1/*
2 * NET		An implementation of the SOCKET network access protocol.
3 *
4 * Version:	@(#)socket.c	1.1.93	18/02/95
5 *
6 * Authors:	Orest Zborowski, <obz@Kodak.COM>
7 *		Ross Biro
8 *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
9 *
10 * Fixes:
11 *		Anonymous	:	NOTSOCK/BADF cleanup. Error fix in
12 *					shutdown()
13 *		Alan Cox	:	verify_area() fixes
14 *		Alan Cox	:	Removed DDI
15 *		Jonathan Kamens	:	SOCK_DGRAM reconnect bug
16 *		Alan Cox	:	Moved a load of checks to the very
17 *					top level.
18 *		Alan Cox	:	Move address structures to/from user
19 *					mode above the protocol layers.
20 *		Rob Janssen	:	Allow 0 length sends.
21 *		Alan Cox	:	Asynchronous I/O support (cribbed from the
22 *					tty drivers).
23 *		Niibe Yutaka	:	Asynchronous I/O for writes (4.4BSD style)
24 *		Jeff Uphoff	:	Made max number of sockets command-line
25 *					configurable.
26 *		Matti Aarnio	:	Made the number of sockets dynamic,
27 *					to be allocated when needed, and mr.
28 *					Uphoff's max is used as max to be
29 *					allowed to allocate.
30 *		Linus		:	Argh. removed all the socket allocation
31 *					altogether: it's in the inode now.
32 *		Alan Cox	:	Made sock_alloc()/sock_release() public
33 *					for NetROM and future kernel nfsd type
34 *					stuff.
35 *		Alan Cox	:	sendmsg/recvmsg basics.
36 *		Tom Dyas	:	Export net symbols.
37 *		Marcin Dalecki	:	Fixed problems with CONFIG_NET="n".
38 *		Alan Cox	:	Added thread locking to sys_* calls
39 *					for sockets. May have errors at the
40 *					moment.
41 *		Kevin Buhr	:	Fixed the dumb errors in the above.
42 *		Andi Kleen	:	Some small cleanups, optimizations,
43 *					and fixed a copy_from_user() bug.
44 *		Tigran Aivazian	:	sys_send(args) calls sys_sendto(args, NULL, 0)
45 *		Tigran Aivazian	:	Made listen(2) backlog sanity checks
46 *					protocol-independent
47 *
48 *
49 *		This program is free software; you can redistribute it and/or
50 *		modify it under the terms of the GNU General Public License
51 *		as published by the Free Software Foundation; either version
52 *		2 of the License, or (at your option) any later version.
53 *
54 *
55 *	This module is effectively the top level interface to the BSD socket
56 *	paradigm.
57 *
58 *	Based upon Swansea University Computer Society NET3.039
59 */
60
61#include <linux/mm.h>
62#include <linux/socket.h>
63#include <linux/file.h>
64#include <linux/net.h>
65#include <linux/interrupt.h>
66#include <linux/thread_info.h>
67#include <linux/rcupdate.h>
68#include <linux/netdevice.h>
69#include <linux/proc_fs.h>
70#include <linux/seq_file.h>
71#include <linux/mutex.h>
72#include <linux/if_bridge.h>
73#include <linux/if_frad.h>
74#include <linux/if_vlan.h>
75#include <linux/init.h>
76#include <linux/poll.h>
77#include <linux/cache.h>
78#include <linux/module.h>
79#include <linux/highmem.h>
80#include <linux/mount.h>
81#include <linux/security.h>
82#include <linux/syscalls.h>
83#include <linux/compat.h>
84#include <linux/kmod.h>
85#include <linux/audit.h>
86#include <linux/wireless.h>
87#include <linux/nsproxy.h>
88#include <linux/magic.h>
89#include <linux/slab.h>
90#include <linux/xattr.h>
91
92#include <asm/uaccess.h>
93#include <asm/unistd.h>
94
95#include <net/compat.h>
96#include <net/wext.h>
97#include <net/cls_cgroup.h>
98
99#include <net/sock.h>
100#include <linux/netfilter.h>
101
102#include <linux/if_tun.h>
103#include <linux/ipv6_route.h>
104#include <linux/route.h>
105#include <linux/sockios.h>
106#include <linux/atalk.h>
107
108static int sock_no_open(struct inode *irrelevant, struct file *dontcare);
109static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov,
110			 unsigned long nr_segs, loff_t pos);
111static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov,
112			  unsigned long nr_segs, loff_t pos);
113static int sock_mmap(struct file *file, struct vm_area_struct *vma);
114
115static int sock_close(struct inode *inode, struct file *file);
116static unsigned int sock_poll(struct file *file,
117			      struct poll_table_struct *wait);
118static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
119#ifdef CONFIG_COMPAT
120static long compat_sock_ioctl(struct file *file,
121			      unsigned int cmd, unsigned long arg);
122#endif
123static int sock_fasync(int fd, struct file *filp, int on);
124static ssize_t sock_sendpage(struct file *file, struct page *page,
125			     int offset, size_t size, loff_t *ppos, int more);
126static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
127				struct pipe_inode_info *pipe, size_t len,
128				unsigned int flags);
129
130/*
131 *	Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
132 *	in the operation structures but are done directly via the socketcall() multiplexor.
133 */
134
135static const struct file_operations socket_file_ops = {
136	.owner =	THIS_MODULE,
137	.llseek =	no_llseek,
138	.aio_read =	sock_aio_read,
139	.aio_write =	sock_aio_write,
140	.poll =		sock_poll,
141	.unlocked_ioctl = sock_ioctl,
142#ifdef CONFIG_COMPAT
143	.compat_ioctl = compat_sock_ioctl,
144#endif
145	.mmap =		sock_mmap,
146	.open =		sock_no_open,	/* special open code to disallow open via /proc */
147	.release =	sock_close,
148	.fasync =	sock_fasync,
149	.sendpage =	sock_sendpage,
150	.splice_write = generic_splice_sendpage,
151	.splice_read =	sock_splice_read,
152};
153
154/*
155 *	The protocol list. Each protocol is registered in here.
156 */
157
158static DEFINE_SPINLOCK(net_family_lock);
159static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly;
160
161/*
162 *	Statistics counters of the socket lists
163 */
164
165static DEFINE_PER_CPU(int, sockets_in_use);
166
167/*
168 * Support routines.
169 * Move socket addresses back and forth across the kernel/user
170 * divide and look after the messy bits.
171 */
172
173/**
174 *	move_addr_to_kernel	-	copy a socket address into kernel space
175 *	@uaddr: Address in user space
176 *	@kaddr: Address in kernel space
177 *	@ulen: Length in user space
178 *
179 *	The address is copied into kernel space. If the provided address is
180 *	too long an error code of -EINVAL is returned. If the copy gives
181 *	invalid addresses -EFAULT is returned. On a success 0 is returned.
182 */
183
184int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr)
185{
186	if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
187		return -EINVAL;
188	if (ulen == 0)
189		return 0;
190	if (copy_from_user(kaddr, uaddr, ulen))
191		return -EFAULT;
192	return audit_sockaddr(ulen, kaddr);
193}
194
195/**
196 *	move_addr_to_user	-	copy an address to user space
197 *	@kaddr: kernel space address
198 *	@klen: length of address in kernel
199 *	@uaddr: user space address
200 *	@ulen: pointer to user length field
201 *
202 *	The value pointed to by ulen on entry is the buffer length available.
203 *	This is overwritten with the buffer space used. -EINVAL is returned
204 *	if an overlong buffer is specified or a negative buffer size. -EFAULT
205 *	is returned if either the buffer or the length field are not
206 *	accessible.
207 *	After copying the data up to the limit the user specifies, the true
208 *	length of the data is written over the length limit the user
209 *	specified. Zero is returned for a success.
210 */
211
212static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen,
213			     void __user *uaddr, int __user *ulen)
214{
215	int err;
216	int len;
217
218	err = get_user(len, ulen);
219	if (err)
220		return err;
221	if (len > klen)
222		len = klen;
223	if (len < 0 || len > sizeof(struct sockaddr_storage))
224		return -EINVAL;
225	if (len) {
226		if (audit_sockaddr(klen, kaddr))
227			return -ENOMEM;
228		if (copy_to_user(uaddr, kaddr, len))
229			return -EFAULT;
230	}
231	/*
232	 *      "fromlen shall refer to the value before truncation.."
233	 *                      1003.1g
234	 */
235	return __put_user(klen, ulen);
236}
237
238static struct kmem_cache *sock_inode_cachep __read_mostly;
239
240static struct inode *sock_alloc_inode(struct super_block *sb)
241{
242	struct socket_alloc *ei;
243	struct socket_wq *wq;
244
245	ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL);
246	if (!ei)
247		return NULL;
248	wq = kmalloc(sizeof(*wq), GFP_KERNEL);
249	if (!wq) {
250		kmem_cache_free(sock_inode_cachep, ei);
251		return NULL;
252	}
253	init_waitqueue_head(&wq->wait);
254	wq->fasync_list = NULL;
255	RCU_INIT_POINTER(ei->socket.wq, wq);
256
257	ei->socket.state = SS_UNCONNECTED;
258	ei->socket.flags = 0;
259	ei->socket.ops = NULL;
260	ei->socket.sk = NULL;
261	ei->socket.file = NULL;
262
263	return &ei->vfs_inode;
264}
265
266static void sock_destroy_inode(struct inode *inode)
267{
268	struct socket_alloc *ei;
269	struct socket_wq *wq;
270
271	ei = container_of(inode, struct socket_alloc, vfs_inode);
272	wq = rcu_dereference_protected(ei->socket.wq, 1);
273	kfree_rcu(wq, rcu);
274	kmem_cache_free(sock_inode_cachep, ei);
275}
276
277static void init_once(void *foo)
278{
279	struct socket_alloc *ei = (struct socket_alloc *)foo;
280
281	inode_init_once(&ei->vfs_inode);
282}
283
284static int init_inodecache(void)
285{
286	sock_inode_cachep = kmem_cache_create("sock_inode_cache",
287					      sizeof(struct socket_alloc),
288					      0,
289					      (SLAB_HWCACHE_ALIGN |
290					       SLAB_RECLAIM_ACCOUNT |
291					       SLAB_MEM_SPREAD),
292					      init_once);
293	if (sock_inode_cachep == NULL)
294		return -ENOMEM;
295	return 0;
296}
297
298static const struct super_operations sockfs_ops = {
299	.alloc_inode	= sock_alloc_inode,
300	.destroy_inode	= sock_destroy_inode,
301	.statfs		= simple_statfs,
302};
303
304/*
305 * sockfs_dname() is called from d_path().
306 */
307static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
308{
309	return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]",
310				dentry->d_inode->i_ino);
311}
312
313static const struct dentry_operations sockfs_dentry_operations = {
314	.d_dname  = sockfs_dname,
315};
316
317static struct dentry *sockfs_mount(struct file_system_type *fs_type,
318			 int flags, const char *dev_name, void *data)
319{
320	return mount_pseudo(fs_type, "socket:", &sockfs_ops,
321		&sockfs_dentry_operations, SOCKFS_MAGIC);
322}
323
324static struct vfsmount *sock_mnt __read_mostly;
325
326static struct file_system_type sock_fs_type = {
327	.name =		"sockfs",
328	.mount =	sockfs_mount,
329	.kill_sb =	kill_anon_super,
330};
331
332/*
333 *	Obtains the first available file descriptor and sets it up for use.
334 *
335 *	These functions create file structures and maps them to fd space
336 *	of the current process. On success it returns file descriptor
337 *	and file struct implicitly stored in sock->file.
338 *	Note that another thread may close file descriptor before we return
339 *	from this function. We use the fact that now we do not refer
340 *	to socket after mapping. If one day we will need it, this
341 *	function will increment ref. count on file by 1.
342 *
343 *	In any case returned fd MAY BE not valid!
344 *	This race condition is unavoidable
345 *	with shared fd spaces, we cannot solve it inside kernel,
346 *	but we take care of internal coherence yet.
347 */
348
349struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname)
350{
351	struct qstr name = { .name = "" };
352	struct path path;
353	struct file *file;
354
355	if (dname) {
356		name.name = dname;
357		name.len = strlen(name.name);
358	} else if (sock->sk) {
359		name.name = sock->sk->sk_prot_creator->name;
360		name.len = strlen(name.name);
361	}
362	path.dentry = d_alloc_pseudo(sock_mnt->mnt_sb, &name);
363	if (unlikely(!path.dentry))
364		return ERR_PTR(-ENOMEM);
365	path.mnt = mntget(sock_mnt);
366
367	d_instantiate(path.dentry, SOCK_INODE(sock));
368	SOCK_INODE(sock)->i_fop = &socket_file_ops;
369
370	file = alloc_file(&path, FMODE_READ | FMODE_WRITE,
371		  &socket_file_ops);
372	if (unlikely(IS_ERR(file))) {
373		/* drop dentry, keep inode */
374		ihold(path.dentry->d_inode);
375		path_put(&path);
376		return file;
377	}
378
379	sock->file = file;
380	file->f_flags = O_RDWR | (flags & O_NONBLOCK);
381	file->private_data = sock;
382	return file;
383}
384EXPORT_SYMBOL(sock_alloc_file);
385
386static int sock_map_fd(struct socket *sock, int flags)
387{
388	struct file *newfile;
389	int fd = get_unused_fd_flags(flags);
390	if (unlikely(fd < 0))
391		return fd;
392
393	newfile = sock_alloc_file(sock, flags, NULL);
394	if (likely(!IS_ERR(newfile))) {
395		fd_install(fd, newfile);
396		return fd;
397	}
398
399	put_unused_fd(fd);
400	return PTR_ERR(newfile);
401}
402
403struct socket *sock_from_file(struct file *file, int *err)
404{
405	if (file->f_op == &socket_file_ops)
406		return file->private_data;	/* set in sock_map_fd */
407
408	*err = -ENOTSOCK;
409	return NULL;
410}
411EXPORT_SYMBOL(sock_from_file);
412
413/**
414 *	sockfd_lookup - Go from a file number to its socket slot
415 *	@fd: file handle
416 *	@err: pointer to an error code return
417 *
418 *	The file handle passed in is locked and the socket it is bound
419 *	too is returned. If an error occurs the err pointer is overwritten
420 *	with a negative errno code and NULL is returned. The function checks
421 *	for both invalid handles and passing a handle which is not a socket.
422 *
423 *	On a success the socket object pointer is returned.
424 */
425
426struct socket *sockfd_lookup(int fd, int *err)
427{
428	struct file *file;
429	struct socket *sock;
430
431	file = fget(fd);
432	if (!file) {
433		*err = -EBADF;
434		return NULL;
435	}
436
437	sock = sock_from_file(file, err);
438	if (!sock)
439		fput(file);
440	return sock;
441}
442EXPORT_SYMBOL(sockfd_lookup);
443
444static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
445{
446	struct file *file;
447	struct socket *sock;
448
449	*err = -EBADF;
450	file = fget_light(fd, fput_needed);
451	if (file) {
452		sock = sock_from_file(file, err);
453		if (sock)
454			return sock;
455		fput_light(file, *fput_needed);
456	}
457	return NULL;
458}
459
460#define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname"
461#define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX)
462#define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1)
463static ssize_t sockfs_getxattr(struct dentry *dentry,
464			       const char *name, void *value, size_t size)
465{
466	const char *proto_name;
467	size_t proto_size;
468	int error;
469
470	error = -ENODATA;
471	if (!strncmp(name, XATTR_NAME_SOCKPROTONAME, XATTR_NAME_SOCKPROTONAME_LEN)) {
472		proto_name = dentry->d_name.name;
473		proto_size = strlen(proto_name);
474
475		if (value) {
476			error = -ERANGE;
477			if (proto_size + 1 > size)
478				goto out;
479
480			strncpy(value, proto_name, proto_size + 1);
481		}
482		error = proto_size + 1;
483	}
484
485out:
486	return error;
487}
488
489static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer,
490				size_t size)
491{
492	ssize_t len;
493	ssize_t used = 0;
494
495	len = security_inode_listsecurity(dentry->d_inode, buffer, size);
496	if (len < 0)
497		return len;
498	used += len;
499	if (buffer) {
500		if (size < used)
501			return -ERANGE;
502		buffer += len;
503	}
504
505	len = (XATTR_NAME_SOCKPROTONAME_LEN + 1);
506	used += len;
507	if (buffer) {
508		if (size < used)
509			return -ERANGE;
510		memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len);
511		buffer += len;
512	}
513
514	return used;
515}
516
517static const struct inode_operations sockfs_inode_ops = {
518	.getxattr = sockfs_getxattr,
519	.listxattr = sockfs_listxattr,
520};
521
522/**
523 *	sock_alloc	-	allocate a socket
524 *
525 *	Allocate a new inode and socket object. The two are bound together
526 *	and initialised. The socket is then returned. If we are out of inodes
527 *	NULL is returned.
528 */
529
530static struct socket *sock_alloc(void)
531{
532	struct inode *inode;
533	struct socket *sock;
534
535	inode = new_inode_pseudo(sock_mnt->mnt_sb);
536	if (!inode)
537		return NULL;
538
539	sock = SOCKET_I(inode);
540
541	kmemcheck_annotate_bitfield(sock, type);
542	inode->i_ino = get_next_ino();
543	inode->i_mode = S_IFSOCK | S_IRWXUGO;
544	inode->i_uid = current_fsuid();
545	inode->i_gid = current_fsgid();
546	inode->i_op = &sockfs_inode_ops;
547
548	this_cpu_add(sockets_in_use, 1);
549	return sock;
550}
551
552/*
553 *	In theory you can't get an open on this inode, but /proc provides
554 *	a back door. Remember to keep it shut otherwise you'll let the
555 *	creepy crawlies in.
556 */
557
558static int sock_no_open(struct inode *irrelevant, struct file *dontcare)
559{
560	return -ENXIO;
561}
562
563const struct file_operations bad_sock_fops = {
564	.owner = THIS_MODULE,
565	.open = sock_no_open,
566	.llseek = noop_llseek,
567};
568
569/**
570 *	sock_release	-	close a socket
571 *	@sock: socket to close
572 *
573 *	The socket is released from the protocol stack if it has a release
574 *	callback, and the inode is then released if the socket is bound to
575 *	an inode not a file.
576 */
577
578void sock_release(struct socket *sock)
579{
580	if (sock->ops) {
581		struct module *owner = sock->ops->owner;
582
583		sock->ops->release(sock);
584		sock->ops = NULL;
585		module_put(owner);
586	}
587
588	if (rcu_dereference_protected(sock->wq, 1)->fasync_list)
589		printk(KERN_ERR "sock_release: fasync list not empty!\n");
590
591	if (test_bit(SOCK_EXTERNALLY_ALLOCATED, &sock->flags))
592		return;
593
594	this_cpu_sub(sockets_in_use, 1);
595	if (!sock->file) {
596		iput(SOCK_INODE(sock));
597		return;
598	}
599	sock->file = NULL;
600}
601EXPORT_SYMBOL(sock_release);
602
603void sock_tx_timestamp(struct sock *sk, __u8 *tx_flags)
604{
605	*tx_flags = 0;
606	if (sock_flag(sk, SOCK_TIMESTAMPING_TX_HARDWARE))
607		*tx_flags |= SKBTX_HW_TSTAMP;
608	if (sock_flag(sk, SOCK_TIMESTAMPING_TX_SOFTWARE))
609		*tx_flags |= SKBTX_SW_TSTAMP;
610	if (sock_flag(sk, SOCK_WIFI_STATUS))
611		*tx_flags |= SKBTX_WIFI_STATUS;
612}
613EXPORT_SYMBOL(sock_tx_timestamp);
614
615static inline int __sock_sendmsg_nosec(struct kiocb *iocb, struct socket *sock,
616				       struct msghdr *msg, size_t size)
617{
618	struct sock_iocb *si = kiocb_to_siocb(iocb);
619
620	si->sock = sock;
621	si->scm = NULL;
622	si->msg = msg;
623	si->size = size;
624
625	return sock->ops->sendmsg(iocb, sock, msg, size);
626}
627
628static inline int __sock_sendmsg(struct kiocb *iocb, struct socket *sock,
629				 struct msghdr *msg, size_t size)
630{
631	int err = security_socket_sendmsg(sock, msg, size);
632
633	return err ?: __sock_sendmsg_nosec(iocb, sock, msg, size);
634}
635
636int sock_sendmsg(struct socket *sock, struct msghdr *msg, size_t size)
637{
638	struct kiocb iocb;
639	struct sock_iocb siocb;
640	int ret;
641
642	init_sync_kiocb(&iocb, NULL);
643	iocb.private = &siocb;
644	ret = __sock_sendmsg(&iocb, sock, msg, size);
645	if (-EIOCBQUEUED == ret)
646		ret = wait_on_sync_kiocb(&iocb);
647	return ret;
648}
649EXPORT_SYMBOL(sock_sendmsg);
650
651static int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg, size_t size)
652{
653	struct kiocb iocb;
654	struct sock_iocb siocb;
655	int ret;
656
657	init_sync_kiocb(&iocb, NULL);
658	iocb.private = &siocb;
659	ret = __sock_sendmsg_nosec(&iocb, sock, msg, size);
660	if (-EIOCBQUEUED == ret)
661		ret = wait_on_sync_kiocb(&iocb);
662	return ret;
663}
664
665int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
666		   struct kvec *vec, size_t num, size_t size)
667{
668	mm_segment_t oldfs = get_fs();
669	int result;
670
671	set_fs(KERNEL_DS);
672	/*
673	 * the following is safe, since for compiler definitions of kvec and
674	 * iovec are identical, yielding the same in-core layout and alignment
675	 */
676	msg->msg_iov = (struct iovec *)vec;
677	msg->msg_iovlen = num;
678	result = sock_sendmsg(sock, msg, size);
679	set_fs(oldfs);
680	return result;
681}
682EXPORT_SYMBOL(kernel_sendmsg);
683
684/*
685 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
686 */
687void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
688	struct sk_buff *skb)
689{
690	int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP);
691	struct timespec ts[3];
692	int empty = 1;
693	struct skb_shared_hwtstamps *shhwtstamps =
694		skb_hwtstamps(skb);
695
696	/* Race occurred between timestamp enabling and packet
697	   receiving.  Fill in the current time for now. */
698	if (need_software_tstamp && skb->tstamp.tv64 == 0)
699		__net_timestamp(skb);
700
701	if (need_software_tstamp) {
702		if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
703			struct timeval tv;
704			skb_get_timestamp(skb, &tv);
705			put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP,
706				 sizeof(tv), &tv);
707		} else {
708			skb_get_timestampns(skb, &ts[0]);
709			put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS,
710				 sizeof(ts[0]), &ts[0]);
711		}
712	}
713
714
715	memset(ts, 0, sizeof(ts));
716	if (sock_flag(sk, SOCK_TIMESTAMPING_SOFTWARE) &&
717	    ktime_to_timespec_cond(skb->tstamp, ts + 0))
718		empty = 0;
719	if (shhwtstamps) {
720		if (sock_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE) &&
721		    ktime_to_timespec_cond(shhwtstamps->syststamp, ts + 1))
722			empty = 0;
723		if (sock_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE) &&
724		    ktime_to_timespec_cond(shhwtstamps->hwtstamp, ts + 2))
725			empty = 0;
726	}
727	if (!empty)
728		put_cmsg(msg, SOL_SOCKET,
729			 SCM_TIMESTAMPING, sizeof(ts), &ts);
730}
731EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
732
733void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
734	struct sk_buff *skb)
735{
736	int ack;
737
738	if (!sock_flag(sk, SOCK_WIFI_STATUS))
739		return;
740	if (!skb->wifi_acked_valid)
741		return;
742
743	ack = skb->wifi_acked;
744
745	put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack);
746}
747EXPORT_SYMBOL_GPL(__sock_recv_wifi_status);
748
749static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk,
750				   struct sk_buff *skb)
751{
752	if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && skb->dropcount)
753		put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL,
754			sizeof(__u32), &skb->dropcount);
755}
756
757void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
758	struct sk_buff *skb)
759{
760	sock_recv_timestamp(msg, sk, skb);
761	sock_recv_drops(msg, sk, skb);
762}
763EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops);
764
765static inline int __sock_recvmsg_nosec(struct kiocb *iocb, struct socket *sock,
766				       struct msghdr *msg, size_t size, int flags)
767{
768	struct sock_iocb *si = kiocb_to_siocb(iocb);
769
770	si->sock = sock;
771	si->scm = NULL;
772	si->msg = msg;
773	si->size = size;
774	si->flags = flags;
775
776	return sock->ops->recvmsg(iocb, sock, msg, size, flags);
777}
778
779static inline int __sock_recvmsg(struct kiocb *iocb, struct socket *sock,
780				 struct msghdr *msg, size_t size, int flags)
781{
782	int err = security_socket_recvmsg(sock, msg, size, flags);
783
784	return err ?: __sock_recvmsg_nosec(iocb, sock, msg, size, flags);
785}
786
787int sock_recvmsg(struct socket *sock, struct msghdr *msg,
788		 size_t size, int flags)
789{
790	struct kiocb iocb;
791	struct sock_iocb siocb;
792	int ret;
793
794	init_sync_kiocb(&iocb, NULL);
795	iocb.private = &siocb;
796	ret = __sock_recvmsg(&iocb, sock, msg, size, flags);
797	if (-EIOCBQUEUED == ret)
798		ret = wait_on_sync_kiocb(&iocb);
799	return ret;
800}
801EXPORT_SYMBOL(sock_recvmsg);
802
803static int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg,
804			      size_t size, int flags)
805{
806	struct kiocb iocb;
807	struct sock_iocb siocb;
808	int ret;
809
810	init_sync_kiocb(&iocb, NULL);
811	iocb.private = &siocb;
812	ret = __sock_recvmsg_nosec(&iocb, sock, msg, size, flags);
813	if (-EIOCBQUEUED == ret)
814		ret = wait_on_sync_kiocb(&iocb);
815	return ret;
816}
817
818/**
819 * kernel_recvmsg - Receive a message from a socket (kernel space)
820 * @sock:       The socket to receive the message from
821 * @msg:        Received message
822 * @vec:        Input s/g array for message data
823 * @num:        Size of input s/g array
824 * @size:       Number of bytes to read
825 * @flags:      Message flags (MSG_DONTWAIT, etc...)
826 *
827 * On return the msg structure contains the scatter/gather array passed in the
828 * vec argument. The array is modified so that it consists of the unfilled
829 * portion of the original array.
830 *
831 * The returned value is the total number of bytes received, or an error.
832 */
833int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
834		   struct kvec *vec, size_t num, size_t size, int flags)
835{
836	mm_segment_t oldfs = get_fs();
837	int result;
838
839	set_fs(KERNEL_DS);
840	/*
841	 * the following is safe, since for compiler definitions of kvec and
842	 * iovec are identical, yielding the same in-core layout and alignment
843	 */
844	msg->msg_iov = (struct iovec *)vec, msg->msg_iovlen = num;
845	result = sock_recvmsg(sock, msg, size, flags);
846	set_fs(oldfs);
847	return result;
848}
849EXPORT_SYMBOL(kernel_recvmsg);
850
851static void sock_aio_dtor(struct kiocb *iocb)
852{
853	kfree(iocb->private);
854}
855
856static ssize_t sock_sendpage(struct file *file, struct page *page,
857			     int offset, size_t size, loff_t *ppos, int more)
858{
859	struct socket *sock;
860	int flags;
861
862	sock = file->private_data;
863
864	flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
865	/* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */
866	flags |= more;
867
868	return kernel_sendpage(sock, page, offset, size, flags);
869}
870
871static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
872				struct pipe_inode_info *pipe, size_t len,
873				unsigned int flags)
874{
875	struct socket *sock = file->private_data;
876
877	if (unlikely(!sock->ops->splice_read))
878		return -EINVAL;
879
880	return sock->ops->splice_read(sock, ppos, pipe, len, flags);
881}
882
883static struct sock_iocb *alloc_sock_iocb(struct kiocb *iocb,
884					 struct sock_iocb *siocb)
885{
886	if (!is_sync_kiocb(iocb)) {
887		siocb = kmalloc(sizeof(*siocb), GFP_KERNEL);
888		if (!siocb)
889			return NULL;
890		iocb->ki_dtor = sock_aio_dtor;
891	}
892
893	siocb->kiocb = iocb;
894	iocb->private = siocb;
895	return siocb;
896}
897
898static ssize_t do_sock_read(struct msghdr *msg, struct kiocb *iocb,
899		struct file *file, const struct iovec *iov,
900		unsigned long nr_segs)
901{
902	struct socket *sock = file->private_data;
903	size_t size = 0;
904	int i;
905
906	for (i = 0; i < nr_segs; i++)
907		size += iov[i].iov_len;
908
909	msg->msg_name = NULL;
910	msg->msg_namelen = 0;
911	msg->msg_control = NULL;
912	msg->msg_controllen = 0;
913	msg->msg_iov = (struct iovec *)iov;
914	msg->msg_iovlen = nr_segs;
915	msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
916
917	return __sock_recvmsg(iocb, sock, msg, size, msg->msg_flags);
918}
919
920static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov,
921				unsigned long nr_segs, loff_t pos)
922{
923	struct sock_iocb siocb, *x;
924
925	if (pos != 0)
926		return -ESPIPE;
927
928	if (iocb->ki_left == 0)	/* Match SYS5 behaviour */
929		return 0;
930
931
932	x = alloc_sock_iocb(iocb, &siocb);
933	if (!x)
934		return -ENOMEM;
935	return do_sock_read(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs);
936}
937
938static ssize_t do_sock_write(struct msghdr *msg, struct kiocb *iocb,
939			struct file *file, const struct iovec *iov,
940			unsigned long nr_segs)
941{
942	struct socket *sock = file->private_data;
943	size_t size = 0;
944	int i;
945
946	for (i = 0; i < nr_segs; i++)
947		size += iov[i].iov_len;
948
949	msg->msg_name = NULL;
950	msg->msg_namelen = 0;
951	msg->msg_control = NULL;
952	msg->msg_controllen = 0;
953	msg->msg_iov = (struct iovec *)iov;
954	msg->msg_iovlen = nr_segs;
955	msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
956	if (sock->type == SOCK_SEQPACKET)
957		msg->msg_flags |= MSG_EOR;
958
959	return __sock_sendmsg(iocb, sock, msg, size);
960}
961
962static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov,
963			  unsigned long nr_segs, loff_t pos)
964{
965	struct sock_iocb siocb, *x;
966
967	if (pos != 0)
968		return -ESPIPE;
969
970	x = alloc_sock_iocb(iocb, &siocb);
971	if (!x)
972		return -ENOMEM;
973
974	return do_sock_write(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs);
975}
976
977/*
978 * Atomic setting of ioctl hooks to avoid race
979 * with module unload.
980 */
981
982static DEFINE_MUTEX(br_ioctl_mutex);
983static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg);
984
985void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *))
986{
987	mutex_lock(&br_ioctl_mutex);
988	br_ioctl_hook = hook;
989	mutex_unlock(&br_ioctl_mutex);
990}
991EXPORT_SYMBOL(brioctl_set);
992
993static DEFINE_MUTEX(vlan_ioctl_mutex);
994static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
995
996void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
997{
998	mutex_lock(&vlan_ioctl_mutex);
999	vlan_ioctl_hook = hook;
1000	mutex_unlock(&vlan_ioctl_mutex);
1001}
1002EXPORT_SYMBOL(vlan_ioctl_set);
1003
1004static DEFINE_MUTEX(dlci_ioctl_mutex);
1005static int (*dlci_ioctl_hook) (unsigned int, void __user *);
1006
1007void dlci_ioctl_set(int (*hook) (unsigned int, void __user *))
1008{
1009	mutex_lock(&dlci_ioctl_mutex);
1010	dlci_ioctl_hook = hook;
1011	mutex_unlock(&dlci_ioctl_mutex);
1012}
1013EXPORT_SYMBOL(dlci_ioctl_set);
1014
1015static long sock_do_ioctl(struct net *net, struct socket *sock,
1016				 unsigned int cmd, unsigned long arg)
1017{
1018	int err;
1019	void __user *argp = (void __user *)arg;
1020
1021	err = sock->ops->ioctl(sock, cmd, arg);
1022
1023	/*
1024	 * If this ioctl is unknown try to hand it down
1025	 * to the NIC driver.
1026	 */
1027	if (err == -ENOIOCTLCMD)
1028		err = dev_ioctl(net, cmd, argp);
1029
1030	return err;
1031}
1032
1033/*
1034 *	With an ioctl, arg may well be a user mode pointer, but we don't know
1035 *	what to do with it - that's up to the protocol still.
1036 */
1037
1038static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
1039{
1040	struct socket *sock;
1041	struct sock *sk;
1042	void __user *argp = (void __user *)arg;
1043	int pid, err;
1044	struct net *net;
1045
1046	sock = file->private_data;
1047	sk = sock->sk;
1048	net = sock_net(sk);
1049	if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) {
1050		err = dev_ioctl(net, cmd, argp);
1051	} else
1052#ifdef CONFIG_WEXT_CORE
1053	if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
1054		err = dev_ioctl(net, cmd, argp);
1055	} else
1056#endif
1057		switch (cmd) {
1058		case FIOSETOWN:
1059		case SIOCSPGRP:
1060			err = -EFAULT;
1061			if (get_user(pid, (int __user *)argp))
1062				break;
1063			err = f_setown(sock->file, pid, 1);
1064			break;
1065		case FIOGETOWN:
1066		case SIOCGPGRP:
1067			err = put_user(f_getown(sock->file),
1068				       (int __user *)argp);
1069			break;
1070		case SIOCGIFBR:
1071		case SIOCSIFBR:
1072		case SIOCBRADDBR:
1073		case SIOCBRDELBR:
1074			err = -ENOPKG;
1075			if (!br_ioctl_hook)
1076				request_module("bridge");
1077
1078			mutex_lock(&br_ioctl_mutex);
1079			if (br_ioctl_hook)
1080				err = br_ioctl_hook(net, cmd, argp);
1081			mutex_unlock(&br_ioctl_mutex);
1082			break;
1083		case SIOCGIFVLAN:
1084		case SIOCSIFVLAN:
1085			err = -ENOPKG;
1086			if (!vlan_ioctl_hook)
1087				request_module("8021q");
1088
1089			mutex_lock(&vlan_ioctl_mutex);
1090			if (vlan_ioctl_hook)
1091				err = vlan_ioctl_hook(net, argp);
1092			mutex_unlock(&vlan_ioctl_mutex);
1093			break;
1094		case SIOCADDDLCI:
1095		case SIOCDELDLCI:
1096			err = -ENOPKG;
1097			if (!dlci_ioctl_hook)
1098				request_module("dlci");
1099
1100			mutex_lock(&dlci_ioctl_mutex);
1101			if (dlci_ioctl_hook)
1102				err = dlci_ioctl_hook(cmd, argp);
1103			mutex_unlock(&dlci_ioctl_mutex);
1104			break;
1105		default:
1106			err = sock_do_ioctl(net, sock, cmd, arg);
1107			break;
1108		}
1109	return err;
1110}
1111
1112int sock_create_lite(int family, int type, int protocol, struct socket **res)
1113{
1114	int err;
1115	struct socket *sock = NULL;
1116
1117	err = security_socket_create(family, type, protocol, 1);
1118	if (err)
1119		goto out;
1120
1121	sock = sock_alloc();
1122	if (!sock) {
1123		err = -ENOMEM;
1124		goto out;
1125	}
1126
1127	sock->type = type;
1128	err = security_socket_post_create(sock, family, type, protocol, 1);
1129	if (err)
1130		goto out_release;
1131
1132out:
1133	*res = sock;
1134	return err;
1135out_release:
1136	sock_release(sock);
1137	sock = NULL;
1138	goto out;
1139}
1140EXPORT_SYMBOL(sock_create_lite);
1141
1142/* No kernel lock held - perfect */
1143static unsigned int sock_poll(struct file *file, poll_table *wait)
1144{
1145	struct socket *sock;
1146
1147	/*
1148	 *      We can't return errors to poll, so it's either yes or no.
1149	 */
1150	sock = file->private_data;
1151	return sock->ops->poll(file, sock, wait);
1152}
1153
1154static int sock_mmap(struct file *file, struct vm_area_struct *vma)
1155{
1156	struct socket *sock = file->private_data;
1157
1158	return sock->ops->mmap(file, sock, vma);
1159}
1160
1161static int sock_close(struct inode *inode, struct file *filp)
1162{
1163	sock_release(SOCKET_I(inode));
1164	return 0;
1165}
1166
1167/*
1168 *	Update the socket async list
1169 *
1170 *	Fasync_list locking strategy.
1171 *
1172 *	1. fasync_list is modified only under process context socket lock
1173 *	   i.e. under semaphore.
1174 *	2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1175 *	   or under socket lock
1176 */
1177
1178static int sock_fasync(int fd, struct file *filp, int on)
1179{
1180	struct socket *sock = filp->private_data;
1181	struct sock *sk = sock->sk;
1182	struct socket_wq *wq;
1183
1184	if (sk == NULL)
1185		return -EINVAL;
1186
1187	lock_sock(sk);
1188	wq = rcu_dereference_protected(sock->wq, sock_owned_by_user(sk));
1189	fasync_helper(fd, filp, on, &wq->fasync_list);
1190
1191	if (!wq->fasync_list)
1192		sock_reset_flag(sk, SOCK_FASYNC);
1193	else
1194		sock_set_flag(sk, SOCK_FASYNC);
1195
1196	release_sock(sk);
1197	return 0;
1198}
1199
1200/* This function may be called only under socket lock or callback_lock or rcu_lock */
1201
1202int sock_wake_async(struct socket *sock, int how, int band)
1203{
1204	struct socket_wq *wq;
1205
1206	if (!sock)
1207		return -1;
1208	rcu_read_lock();
1209	wq = rcu_dereference(sock->wq);
1210	if (!wq || !wq->fasync_list) {
1211		rcu_read_unlock();
1212		return -1;
1213	}
1214	switch (how) {
1215	case SOCK_WAKE_WAITD:
1216		if (test_bit(SOCK_ASYNC_WAITDATA, &sock->flags))
1217			break;
1218		goto call_kill;
1219	case SOCK_WAKE_SPACE:
1220		if (!test_and_clear_bit(SOCK_ASYNC_NOSPACE, &sock->flags))
1221			break;
1222		/* fall through */
1223	case SOCK_WAKE_IO:
1224call_kill:
1225		kill_fasync(&wq->fasync_list, SIGIO, band);
1226		break;
1227	case SOCK_WAKE_URG:
1228		kill_fasync(&wq->fasync_list, SIGURG, band);
1229	}
1230	rcu_read_unlock();
1231	return 0;
1232}
1233EXPORT_SYMBOL(sock_wake_async);
1234
1235int __sock_create(struct net *net, int family, int type, int protocol,
1236			 struct socket **res, int kern)
1237{
1238	int err;
1239	struct socket *sock;
1240	const struct net_proto_family *pf;
1241
1242	/*
1243	 *      Check protocol is in range
1244	 */
1245	if (family < 0 || family >= NPROTO)
1246		return -EAFNOSUPPORT;
1247	if (type < 0 || type >= SOCK_MAX)
1248		return -EINVAL;
1249
1250	/* Compatibility.
1251
1252	   This uglymoron is moved from INET layer to here to avoid
1253	   deadlock in module load.
1254	 */
1255	if (family == PF_INET && type == SOCK_PACKET) {
1256		static int warned;
1257		if (!warned) {
1258			warned = 1;
1259			printk(KERN_INFO "%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1260			       current->comm);
1261		}
1262		family = PF_PACKET;
1263	}
1264
1265	err = security_socket_create(family, type, protocol, kern);
1266	if (err)
1267		return err;
1268
1269	/*
1270	 *	Allocate the socket and allow the family to set things up. if
1271	 *	the protocol is 0, the family is instructed to select an appropriate
1272	 *	default.
1273	 */
1274	sock = sock_alloc();
1275	if (!sock) {
1276		net_warn_ratelimited("socket: no more sockets\n");
1277		return -ENFILE;	/* Not exactly a match, but its the
1278				   closest posix thing */
1279	}
1280
1281	sock->type = type;
1282
1283#ifdef CONFIG_MODULES
1284	/* Attempt to load a protocol module if the find failed.
1285	 *
1286	 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1287	 * requested real, full-featured networking support upon configuration.
1288	 * Otherwise module support will break!
1289	 */
1290	if (rcu_access_pointer(net_families[family]) == NULL)
1291		request_module("net-pf-%d", family);
1292#endif
1293
1294	rcu_read_lock();
1295	pf = rcu_dereference(net_families[family]);
1296	err = -EAFNOSUPPORT;
1297	if (!pf)
1298		goto out_release;
1299
1300	/*
1301	 * We will call the ->create function, that possibly is in a loadable
1302	 * module, so we have to bump that loadable module refcnt first.
1303	 */
1304	if (!try_module_get(pf->owner))
1305		goto out_release;
1306
1307	/* Now protected by module ref count */
1308	rcu_read_unlock();
1309
1310	err = pf->create(net, sock, protocol, kern);
1311	if (err < 0)
1312		goto out_module_put;
1313
1314	/*
1315	 * Now to bump the refcnt of the [loadable] module that owns this
1316	 * socket at sock_release time we decrement its refcnt.
1317	 */
1318	if (!try_module_get(sock->ops->owner))
1319		goto out_module_busy;
1320
1321	/*
1322	 * Now that we're done with the ->create function, the [loadable]
1323	 * module can have its refcnt decremented
1324	 */
1325	module_put(pf->owner);
1326	err = security_socket_post_create(sock, family, type, protocol, kern);
1327	if (err)
1328		goto out_sock_release;
1329	*res = sock;
1330
1331	return 0;
1332
1333out_module_busy:
1334	err = -EAFNOSUPPORT;
1335out_module_put:
1336	sock->ops = NULL;
1337	module_put(pf->owner);
1338out_sock_release:
1339	sock_release(sock);
1340	return err;
1341
1342out_release:
1343	rcu_read_unlock();
1344	goto out_sock_release;
1345}
1346EXPORT_SYMBOL(__sock_create);
1347
1348int sock_create(int family, int type, int protocol, struct socket **res)
1349{
1350	return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1351}
1352EXPORT_SYMBOL(sock_create);
1353
1354int sock_create_kern(int family, int type, int protocol, struct socket **res)
1355{
1356	return __sock_create(&init_net, family, type, protocol, res, 1);
1357}
1358EXPORT_SYMBOL(sock_create_kern);
1359
1360SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
1361{
1362	int retval;
1363	struct socket *sock;
1364	int flags;
1365
1366	/* Check the SOCK_* constants for consistency.  */
1367	BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
1368	BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
1369	BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
1370	BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
1371
1372	flags = type & ~SOCK_TYPE_MASK;
1373	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1374		return -EINVAL;
1375	type &= SOCK_TYPE_MASK;
1376
1377	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1378		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1379
1380	retval = sock_create(family, type, protocol, &sock);
1381	if (retval < 0)
1382		goto out;
1383
1384	retval = sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
1385	if (retval < 0)
1386		goto out_release;
1387
1388out:
1389	/* It may be already another descriptor 8) Not kernel problem. */
1390	return retval;
1391
1392out_release:
1393	sock_release(sock);
1394	return retval;
1395}
1396
1397/*
1398 *	Create a pair of connected sockets.
1399 */
1400
1401SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
1402		int __user *, usockvec)
1403{
1404	struct socket *sock1, *sock2;
1405	int fd1, fd2, err;
1406	struct file *newfile1, *newfile2;
1407	int flags;
1408
1409	flags = type & ~SOCK_TYPE_MASK;
1410	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1411		return -EINVAL;
1412	type &= SOCK_TYPE_MASK;
1413
1414	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1415		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1416
1417	/*
1418	 * Obtain the first socket and check if the underlying protocol
1419	 * supports the socketpair call.
1420	 */
1421
1422	err = sock_create(family, type, protocol, &sock1);
1423	if (err < 0)
1424		goto out;
1425
1426	err = sock_create(family, type, protocol, &sock2);
1427	if (err < 0)
1428		goto out_release_1;
1429
1430	err = sock1->ops->socketpair(sock1, sock2);
1431	if (err < 0)
1432		goto out_release_both;
1433
1434	fd1 = get_unused_fd_flags(flags);
1435	if (unlikely(fd1 < 0)) {
1436		err = fd1;
1437		goto out_release_both;
1438	}
1439	fd2 = get_unused_fd_flags(flags);
1440	if (unlikely(fd2 < 0)) {
1441		err = fd2;
1442		put_unused_fd(fd1);
1443		goto out_release_both;
1444	}
1445
1446	newfile1 = sock_alloc_file(sock1, flags, NULL);
1447	if (unlikely(IS_ERR(newfile1))) {
1448		err = PTR_ERR(newfile1);
1449		put_unused_fd(fd1);
1450		put_unused_fd(fd2);
1451		goto out_release_both;
1452	}
1453
1454	newfile2 = sock_alloc_file(sock2, flags, NULL);
1455	if (IS_ERR(newfile2)) {
1456		err = PTR_ERR(newfile2);
1457		fput(newfile1);
1458		put_unused_fd(fd1);
1459		put_unused_fd(fd2);
1460		sock_release(sock2);
1461		goto out;
1462	}
1463
1464	audit_fd_pair(fd1, fd2);
1465	fd_install(fd1, newfile1);
1466	fd_install(fd2, newfile2);
1467	/* fd1 and fd2 may be already another descriptors.
1468	 * Not kernel problem.
1469	 */
1470
1471	err = put_user(fd1, &usockvec[0]);
1472	if (!err)
1473		err = put_user(fd2, &usockvec[1]);
1474	if (!err)
1475		return 0;
1476
1477	sys_close(fd2);
1478	sys_close(fd1);
1479	return err;
1480
1481out_release_both:
1482	sock_release(sock2);
1483out_release_1:
1484	sock_release(sock1);
1485out:
1486	return err;
1487}
1488
1489/*
1490 *	Bind a name to a socket. Nothing much to do here since it's
1491 *	the protocol's responsibility to handle the local address.
1492 *
1493 *	We move the socket address to kernel space before we call
1494 *	the protocol layer (having also checked the address is ok).
1495 */
1496
1497SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
1498{
1499	struct socket *sock;
1500	struct sockaddr_storage address;
1501	int err, fput_needed;
1502
1503	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1504	if (sock) {
1505		err = move_addr_to_kernel(umyaddr, addrlen, &address);
1506		if (err >= 0) {
1507			err = security_socket_bind(sock,
1508						   (struct sockaddr *)&address,
1509						   addrlen);
1510			if (!err)
1511				err = sock->ops->bind(sock,
1512						      (struct sockaddr *)
1513						      &address, addrlen);
1514		}
1515		fput_light(sock->file, fput_needed);
1516	}
1517	return err;
1518}
1519
1520/*
1521 *	Perform a listen. Basically, we allow the protocol to do anything
1522 *	necessary for a listen, and if that works, we mark the socket as
1523 *	ready for listening.
1524 */
1525
1526SYSCALL_DEFINE2(listen, int, fd, int, backlog)
1527{
1528	struct socket *sock;
1529	int err, fput_needed;
1530	int somaxconn;
1531
1532	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1533	if (sock) {
1534		somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn;
1535		if ((unsigned int)backlog > somaxconn)
1536			backlog = somaxconn;
1537
1538		err = security_socket_listen(sock, backlog);
1539		if (!err)
1540			err = sock->ops->listen(sock, backlog);
1541
1542		fput_light(sock->file, fput_needed);
1543	}
1544	return err;
1545}
1546
1547/*
1548 *	For accept, we attempt to create a new socket, set up the link
1549 *	with the client, wake up the client, then return the new
1550 *	connected fd. We collect the address of the connector in kernel
1551 *	space and move it to user at the very end. This is unclean because
1552 *	we open the socket then return an error.
1553 *
1554 *	1003.1g adds the ability to recvmsg() to query connection pending
1555 *	status to recvmsg. We need to add that support in a way thats
1556 *	clean when we restucture accept also.
1557 */
1558
1559SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
1560		int __user *, upeer_addrlen, int, flags)
1561{
1562	struct socket *sock, *newsock;
1563	struct file *newfile;
1564	int err, len, newfd, fput_needed;
1565	struct sockaddr_storage address;
1566
1567	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1568		return -EINVAL;
1569
1570	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1571		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1572
1573	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1574	if (!sock)
1575		goto out;
1576
1577	err = -ENFILE;
1578	newsock = sock_alloc();
1579	if (!newsock)
1580		goto out_put;
1581
1582	newsock->type = sock->type;
1583	newsock->ops = sock->ops;
1584
1585	/*
1586	 * We don't need try_module_get here, as the listening socket (sock)
1587	 * has the protocol module (sock->ops->owner) held.
1588	 */
1589	__module_get(newsock->ops->owner);
1590
1591	newfd = get_unused_fd_flags(flags);
1592	if (unlikely(newfd < 0)) {
1593		err = newfd;
1594		sock_release(newsock);
1595		goto out_put;
1596	}
1597	newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name);
1598	if (unlikely(IS_ERR(newfile))) {
1599		err = PTR_ERR(newfile);
1600		put_unused_fd(newfd);
1601		sock_release(newsock);
1602		goto out_put;
1603	}
1604
1605	err = security_socket_accept(sock, newsock);
1606	if (err)
1607		goto out_fd;
1608
1609	err = sock->ops->accept(sock, newsock, sock->file->f_flags);
1610	if (err < 0)
1611		goto out_fd;
1612
1613	if (upeer_sockaddr) {
1614		if (newsock->ops->getname(newsock, (struct sockaddr *)&address,
1615					  &len, 2) < 0) {
1616			err = -ECONNABORTED;
1617			goto out_fd;
1618		}
1619		err = move_addr_to_user(&address,
1620					len, upeer_sockaddr, upeer_addrlen);
1621		if (err < 0)
1622			goto out_fd;
1623	}
1624
1625	/* File flags are not inherited via accept() unlike another OSes. */
1626
1627	fd_install(newfd, newfile);
1628	err = newfd;
1629
1630out_put:
1631	fput_light(sock->file, fput_needed);
1632out:
1633	return err;
1634out_fd:
1635	fput(newfile);
1636	put_unused_fd(newfd);
1637	goto out_put;
1638}
1639
1640SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
1641		int __user *, upeer_addrlen)
1642{
1643	return sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
1644}
1645
1646/*
1647 *	Attempt to connect to a socket with the server address.  The address
1648 *	is in user space so we verify it is OK and move it to kernel space.
1649 *
1650 *	For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1651 *	break bindings
1652 *
1653 *	NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1654 *	other SEQPACKET protocols that take time to connect() as it doesn't
1655 *	include the -EINPROGRESS status for such sockets.
1656 */
1657
1658SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
1659		int, addrlen)
1660{
1661	struct socket *sock;
1662	struct sockaddr_storage address;
1663	int err, fput_needed;
1664
1665	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1666	if (!sock)
1667		goto out;
1668	err = move_addr_to_kernel(uservaddr, addrlen, &address);
1669	if (err < 0)
1670		goto out_put;
1671
1672	err =
1673	    security_socket_connect(sock, (struct sockaddr *)&address, addrlen);
1674	if (err)
1675		goto out_put;
1676
1677	err = sock->ops->connect(sock, (struct sockaddr *)&address, addrlen,
1678				 sock->file->f_flags);
1679out_put:
1680	fput_light(sock->file, fput_needed);
1681out:
1682	return err;
1683}
1684
1685/*
1686 *	Get the local address ('name') of a socket object. Move the obtained
1687 *	name to user space.
1688 */
1689
1690SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
1691		int __user *, usockaddr_len)
1692{
1693	struct socket *sock;
1694	struct sockaddr_storage address;
1695	int len, err, fput_needed;
1696
1697	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1698	if (!sock)
1699		goto out;
1700
1701	err = security_socket_getsockname(sock);
1702	if (err)
1703		goto out_put;
1704
1705	err = sock->ops->getname(sock, (struct sockaddr *)&address, &len, 0);
1706	if (err)
1707		goto out_put;
1708	err = move_addr_to_user(&address, len, usockaddr, usockaddr_len);
1709
1710out_put:
1711	fput_light(sock->file, fput_needed);
1712out:
1713	return err;
1714}
1715
1716/*
1717 *	Get the remote address ('name') of a socket object. Move the obtained
1718 *	name to user space.
1719 */
1720
1721SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
1722		int __user *, usockaddr_len)
1723{
1724	struct socket *sock;
1725	struct sockaddr_storage address;
1726	int len, err, fput_needed;
1727
1728	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1729	if (sock != NULL) {
1730		err = security_socket_getpeername(sock);
1731		if (err) {
1732			fput_light(sock->file, fput_needed);
1733			return err;
1734		}
1735
1736		err =
1737		    sock->ops->getname(sock, (struct sockaddr *)&address, &len,
1738				       1);
1739		if (!err)
1740			err = move_addr_to_user(&address, len, usockaddr,
1741						usockaddr_len);
1742		fput_light(sock->file, fput_needed);
1743	}
1744	return err;
1745}
1746
1747/*
1748 *	Send a datagram to a given address. We move the address into kernel
1749 *	space and check the user space data area is readable before invoking
1750 *	the protocol.
1751 */
1752
1753SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
1754		unsigned int, flags, struct sockaddr __user *, addr,
1755		int, addr_len)
1756{
1757	struct socket *sock;
1758	struct sockaddr_storage address;
1759	int err;
1760	struct msghdr msg;
1761	struct iovec iov;
1762	int fput_needed;
1763
1764	if (len > INT_MAX)
1765		len = INT_MAX;
1766	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1767	if (!sock)
1768		goto out;
1769
1770	iov.iov_base = buff;
1771	iov.iov_len = len;
1772	msg.msg_name = NULL;
1773	msg.msg_iov = &iov;
1774	msg.msg_iovlen = 1;
1775	msg.msg_control = NULL;
1776	msg.msg_controllen = 0;
1777	msg.msg_namelen = 0;
1778	if (addr) {
1779		err = move_addr_to_kernel(addr, addr_len, &address);
1780		if (err < 0)
1781			goto out_put;
1782		msg.msg_name = (struct sockaddr *)&address;
1783		msg.msg_namelen = addr_len;
1784	}
1785	if (sock->file->f_flags & O_NONBLOCK)
1786		flags |= MSG_DONTWAIT;
1787	msg.msg_flags = flags;
1788	err = sock_sendmsg(sock, &msg, len);
1789
1790out_put:
1791	fput_light(sock->file, fput_needed);
1792out:
1793	return err;
1794}
1795
1796/*
1797 *	Send a datagram down a socket.
1798 */
1799
1800SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
1801		unsigned int, flags)
1802{
1803	return sys_sendto(fd, buff, len, flags, NULL, 0);
1804}
1805
1806/*
1807 *	Receive a frame from the socket and optionally record the address of the
1808 *	sender. We verify the buffers are writable and if needed move the
1809 *	sender address from kernel to user space.
1810 */
1811
1812SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
1813		unsigned int, flags, struct sockaddr __user *, addr,
1814		int __user *, addr_len)
1815{
1816	struct socket *sock;
1817	struct iovec iov;
1818	struct msghdr msg;
1819	struct sockaddr_storage address;
1820	int err, err2;
1821	int fput_needed;
1822
1823	if (size > INT_MAX)
1824		size = INT_MAX;
1825	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1826	if (!sock)
1827		goto out;
1828
1829	msg.msg_control = NULL;
1830	msg.msg_controllen = 0;
1831	msg.msg_iovlen = 1;
1832	msg.msg_iov = &iov;
1833	iov.iov_len = size;
1834	iov.iov_base = ubuf;
1835	msg.msg_name = (struct sockaddr *)&address;
1836	msg.msg_namelen = sizeof(address);
1837	if (sock->file->f_flags & O_NONBLOCK)
1838		flags |= MSG_DONTWAIT;
1839	err = sock_recvmsg(sock, &msg, size, flags);
1840
1841	if (err >= 0 && addr != NULL) {
1842		err2 = move_addr_to_user(&address,
1843					 msg.msg_namelen, addr, addr_len);
1844		if (err2 < 0)
1845			err = err2;
1846	}
1847
1848	fput_light(sock->file, fput_needed);
1849out:
1850	return err;
1851}
1852
1853/*
1854 *	Receive a datagram from a socket.
1855 */
1856
1857asmlinkage long sys_recv(int fd, void __user *ubuf, size_t size,
1858			 unsigned int flags)
1859{
1860	return sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
1861}
1862
1863/*
1864 *	Set a socket option. Because we don't know the option lengths we have
1865 *	to pass the user mode parameter for the protocols to sort out.
1866 */
1867
1868SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
1869		char __user *, optval, int, optlen)
1870{
1871	int err, fput_needed;
1872	struct socket *sock;
1873
1874	if (optlen < 0)
1875		return -EINVAL;
1876
1877	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1878	if (sock != NULL) {
1879		err = security_socket_setsockopt(sock, level, optname);
1880		if (err)
1881			goto out_put;
1882
1883		if (level == SOL_SOCKET)
1884			err =
1885			    sock_setsockopt(sock, level, optname, optval,
1886					    optlen);
1887		else
1888			err =
1889			    sock->ops->setsockopt(sock, level, optname, optval,
1890						  optlen);
1891out_put:
1892		fput_light(sock->file, fput_needed);
1893	}
1894	return err;
1895}
1896
1897/*
1898 *	Get a socket option. Because we don't know the option lengths we have
1899 *	to pass a user mode parameter for the protocols to sort out.
1900 */
1901
1902SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
1903		char __user *, optval, int __user *, optlen)
1904{
1905	int err, fput_needed;
1906	struct socket *sock;
1907
1908	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1909	if (sock != NULL) {
1910		err = security_socket_getsockopt(sock, level, optname);
1911		if (err)
1912			goto out_put;
1913
1914		if (level == SOL_SOCKET)
1915			err =
1916			    sock_getsockopt(sock, level, optname, optval,
1917					    optlen);
1918		else
1919			err =
1920			    sock->ops->getsockopt(sock, level, optname, optval,
1921						  optlen);
1922out_put:
1923		fput_light(sock->file, fput_needed);
1924	}
1925	return err;
1926}
1927
1928/*
1929 *	Shutdown a socket.
1930 */
1931
1932SYSCALL_DEFINE2(shutdown, int, fd, int, how)
1933{
1934	int err, fput_needed;
1935	struct socket *sock;
1936
1937	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1938	if (sock != NULL) {
1939		err = security_socket_shutdown(sock, how);
1940		if (!err)
1941			err = sock->ops->shutdown(sock, how);
1942		fput_light(sock->file, fput_needed);
1943	}
1944	return err;
1945}
1946
1947/* A couple of helpful macros for getting the address of the 32/64 bit
1948 * fields which are the same type (int / unsigned) on our platforms.
1949 */
1950#define COMPAT_MSG(msg, member)	((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
1951#define COMPAT_NAMELEN(msg)	COMPAT_MSG(msg, msg_namelen)
1952#define COMPAT_FLAGS(msg)	COMPAT_MSG(msg, msg_flags)
1953
1954struct used_address {
1955	struct sockaddr_storage name;
1956	unsigned int name_len;
1957};
1958
1959static int ___sys_sendmsg(struct socket *sock, struct msghdr __user *msg,
1960			 struct msghdr *msg_sys, unsigned int flags,
1961			 struct used_address *used_address)
1962{
1963	struct compat_msghdr __user *msg_compat =
1964	    (struct compat_msghdr __user *)msg;
1965	struct sockaddr_storage address;
1966	struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
1967	unsigned char ctl[sizeof(struct cmsghdr) + 20]
1968	    __attribute__ ((aligned(sizeof(__kernel_size_t))));
1969	/* 20 is size of ipv6_pktinfo */
1970	unsigned char *ctl_buf = ctl;
1971	int err, ctl_len, total_len;
1972
1973	err = -EFAULT;
1974	if (MSG_CMSG_COMPAT & flags) {
1975		if (get_compat_msghdr(msg_sys, msg_compat))
1976			return -EFAULT;
1977	} else if (copy_from_user(msg_sys, msg, sizeof(struct msghdr)))
1978		return -EFAULT;
1979
1980	if (msg_sys->msg_iovlen > UIO_FASTIOV) {
1981		err = -EMSGSIZE;
1982		if (msg_sys->msg_iovlen > UIO_MAXIOV)
1983			goto out;
1984		err = -ENOMEM;
1985		iov = kmalloc(msg_sys->msg_iovlen * sizeof(struct iovec),
1986			      GFP_KERNEL);
1987		if (!iov)
1988			goto out;
1989	}
1990
1991	/* This will also move the address data into kernel space */
1992	if (MSG_CMSG_COMPAT & flags) {
1993		err = verify_compat_iovec(msg_sys, iov, &address, VERIFY_READ);
1994	} else
1995		err = verify_iovec(msg_sys, iov, &address, VERIFY_READ);
1996	if (err < 0)
1997		goto out_freeiov;
1998	total_len = err;
1999
2000	err = -ENOBUFS;
2001
2002	if (msg_sys->msg_controllen > INT_MAX)
2003		goto out_freeiov;
2004	ctl_len = msg_sys->msg_controllen;
2005	if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
2006		err =
2007		    cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl,
2008						     sizeof(ctl));
2009		if (err)
2010			goto out_freeiov;
2011		ctl_buf = msg_sys->msg_control;
2012		ctl_len = msg_sys->msg_controllen;
2013	} else if (ctl_len) {
2014		if (ctl_len > sizeof(ctl)) {
2015			ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
2016			if (ctl_buf == NULL)
2017				goto out_freeiov;
2018		}
2019		err = -EFAULT;
2020		/*
2021		 * Careful! Before this, msg_sys->msg_control contains a user pointer.
2022		 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted
2023		 * checking falls down on this.
2024		 */
2025		if (copy_from_user(ctl_buf,
2026				   (void __user __force *)msg_sys->msg_control,
2027				   ctl_len))
2028			goto out_freectl;
2029		msg_sys->msg_control = ctl_buf;
2030	}
2031	msg_sys->msg_flags = flags;
2032
2033	if (sock->file->f_flags & O_NONBLOCK)
2034		msg_sys->msg_flags |= MSG_DONTWAIT;
2035	/*
2036	 * If this is sendmmsg() and current destination address is same as
2037	 * previously succeeded address, omit asking LSM's decision.
2038	 * used_address->name_len is initialized to UINT_MAX so that the first
2039	 * destination address never matches.
2040	 */
2041	if (used_address && msg_sys->msg_name &&
2042	    used_address->name_len == msg_sys->msg_namelen &&
2043	    !memcmp(&used_address->name, msg_sys->msg_name,
2044		    used_address->name_len)) {
2045		err = sock_sendmsg_nosec(sock, msg_sys, total_len);
2046		goto out_freectl;
2047	}
2048	err = sock_sendmsg(sock, msg_sys, total_len);
2049	/*
2050	 * If this is sendmmsg() and sending to current destination address was
2051	 * successful, remember it.
2052	 */
2053	if (used_address && err >= 0) {
2054		used_address->name_len = msg_sys->msg_namelen;
2055		if (msg_sys->msg_name)
2056			memcpy(&used_address->name, msg_sys->msg_name,
2057			       used_address->name_len);
2058	}
2059
2060out_freectl:
2061	if (ctl_buf != ctl)
2062		sock_kfree_s(sock->sk, ctl_buf, ctl_len);
2063out_freeiov:
2064	if (iov != iovstack)
2065		kfree(iov);
2066out:
2067	return err;
2068}
2069
2070/*
2071 *	BSD sendmsg interface
2072 */
2073
2074long __sys_sendmsg(int fd, struct msghdr __user *msg, unsigned flags)
2075{
2076	int fput_needed, err;
2077	struct msghdr msg_sys;
2078	struct socket *sock;
2079
2080	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2081	if (!sock)
2082		goto out;
2083
2084	err = ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL);
2085
2086	fput_light(sock->file, fput_needed);
2087out:
2088	return err;
2089}
2090
2091SYSCALL_DEFINE3(sendmsg, int, fd, struct msghdr __user *, msg, unsigned int, flags)
2092{
2093	if (flags & MSG_CMSG_COMPAT)
2094		return -EINVAL;
2095	return __sys_sendmsg(fd, msg, flags);
2096}
2097
2098/*
2099 *	Linux sendmmsg interface
2100 */
2101
2102int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2103		   unsigned int flags)
2104{
2105	int fput_needed, err, datagrams;
2106	struct socket *sock;
2107	struct mmsghdr __user *entry;
2108	struct compat_mmsghdr __user *compat_entry;
2109	struct msghdr msg_sys;
2110	struct used_address used_address;
2111
2112	if (vlen > UIO_MAXIOV)
2113		vlen = UIO_MAXIOV;
2114
2115	datagrams = 0;
2116
2117	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2118	if (!sock)
2119		return err;
2120
2121	used_address.name_len = UINT_MAX;
2122	entry = mmsg;
2123	compat_entry = (struct compat_mmsghdr __user *)mmsg;
2124	err = 0;
2125
2126	while (datagrams < vlen) {
2127		if (MSG_CMSG_COMPAT & flags) {
2128			err = ___sys_sendmsg(sock, (struct msghdr __user *)compat_entry,
2129					     &msg_sys, flags, &used_address);
2130			if (err < 0)
2131				break;
2132			err = __put_user(err, &compat_entry->msg_len);
2133			++compat_entry;
2134		} else {
2135			err = ___sys_sendmsg(sock,
2136					     (struct msghdr __user *)entry,
2137					     &msg_sys, flags, &used_address);
2138			if (err < 0)
2139				break;
2140			err = put_user(err, &entry->msg_len);
2141			++entry;
2142		}
2143
2144		if (err)
2145			break;
2146		++datagrams;
2147	}
2148
2149	fput_light(sock->file, fput_needed);
2150
2151	/* We only return an error if no datagrams were able to be sent */
2152	if (datagrams != 0)
2153		return datagrams;
2154
2155	return err;
2156}
2157
2158SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg,
2159		unsigned int, vlen, unsigned int, flags)
2160{
2161	if (flags & MSG_CMSG_COMPAT)
2162		return -EINVAL;
2163	return __sys_sendmmsg(fd, mmsg, vlen, flags);
2164}
2165
2166static int ___sys_recvmsg(struct socket *sock, struct msghdr __user *msg,
2167			 struct msghdr *msg_sys, unsigned int flags, int nosec)
2168{
2169	struct compat_msghdr __user *msg_compat =
2170	    (struct compat_msghdr __user *)msg;
2171	struct iovec iovstack[UIO_FASTIOV];
2172	struct iovec *iov = iovstack;
2173	unsigned long cmsg_ptr;
2174	int err, total_len, len;
2175
2176	/* kernel mode address */
2177	struct sockaddr_storage addr;
2178
2179	/* user mode address pointers */
2180	struct sockaddr __user *uaddr;
2181	int __user *uaddr_len;
2182
2183	if (MSG_CMSG_COMPAT & flags) {
2184		if (get_compat_msghdr(msg_sys, msg_compat))
2185			return -EFAULT;
2186	} else if (copy_from_user(msg_sys, msg, sizeof(struct msghdr)))
2187		return -EFAULT;
2188
2189	if (msg_sys->msg_iovlen > UIO_FASTIOV) {
2190		err = -EMSGSIZE;
2191		if (msg_sys->msg_iovlen > UIO_MAXIOV)
2192			goto out;
2193		err = -ENOMEM;
2194		iov = kmalloc(msg_sys->msg_iovlen * sizeof(struct iovec),
2195			      GFP_KERNEL);
2196		if (!iov)
2197			goto out;
2198	}
2199
2200	/*
2201	 *      Save the user-mode address (verify_iovec will change the
2202	 *      kernel msghdr to use the kernel address space)
2203	 */
2204
2205	uaddr = (__force void __user *)msg_sys->msg_name;
2206	uaddr_len = COMPAT_NAMELEN(msg);
2207	if (MSG_CMSG_COMPAT & flags) {
2208		err = verify_compat_iovec(msg_sys, iov, &addr, VERIFY_WRITE);
2209	} else
2210		err = verify_iovec(msg_sys, iov, &addr, VERIFY_WRITE);
2211	if (err < 0)
2212		goto out_freeiov;
2213	total_len = err;
2214
2215	cmsg_ptr = (unsigned long)msg_sys->msg_control;
2216	msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
2217
2218	if (sock->file->f_flags & O_NONBLOCK)
2219		flags |= MSG_DONTWAIT;
2220	err = (nosec ? sock_recvmsg_nosec : sock_recvmsg)(sock, msg_sys,
2221							  total_len, flags);
2222	if (err < 0)
2223		goto out_freeiov;
2224	len = err;
2225
2226	if (uaddr != NULL) {
2227		err = move_addr_to_user(&addr,
2228					msg_sys->msg_namelen, uaddr,
2229					uaddr_len);
2230		if (err < 0)
2231			goto out_freeiov;
2232	}
2233	err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT),
2234			 COMPAT_FLAGS(msg));
2235	if (err)
2236		goto out_freeiov;
2237	if (MSG_CMSG_COMPAT & flags)
2238		err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2239				 &msg_compat->msg_controllen);
2240	else
2241		err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2242				 &msg->msg_controllen);
2243	if (err)
2244		goto out_freeiov;
2245	err = len;
2246
2247out_freeiov:
2248	if (iov != iovstack)
2249		kfree(iov);
2250out:
2251	return err;
2252}
2253
2254/*
2255 *	BSD recvmsg interface
2256 */
2257
2258long __sys_recvmsg(int fd, struct msghdr __user *msg, unsigned flags)
2259{
2260	int fput_needed, err;
2261	struct msghdr msg_sys;
2262	struct socket *sock;
2263
2264	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2265	if (!sock)
2266		goto out;
2267
2268	err = ___sys_recvmsg(sock, msg, &msg_sys, flags, 0);
2269
2270	fput_light(sock->file, fput_needed);
2271out:
2272	return err;
2273}
2274
2275SYSCALL_DEFINE3(recvmsg, int, fd, struct msghdr __user *, msg,
2276		unsigned int, flags)
2277{
2278	if (flags & MSG_CMSG_COMPAT)
2279		return -EINVAL;
2280	return __sys_recvmsg(fd, msg, flags);
2281}
2282
2283/*
2284 *     Linux recvmmsg interface
2285 */
2286
2287int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2288		   unsigned int flags, struct timespec *timeout)
2289{
2290	int fput_needed, err, datagrams;
2291	struct socket *sock;
2292	struct mmsghdr __user *entry;
2293	struct compat_mmsghdr __user *compat_entry;
2294	struct msghdr msg_sys;
2295	struct timespec end_time;
2296
2297	if (timeout &&
2298	    poll_select_set_timeout(&end_time, timeout->tv_sec,
2299				    timeout->tv_nsec))
2300		return -EINVAL;
2301
2302	datagrams = 0;
2303
2304	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2305	if (!sock)
2306		return err;
2307
2308	err = sock_error(sock->sk);
2309	if (err)
2310		goto out_put;
2311
2312	entry = mmsg;
2313	compat_entry = (struct compat_mmsghdr __user *)mmsg;
2314
2315	while (datagrams < vlen) {
2316		/*
2317		 * No need to ask LSM for more than the first datagram.
2318		 */
2319		if (MSG_CMSG_COMPAT & flags) {
2320			err = ___sys_recvmsg(sock, (struct msghdr __user *)compat_entry,
2321					     &msg_sys, flags & ~MSG_WAITFORONE,
2322					     datagrams);
2323			if (err < 0)
2324				break;
2325			err = __put_user(err, &compat_entry->msg_len);
2326			++compat_entry;
2327		} else {
2328			err = ___sys_recvmsg(sock,
2329					     (struct msghdr __user *)entry,
2330					     &msg_sys, flags & ~MSG_WAITFORONE,
2331					     datagrams);
2332			if (err < 0)
2333				break;
2334			err = put_user(err, &entry->msg_len);
2335			++entry;
2336		}
2337
2338		if (err)
2339			break;
2340		++datagrams;
2341
2342		/* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2343		if (flags & MSG_WAITFORONE)
2344			flags |= MSG_DONTWAIT;
2345
2346		if (timeout) {
2347			ktime_get_ts(timeout);
2348			*timeout = timespec_sub(end_time, *timeout);
2349			if (timeout->tv_sec < 0) {
2350				timeout->tv_sec = timeout->tv_nsec = 0;
2351				break;
2352			}
2353
2354			/* Timeout, return less than vlen datagrams */
2355			if (timeout->tv_nsec == 0 && timeout->tv_sec == 0)
2356				break;
2357		}
2358
2359		/* Out of band data, return right away */
2360		if (msg_sys.msg_flags & MSG_OOB)
2361			break;
2362	}
2363
2364out_put:
2365	fput_light(sock->file, fput_needed);
2366
2367	if (err == 0)
2368		return datagrams;
2369
2370	if (datagrams != 0) {
2371		/*
2372		 * We may return less entries than requested (vlen) if the
2373		 * sock is non block and there aren't enough datagrams...
2374		 */
2375		if (err != -EAGAIN) {
2376			/*
2377			 * ... or  if recvmsg returns an error after we
2378			 * received some datagrams, where we record the
2379			 * error to return on the next call or if the
2380			 * app asks about it using getsockopt(SO_ERROR).
2381			 */
2382			sock->sk->sk_err = -err;
2383		}
2384
2385		return datagrams;
2386	}
2387
2388	return err;
2389}
2390
2391SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg,
2392		unsigned int, vlen, unsigned int, flags,
2393		struct timespec __user *, timeout)
2394{
2395	int datagrams;
2396	struct timespec timeout_sys;
2397
2398	if (flags & MSG_CMSG_COMPAT)
2399		return -EINVAL;
2400
2401	if (!timeout)
2402		return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL);
2403
2404	if (copy_from_user(&timeout_sys, timeout, sizeof(timeout_sys)))
2405		return -EFAULT;
2406
2407	datagrams = __sys_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys);
2408
2409	if (datagrams > 0 &&
2410	    copy_to_user(timeout, &timeout_sys, sizeof(timeout_sys)))
2411		datagrams = -EFAULT;
2412
2413	return datagrams;
2414}
2415
2416#ifdef __ARCH_WANT_SYS_SOCKETCALL
2417/* Argument list sizes for sys_socketcall */
2418#define AL(x) ((x) * sizeof(unsigned long))
2419static const unsigned char nargs[21] = {
2420	AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
2421	AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
2422	AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
2423	AL(4), AL(5), AL(4)
2424};
2425
2426#undef AL
2427
2428/*
2429 *	System call vectors.
2430 *
2431 *	Argument checking cleaned up. Saved 20% in size.
2432 *  This function doesn't need to set the kernel lock because
2433 *  it is set by the callees.
2434 */
2435
2436SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
2437{
2438	unsigned long a[AUDITSC_ARGS];
2439	unsigned long a0, a1;
2440	int err;
2441	unsigned int len;
2442
2443	if (call < 1 || call > SYS_SENDMMSG)
2444		return -EINVAL;
2445
2446	len = nargs[call];
2447	if (len > sizeof(a))
2448		return -EINVAL;
2449
2450	/* copy_from_user should be SMP safe. */
2451	if (copy_from_user(a, args, len))
2452		return -EFAULT;
2453
2454	err = audit_socketcall(nargs[call] / sizeof(unsigned long), a);
2455	if (err)
2456		return err;
2457
2458	a0 = a[0];
2459	a1 = a[1];
2460
2461	switch (call) {
2462	case SYS_SOCKET:
2463		err = sys_socket(a0, a1, a[2]);
2464		break;
2465	case SYS_BIND:
2466		err = sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
2467		break;
2468	case SYS_CONNECT:
2469		err = sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
2470		break;
2471	case SYS_LISTEN:
2472		err = sys_listen(a0, a1);
2473		break;
2474	case SYS_ACCEPT:
2475		err = sys_accept4(a0, (struct sockaddr __user *)a1,
2476				  (int __user *)a[2], 0);
2477		break;
2478	case SYS_GETSOCKNAME:
2479		err =
2480		    sys_getsockname(a0, (struct sockaddr __user *)a1,
2481				    (int __user *)a[2]);
2482		break;
2483	case SYS_GETPEERNAME:
2484		err =
2485		    sys_getpeername(a0, (struct sockaddr __user *)a1,
2486				    (int __user *)a[2]);
2487		break;
2488	case SYS_SOCKETPAIR:
2489		err = sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
2490		break;
2491	case SYS_SEND:
2492		err = sys_send(a0, (void __user *)a1, a[2], a[3]);
2493		break;
2494	case SYS_SENDTO:
2495		err = sys_sendto(a0, (void __user *)a1, a[2], a[3],
2496				 (struct sockaddr __user *)a[4], a[5]);
2497		break;
2498	case SYS_RECV:
2499		err = sys_recv(a0, (void __user *)a1, a[2], a[3]);
2500		break;
2501	case SYS_RECVFROM:
2502		err = sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2503				   (struct sockaddr __user *)a[4],
2504				   (int __user *)a[5]);
2505		break;
2506	case SYS_SHUTDOWN:
2507		err = sys_shutdown(a0, a1);
2508		break;
2509	case SYS_SETSOCKOPT:
2510		err = sys_setsockopt(a0, a1, a[2], (char __user *)a[3], a[4]);
2511		break;
2512	case SYS_GETSOCKOPT:
2513		err =
2514		    sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
2515				   (int __user *)a[4]);
2516		break;
2517	case SYS_SENDMSG:
2518		err = sys_sendmsg(a0, (struct msghdr __user *)a1, a[2]);
2519		break;
2520	case SYS_SENDMMSG:
2521		err = sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3]);
2522		break;
2523	case SYS_RECVMSG:
2524		err = sys_recvmsg(a0, (struct msghdr __user *)a1, a[2]);
2525		break;
2526	case SYS_RECVMMSG:
2527		err = sys_recvmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3],
2528				   (struct timespec __user *)a[4]);
2529		break;
2530	case SYS_ACCEPT4:
2531		err = sys_accept4(a0, (struct sockaddr __user *)a1,
2532				  (int __user *)a[2], a[3]);
2533		break;
2534	default:
2535		err = -EINVAL;
2536		break;
2537	}
2538	return err;
2539}
2540
2541#endif				/* __ARCH_WANT_SYS_SOCKETCALL */
2542
2543/**
2544 *	sock_register - add a socket protocol handler
2545 *	@ops: description of protocol
2546 *
2547 *	This function is called by a protocol handler that wants to
2548 *	advertise its address family, and have it linked into the
2549 *	socket interface. The value ops->family coresponds to the
2550 *	socket system call protocol family.
2551 */
2552int sock_register(const struct net_proto_family *ops)
2553{
2554	int err;
2555
2556	if (ops->family >= NPROTO) {
2557		printk(KERN_CRIT "protocol %d >= NPROTO(%d)\n", ops->family,
2558		       NPROTO);
2559		return -ENOBUFS;
2560	}
2561
2562	spin_lock(&net_family_lock);
2563	if (rcu_dereference_protected(net_families[ops->family],
2564				      lockdep_is_held(&net_family_lock)))
2565		err = -EEXIST;
2566	else {
2567		rcu_assign_pointer(net_families[ops->family], ops);
2568		err = 0;
2569	}
2570	spin_unlock(&net_family_lock);
2571
2572	printk(KERN_INFO "NET: Registered protocol family %d\n", ops->family);
2573	return err;
2574}
2575EXPORT_SYMBOL(sock_register);
2576
2577/**
2578 *	sock_unregister - remove a protocol handler
2579 *	@family: protocol family to remove
2580 *
2581 *	This function is called by a protocol handler that wants to
2582 *	remove its address family, and have it unlinked from the
2583 *	new socket creation.
2584 *
2585 *	If protocol handler is a module, then it can use module reference
2586 *	counts to protect against new references. If protocol handler is not
2587 *	a module then it needs to provide its own protection in
2588 *	the ops->create routine.
2589 */
2590void sock_unregister(int family)
2591{
2592	BUG_ON(family < 0 || family >= NPROTO);
2593
2594	spin_lock(&net_family_lock);
2595	RCU_INIT_POINTER(net_families[family], NULL);
2596	spin_unlock(&net_family_lock);
2597
2598	synchronize_rcu();
2599
2600	printk(KERN_INFO "NET: Unregistered protocol family %d\n", family);
2601}
2602EXPORT_SYMBOL(sock_unregister);
2603
2604static int __init sock_init(void)
2605{
2606	int err;
2607	/*
2608	 *      Initialize the network sysctl infrastructure.
2609	 */
2610	err = net_sysctl_init();
2611	if (err)
2612		goto out;
2613
2614	/*
2615	 *      Initialize skbuff SLAB cache
2616	 */
2617	skb_init();
2618
2619	/*
2620	 *      Initialize the protocols module.
2621	 */
2622
2623	init_inodecache();
2624
2625	err = register_filesystem(&sock_fs_type);
2626	if (err)
2627		goto out_fs;
2628	sock_mnt = kern_mount(&sock_fs_type);
2629	if (IS_ERR(sock_mnt)) {
2630		err = PTR_ERR(sock_mnt);
2631		goto out_mount;
2632	}
2633
2634	/* The real protocol initialization is performed in later initcalls.
2635	 */
2636
2637#ifdef CONFIG_NETFILTER
2638	netfilter_init();
2639#endif
2640
2641#ifdef CONFIG_NETWORK_PHY_TIMESTAMPING
2642	skb_timestamping_init();
2643#endif
2644
2645out:
2646	return err;
2647
2648out_mount:
2649	unregister_filesystem(&sock_fs_type);
2650out_fs:
2651	goto out;
2652}
2653
2654core_initcall(sock_init);	/* early initcall */
2655
2656#ifdef CONFIG_PROC_FS
2657void socket_seq_show(struct seq_file *seq)
2658{
2659	int cpu;
2660	int counter = 0;
2661
2662	for_each_possible_cpu(cpu)
2663	    counter += per_cpu(sockets_in_use, cpu);
2664
2665	/* It can be negative, by the way. 8) */
2666	if (counter < 0)
2667		counter = 0;
2668
2669	seq_printf(seq, "sockets: used %d\n", counter);
2670}
2671#endif				/* CONFIG_PROC_FS */
2672
2673#ifdef CONFIG_COMPAT
2674static int do_siocgstamp(struct net *net, struct socket *sock,
2675			 unsigned int cmd, void __user *up)
2676{
2677	mm_segment_t old_fs = get_fs();
2678	struct timeval ktv;
2679	int err;
2680
2681	set_fs(KERNEL_DS);
2682	err = sock_do_ioctl(net, sock, cmd, (unsigned long)&ktv);
2683	set_fs(old_fs);
2684	if (!err)
2685		err = compat_put_timeval(&ktv, up);
2686
2687	return err;
2688}
2689
2690static int do_siocgstampns(struct net *net, struct socket *sock,
2691			   unsigned int cmd, void __user *up)
2692{
2693	mm_segment_t old_fs = get_fs();
2694	struct timespec kts;
2695	int err;
2696
2697	set_fs(KERNEL_DS);
2698	err = sock_do_ioctl(net, sock, cmd, (unsigned long)&kts);
2699	set_fs(old_fs);
2700	if (!err)
2701		err = compat_put_timespec(&kts, up);
2702
2703	return err;
2704}
2705
2706static int dev_ifname32(struct net *net, struct compat_ifreq __user *uifr32)
2707{
2708	struct ifreq __user *uifr;
2709	int err;
2710
2711	uifr = compat_alloc_user_space(sizeof(struct ifreq));
2712	if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2713		return -EFAULT;
2714
2715	err = dev_ioctl(net, SIOCGIFNAME, uifr);
2716	if (err)
2717		return err;
2718
2719	if (copy_in_user(uifr32, uifr, sizeof(struct compat_ifreq)))
2720		return -EFAULT;
2721
2722	return 0;
2723}
2724
2725static int dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32)
2726{
2727	struct compat_ifconf ifc32;
2728	struct ifconf ifc;
2729	struct ifconf __user *uifc;
2730	struct compat_ifreq __user *ifr32;
2731	struct ifreq __user *ifr;
2732	unsigned int i, j;
2733	int err;
2734
2735	if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf)))
2736		return -EFAULT;
2737
2738	memset(&ifc, 0, sizeof(ifc));
2739	if (ifc32.ifcbuf == 0) {
2740		ifc32.ifc_len = 0;
2741		ifc.ifc_len = 0;
2742		ifc.ifc_req = NULL;
2743		uifc = compat_alloc_user_space(sizeof(struct ifconf));
2744	} else {
2745		size_t len = ((ifc32.ifc_len / sizeof(struct compat_ifreq)) + 1) *
2746			sizeof(struct ifreq);
2747		uifc = compat_alloc_user_space(sizeof(struct ifconf) + len);
2748		ifc.ifc_len = len;
2749		ifr = ifc.ifc_req = (void __user *)(uifc + 1);
2750		ifr32 = compat_ptr(ifc32.ifcbuf);
2751		for (i = 0; i < ifc32.ifc_len; i += sizeof(struct compat_ifreq)) {
2752			if (copy_in_user(ifr, ifr32, sizeof(struct compat_ifreq)))
2753				return -EFAULT;
2754			ifr++;
2755			ifr32++;
2756		}
2757	}
2758	if (copy_to_user(uifc, &ifc, sizeof(struct ifconf)))
2759		return -EFAULT;
2760
2761	err = dev_ioctl(net, SIOCGIFCONF, uifc);
2762	if (err)
2763		return err;
2764
2765	if (copy_from_user(&ifc, uifc, sizeof(struct ifconf)))
2766		return -EFAULT;
2767
2768	ifr = ifc.ifc_req;
2769	ifr32 = compat_ptr(ifc32.ifcbuf);
2770	for (i = 0, j = 0;
2771	     i + sizeof(struct compat_ifreq) <= ifc32.ifc_len && j < ifc.ifc_len;
2772	     i += sizeof(struct compat_ifreq), j += sizeof(struct ifreq)) {
2773		if (copy_in_user(ifr32, ifr, sizeof(struct compat_ifreq)))
2774			return -EFAULT;
2775		ifr32++;
2776		ifr++;
2777	}
2778
2779	if (ifc32.ifcbuf == 0) {
2780		/* Translate from 64-bit structure multiple to
2781		 * a 32-bit one.
2782		 */
2783		i = ifc.ifc_len;
2784		i = ((i / sizeof(struct ifreq)) * sizeof(struct compat_ifreq));
2785		ifc32.ifc_len = i;
2786	} else {
2787		ifc32.ifc_len = i;
2788	}
2789	if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf)))
2790		return -EFAULT;
2791
2792	return 0;
2793}
2794
2795static int ethtool_ioctl(struct net *net, struct compat_ifreq __user *ifr32)
2796{
2797	struct compat_ethtool_rxnfc __user *compat_rxnfc;
2798	bool convert_in = false, convert_out = false;
2799	size_t buf_size = ALIGN(sizeof(struct ifreq), 8);
2800	struct ethtool_rxnfc __user *rxnfc;
2801	struct ifreq __user *ifr;
2802	u32 rule_cnt = 0, actual_rule_cnt;
2803	u32 ethcmd;
2804	u32 data;
2805	int ret;
2806
2807	if (get_user(data, &ifr32->ifr_ifru.ifru_data))
2808		return -EFAULT;
2809
2810	compat_rxnfc = compat_ptr(data);
2811
2812	if (get_user(ethcmd, &compat_rxnfc->cmd))
2813		return -EFAULT;
2814
2815	/* Most ethtool structures are defined without padding.
2816	 * Unfortunately struct ethtool_rxnfc is an exception.
2817	 */
2818	switch (ethcmd) {
2819	default:
2820		break;
2821	case ETHTOOL_GRXCLSRLALL:
2822		/* Buffer size is variable */
2823		if (get_user(rule_cnt, &compat_rxnfc->rule_cnt))
2824			return -EFAULT;
2825		if (rule_cnt > KMALLOC_MAX_SIZE / sizeof(u32))
2826			return -ENOMEM;
2827		buf_size += rule_cnt * sizeof(u32);
2828		/* fall through */
2829	case ETHTOOL_GRXRINGS:
2830	case ETHTOOL_GRXCLSRLCNT:
2831	case ETHTOOL_GRXCLSRULE:
2832	case ETHTOOL_SRXCLSRLINS:
2833		convert_out = true;
2834		/* fall through */
2835	case ETHTOOL_SRXCLSRLDEL:
2836		buf_size += sizeof(struct ethtool_rxnfc);
2837		convert_in = true;
2838		break;
2839	}
2840
2841	ifr = compat_alloc_user_space(buf_size);
2842	rxnfc = (void __user *)ifr + ALIGN(sizeof(struct ifreq), 8);
2843
2844	if (copy_in_user(&ifr->ifr_name, &ifr32->ifr_name, IFNAMSIZ))
2845		return -EFAULT;
2846
2847	if (put_user(convert_in ? rxnfc : compat_ptr(data),
2848		     &ifr->ifr_ifru.ifru_data))
2849		return -EFAULT;
2850
2851	if (convert_in) {
2852		/* We expect there to be holes between fs.m_ext and
2853		 * fs.ring_cookie and at the end of fs, but nowhere else.
2854		 */
2855		BUILD_BUG_ON(offsetof(struct compat_ethtool_rxnfc, fs.m_ext) +
2856			     sizeof(compat_rxnfc->fs.m_ext) !=
2857			     offsetof(struct ethtool_rxnfc, fs.m_ext) +
2858			     sizeof(rxnfc->fs.m_ext));
2859		BUILD_BUG_ON(
2860			offsetof(struct compat_ethtool_rxnfc, fs.location) -
2861			offsetof(struct compat_ethtool_rxnfc, fs.ring_cookie) !=
2862			offsetof(struct ethtool_rxnfc, fs.location) -
2863			offsetof(struct ethtool_rxnfc, fs.ring_cookie));
2864
2865		if (copy_in_user(rxnfc, compat_rxnfc,
2866				 (void __user *)(&rxnfc->fs.m_ext + 1) -
2867				 (void __user *)rxnfc) ||
2868		    copy_in_user(&rxnfc->fs.ring_cookie,
2869				 &compat_rxnfc->fs.ring_cookie,
2870				 (void __user *)(&rxnfc->fs.location + 1) -
2871				 (void __user *)&rxnfc->fs.ring_cookie) ||
2872		    copy_in_user(&rxnfc->rule_cnt, &compat_rxnfc->rule_cnt,
2873				 sizeof(rxnfc->rule_cnt)))
2874			return -EFAULT;
2875	}
2876
2877	ret = dev_ioctl(net, SIOCETHTOOL, ifr);
2878	if (ret)
2879		return ret;
2880
2881	if (convert_out) {
2882		if (copy_in_user(compat_rxnfc, rxnfc,
2883				 (const void __user *)(&rxnfc->fs.m_ext + 1) -
2884				 (const void __user *)rxnfc) ||
2885		    copy_in_user(&compat_rxnfc->fs.ring_cookie,
2886				 &rxnfc->fs.ring_cookie,
2887				 (const void __user *)(&rxnfc->fs.location + 1) -
2888				 (const void __user *)&rxnfc->fs.ring_cookie) ||
2889		    copy_in_user(&compat_rxnfc->rule_cnt, &rxnfc->rule_cnt,
2890				 sizeof(rxnfc->rule_cnt)))
2891			return -EFAULT;
2892
2893		if (ethcmd == ETHTOOL_GRXCLSRLALL) {
2894			/* As an optimisation, we only copy the actual
2895			 * number of rules that the underlying
2896			 * function returned.  Since Mallory might
2897			 * change the rule count in user memory, we
2898			 * check that it is less than the rule count
2899			 * originally given (as the user buffer size),
2900			 * which has been range-checked.
2901			 */
2902			if (get_user(actual_rule_cnt, &rxnfc->rule_cnt))
2903				return -EFAULT;
2904			if (actual_rule_cnt < rule_cnt)
2905				rule_cnt = actual_rule_cnt;
2906			if (copy_in_user(&compat_rxnfc->rule_locs[0],
2907					 &rxnfc->rule_locs[0],
2908					 rule_cnt * sizeof(u32)))
2909				return -EFAULT;
2910		}
2911	}
2912
2913	return 0;
2914}
2915
2916static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32)
2917{
2918	void __user *uptr;
2919	compat_uptr_t uptr32;
2920	struct ifreq __user *uifr;
2921
2922	uifr = compat_alloc_user_space(sizeof(*uifr));
2923	if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2924		return -EFAULT;
2925
2926	if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu))
2927		return -EFAULT;
2928
2929	uptr = compat_ptr(uptr32);
2930
2931	if (put_user(uptr, &uifr->ifr_settings.ifs_ifsu.raw_hdlc))
2932		return -EFAULT;
2933
2934	return dev_ioctl(net, SIOCWANDEV, uifr);
2935}
2936
2937static int bond_ioctl(struct net *net, unsigned int cmd,
2938			 struct compat_ifreq __user *ifr32)
2939{
2940	struct ifreq kifr;
2941	struct ifreq __user *uifr;
2942	mm_segment_t old_fs;
2943	int err;
2944	u32 data;
2945	void __user *datap;
2946
2947	switch (cmd) {
2948	case SIOCBONDENSLAVE:
2949	case SIOCBONDRELEASE:
2950	case SIOCBONDSETHWADDR:
2951	case SIOCBONDCHANGEACTIVE:
2952		if (copy_from_user(&kifr, ifr32, sizeof(struct compat_ifreq)))
2953			return -EFAULT;
2954
2955		old_fs = get_fs();
2956		set_fs(KERNEL_DS);
2957		err = dev_ioctl(net, cmd,
2958				(struct ifreq __user __force *) &kifr);
2959		set_fs(old_fs);
2960
2961		return err;
2962	case SIOCBONDSLAVEINFOQUERY:
2963	case SIOCBONDINFOQUERY:
2964		uifr = compat_alloc_user_space(sizeof(*uifr));
2965		if (copy_in_user(&uifr->ifr_name, &ifr32->ifr_name, IFNAMSIZ))
2966			return -EFAULT;
2967
2968		if (get_user(data, &ifr32->ifr_ifru.ifru_data))
2969			return -EFAULT;
2970
2971		datap = compat_ptr(data);
2972		if (put_user(datap, &uifr->ifr_ifru.ifru_data))
2973			return -EFAULT;
2974
2975		return dev_ioctl(net, cmd, uifr);
2976	default:
2977		return -ENOIOCTLCMD;
2978	}
2979}
2980
2981static int siocdevprivate_ioctl(struct net *net, unsigned int cmd,
2982				 struct compat_ifreq __user *u_ifreq32)
2983{
2984	struct ifreq __user *u_ifreq64;
2985	char tmp_buf[IFNAMSIZ];
2986	void __user *data64;
2987	u32 data32;
2988
2989	if (copy_from_user(&tmp_buf[0], &(u_ifreq32->ifr_ifrn.ifrn_name[0]),
2990			   IFNAMSIZ))
2991		return -EFAULT;
2992	if (__get_user(data32, &u_ifreq32->ifr_ifru.ifru_data))
2993		return -EFAULT;
2994	data64 = compat_ptr(data32);
2995
2996	u_ifreq64 = compat_alloc_user_space(sizeof(*u_ifreq64));
2997
2998	/* Don't check these user accesses, just let that get trapped
2999	 * in the ioctl handler instead.
3000	 */
3001	if (copy_to_user(&u_ifreq64->ifr_ifrn.ifrn_name[0], &tmp_buf[0],
3002			 IFNAMSIZ))
3003		return -EFAULT;
3004	if (__put_user(data64, &u_ifreq64->ifr_ifru.ifru_data))
3005		return -EFAULT;
3006
3007	return dev_ioctl(net, cmd, u_ifreq64);
3008}
3009
3010static int dev_ifsioc(struct net *net, struct socket *sock,
3011			 unsigned int cmd, struct compat_ifreq __user *uifr32)
3012{
3013	struct ifreq __user *uifr;
3014	int err;
3015
3016	uifr = compat_alloc_user_space(sizeof(*uifr));
3017	if (copy_in_user(uifr, uifr32, sizeof(*uifr32)))
3018		return -EFAULT;
3019
3020	err = sock_do_ioctl(net, sock, cmd, (unsigned long)uifr);
3021
3022	if (!err) {
3023		switch (cmd) {
3024		case SIOCGIFFLAGS:
3025		case SIOCGIFMETRIC:
3026		case SIOCGIFMTU:
3027		case SIOCGIFMEM:
3028		case SIOCGIFHWADDR:
3029		case SIOCGIFINDEX:
3030		case SIOCGIFADDR:
3031		case SIOCGIFBRDADDR:
3032		case SIOCGIFDSTADDR:
3033		case SIOCGIFNETMASK:
3034		case SIOCGIFPFLAGS:
3035		case SIOCGIFTXQLEN:
3036		case SIOCGMIIPHY:
3037		case SIOCGMIIREG:
3038			if (copy_in_user(uifr32, uifr, sizeof(*uifr32)))
3039				err = -EFAULT;
3040			break;
3041		}
3042	}
3043	return err;
3044}
3045
3046static int compat_sioc_ifmap(struct net *net, unsigned int cmd,
3047			struct compat_ifreq __user *uifr32)
3048{
3049	struct ifreq ifr;
3050	struct compat_ifmap __user *uifmap32;
3051	mm_segment_t old_fs;
3052	int err;
3053
3054	uifmap32 = &uifr32->ifr_ifru.ifru_map;
3055	err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name));
3056	err |= __get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
3057	err |= __get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
3058	err |= __get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
3059	err |= __get_user(ifr.ifr_map.irq, &uifmap32->irq);
3060	err |= __get_user(ifr.ifr_map.dma, &uifmap32->dma);
3061	err |= __get_user(ifr.ifr_map.port, &uifmap32->port);
3062	if (err)
3063		return -EFAULT;
3064
3065	old_fs = get_fs();
3066	set_fs(KERNEL_DS);
3067	err = dev_ioctl(net, cmd, (void  __user __force *)&ifr);
3068	set_fs(old_fs);
3069
3070	if (cmd == SIOCGIFMAP && !err) {
3071		err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name));
3072		err |= __put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
3073		err |= __put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
3074		err |= __put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
3075		err |= __put_user(ifr.ifr_map.irq, &uifmap32->irq);
3076		err |= __put_user(ifr.ifr_map.dma, &uifmap32->dma);
3077		err |= __put_user(ifr.ifr_map.port, &uifmap32->port);
3078		if (err)
3079			err = -EFAULT;
3080	}
3081	return err;
3082}
3083
3084static int compat_siocshwtstamp(struct net *net, struct compat_ifreq __user *uifr32)
3085{
3086	void __user *uptr;
3087	compat_uptr_t uptr32;
3088	struct ifreq __user *uifr;
3089
3090	uifr = compat_alloc_user_space(sizeof(*uifr));
3091	if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
3092		return -EFAULT;
3093
3094	if (get_user(uptr32, &uifr32->ifr_data))
3095		return -EFAULT;
3096
3097	uptr = compat_ptr(uptr32);
3098
3099	if (put_user(uptr, &uifr->ifr_data))
3100		return -EFAULT;
3101
3102	return dev_ioctl(net, SIOCSHWTSTAMP, uifr);
3103}
3104
3105struct rtentry32 {
3106	u32		rt_pad1;
3107	struct sockaddr rt_dst;         /* target address               */
3108	struct sockaddr rt_gateway;     /* gateway addr (RTF_GATEWAY)   */
3109	struct sockaddr rt_genmask;     /* target network mask (IP)     */
3110	unsigned short	rt_flags;
3111	short		rt_pad2;
3112	u32		rt_pad3;
3113	unsigned char	rt_tos;
3114	unsigned char	rt_class;
3115	short		rt_pad4;
3116	short		rt_metric;      /* +1 for binary compatibility! */
3117	/* char * */ u32 rt_dev;        /* forcing the device at add    */
3118	u32		rt_mtu;         /* per route MTU/Window         */
3119	u32		rt_window;      /* Window clamping              */
3120	unsigned short  rt_irtt;        /* Initial RTT                  */
3121};
3122
3123struct in6_rtmsg32 {
3124	struct in6_addr		rtmsg_dst;
3125	struct in6_addr		rtmsg_src;
3126	struct in6_addr		rtmsg_gateway;
3127	u32			rtmsg_type;
3128	u16			rtmsg_dst_len;
3129	u16			rtmsg_src_len;
3130	u32			rtmsg_metric;
3131	u32			rtmsg_info;
3132	u32			rtmsg_flags;
3133	s32			rtmsg_ifindex;
3134};
3135
3136static int routing_ioctl(struct net *net, struct socket *sock,
3137			 unsigned int cmd, void __user *argp)
3138{
3139	int ret;
3140	void *r = NULL;
3141	struct in6_rtmsg r6;
3142	struct rtentry r4;
3143	char devname[16];
3144	u32 rtdev;
3145	mm_segment_t old_fs = get_fs();
3146
3147	if (sock && sock->sk && sock->sk->sk_family == AF_INET6) { /* ipv6 */
3148		struct in6_rtmsg32 __user *ur6 = argp;
3149		ret = copy_from_user(&r6.rtmsg_dst, &(ur6->rtmsg_dst),
3150			3 * sizeof(struct in6_addr));
3151		ret |= __get_user(r6.rtmsg_type, &(ur6->rtmsg_type));
3152		ret |= __get_user(r6.rtmsg_dst_len, &(ur6->rtmsg_dst_len));
3153		ret |= __get_user(r6.rtmsg_src_len, &(ur6->rtmsg_src_len));
3154		ret |= __get_user(r6.rtmsg_metric, &(ur6->rtmsg_metric));
3155		ret |= __get_user(r6.rtmsg_info, &(ur6->rtmsg_info));
3156		ret |= __get_user(r6.rtmsg_flags, &(ur6->rtmsg_flags));
3157		ret |= __get_user(r6.rtmsg_ifindex, &(ur6->rtmsg_ifindex));
3158
3159		r = (void *) &r6;
3160	} else { /* ipv4 */
3161		struct rtentry32 __user *ur4 = argp;
3162		ret = copy_from_user(&r4.rt_dst, &(ur4->rt_dst),
3163					3 * sizeof(struct sockaddr));
3164		ret |= __get_user(r4.rt_flags, &(ur4->rt_flags));
3165		ret |= __get_user(r4.rt_metric, &(ur4->rt_metric));
3166		ret |= __get_user(r4.rt_mtu, &(ur4->rt_mtu));
3167		ret |= __get_user(r4.rt_window, &(ur4->rt_window));
3168		ret |= __get_user(r4.rt_irtt, &(ur4->rt_irtt));
3169		ret |= __get_user(rtdev, &(ur4->rt_dev));
3170		if (rtdev) {
3171			ret |= copy_from_user(devname, compat_ptr(rtdev), 15);
3172			r4.rt_dev = (char __user __force *)devname;
3173			devname[15] = 0;
3174		} else
3175			r4.rt_dev = NULL;
3176
3177		r = (void *) &r4;
3178	}
3179
3180	if (ret) {
3181		ret = -EFAULT;
3182		goto out;
3183	}
3184
3185	set_fs(KERNEL_DS);
3186	ret = sock_do_ioctl(net, sock, cmd, (unsigned long) r);
3187	set_fs(old_fs);
3188
3189out:
3190	return ret;
3191}
3192
3193/* Since old style bridge ioctl's endup using SIOCDEVPRIVATE
3194 * for some operations; this forces use of the newer bridge-utils that
3195 * use compatible ioctls
3196 */
3197static int old_bridge_ioctl(compat_ulong_t __user *argp)
3198{
3199	compat_ulong_t tmp;
3200
3201	if (get_user(tmp, argp))
3202		return -EFAULT;
3203	if (tmp == BRCTL_GET_VERSION)
3204		return BRCTL_VERSION + 1;
3205	return -EINVAL;
3206}
3207
3208static int compat_sock_ioctl_trans(struct file *file, struct socket *sock,
3209			 unsigned int cmd, unsigned long arg)
3210{
3211	void __user *argp = compat_ptr(arg);
3212	struct sock *sk = sock->sk;
3213	struct net *net = sock_net(sk);
3214
3215	if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
3216		return siocdevprivate_ioctl(net, cmd, argp);
3217
3218	switch (cmd) {
3219	case SIOCSIFBR:
3220	case SIOCGIFBR:
3221		return old_bridge_ioctl(argp);
3222	case SIOCGIFNAME:
3223		return dev_ifname32(net, argp);
3224	case SIOCGIFCONF:
3225		return dev_ifconf(net, argp);
3226	case SIOCETHTOOL:
3227		return ethtool_ioctl(net, argp);
3228	case SIOCWANDEV:
3229		return compat_siocwandev(net, argp);
3230	case SIOCGIFMAP:
3231	case SIOCSIFMAP:
3232		return compat_sioc_ifmap(net, cmd, argp);
3233	case SIOCBONDENSLAVE:
3234	case SIOCBONDRELEASE:
3235	case SIOCBONDSETHWADDR:
3236	case SIOCBONDSLAVEINFOQUERY:
3237	case SIOCBONDINFOQUERY:
3238	case SIOCBONDCHANGEACTIVE:
3239		return bond_ioctl(net, cmd, argp);
3240	case SIOCADDRT:
3241	case SIOCDELRT:
3242		return routing_ioctl(net, sock, cmd, argp);
3243	case SIOCGSTAMP:
3244		return do_siocgstamp(net, sock, cmd, argp);
3245	case SIOCGSTAMPNS:
3246		return do_siocgstampns(net, sock, cmd, argp);
3247	case SIOCSHWTSTAMP:
3248		return compat_siocshwtstamp(net, argp);
3249
3250	case FIOSETOWN:
3251	case SIOCSPGRP:
3252	case FIOGETOWN:
3253	case SIOCGPGRP:
3254	case SIOCBRADDBR:
3255	case SIOCBRDELBR:
3256	case SIOCGIFVLAN:
3257	case SIOCSIFVLAN:
3258	case SIOCADDDLCI:
3259	case SIOCDELDLCI:
3260		return sock_ioctl(file, cmd, arg);
3261
3262	case SIOCGIFFLAGS:
3263	case SIOCSIFFLAGS:
3264	case SIOCGIFMETRIC:
3265	case SIOCSIFMETRIC:
3266	case SIOCGIFMTU:
3267	case SIOCSIFMTU:
3268	case SIOCGIFMEM:
3269	case SIOCSIFMEM:
3270	case SIOCGIFHWADDR:
3271	case SIOCSIFHWADDR:
3272	case SIOCADDMULTI:
3273	case SIOCDELMULTI:
3274	case SIOCGIFINDEX:
3275	case SIOCGIFADDR:
3276	case SIOCSIFADDR:
3277	case SIOCSIFHWBROADCAST:
3278	case SIOCDIFADDR:
3279	case SIOCGIFBRDADDR:
3280	case SIOCSIFBRDADDR:
3281	case SIOCGIFDSTADDR:
3282	case SIOCSIFDSTADDR:
3283	case SIOCGIFNETMASK:
3284	case SIOCSIFNETMASK:
3285	case SIOCSIFPFLAGS:
3286	case SIOCGIFPFLAGS:
3287	case SIOCGIFTXQLEN:
3288	case SIOCSIFTXQLEN:
3289	case SIOCBRADDIF:
3290	case SIOCBRDELIF:
3291	case SIOCSIFNAME:
3292	case SIOCGMIIPHY:
3293	case SIOCGMIIREG:
3294	case SIOCSMIIREG:
3295		return dev_ifsioc(net, sock, cmd, argp);
3296
3297	case SIOCSARP:
3298	case SIOCGARP:
3299	case SIOCDARP:
3300	case SIOCATMARK:
3301		return sock_do_ioctl(net, sock, cmd, arg);
3302	}
3303
3304	return -ENOIOCTLCMD;
3305}
3306
3307static long compat_sock_ioctl(struct file *file, unsigned int cmd,
3308			      unsigned long arg)
3309{
3310	struct socket *sock = file->private_data;
3311	int ret = -ENOIOCTLCMD;
3312	struct sock *sk;
3313	struct net *net;
3314
3315	sk = sock->sk;
3316	net = sock_net(sk);
3317
3318	if (sock->ops->compat_ioctl)
3319		ret = sock->ops->compat_ioctl(sock, cmd, arg);
3320
3321	if (ret == -ENOIOCTLCMD &&
3322	    (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
3323		ret = compat_wext_handle_ioctl(net, cmd, arg);
3324
3325	if (ret == -ENOIOCTLCMD)
3326		ret = compat_sock_ioctl_trans(file, sock, cmd, arg);
3327
3328	return ret;
3329}
3330#endif
3331
3332int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
3333{
3334	return sock->ops->bind(sock, addr, addrlen);
3335}
3336EXPORT_SYMBOL(kernel_bind);
3337
3338int kernel_listen(struct socket *sock, int backlog)
3339{
3340	return sock->ops->listen(sock, backlog);
3341}
3342EXPORT_SYMBOL(kernel_listen);
3343
3344int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
3345{
3346	struct sock *sk = sock->sk;
3347	int err;
3348
3349	err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
3350			       newsock);
3351	if (err < 0)
3352		goto done;
3353
3354	err = sock->ops->accept(sock, *newsock, flags);
3355	if (err < 0) {
3356		sock_release(*newsock);
3357		*newsock = NULL;
3358		goto done;
3359	}
3360
3361	(*newsock)->ops = sock->ops;
3362	__module_get((*newsock)->ops->owner);
3363
3364done:
3365	return err;
3366}
3367EXPORT_SYMBOL(kernel_accept);
3368
3369int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
3370		   int flags)
3371{
3372	return sock->ops->connect(sock, addr, addrlen, flags);
3373}
3374EXPORT_SYMBOL(kernel_connect);
3375
3376int kernel_getsockname(struct socket *sock, struct sockaddr *addr,
3377			 int *addrlen)
3378{
3379	return sock->ops->getname(sock, addr, addrlen, 0);
3380}
3381EXPORT_SYMBOL(kernel_getsockname);
3382
3383int kernel_getpeername(struct socket *sock, struct sockaddr *addr,
3384			 int *addrlen)
3385{
3386	return sock->ops->getname(sock, addr, addrlen, 1);
3387}
3388EXPORT_SYMBOL(kernel_getpeername);
3389
3390int kernel_getsockopt(struct socket *sock, int level, int optname,
3391			char *optval, int *optlen)
3392{
3393	mm_segment_t oldfs = get_fs();
3394	char __user *uoptval;
3395	int __user *uoptlen;
3396	int err;
3397
3398	uoptval = (char __user __force *) optval;
3399	uoptlen = (int __user __force *) optlen;
3400
3401	set_fs(KERNEL_DS);
3402	if (level == SOL_SOCKET)
3403		err = sock_getsockopt(sock, level, optname, uoptval, uoptlen);
3404	else
3405		err = sock->ops->getsockopt(sock, level, optname, uoptval,
3406					    uoptlen);
3407	set_fs(oldfs);
3408	return err;
3409}
3410EXPORT_SYMBOL(kernel_getsockopt);
3411
3412int kernel_setsockopt(struct socket *sock, int level, int optname,
3413			char *optval, unsigned int optlen)
3414{
3415	mm_segment_t oldfs = get_fs();
3416	char __user *uoptval;
3417	int err;
3418
3419	uoptval = (char __user __force *) optval;
3420
3421	set_fs(KERNEL_DS);
3422	if (level == SOL_SOCKET)
3423		err = sock_setsockopt(sock, level, optname, uoptval, optlen);
3424	else
3425		err = sock->ops->setsockopt(sock, level, optname, uoptval,
3426					    optlen);
3427	set_fs(oldfs);
3428	return err;
3429}
3430EXPORT_SYMBOL(kernel_setsockopt);
3431
3432int kernel_sendpage(struct socket *sock, struct page *page, int offset,
3433		    size_t size, int flags)
3434{
3435	if (sock->ops->sendpage)
3436		return sock->ops->sendpage(sock, page, offset, size, flags);
3437
3438	return sock_no_sendpage(sock, page, offset, size, flags);
3439}
3440EXPORT_SYMBOL(kernel_sendpage);
3441
3442int kernel_sock_ioctl(struct socket *sock, int cmd, unsigned long arg)
3443{
3444	mm_segment_t oldfs = get_fs();
3445	int err;
3446
3447	set_fs(KERNEL_DS);
3448	err = sock->ops->ioctl(sock, cmd, arg);
3449	set_fs(oldfs);
3450
3451	return err;
3452}
3453EXPORT_SYMBOL(kernel_sock_ioctl);
3454
3455int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
3456{
3457	return sock->ops->shutdown(sock, how);
3458}
3459EXPORT_SYMBOL(kernel_sock_shutdown);
3460