perf_event.c revision 5f5092e72cc25a6a5785308270e0085b2b2772cc
1#undef DEBUG
2
3/*
4 * ARM performance counter support.
5 *
6 * Copyright (C) 2009 picoChip Designs, Ltd., Jamie Iles
7 * Copyright (C) 2010 ARM Ltd., Will Deacon <will.deacon@arm.com>
8 *
9 * This code is based on the sparc64 perf event code, which is in turn based
10 * on the x86 code. Callchain code is based on the ARM OProfile backtrace
11 * code.
12 */
13#define pr_fmt(fmt) "hw perfevents: " fmt
14
15#include <linux/kernel.h>
16#include <linux/platform_device.h>
17#include <linux/pm_runtime.h>
18#include <linux/uaccess.h>
19#include <linux/irq.h>
20#include <linux/irqdesc.h>
21
22#include <asm/irq_regs.h>
23#include <asm/pmu.h>
24#include <asm/stacktrace.h>
25
26static int
27armpmu_map_cache_event(const unsigned (*cache_map)
28				      [PERF_COUNT_HW_CACHE_MAX]
29				      [PERF_COUNT_HW_CACHE_OP_MAX]
30				      [PERF_COUNT_HW_CACHE_RESULT_MAX],
31		       u64 config)
32{
33	unsigned int cache_type, cache_op, cache_result, ret;
34
35	cache_type = (config >>  0) & 0xff;
36	if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
37		return -EINVAL;
38
39	cache_op = (config >>  8) & 0xff;
40	if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
41		return -EINVAL;
42
43	cache_result = (config >> 16) & 0xff;
44	if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
45		return -EINVAL;
46
47	ret = (int)(*cache_map)[cache_type][cache_op][cache_result];
48
49	if (ret == CACHE_OP_UNSUPPORTED)
50		return -ENOENT;
51
52	return ret;
53}
54
55static int
56armpmu_map_hw_event(const unsigned (*event_map)[PERF_COUNT_HW_MAX], u64 config)
57{
58	int mapping;
59
60	if (config >= PERF_COUNT_HW_MAX)
61		return -EINVAL;
62
63	mapping = (*event_map)[config];
64	return mapping == HW_OP_UNSUPPORTED ? -ENOENT : mapping;
65}
66
67static int
68armpmu_map_raw_event(u32 raw_event_mask, u64 config)
69{
70	return (int)(config & raw_event_mask);
71}
72
73int
74armpmu_map_event(struct perf_event *event,
75		 const unsigned (*event_map)[PERF_COUNT_HW_MAX],
76		 const unsigned (*cache_map)
77				[PERF_COUNT_HW_CACHE_MAX]
78				[PERF_COUNT_HW_CACHE_OP_MAX]
79				[PERF_COUNT_HW_CACHE_RESULT_MAX],
80		 u32 raw_event_mask)
81{
82	u64 config = event->attr.config;
83
84	switch (event->attr.type) {
85	case PERF_TYPE_HARDWARE:
86		return armpmu_map_hw_event(event_map, config);
87	case PERF_TYPE_HW_CACHE:
88		return armpmu_map_cache_event(cache_map, config);
89	case PERF_TYPE_RAW:
90		return armpmu_map_raw_event(raw_event_mask, config);
91	}
92
93	return -ENOENT;
94}
95
96int armpmu_event_set_period(struct perf_event *event)
97{
98	struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
99	struct hw_perf_event *hwc = &event->hw;
100	s64 left = local64_read(&hwc->period_left);
101	s64 period = hwc->sample_period;
102	int ret = 0;
103
104	if (unlikely(left <= -period)) {
105		left = period;
106		local64_set(&hwc->period_left, left);
107		hwc->last_period = period;
108		ret = 1;
109	}
110
111	if (unlikely(left <= 0)) {
112		left += period;
113		local64_set(&hwc->period_left, left);
114		hwc->last_period = period;
115		ret = 1;
116	}
117
118	if (left > (s64)armpmu->max_period)
119		left = armpmu->max_period;
120
121	local64_set(&hwc->prev_count, (u64)-left);
122
123	armpmu->write_counter(event, (u64)(-left) & 0xffffffff);
124
125	perf_event_update_userpage(event);
126
127	return ret;
128}
129
130u64 armpmu_event_update(struct perf_event *event)
131{
132	struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
133	struct hw_perf_event *hwc = &event->hw;
134	u64 delta, prev_raw_count, new_raw_count;
135
136again:
137	prev_raw_count = local64_read(&hwc->prev_count);
138	new_raw_count = armpmu->read_counter(event);
139
140	if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
141			     new_raw_count) != prev_raw_count)
142		goto again;
143
144	delta = (new_raw_count - prev_raw_count) & armpmu->max_period;
145
146	local64_add(delta, &event->count);
147	local64_sub(delta, &hwc->period_left);
148
149	return new_raw_count;
150}
151
152static void
153armpmu_read(struct perf_event *event)
154{
155	armpmu_event_update(event);
156}
157
158static void
159armpmu_stop(struct perf_event *event, int flags)
160{
161	struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
162	struct hw_perf_event *hwc = &event->hw;
163
164	/*
165	 * ARM pmu always has to update the counter, so ignore
166	 * PERF_EF_UPDATE, see comments in armpmu_start().
167	 */
168	if (!(hwc->state & PERF_HES_STOPPED)) {
169		armpmu->disable(event);
170		armpmu_event_update(event);
171		hwc->state |= PERF_HES_STOPPED | PERF_HES_UPTODATE;
172	}
173}
174
175static void armpmu_start(struct perf_event *event, int flags)
176{
177	struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
178	struct hw_perf_event *hwc = &event->hw;
179
180	/*
181	 * ARM pmu always has to reprogram the period, so ignore
182	 * PERF_EF_RELOAD, see the comment below.
183	 */
184	if (flags & PERF_EF_RELOAD)
185		WARN_ON_ONCE(!(hwc->state & PERF_HES_UPTODATE));
186
187	hwc->state = 0;
188	/*
189	 * Set the period again. Some counters can't be stopped, so when we
190	 * were stopped we simply disabled the IRQ source and the counter
191	 * may have been left counting. If we don't do this step then we may
192	 * get an interrupt too soon or *way* too late if the overflow has
193	 * happened since disabling.
194	 */
195	armpmu_event_set_period(event);
196	armpmu->enable(event);
197}
198
199static void
200armpmu_del(struct perf_event *event, int flags)
201{
202	struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
203	struct pmu_hw_events *hw_events = armpmu->get_hw_events();
204	struct hw_perf_event *hwc = &event->hw;
205	int idx = hwc->idx;
206
207	armpmu_stop(event, PERF_EF_UPDATE);
208	hw_events->events[idx] = NULL;
209	clear_bit(idx, hw_events->used_mask);
210	if (armpmu->clear_event_idx)
211		armpmu->clear_event_idx(hw_events, event);
212
213	perf_event_update_userpage(event);
214}
215
216static int
217armpmu_add(struct perf_event *event, int flags)
218{
219	struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
220	struct pmu_hw_events *hw_events = armpmu->get_hw_events();
221	struct hw_perf_event *hwc = &event->hw;
222	int idx;
223	int err = 0;
224
225	perf_pmu_disable(event->pmu);
226
227	/* If we don't have a space for the counter then finish early. */
228	idx = armpmu->get_event_idx(hw_events, event);
229	if (idx < 0) {
230		err = idx;
231		goto out;
232	}
233
234	/*
235	 * If there is an event in the counter we are going to use then make
236	 * sure it is disabled.
237	 */
238	event->hw.idx = idx;
239	armpmu->disable(event);
240	hw_events->events[idx] = event;
241
242	hwc->state = PERF_HES_STOPPED | PERF_HES_UPTODATE;
243	if (flags & PERF_EF_START)
244		armpmu_start(event, PERF_EF_RELOAD);
245
246	/* Propagate our changes to the userspace mapping. */
247	perf_event_update_userpage(event);
248
249out:
250	perf_pmu_enable(event->pmu);
251	return err;
252}
253
254static int
255validate_event(struct pmu_hw_events *hw_events,
256	       struct perf_event *event)
257{
258	struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
259
260	if (is_software_event(event))
261		return 1;
262
263	if (event->state < PERF_EVENT_STATE_OFF)
264		return 1;
265
266	if (event->state == PERF_EVENT_STATE_OFF && !event->attr.enable_on_exec)
267		return 1;
268
269	return armpmu->get_event_idx(hw_events, event) >= 0;
270}
271
272static int
273validate_group(struct perf_event *event)
274{
275	struct perf_event *sibling, *leader = event->group_leader;
276	struct pmu_hw_events fake_pmu;
277	DECLARE_BITMAP(fake_used_mask, ARMPMU_MAX_HWEVENTS);
278
279	/*
280	 * Initialise the fake PMU. We only need to populate the
281	 * used_mask for the purposes of validation.
282	 */
283	memset(fake_used_mask, 0, sizeof(fake_used_mask));
284	fake_pmu.used_mask = fake_used_mask;
285
286	if (!validate_event(&fake_pmu, leader))
287		return -EINVAL;
288
289	list_for_each_entry(sibling, &leader->sibling_list, group_entry) {
290		if (!validate_event(&fake_pmu, sibling))
291			return -EINVAL;
292	}
293
294	if (!validate_event(&fake_pmu, event))
295		return -EINVAL;
296
297	return 0;
298}
299
300static irqreturn_t armpmu_dispatch_irq(int irq, void *dev)
301{
302	struct arm_pmu *armpmu;
303	struct platform_device *plat_device;
304	struct arm_pmu_platdata *plat;
305	int ret;
306	u64 start_clock, finish_clock;
307
308	if (irq_is_percpu(irq))
309		dev = *(void **)dev;
310	armpmu = dev;
311	plat_device = armpmu->plat_device;
312	plat = dev_get_platdata(&plat_device->dev);
313
314	start_clock = sched_clock();
315	if (plat && plat->handle_irq)
316		ret = plat->handle_irq(irq, dev, armpmu->handle_irq);
317	else
318		ret = armpmu->handle_irq(irq, dev);
319	finish_clock = sched_clock();
320
321	perf_sample_event_took(finish_clock - start_clock);
322	return ret;
323}
324
325static void
326armpmu_release_hardware(struct arm_pmu *armpmu)
327{
328	armpmu->free_irq(armpmu);
329	pm_runtime_put_sync(&armpmu->plat_device->dev);
330}
331
332static int
333armpmu_reserve_hardware(struct arm_pmu *armpmu)
334{
335	int err;
336	struct platform_device *pmu_device = armpmu->plat_device;
337
338	if (!pmu_device)
339		return -ENODEV;
340
341	pm_runtime_get_sync(&pmu_device->dev);
342	err = armpmu->request_irq(armpmu, armpmu_dispatch_irq);
343	if (err) {
344		armpmu_release_hardware(armpmu);
345		return err;
346	}
347
348	return 0;
349}
350
351static void
352hw_perf_event_destroy(struct perf_event *event)
353{
354	struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
355	atomic_t *active_events	 = &armpmu->active_events;
356	struct mutex *pmu_reserve_mutex = &armpmu->reserve_mutex;
357
358	if (atomic_dec_and_mutex_lock(active_events, pmu_reserve_mutex)) {
359		armpmu_release_hardware(armpmu);
360		mutex_unlock(pmu_reserve_mutex);
361	}
362}
363
364static int
365event_requires_mode_exclusion(struct perf_event_attr *attr)
366{
367	return attr->exclude_idle || attr->exclude_user ||
368	       attr->exclude_kernel || attr->exclude_hv;
369}
370
371static int
372__hw_perf_event_init(struct perf_event *event)
373{
374	struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
375	struct hw_perf_event *hwc = &event->hw;
376	int mapping;
377
378	mapping = armpmu->map_event(event);
379
380	if (mapping < 0) {
381		pr_debug("event %x:%llx not supported\n", event->attr.type,
382			 event->attr.config);
383		return mapping;
384	}
385
386	/*
387	 * We don't assign an index until we actually place the event onto
388	 * hardware. Use -1 to signify that we haven't decided where to put it
389	 * yet. For SMP systems, each core has it's own PMU so we can't do any
390	 * clever allocation or constraints checking at this point.
391	 */
392	hwc->idx		= -1;
393	hwc->config_base	= 0;
394	hwc->config		= 0;
395	hwc->event_base		= 0;
396
397	/*
398	 * Check whether we need to exclude the counter from certain modes.
399	 */
400	if ((!armpmu->set_event_filter ||
401	     armpmu->set_event_filter(hwc, &event->attr)) &&
402	     event_requires_mode_exclusion(&event->attr)) {
403		pr_debug("ARM performance counters do not support "
404			 "mode exclusion\n");
405		return -EOPNOTSUPP;
406	}
407
408	/*
409	 * Store the event encoding into the config_base field.
410	 */
411	hwc->config_base	    |= (unsigned long)mapping;
412
413	if (!hwc->sample_period) {
414		/*
415		 * For non-sampling runs, limit the sample_period to half
416		 * of the counter width. That way, the new counter value
417		 * is far less likely to overtake the previous one unless
418		 * you have some serious IRQ latency issues.
419		 */
420		hwc->sample_period  = armpmu->max_period >> 1;
421		hwc->last_period    = hwc->sample_period;
422		local64_set(&hwc->period_left, hwc->sample_period);
423	}
424
425	if (event->group_leader != event) {
426		if (validate_group(event) != 0)
427			return -EINVAL;
428	}
429
430	return 0;
431}
432
433static int armpmu_event_init(struct perf_event *event)
434{
435	struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
436	int err = 0;
437	atomic_t *active_events = &armpmu->active_events;
438
439	/* does not support taken branch sampling */
440	if (has_branch_stack(event))
441		return -EOPNOTSUPP;
442
443	if (armpmu->map_event(event) == -ENOENT)
444		return -ENOENT;
445
446	event->destroy = hw_perf_event_destroy;
447
448	if (!atomic_inc_not_zero(active_events)) {
449		mutex_lock(&armpmu->reserve_mutex);
450		if (atomic_read(active_events) == 0)
451			err = armpmu_reserve_hardware(armpmu);
452
453		if (!err)
454			atomic_inc(active_events);
455		mutex_unlock(&armpmu->reserve_mutex);
456	}
457
458	if (err)
459		return err;
460
461	err = __hw_perf_event_init(event);
462	if (err)
463		hw_perf_event_destroy(event);
464
465	return err;
466}
467
468static void armpmu_enable(struct pmu *pmu)
469{
470	struct arm_pmu *armpmu = to_arm_pmu(pmu);
471	struct pmu_hw_events *hw_events = armpmu->get_hw_events();
472	int enabled = bitmap_weight(hw_events->used_mask, armpmu->num_events);
473
474	if (enabled)
475		armpmu->start(armpmu);
476}
477
478static void armpmu_disable(struct pmu *pmu)
479{
480	struct arm_pmu *armpmu = to_arm_pmu(pmu);
481	armpmu->stop(armpmu);
482}
483
484#ifdef CONFIG_PM_RUNTIME
485static int armpmu_runtime_resume(struct device *dev)
486{
487	struct arm_pmu_platdata *plat = dev_get_platdata(dev);
488
489	if (plat && plat->runtime_resume)
490		return plat->runtime_resume(dev);
491
492	return 0;
493}
494
495static int armpmu_runtime_suspend(struct device *dev)
496{
497	struct arm_pmu_platdata *plat = dev_get_platdata(dev);
498
499	if (plat && plat->runtime_suspend)
500		return plat->runtime_suspend(dev);
501
502	return 0;
503}
504#endif
505
506const struct dev_pm_ops armpmu_dev_pm_ops = {
507	SET_RUNTIME_PM_OPS(armpmu_runtime_suspend, armpmu_runtime_resume, NULL)
508};
509
510static void armpmu_init(struct arm_pmu *armpmu)
511{
512	atomic_set(&armpmu->active_events, 0);
513	mutex_init(&armpmu->reserve_mutex);
514
515	armpmu->pmu = (struct pmu) {
516		.pmu_enable	= armpmu_enable,
517		.pmu_disable	= armpmu_disable,
518		.event_init	= armpmu_event_init,
519		.add		= armpmu_add,
520		.del		= armpmu_del,
521		.start		= armpmu_start,
522		.stop		= armpmu_stop,
523		.read		= armpmu_read,
524	};
525}
526
527int armpmu_register(struct arm_pmu *armpmu, int type)
528{
529	armpmu_init(armpmu);
530	pm_runtime_enable(&armpmu->plat_device->dev);
531	pr_info("enabled with %s PMU driver, %d counters available\n",
532			armpmu->name, armpmu->num_events);
533	return perf_pmu_register(&armpmu->pmu, armpmu->name, type);
534}
535
536/*
537 * Callchain handling code.
538 */
539
540/*
541 * The registers we're interested in are at the end of the variable
542 * length saved register structure. The fp points at the end of this
543 * structure so the address of this struct is:
544 * (struct frame_tail *)(xxx->fp)-1
545 *
546 * This code has been adapted from the ARM OProfile support.
547 */
548struct frame_tail {
549	struct frame_tail __user *fp;
550	unsigned long sp;
551	unsigned long lr;
552} __attribute__((packed));
553
554/*
555 * Get the return address for a single stackframe and return a pointer to the
556 * next frame tail.
557 */
558static struct frame_tail __user *
559user_backtrace(struct frame_tail __user *tail,
560	       struct perf_callchain_entry *entry)
561{
562	struct frame_tail buftail;
563
564	/* Also check accessibility of one struct frame_tail beyond */
565	if (!access_ok(VERIFY_READ, tail, sizeof(buftail)))
566		return NULL;
567	if (__copy_from_user_inatomic(&buftail, tail, sizeof(buftail)))
568		return NULL;
569
570	perf_callchain_store(entry, buftail.lr);
571
572	/*
573	 * Frame pointers should strictly progress back up the stack
574	 * (towards higher addresses).
575	 */
576	if (tail + 1 >= buftail.fp)
577		return NULL;
578
579	return buftail.fp - 1;
580}
581
582void
583perf_callchain_user(struct perf_callchain_entry *entry, struct pt_regs *regs)
584{
585	struct frame_tail __user *tail;
586
587	if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
588		/* We don't support guest os callchain now */
589		return;
590	}
591
592	perf_callchain_store(entry, regs->ARM_pc);
593	tail = (struct frame_tail __user *)regs->ARM_fp - 1;
594
595	while ((entry->nr < PERF_MAX_STACK_DEPTH) &&
596	       tail && !((unsigned long)tail & 0x3))
597		tail = user_backtrace(tail, entry);
598}
599
600/*
601 * Gets called by walk_stackframe() for every stackframe. This will be called
602 * whist unwinding the stackframe and is like a subroutine return so we use
603 * the PC.
604 */
605static int
606callchain_trace(struct stackframe *fr,
607		void *data)
608{
609	struct perf_callchain_entry *entry = data;
610	perf_callchain_store(entry, fr->pc);
611	return 0;
612}
613
614void
615perf_callchain_kernel(struct perf_callchain_entry *entry, struct pt_regs *regs)
616{
617	struct stackframe fr;
618
619	if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
620		/* We don't support guest os callchain now */
621		return;
622	}
623
624	fr.fp = regs->ARM_fp;
625	fr.sp = regs->ARM_sp;
626	fr.lr = regs->ARM_lr;
627	fr.pc = regs->ARM_pc;
628	walk_stackframe(&fr, callchain_trace, entry);
629}
630
631unsigned long perf_instruction_pointer(struct pt_regs *regs)
632{
633	if (perf_guest_cbs && perf_guest_cbs->is_in_guest())
634		return perf_guest_cbs->get_guest_ip();
635
636	return instruction_pointer(regs);
637}
638
639unsigned long perf_misc_flags(struct pt_regs *regs)
640{
641	int misc = 0;
642
643	if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
644		if (perf_guest_cbs->is_user_mode())
645			misc |= PERF_RECORD_MISC_GUEST_USER;
646		else
647			misc |= PERF_RECORD_MISC_GUEST_KERNEL;
648	} else {
649		if (user_mode(regs))
650			misc |= PERF_RECORD_MISC_USER;
651		else
652			misc |= PERF_RECORD_MISC_KERNEL;
653	}
654
655	return misc;
656}
657