			if (sysctl_tcp_fack)
448				tcp_enable_fack(newtp);
449		}
450		newtp->window_clamp = req->window_clamp;
451		newtp->rcv_ssthresh = req->rcv_wnd;
452		newtp->rcv_wnd = req->rcv_wnd;
453		newtp->rx_opt.wscale_ok = ireq->wscale_ok;
454		if (newtp->rx_opt.wscale_ok) {
455			newtp->rx_opt.snd_wscale = ireq->snd_wscale;
456			newtp->rx_opt.rcv_wscale = ireq->rcv_wscale;
457		} else {
458			newtp->rx_opt.snd_wscale = newtp->rx_opt.rcv_wscale = 0;
459			newtp->window_clamp = min(newtp->window_clamp, 65535U);
460		}
461		newtp->snd_wnd = (ntohs(tcp_hdr(skb)->window) <<
462				  newtp->rx_opt.snd_wscale);
463		newtp->max_window = newtp->snd_wnd;
464
465		if (newtp->rx_opt.tstamp_ok) {
466			newtp->rx_opt.ts_recent = req->ts_recent;
467			newtp->rx_opt.ts_recent_stamp = get_seconds();
468			newtp->tcp_header_len = sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
469		} else {
470			newtp->rx_opt.ts_recent_stamp = 0;
471			newtp->tcp_header_len = sizeof(struct tcphdr);
472		}
473#ifdef CONFIG_TCP_MD5SIG
474		newtp->md5sig_info = NULL;	/*XXX*/
475		if (newtp->af_specific->md5_lookup(sk, newsk))
476			newtp->tcp_header_len += TCPOLEN_MD5SIG_ALIGNED;
477#endif
478		if (skb->len >= TCP_MIN_RCVMSS+newtp->tcp_header_len)
479			newicsk->icsk_ack.last_seg_size = skb->len - newtp->tcp_header_len;
480		newtp->rx_opt.mss_clamp = req->mss;
481		TCP_ECN_openreq_child(newtp, req);
482
483		TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_PASSIVEOPENS);
484	}
485	return newsk;
486}
487
488/*
489 *	Process an incoming packet for SYN_RECV sockets represented
490 *	as a request_sock.
491 */
492
493struct sock *tcp_check_req(struct sock *sk, struct sk_buff *skb,
494			   struct request_sock *req,
495			   struct request_sock **prev)
496{
497	const struct tcphdr *th = tcp_hdr(skb);
498	__be32 flg = tcp_flag_word(th) & (TCP_FLAG_RST|TCP_FLAG_SYN|TCP_FLAG_ACK);
499	int paws_reject = 0;
500	struct tcp_options_received tmp_opt;
501	struct sock *child;
502
503	tmp_opt.saw_tstamp = 0;
504	if (th->doff > (sizeof(struct tcphdr)>>2)) {
505		tcp_parse_options(skb, &tmp_opt, 0);
506
507		if (tmp_opt.saw_tstamp) {
508			tmp_opt.ts_recent = req->ts_recent;
509			/* We do not store true stamp, but it is not required,
510			 * it can be estimated (approximately)
511			 * from another data.
512			 */
513			tmp_opt.ts_recent_stamp = get_seconds() - ((TCP_TIMEOUT_INIT/HZ)<<req->retrans);
514			paws_reject = tcp_paws_reject(&tmp_opt, th->rst);
515		}
516	}
517
518	/* Check for pure retransmitted SYN. */
519	if (TCP_SKB_CB(skb)->seq == tcp_rsk(req)->rcv_isn &&
520	    flg == TCP_FLAG_SYN &&
521	    !paws_reject) {
522		/*
523		 * RFC793 draws (Incorrectly! It was fixed in RFC1122)
524		 * this case on figure 6 and figure 8, but formal
525		 * protocol description says NOTHING.
526		 * To be more exact, it says that we should send ACK,
527		 * because this segment (at least, if it has no data)
528		 * is out of window.
529		 *
530		 *  CONCLUSION: RFC793 (even with RFC1122) DOES NOT
531		 *  describe SYN-RECV state. All the description
532		 *  is wrong, we cannot believe to it and should
533		 *  rely only on common sense and implementation
534		 *  experience.
535		 *
536		 * Enforce "SYN-ACK" according to figure 8, figure 6
537		 * of RFC793, fixed by RFC1122.
538		 */
539		req->rsk_ops->rtx_syn_ack(sk, req);
540		return NULL;
541	}
542
543	/* Further reproduces section "SEGMENT ARRIVES"
544	   for state SYN-RECEIVED of RFC793.
545	   It is broken, however, it does not work only
546	   when SYNs are crossed.
547
548	   You would think that SYN crossing is impossible here, since
549	   we should have a SYN_SENT socket (from connect()) on our end,
550	   but this is not true if the crossed SYNs were sent to both
551	   ends by a malicious third party.  We must defend against this,
552	   and to do that we first verify the ACK (as per RFC793, page
553	   36) and reset if it is invalid.  Is this a true full defense?
554	   To convince ourselves, let us consider a way in which the ACK
555	   test can still pass in this 'malicious crossed SYNs' case.
556	   Malicious sender sends identical SYNs (and thus identical sequence
557	   numbers) to both A and B:
558
559		A: gets SYN, seq=7
560		B: gets SYN, seq=7
561
562	   By our good fortune, both A and B select the same initial
563	   send sequence number of seven :-)
564
565		A: sends SYN|ACK, seq=7, ack_seq=8
566		B: sends SYN|ACK, seq=7, ack_seq=8
567
568	   So we are now A eating this SYN|ACK, ACK test passes.  So
569	   does sequence test, SYN is truncated, and thus we consider
570	   it a bare ACK.
571
572	   If icsk->icsk_accept_queue.rskq_defer_accept, we silently drop this
573	   bare ACK.  Otherwise, we create an established connection.  Both
574	   ends (listening sockets) accept the new incoming connection and try
575	   to talk to each other. 8-)
576
577	   Note: This case is both harmless, and rare.  Possibility is about the
578	   same as us discovering intelligent life on another plant tomorrow.
579
580	   But generally, we should (RFC lies!) to accept ACK
581	   from SYNACK both here and in tcp_rcv_state_process().
582	   tcp_rcv_state_process() does not, hence, we do not too.
583
584	   Note that the case is absolutely generic:
585	   we cannot optimize anything here without
586	   violating protocol. All the checks must be made
587	   before attempt to create socket.
588	 */
589
590	/* RFC793 page 36: "If the connection is in any non-synchronized state ...
591	 *                  and the incoming segment acknowledges something not yet
592	 *                  sent (the segment carries an unacceptable ACK) ...
593	 *                  a reset is sent."
594	 *
595	 * Invalid ACK: reset will be sent by listening socket
596	 */
597	if ((flg & TCP_FLAG_ACK) &&
598	    (TCP_SKB_CB(skb)->ack_seq != tcp_rsk(req)->snt_isn + 1))
599		return sk;
600
601	/* Also, it would be not so bad idea to check rcv_tsecr, which
602	 * is essentially ACK extension and too early or too late values
603	 * should cause reset in unsynchronized states.
604	 */
605
606	/* RFC793: "first check sequence number". */
607
608	if (paws_reject || !tcp_in_window(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq,
609					  tcp_rsk(req)->rcv_isn + 1, tcp_rsk(req)->rcv_isn + 1 + req->rcv_wnd)) {
610		/* Out of window: send ACK and drop. */
611		if (!(flg & TCP_FLAG_RST))
612			req->rsk_ops->send_ack(sk, skb, req);
613		if (paws_reject)
614			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
615		return NULL;
616	}
617
618	/* In sequence, PAWS is OK. */
619
620	if (tmp_opt.saw_tstamp && !after(TCP_SKB_CB(skb)->seq, tcp_rsk(req)->rcv_isn + 1))
621		req->ts_recent = tmp_opt.rcv_tsval;
622
623	if (TCP_SKB_CB(skb)->seq == tcp_rsk(req)->rcv_isn) {
624		/* Truncate SYN, it is out of window starting
625		   at tcp_rsk(req)->rcv_isn + 1. */
626		flg &= ~TCP_FLAG_SYN;
627	}
628
629	/* RFC793: "second check the RST bit" and
630	 *	   "fourth, check the SYN bit"
631	 */
632	if (flg & (TCP_FLAG_RST|TCP_FLAG_SYN)) {
633		TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_ATTEMPTFAILS);
634		goto embryonic_reset;
635	}
636
637	/* ACK sequence verified above, just make sure ACK is
638	 * set.  If ACK not set, just silently drop the packet.
639	 */
640	if (!(flg & TCP_FLAG_ACK))
641		return NULL;
642
643	/* If TCP_DEFER_ACCEPT is set, drop bare ACK. */
644	if (inet_csk(sk)->icsk_accept_queue.rskq_defer_accept &&
645	    TCP_SKB_CB(skb)->end_seq == tcp_rsk(req)->rcv_isn + 1) {
646		inet_rsk(req)->acked = 1;
647		return NULL;
648	}
649
650	/* OK, ACK is valid, create big socket and
651	 * feed this segment to it. It will repeat all
652	 * the tests. THIS SEGMENT MUST MOVE SOCKET TO
653	 * ESTABLISHED STATE. If it will be dropped after
654	 * socket is created, wait for troubles.
655	 */
656	child = inet_csk(sk)->icsk_af_ops->syn_recv_sock(sk, skb, req, NULL);
657	if (child == NULL)
658		goto listen_overflow;
659#ifdef CONFIG_TCP_MD5SIG
660	else {
661		/* Copy over the MD5 key from the original socket */
662		struct tcp_md5sig_key *key;
663		struct tcp_sock *tp = tcp_sk(sk);
664		key = tp->af_specific->md5_lookup(sk, child);
665		if (key != NULL) {
666			/*
667			 * We're using one, so create a matching key on the
668			 * newsk structure. If we fail to get memory then we
669			 * end up not copying the key across. Shucks.
670			 */
671			char *newkey = kmemdup(key->key, key->keylen,
672					       GFP_ATOMIC);
673			if (newkey) {
674				if (!tcp_alloc_md5sig_pool())
675					BUG();
676				tp->af_specific->md5_add(child, child, newkey,
677							 key->keylen);
678			}
679		}
680	}
681#endif
682
683	inet_csk_reqsk_queue_unlink(sk, req, prev);
684	inet_csk_reqsk_queue_removed(sk, req);
685
686	inet_csk_reqsk_queue_add(sk, req, child);
687	return child;
688
689listen_overflow:
690	if (!sysctl_tcp_abort_on_overflow) {
691		inet_rsk(req)->acked = 1;
692		return NULL;
693	}
694
695embryonic_reset:
696	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_EMBRYONICRSTS);
697	if (!(flg & TCP_FLAG_RST))
698		req->rsk_ops->send_reset(sk, skb);
699
700	inet_csk_reqsk_queue_drop(sk, req, prev);
701	return NULL;
702}
703
704/*
705 * Queue segment on the new socket if the new socket is active,
706 * otherwise we just shortcircuit this and continue with
707 * the new socket.
708 */
709
710int tcp_child_process(struct sock *parent, struct sock *child,
711		      struct sk_buff *skb)
712{
713	int ret = 0;
714	int state = child->sk_state;
715
716	if (!sock_owned_by_user(child)) {
717		ret = tcp_rcv_state_process(child, skb, tcp_hdr(skb),
718					    skb->len);
719		/* Wakeup parent, send SIGIO */
720		if (state == TCP_SYN_RECV && child->sk_state != state)
721			parent->sk_data_ready(parent, 0);
722	} else {
723		/* Alas, it is possible again, because we do lookup
724		 * in main socket hash table and lock on listening
725		 * socket does not protect us more.
726		 */
727		sk_add_backlog(child, skb);
728	}
729
730	bh_unlock_sock(child);
731	sock_put(child);
732	return ret;
733}
734
735EXPORT_SYMBOL(tcp_check_req);
736EXPORT_SYMBOL(tcp_child_process);
737EXPORT_SYMBOL(tcp_create_openreq_child);
738EXPORT_SYMBOL(tcp_timewait_state_process);
739