tcp_minisocks.c revision e56c57d0d3fdbbdf583d3af96bfb803b8dfa713e
1/*
2 * INET		An implementation of the TCP/IP protocol suite for the LINUX
3 *		operating system.  INET is implemented using the  BSD Socket
4 *		interface as the means of communication with the user level.
5 *
6 *		Implementation of the Transmission Control Protocol(TCP).
7 *
8 * Authors:	Ross Biro
9 *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 *		Mark Evans, <evansmp@uhura.aston.ac.uk>
11 *		Corey Minyard <wf-rch!minyard@relay.EU.net>
12 *		Florian La Roche, <flla@stud.uni-sb.de>
13 *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14 *		Linus Torvalds, <torvalds@cs.helsinki.fi>
15 *		Alan Cox, <gw4pts@gw4pts.ampr.org>
16 *		Matthew Dillon, <dillon@apollo.west.oic.com>
17 *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18 *		Jorge Cwik, <jorge@laser.satlink.net>
19 */
20
21#include <linux/mm.h>
22#include <linux/module.h>
23#include <linux/slab.h>
24#include <linux/sysctl.h>
25#include <linux/workqueue.h>
26#include <net/tcp.h>
27#include <net/inet_common.h>
28#include <net/xfrm.h>
29
30int sysctl_tcp_syncookies __read_mostly = 1;
31EXPORT_SYMBOL(sysctl_tcp_syncookies);
32
33int sysctl_tcp_abort_on_overflow __read_mostly;
34
35struct inet_timewait_death_row tcp_death_row = {
36	.sysctl_max_tw_buckets = NR_FILE * 2,
37	.period		= TCP_TIMEWAIT_LEN / INET_TWDR_TWKILL_SLOTS,
38	.death_lock	= __SPIN_LOCK_UNLOCKED(tcp_death_row.death_lock),
39	.hashinfo	= &tcp_hashinfo,
40	.tw_timer	= TIMER_INITIALIZER(inet_twdr_hangman, 0,
41					    (unsigned long)&tcp_death_row),
42	.twkill_work	= __WORK_INITIALIZER(tcp_death_row.twkill_work,
43					     inet_twdr_twkill_work),
44/* Short-time timewait calendar */
45
46	.twcal_hand	= -1,
47	.twcal_timer	= TIMER_INITIALIZER(inet_twdr_twcal_tick, 0,
48					    (unsigned long)&tcp_death_row),
49};
50EXPORT_SYMBOL_GPL(tcp_death_row);
51
52/* VJ's idea. Save last timestamp seen from this destination
53 * and hold it at least for normal timewait interval to use for duplicate
54 * segment detection in subsequent connections, before they enter synchronized
55 * state.
56 */
57
58static int tcp_remember_stamp(struct sock *sk)
59{
60	const struct inet_connection_sock *icsk = inet_csk(sk);
61	struct tcp_sock *tp = tcp_sk(sk);
62	struct inet_peer *peer;
63	bool release_it;
64
65	peer = icsk->icsk_af_ops->get_peer(sk, &release_it);
66	if (peer) {
67		if ((s32)(peer->tcp_ts - tp->rx_opt.ts_recent) <= 0 ||
68		    ((u32)get_seconds() - peer->tcp_ts_stamp > TCP_PAWS_MSL &&
69		     peer->tcp_ts_stamp <= (u32)tp->rx_opt.ts_recent_stamp)) {
70			peer->tcp_ts_stamp = (u32)tp->rx_opt.ts_recent_stamp;
71			peer->tcp_ts = tp->rx_opt.ts_recent;
72		}
73		if (release_it)
74			inet_putpeer(peer);
75		return 1;
76	}
77
78	return 0;
79}
80
81static int tcp_tw_remember_stamp(struct inet_timewait_sock *tw)
82{
83	struct sock *sk = (struct sock *) tw;
84	struct inet_peer *peer;
85
86	peer = twsk_getpeer(sk);
87	if (peer) {
88		const struct tcp_timewait_sock *tcptw = tcp_twsk(sk);
89
90		if ((s32)(peer->tcp_ts - tcptw->tw_ts_recent) <= 0 ||
91		    ((u32)get_seconds() - peer->tcp_ts_stamp > TCP_PAWS_MSL &&
92		     peer->tcp_ts_stamp <= (u32)tcptw->tw_ts_recent_stamp)) {
93			peer->tcp_ts_stamp = (u32)tcptw->tw_ts_recent_stamp;
94			peer->tcp_ts	   = tcptw->tw_ts_recent;
95		}
96		inet_putpeer(peer);
97		return 1;
98	}
99	return 0;
100}
101
102static __inline__ int tcp_in_window(u32 seq, u32 end_seq, u32 s_win, u32 e_win)
103{
104	if (seq == s_win)
105		return 1;
106	if (after(end_seq, s_win) && before(seq, e_win))
107		return 1;
108	return seq == e_win && seq == end_seq;
109}
110
111/*
112 * * Main purpose of TIME-WAIT state is to close connection gracefully,
113 *   when one of ends sits in LAST-ACK or CLOSING retransmitting FIN
114 *   (and, probably, tail of data) and one or more our ACKs are lost.
115 * * What is TIME-WAIT timeout? It is associated with maximal packet
116 *   lifetime in the internet, which results in wrong conclusion, that
117 *   it is set to catch "old duplicate segments" wandering out of their path.
118 *   It is not quite correct. This timeout is calculated so that it exceeds
119 *   maximal retransmission timeout enough to allow to lose one (or more)
120 *   segments sent by peer and our ACKs. This time may be calculated from RTO.
121 * * When TIME-WAIT socket receives RST, it means that another end
122 *   finally closed and we are allowed to kill TIME-WAIT too.
123 * * Second purpose of TIME-WAIT is catching old duplicate segments.
124 *   Well, certainly it is pure paranoia, but if we load TIME-WAIT
125 *   with this semantics, we MUST NOT kill TIME-WAIT state with RSTs.
126 * * If we invented some more clever way to catch duplicates
127 *   (f.e. based on PAWS), we could truncate TIME-WAIT to several RTOs.
128 *
129 * The algorithm below is based on FORMAL INTERPRETATION of RFCs.
130 * When you compare it to RFCs, please, read section SEGMENT ARRIVES
131 * from the very beginning.
132 *
133 * NOTE. With recycling (and later with fin-wait-2) TW bucket
134 * is _not_ stateless. It means, that strictly speaking we must
135 * spinlock it. I do not want! Well, probability of misbehaviour
136 * is ridiculously low and, seems, we could use some mb() tricks
137 * to avoid misread sequence numbers, states etc.  --ANK
138 */
139enum tcp_tw_status
140tcp_timewait_state_process(struct inet_timewait_sock *tw, struct sk_buff *skb,
141			   const struct tcphdr *th)
142{
143	struct tcp_options_received tmp_opt;
144	const u8 *hash_location;
145	struct tcp_timewait_sock *tcptw = tcp_twsk((struct sock *)tw);
146	int paws_reject = 0;
147
148	tmp_opt.saw_tstamp = 0;
149	if (th->doff > (sizeof(*th) >> 2) && tcptw->tw_ts_recent_stamp) {
150		tcp_parse_options(skb, &tmp_opt, &hash_location, 0);
151
152		if (tmp_opt.saw_tstamp) {
153			tmp_opt.ts_recent	= tcptw->tw_ts_recent;
154			tmp_opt.ts_recent_stamp	= tcptw->tw_ts_recent_stamp;
155			paws_reject = tcp_paws_reject(&tmp_opt, th->rst);
156		}
157	}
158
159	if (tw->tw_substate == TCP_FIN_WAIT2) {
160		/* Just repeat all the checks of tcp_rcv_state_process() */
161
162		/* Out of window, send ACK */
163		if (paws_reject ||
164		    !tcp_in_window(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq,
165				   tcptw->tw_rcv_nxt,
166				   tcptw->tw_rcv_nxt + tcptw->tw_rcv_wnd))
167			return TCP_TW_ACK;
168
169		if (th->rst)
170			goto kill;
171
172		if (th->syn && !before(TCP_SKB_CB(skb)->seq, tcptw->tw_rcv_nxt))
173			goto kill_with_rst;
174
175		/* Dup ACK? */
176		if (!th->ack ||
177		    !after(TCP_SKB_CB(skb)->end_seq, tcptw->tw_rcv_nxt) ||
178		    TCP_SKB_CB(skb)->end_seq == TCP_SKB_CB(skb)->seq) {
179			inet_twsk_put(tw);
180			return TCP_TW_SUCCESS;
181		}
182
183		/* New data or FIN. If new data arrive after half-duplex close,
184		 * reset.
185		 */
186		if (!th->fin ||
187		    TCP_SKB_CB(skb)->end_seq != tcptw->tw_rcv_nxt + 1) {
188kill_with_rst:
189			inet_twsk_deschedule(tw, &tcp_death_row);
190			inet_twsk_put(tw);
191			return TCP_TW_RST;
192		}
193
194		/* FIN arrived, enter true time-wait state. */
195		tw->tw_substate	  = TCP_TIME_WAIT;
196		tcptw->tw_rcv_nxt = TCP_SKB_CB(skb)->end_seq;
197		if (tmp_opt.saw_tstamp) {
198			tcptw->tw_ts_recent_stamp = get_seconds();
199			tcptw->tw_ts_recent	  = tmp_opt.rcv_tsval;
200		}
201
202		if (tcp_death_row.sysctl_tw_recycle &&
203		    tcptw->tw_ts_recent_stamp &&
204		    tcp_tw_remember_stamp(tw))
205			inet_twsk_schedule(tw, &tcp_death_row, tw->tw_timeout,
206					   TCP_TIMEWAIT_LEN);
207		else
208			inet_twsk_schedule(tw, &tcp_death_row, TCP_TIMEWAIT_LEN,
209					   TCP_TIMEWAIT_LEN);
210		return TCP_TW_ACK;
211	}
212
213	/*
214	 *	Now real TIME-WAIT state.
215	 *
216	 *	RFC 1122:
217	 *	"When a connection is [...] on TIME-WAIT state [...]
218	 *	[a TCP] MAY accept a new SYN from the remote TCP to
219	 *	reopen the connection directly, if it:
220	 *
221	 *	(1)  assigns its initial sequence number for the new
222	 *	connection to be larger than the largest sequence
223	 *	number it used on the previous connection incarnation,
224	 *	and
225	 *
226	 *	(2)  returns to TIME-WAIT state if the SYN turns out
227	 *	to be an old duplicate".
228	 */
229
230	if (!paws_reject &&
231	    (TCP_SKB_CB(skb)->seq == tcptw->tw_rcv_nxt &&
232	     (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq || th->rst))) {
233		/* In window segment, it may be only reset or bare ack. */
234
235		if (th->rst) {
236			/* This is TIME_WAIT assassination, in two flavors.
237			 * Oh well... nobody has a sufficient solution to this
238			 * protocol bug yet.
239			 */
240			if (sysctl_tcp_rfc1337 == 0) {
241kill:
242				inet_twsk_deschedule(tw, &tcp_death_row);
243				inet_twsk_put(tw);
244				return TCP_TW_SUCCESS;
245			}
246		}
247		inet_twsk_schedule(tw, &tcp_death_row, TCP_TIMEWAIT_LEN,
248				   TCP_TIMEWAIT_LEN);
249
250		if (tmp_opt.saw_tstamp) {
251			tcptw->tw_ts_recent	  = tmp_opt.rcv_tsval;
252			tcptw->tw_ts_recent_stamp = get_seconds();
253		}
254
255		inet_twsk_put(tw);
256		return TCP_TW_SUCCESS;
257	}
258
259	/* Out of window segment.
260
261	   All the segments are ACKed immediately.
262
263	   The only exception is new SYN. We accept it, if it is
264	   not old duplicate and we are not in danger to be killed
265	   by delayed old duplicates. RFC check is that it has
266	   newer sequence number works at rates <40Mbit/sec.
267	   However, if paws works, it is reliable AND even more,
268	   we even may relax silly seq space cutoff.
269
270	   RED-PEN: we violate main RFC requirement, if this SYN will appear
271	   old duplicate (i.e. we receive RST in reply to SYN-ACK),
272	   we must return socket to time-wait state. It is not good,
273	   but not fatal yet.
274	 */
275
276	if (th->syn && !th->rst && !th->ack && !paws_reject &&
277	    (after(TCP_SKB_CB(skb)->seq, tcptw->tw_rcv_nxt) ||
278	     (tmp_opt.saw_tstamp &&
279	      (s32)(tcptw->tw_ts_recent - tmp_opt.rcv_tsval) < 0))) {
280		u32 isn = tcptw->tw_snd_nxt + 65535 + 2;
281		if (isn == 0)
282			isn++;
283		TCP_SKB_CB(skb)->when = isn;
284		return TCP_TW_SYN;
285	}
286
287	if (paws_reject)
288		NET_INC_STATS_BH(twsk_net(tw), LINUX_MIB_PAWSESTABREJECTED);
289
290	if (!th->rst) {
291		/* In this case we must reset the TIMEWAIT timer.
292		 *
293		 * If it is ACKless SYN it may be both old duplicate
294		 * and new good SYN with random sequence number <rcv_nxt.
295		 * Do not reschedule in the last case.
296		 */
297		if (paws_reject || th->ack)
298			inet_twsk_schedule(tw, &tcp_death_row, TCP_TIMEWAIT_LEN,
299					   TCP_TIMEWAIT_LEN);
300
301		/* Send ACK. Note, we do not put the bucket,
302		 * it will be released by caller.
303		 */
304		return TCP_TW_ACK;
305	}
306	inet_twsk_put(tw);
307	return TCP_TW_SUCCESS;
308}
309EXPORT_SYMBOL(tcp_timewait_state_process);
310
311/*
312 * Move a socket to time-wait or dead fin-wait-2 state.
313 */
314void tcp_time_wait(struct sock *sk, int state, int timeo)
315{
316	struct inet_timewait_sock *tw = NULL;
317	const struct inet_connection_sock *icsk = inet_csk(sk);
318	const struct tcp_sock *tp = tcp_sk(sk);
319	int recycle_ok = 0;
320
321	if (tcp_death_row.sysctl_tw_recycle && tp->rx_opt.ts_recent_stamp)
322		recycle_ok = tcp_remember_stamp(sk);
323
324	if (tcp_death_row.tw_count < tcp_death_row.sysctl_max_tw_buckets)
325		tw = inet_twsk_alloc(sk, state);
326
327	if (tw != NULL) {
328		struct tcp_timewait_sock *tcptw = tcp_twsk((struct sock *)tw);
329		const int rto = (icsk->icsk_rto << 2) - (icsk->icsk_rto >> 1);
330
331		tw->tw_transparent	= inet_sk(sk)->transparent;
332		tw->tw_rcv_wscale	= tp->rx_opt.rcv_wscale;
333		tcptw->tw_rcv_nxt	= tp->rcv_nxt;
334		tcptw->tw_snd_nxt	= tp->snd_nxt;
335		tcptw->tw_rcv_wnd	= tcp_receive_window(tp);
336		tcptw->tw_ts_recent	= tp->rx_opt.ts_recent;
337		tcptw->tw_ts_recent_stamp = tp->rx_opt.ts_recent_stamp;
338
339#if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
340		if (tw->tw_family == PF_INET6) {
341			struct ipv6_pinfo *np = inet6_sk(sk);
342			struct inet6_timewait_sock *tw6;
343
344			tw->tw_ipv6_offset = inet6_tw_offset(sk->sk_prot);
345			tw6 = inet6_twsk((struct sock *)tw);
346			ipv6_addr_copy(&tw6->tw_v6_daddr, &np->daddr);
347			ipv6_addr_copy(&tw6->tw_v6_rcv_saddr, &np->rcv_saddr);
348			tw->tw_tclass = np->tclass;
349			tw->tw_ipv6only = np->ipv6only;
350		}
351#endif
352
353#ifdef CONFIG_TCP_MD5SIG
354		/*
355		 * The timewait bucket does not have the key DB from the
356		 * sock structure. We just make a quick copy of the
357		 * md5 key being used (if indeed we are using one)
358		 * so the timewait ack generating code has the key.
359		 */
360		do {
361			struct tcp_md5sig_key *key;
362			memset(tcptw->tw_md5_key, 0, sizeof(tcptw->tw_md5_key));
363			tcptw->tw_md5_keylen = 0;
364			key = tp->af_specific->md5_lookup(sk, sk);
365			if (key != NULL) {
366				memcpy(&tcptw->tw_md5_key, key->key, key->keylen);
367				tcptw->tw_md5_keylen = key->keylen;
368				if (tcp_alloc_md5sig_pool(sk) == NULL)
369					BUG();
370			}
371		} while (0);
372#endif
373
374		/* Linkage updates. */
375		__inet_twsk_hashdance(tw, sk, &tcp_hashinfo);
376
377		/* Get the TIME_WAIT timeout firing. */
378		if (timeo < rto)
379			timeo = rto;
380
381		if (recycle_ok) {
382			tw->tw_timeout = rto;
383		} else {
384			tw->tw_timeout = TCP_TIMEWAIT_LEN;
385			if (state == TCP_TIME_WAIT)
386				timeo = TCP_TIMEWAIT_LEN;
387		}
388
389		inet_twsk_schedule(tw, &tcp_death_row, timeo,
390				   TCP_TIMEWAIT_LEN);
391		inet_twsk_put(tw);
392	} else {
393		/* Sorry, if we're out of memory, just CLOSE this
394		 * socket up.  We've got bigger problems than
395		 * non-graceful socket closings.
396		 */
397		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPTIMEWAITOVERFLOW);
398	}
399
400	tcp_update_metrics(sk);
401	tcp_done(sk);
402}
403
404void tcp_twsk_destructor(struct sock *sk)
405{
406#ifdef CONFIG_TCP_MD5SIG
407	struct tcp_timewait_sock *twsk = tcp_twsk(sk);
408	if (twsk->tw_md5_keylen)
409		tcp_free_md5sig_pool();
410#endif
411}
412EXPORT_SYMBOL_GPL(tcp_twsk_destructor);
413
414static inline void TCP_ECN_openreq_child(struct tcp_sock *tp,
415					 struct request_sock *req)
416{
417	tp->ecn_flags = inet_rsk(req)->ecn_ok ? TCP_ECN_OK : 0;
418}
419
420/* This is not only more efficient than what we used to do, it eliminates
421 * a lot of code duplication between IPv4/IPv6 SYN recv processing. -DaveM
422 *
423 * Actually, we could lots of memory writes here. tp of listening
424 * socket contains all necessary default parameters.
425 */
426struct sock *tcp_create_openreq_child(struct sock *sk, struct request_sock *req, struct sk_buff *skb)
427{
428	struct sock *newsk = inet_csk_clone_lock(sk, req, GFP_ATOMIC);
429
430	if (newsk != NULL) {
431		const struct inet_request_sock *ireq = inet_rsk(req);
432		struct tcp_request_sock *treq = tcp_rsk(req);
433		struct inet_connection_sock *newicsk = inet_csk(newsk);
434		struct tcp_sock *newtp = tcp_sk(newsk);
435		struct tcp_sock *oldtp = tcp_sk(sk);
436		struct tcp_cookie_values *oldcvp = oldtp->cookie_values;
437
438		/* TCP Cookie Transactions require space for the cookie pair,
439		 * as it differs for each connection.  There is no need to
440		 * copy any s_data_payload stored at the original socket.
441		 * Failure will prevent resuming the connection.
442		 *
443		 * Presumed copied, in order of appearance:
444		 *	cookie_in_always, cookie_out_never
445		 */
446		if (oldcvp != NULL) {
447			struct tcp_cookie_values *newcvp =
448				kzalloc(sizeof(*newtp->cookie_values),
449					GFP_ATOMIC);
450
451			if (newcvp != NULL) {
452				kref_init(&newcvp->kref);
453				newcvp->cookie_desired =
454						oldcvp->cookie_desired;
455				newtp->cookie_values = newcvp;
456			} else {
457				/* Not Yet Implemented */
458				newtp->cookie_values = NULL;
459			}
460		}
461
462		/* Now setup tcp_sock */
463		newtp->pred_flags = 0;
464
465		newtp->rcv_wup = newtp->copied_seq =
466		newtp->rcv_nxt = treq->rcv_isn + 1;
467
468		newtp->snd_sml = newtp->snd_una =
469		newtp->snd_nxt = newtp->snd_up =
470			treq->snt_isn + 1 + tcp_s_data_size(oldtp);
471
472		tcp_prequeue_init(newtp);
473
474		tcp_init_wl(newtp, treq->rcv_isn);
475
476		newtp->srtt = 0;
477		newtp->mdev = TCP_TIMEOUT_INIT;
478		newicsk->icsk_rto = TCP_TIMEOUT_INIT;
479
480		newtp->packets_out = 0;
481		newtp->retrans_out = 0;
482		newtp->sacked_out = 0;
483		newtp->fackets_out = 0;
484		newtp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
485
486		/* So many TCP implementations out there (incorrectly) count the
487		 * initial SYN frame in their delayed-ACK and congestion control
488		 * algorithms that we must have the following bandaid to talk
489		 * efficiently to them.  -DaveM
490		 */
491		newtp->snd_cwnd = TCP_INIT_CWND;
492		newtp->snd_cwnd_cnt = 0;
493		newtp->bytes_acked = 0;
494
495		newtp->frto_counter = 0;
496		newtp->frto_highmark = 0;
497
498		newicsk->icsk_ca_ops = &tcp_init_congestion_ops;
499
500		tcp_set_ca_state(newsk, TCP_CA_Open);
501		tcp_init_xmit_timers(newsk);
502		skb_queue_head_init(&newtp->out_of_order_queue);
503		newtp->write_seq = newtp->pushed_seq =
504			treq->snt_isn + 1 + tcp_s_data_size(oldtp);
505
506		newtp->rx_opt.saw_tstamp = 0;
507
508		newtp->rx_opt.dsack = 0;
509		newtp->rx_opt.num_sacks = 0;
510
511		newtp->urg_data = 0;
512
513		if (sock_flag(newsk, SOCK_KEEPOPEN))
514			inet_csk_reset_keepalive_timer(newsk,
515						       keepalive_time_when(newtp));
516
517		newtp->rx_opt.tstamp_ok = ireq->tstamp_ok;
518		if ((newtp->rx_opt.sack_ok = ireq->sack_ok) != 0) {
519			if (sysctl_tcp_fack)
520				tcp_enable_fack(newtp);
521		}
522		newtp->window_clamp = req->window_clamp;
523		newtp->rcv_ssthresh = req->rcv_wnd;
524		newtp->rcv_wnd = req->rcv_wnd;
525		newtp->rx_opt.wscale_ok = ireq->wscale_ok;
526		if (newtp->rx_opt.wscale_ok) {
527			newtp->rx_opt.snd_wscale = ireq->snd_wscale;
528			newtp->rx_opt.rcv_wscale = ireq->rcv_wscale;
529		} else {
530			newtp->rx_opt.snd_wscale = newtp->rx_opt.rcv_wscale = 0;
531			newtp->window_clamp = min(newtp->window_clamp, 65535U);
532		}
533		newtp->snd_wnd = (ntohs(tcp_hdr(skb)->window) <<
534				  newtp->rx_opt.snd_wscale);
535		newtp->max_window = newtp->snd_wnd;
536
537		if (newtp->rx_opt.tstamp_ok) {
538			newtp->rx_opt.ts_recent = req->ts_recent;
539			newtp->rx_opt.ts_recent_stamp = get_seconds();
540			newtp->tcp_header_len = sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
541		} else {
542			newtp->rx_opt.ts_recent_stamp = 0;
543			newtp->tcp_header_len = sizeof(struct tcphdr);
544		}
545#ifdef CONFIG_TCP_MD5SIG
546		newtp->md5sig_info = NULL;	/*XXX*/
547		if (newtp->af_specific->md5_lookup(sk, newsk))
548			newtp->tcp_header_len += TCPOLEN_MD5SIG_ALIGNED;
549#endif
550		if (skb->len >= TCP_MSS_DEFAULT + newtp->tcp_header_len)
551			newicsk->icsk_ack.last_seg_size = skb->len - newtp->tcp_header_len;
552		newtp->rx_opt.mss_clamp = req->mss;
553		TCP_ECN_openreq_child(newtp, req);
554
555		TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_PASSIVEOPENS);
556	}
557	return newsk;
558}
559EXPORT_SYMBOL(tcp_create_openreq_child);
560
561/*
562 *	Process an incoming packet for SYN_RECV sockets represented
563 *	as a request_sock.
564 */
565
566struct sock *tcp_check_req(struct sock *sk, struct sk_buff *skb,
567			   struct request_sock *req,
568			   struct request_sock **prev)
569{
570	struct tcp_options_received tmp_opt;
571	const u8 *hash_location;
572	struct sock *child;
573	const struct tcphdr *th = tcp_hdr(skb);
574	__be32 flg = tcp_flag_word(th) & (TCP_FLAG_RST|TCP_FLAG_SYN|TCP_FLAG_ACK);
575	int paws_reject = 0;
576
577	tmp_opt.saw_tstamp = 0;
578	if (th->doff > (sizeof(struct tcphdr)>>2)) {
579		tcp_parse_options(skb, &tmp_opt, &hash_location, 0);
580
581		if (tmp_opt.saw_tstamp) {
582			tmp_opt.ts_recent = req->ts_recent;
583			/* We do not store true stamp, but it is not required,
584			 * it can be estimated (approximately)
585			 * from another data.
586			 */
587			tmp_opt.ts_recent_stamp = get_seconds() - ((TCP_TIMEOUT_INIT/HZ)<<req->retrans);
588			paws_reject = tcp_paws_reject(&tmp_opt, th->rst);
589		}
590	}
591
592	/* Check for pure retransmitted SYN. */
593	if (TCP_SKB_CB(skb)->seq == tcp_rsk(req)->rcv_isn &&
594	    flg == TCP_FLAG_SYN &&
595	    !paws_reject) {
596		/*
597		 * RFC793 draws (Incorrectly! It was fixed in RFC1122)
598		 * this case on figure 6 and figure 8, but formal
599		 * protocol description says NOTHING.
600		 * To be more exact, it says that we should send ACK,
601		 * because this segment (at least, if it has no data)
602		 * is out of window.
603		 *
604		 *  CONCLUSION: RFC793 (even with RFC1122) DOES NOT
605		 *  describe SYN-RECV state. All the description
606		 *  is wrong, we cannot believe to it and should
607		 *  rely only on common sense and implementation
608		 *  experience.
609		 *
610		 * Enforce "SYN-ACK" according to figure 8, figure 6
611		 * of RFC793, fixed by RFC1122.
612		 */
613		req->rsk_ops->rtx_syn_ack(sk, req, NULL);
614		return NULL;
615	}
616
617	/* Further reproduces section "SEGMENT ARRIVES"
618	   for state SYN-RECEIVED of RFC793.
619	   It is broken, however, it does not work only
620	   when SYNs are crossed.
621
622	   You would think that SYN crossing is impossible here, since
623	   we should have a SYN_SENT socket (from connect()) on our end,
624	   but this is not true if the crossed SYNs were sent to both
625	   ends by a malicious third party.  We must defend against this,
626	   and to do that we first verify the ACK (as per RFC793, page
627	   36) and reset if it is invalid.  Is this a true full defense?
628	   To convince ourselves, let us consider a way in which the ACK
629	   test can still pass in this 'malicious crossed SYNs' case.
630	   Malicious sender sends identical SYNs (and thus identical sequence
631	   numbers) to both A and B:
632
633		A: gets SYN, seq=7
634		B: gets SYN, seq=7
635
636	   By our good fortune, both A and B select the same initial
637	   send sequence number of seven :-)
638
639		A: sends SYN|ACK, seq=7, ack_seq=8
640		B: sends SYN|ACK, seq=7, ack_seq=8
641
642	   So we are now A eating this SYN|ACK, ACK test passes.  So
643	   does sequence test, SYN is truncated, and thus we consider
644	   it a bare ACK.
645
646	   If icsk->icsk_accept_queue.rskq_defer_accept, we silently drop this
647	   bare ACK.  Otherwise, we create an established connection.  Both
648	   ends (listening sockets) accept the new incoming connection and try
649	   to talk to each other. 8-)
650
651	   Note: This case is both harmless, and rare.  Possibility is about the
652	   same as us discovering intelligent life on another plant tomorrow.
653
654	   But generally, we should (RFC lies!) to accept ACK
655	   from SYNACK both here and in tcp_rcv_state_process().
656	   tcp_rcv_state_process() does not, hence, we do not too.
657
658	   Note that the case is absolutely generic:
659	   we cannot optimize anything here without
660	   violating protocol. All the checks must be made
661	   before attempt to create socket.
662	 */
663
664	/* RFC793 page 36: "If the connection is in any non-synchronized state ...
665	 *                  and the incoming segment acknowledges something not yet
666	 *                  sent (the segment carries an unacceptable ACK) ...
667	 *                  a reset is sent."
668	 *
669	 * Invalid ACK: reset will be sent by listening socket
670	 */
671	if ((flg & TCP_FLAG_ACK) &&
672	    (TCP_SKB_CB(skb)->ack_seq !=
673	     tcp_rsk(req)->snt_isn + 1 + tcp_s_data_size(tcp_sk(sk))))
674		return sk;
675
676	/* Also, it would be not so bad idea to check rcv_tsecr, which
677	 * is essentially ACK extension and too early or too late values
678	 * should cause reset in unsynchronized states.
679	 */
680
681	/* RFC793: "first check sequence number". */
682
683	if (paws_reject || !tcp_in_window(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq,
684					  tcp_rsk(req)->rcv_isn + 1, tcp_rsk(req)->rcv_isn + 1 + req->rcv_wnd)) {
685		/* Out of window: send ACK and drop. */
686		if (!(flg & TCP_FLAG_RST))
687			req->rsk_ops->send_ack(sk, skb, req);
688		if (paws_reject)
689			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
690		return NULL;
691	}
692
693	/* In sequence, PAWS is OK. */
694
695	if (tmp_opt.saw_tstamp && !after(TCP_SKB_CB(skb)->seq, tcp_rsk(req)->rcv_isn + 1))
696		req->ts_recent = tmp_opt.rcv_tsval;
697
698	if (TCP_SKB_CB(skb)->seq == tcp_rsk(req)->rcv_isn) {
699		/* Truncate SYN, it is out of window starting
700		   at tcp_rsk(req)->rcv_isn + 1. */
701		flg &= ~TCP_FLAG_SYN;
702	}
703
704	/* RFC793: "second check the RST bit" and
705	 *	   "fourth, check the SYN bit"
706	 */
707	if (flg & (TCP_FLAG_RST|TCP_FLAG_SYN)) {
708		TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_ATTEMPTFAILS);
709		goto embryonic_reset;
710	}
711
712	/* ACK sequence verified above, just make sure ACK is
713	 * set.  If ACK not set, just silently drop the packet.
714	 */
715	if (!(flg & TCP_FLAG_ACK))
716		return NULL;
717
718	/* While TCP_DEFER_ACCEPT is active, drop bare ACK. */
719	if (req->retrans < inet_csk(sk)->icsk_accept_queue.rskq_defer_accept &&
720	    TCP_SKB_CB(skb)->end_seq == tcp_rsk(req)->rcv_isn + 1) {
721		inet_rsk(req)->acked = 1;
722		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDEFERACCEPTDROP);
723		return NULL;
724	}
725	if (tmp_opt.saw_tstamp && tmp_opt.rcv_tsecr)
726		tcp_rsk(req)->snt_synack = tmp_opt.rcv_tsecr;
727	else if (req->retrans) /* don't take RTT sample if retrans && ~TS */
728		tcp_rsk(req)->snt_synack = 0;
729
730	/* OK, ACK is valid, create big socket and
731	 * feed this segment to it. It will repeat all
732	 * the tests. THIS SEGMENT MUST MOVE SOCKET TO
733	 * ESTABLISHED STATE. If it will be dropped after
734	 * socket is created, wait for troubles.
735	 */
736	child = inet_csk(sk)->icsk_af_ops->syn_recv_sock(sk, skb, req, NULL);
737	if (child == NULL)
738		goto listen_overflow;
739
740	inet_csk_reqsk_queue_unlink(sk, req, prev);
741	inet_csk_reqsk_queue_removed(sk, req);
742
743	inet_csk_reqsk_queue_add(sk, req, child);
744	return child;
745
746listen_overflow:
747	if (!sysctl_tcp_abort_on_overflow) {
748		inet_rsk(req)->acked = 1;
749		return NULL;
750	}
751
752embryonic_reset:
753	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_EMBRYONICRSTS);
754	if (!(flg & TCP_FLAG_RST))
755		req->rsk_ops->send_reset(sk, skb);
756
757	inet_csk_reqsk_queue_drop(sk, req, prev);
758	return NULL;
759}
760EXPORT_SYMBOL(tcp_check_req);
761
762/*
763 * Queue segment on the new socket if the new socket is active,
764 * otherwise we just shortcircuit this and continue with
765 * the new socket.
766 */
767
768int tcp_child_process(struct sock *parent, struct sock *child,
769		      struct sk_buff *skb)
770{
771	int ret = 0;
772	int state = child->sk_state;
773
774	if (!sock_owned_by_user(child)) {
775		ret = tcp_rcv_state_process(child, skb, tcp_hdr(skb),
776					    skb->len);
777		/* Wakeup parent, send SIGIO */
778		if (state == TCP_SYN_RECV && child->sk_state != state)
779			parent->sk_data_ready(parent, 0);
780	} else {
781		/* Alas, it is possible again, because we do lookup
782		 * in main socket hash table and lock on listening
783		 * socket does not protect us more.
784		 */
785		__sk_add_backlog(child, skb);
786	}
787
788	bh_unlock_sock(child);
789	sock_put(child);
790	return ret;
791}
792EXPORT_SYMBOL(tcp_child_process);
793