ptrace.c revision 8130b9d7b9d858aa04ce67805e8951e3cb6e9b2f
1/*
2 *  linux/arch/arm/kernel/ptrace.c
3 *
4 *  By Ross Biro 1/23/92
5 * edited by Linus Torvalds
6 * ARM modifications Copyright (C) 2000 Russell King
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
11 */
12#include <linux/kernel.h>
13#include <linux/sched.h>
14#include <linux/mm.h>
15#include <linux/elf.h>
16#include <linux/smp.h>
17#include <linux/ptrace.h>
18#include <linux/user.h>
19#include <linux/security.h>
20#include <linux/init.h>
21#include <linux/signal.h>
22#include <linux/uaccess.h>
23#include <linux/perf_event.h>
24#include <linux/hw_breakpoint.h>
25#include <linux/regset.h>
26
27#include <asm/pgtable.h>
28#include <asm/system.h>
29#include <asm/traps.h>
30
31#define REG_PC	15
32#define REG_PSR	16
33/*
34 * does not yet catch signals sent when the child dies.
35 * in exit.c or in signal.c.
36 */
37
38#if 0
39/*
40 * Breakpoint SWI instruction: SWI &9F0001
41 */
42#define BREAKINST_ARM	0xef9f0001
43#define BREAKINST_THUMB	0xdf00		/* fill this in later */
44#else
45/*
46 * New breakpoints - use an undefined instruction.  The ARM architecture
47 * reference manual guarantees that the following instruction space
48 * will produce an undefined instruction exception on all CPUs:
49 *
50 *  ARM:   xxxx 0111 1111 xxxx xxxx xxxx 1111 xxxx
51 *  Thumb: 1101 1110 xxxx xxxx
52 */
53#define BREAKINST_ARM	0xe7f001f0
54#define BREAKINST_THUMB	0xde01
55#endif
56
57struct pt_regs_offset {
58	const char *name;
59	int offset;
60};
61
62#define REG_OFFSET_NAME(r) \
63	{.name = #r, .offset = offsetof(struct pt_regs, ARM_##r)}
64#define REG_OFFSET_END {.name = NULL, .offset = 0}
65
66static const struct pt_regs_offset regoffset_table[] = {
67	REG_OFFSET_NAME(r0),
68	REG_OFFSET_NAME(r1),
69	REG_OFFSET_NAME(r2),
70	REG_OFFSET_NAME(r3),
71	REG_OFFSET_NAME(r4),
72	REG_OFFSET_NAME(r5),
73	REG_OFFSET_NAME(r6),
74	REG_OFFSET_NAME(r7),
75	REG_OFFSET_NAME(r8),
76	REG_OFFSET_NAME(r9),
77	REG_OFFSET_NAME(r10),
78	REG_OFFSET_NAME(fp),
79	REG_OFFSET_NAME(ip),
80	REG_OFFSET_NAME(sp),
81	REG_OFFSET_NAME(lr),
82	REG_OFFSET_NAME(pc),
83	REG_OFFSET_NAME(cpsr),
84	REG_OFFSET_NAME(ORIG_r0),
85	REG_OFFSET_END,
86};
87
88/**
89 * regs_query_register_offset() - query register offset from its name
90 * @name:	the name of a register
91 *
92 * regs_query_register_offset() returns the offset of a register in struct
93 * pt_regs from its name. If the name is invalid, this returns -EINVAL;
94 */
95int regs_query_register_offset(const char *name)
96{
97	const struct pt_regs_offset *roff;
98	for (roff = regoffset_table; roff->name != NULL; roff++)
99		if (!strcmp(roff->name, name))
100			return roff->offset;
101	return -EINVAL;
102}
103
104/**
105 * regs_query_register_name() - query register name from its offset
106 * @offset:	the offset of a register in struct pt_regs.
107 *
108 * regs_query_register_name() returns the name of a register from its
109 * offset in struct pt_regs. If the @offset is invalid, this returns NULL;
110 */
111const char *regs_query_register_name(unsigned int offset)
112{
113	const struct pt_regs_offset *roff;
114	for (roff = regoffset_table; roff->name != NULL; roff++)
115		if (roff->offset == offset)
116			return roff->name;
117	return NULL;
118}
119
120/**
121 * regs_within_kernel_stack() - check the address in the stack
122 * @regs:      pt_regs which contains kernel stack pointer.
123 * @addr:      address which is checked.
124 *
125 * regs_within_kernel_stack() checks @addr is within the kernel stack page(s).
126 * If @addr is within the kernel stack, it returns true. If not, returns false.
127 */
128bool regs_within_kernel_stack(struct pt_regs *regs, unsigned long addr)
129{
130	return ((addr & ~(THREAD_SIZE - 1))  ==
131		(kernel_stack_pointer(regs) & ~(THREAD_SIZE - 1)));
132}
133
134/**
135 * regs_get_kernel_stack_nth() - get Nth entry of the stack
136 * @regs:	pt_regs which contains kernel stack pointer.
137 * @n:		stack entry number.
138 *
139 * regs_get_kernel_stack_nth() returns @n th entry of the kernel stack which
140 * is specified by @regs. If the @n th entry is NOT in the kernel stack,
141 * this returns 0.
142 */
143unsigned long regs_get_kernel_stack_nth(struct pt_regs *regs, unsigned int n)
144{
145	unsigned long *addr = (unsigned long *)kernel_stack_pointer(regs);
146	addr += n;
147	if (regs_within_kernel_stack(regs, (unsigned long)addr))
148		return *addr;
149	else
150		return 0;
151}
152
153/*
154 * this routine will get a word off of the processes privileged stack.
155 * the offset is how far from the base addr as stored in the THREAD.
156 * this routine assumes that all the privileged stacks are in our
157 * data space.
158 */
159static inline long get_user_reg(struct task_struct *task, int offset)
160{
161	return task_pt_regs(task)->uregs[offset];
162}
163
164/*
165 * this routine will put a word on the processes privileged stack.
166 * the offset is how far from the base addr as stored in the THREAD.
167 * this routine assumes that all the privileged stacks are in our
168 * data space.
169 */
170static inline int
171put_user_reg(struct task_struct *task, int offset, long data)
172{
173	struct pt_regs newregs, *regs = task_pt_regs(task);
174	int ret = -EINVAL;
175
176	newregs = *regs;
177	newregs.uregs[offset] = data;
178
179	if (valid_user_regs(&newregs)) {
180		regs->uregs[offset] = data;
181		ret = 0;
182	}
183
184	return ret;
185}
186
187/*
188 * Called by kernel/ptrace.c when detaching..
189 */
190void ptrace_disable(struct task_struct *child)
191{
192	/* Nothing to do. */
193}
194
195/*
196 * Handle hitting a breakpoint.
197 */
198void ptrace_break(struct task_struct *tsk, struct pt_regs *regs)
199{
200	siginfo_t info;
201
202	info.si_signo = SIGTRAP;
203	info.si_errno = 0;
204	info.si_code  = TRAP_BRKPT;
205	info.si_addr  = (void __user *)instruction_pointer(regs);
206
207	force_sig_info(SIGTRAP, &info, tsk);
208}
209
210static int break_trap(struct pt_regs *regs, unsigned int instr)
211{
212	ptrace_break(current, regs);
213	return 0;
214}
215
216static struct undef_hook arm_break_hook = {
217	.instr_mask	= 0x0fffffff,
218	.instr_val	= 0x07f001f0,
219	.cpsr_mask	= PSR_T_BIT,
220	.cpsr_val	= 0,
221	.fn		= break_trap,
222};
223
224static struct undef_hook thumb_break_hook = {
225	.instr_mask	= 0xffff,
226	.instr_val	= 0xde01,
227	.cpsr_mask	= PSR_T_BIT,
228	.cpsr_val	= PSR_T_BIT,
229	.fn		= break_trap,
230};
231
232static struct undef_hook thumb2_break_hook = {
233	.instr_mask	= 0xffffffff,
234	.instr_val	= 0xf7f0a000,
235	.cpsr_mask	= PSR_T_BIT,
236	.cpsr_val	= PSR_T_BIT,
237	.fn		= break_trap,
238};
239
240static int __init ptrace_break_init(void)
241{
242	register_undef_hook(&arm_break_hook);
243	register_undef_hook(&thumb_break_hook);
244	register_undef_hook(&thumb2_break_hook);
245	return 0;
246}
247
248core_initcall(ptrace_break_init);
249
250/*
251 * Read the word at offset "off" into the "struct user".  We
252 * actually access the pt_regs stored on the kernel stack.
253 */
254static int ptrace_read_user(struct task_struct *tsk, unsigned long off,
255			    unsigned long __user *ret)
256{
257	unsigned long tmp;
258
259	if (off & 3 || off >= sizeof(struct user))
260		return -EIO;
261
262	tmp = 0;
263	if (off == PT_TEXT_ADDR)
264		tmp = tsk->mm->start_code;
265	else if (off == PT_DATA_ADDR)
266		tmp = tsk->mm->start_data;
267	else if (off == PT_TEXT_END_ADDR)
268		tmp = tsk->mm->end_code;
269	else if (off < sizeof(struct pt_regs))
270		tmp = get_user_reg(tsk, off >> 2);
271
272	return put_user(tmp, ret);
273}
274
275/*
276 * Write the word at offset "off" into "struct user".  We
277 * actually access the pt_regs stored on the kernel stack.
278 */
279static int ptrace_write_user(struct task_struct *tsk, unsigned long off,
280			     unsigned long val)
281{
282	if (off & 3 || off >= sizeof(struct user))
283		return -EIO;
284
285	if (off >= sizeof(struct pt_regs))
286		return 0;
287
288	return put_user_reg(tsk, off >> 2, val);
289}
290
291#ifdef CONFIG_IWMMXT
292
293/*
294 * Get the child iWMMXt state.
295 */
296static int ptrace_getwmmxregs(struct task_struct *tsk, void __user *ufp)
297{
298	struct thread_info *thread = task_thread_info(tsk);
299
300	if (!test_ti_thread_flag(thread, TIF_USING_IWMMXT))
301		return -ENODATA;
302	iwmmxt_task_disable(thread);  /* force it to ram */
303	return copy_to_user(ufp, &thread->fpstate.iwmmxt, IWMMXT_SIZE)
304		? -EFAULT : 0;
305}
306
307/*
308 * Set the child iWMMXt state.
309 */
310static int ptrace_setwmmxregs(struct task_struct *tsk, void __user *ufp)
311{
312	struct thread_info *thread = task_thread_info(tsk);
313
314	if (!test_ti_thread_flag(thread, TIF_USING_IWMMXT))
315		return -EACCES;
316	iwmmxt_task_release(thread);  /* force a reload */
317	return copy_from_user(&thread->fpstate.iwmmxt, ufp, IWMMXT_SIZE)
318		? -EFAULT : 0;
319}
320
321#endif
322
323#ifdef CONFIG_CRUNCH
324/*
325 * Get the child Crunch state.
326 */
327static int ptrace_getcrunchregs(struct task_struct *tsk, void __user *ufp)
328{
329	struct thread_info *thread = task_thread_info(tsk);
330
331	crunch_task_disable(thread);  /* force it to ram */
332	return copy_to_user(ufp, &thread->crunchstate, CRUNCH_SIZE)
333		? -EFAULT : 0;
334}
335
336/*
337 * Set the child Crunch state.
338 */
339static int ptrace_setcrunchregs(struct task_struct *tsk, void __user *ufp)
340{
341	struct thread_info *thread = task_thread_info(tsk);
342
343	crunch_task_release(thread);  /* force a reload */
344	return copy_from_user(&thread->crunchstate, ufp, CRUNCH_SIZE)
345		? -EFAULT : 0;
346}
347#endif
348
349#ifdef CONFIG_HAVE_HW_BREAKPOINT
350/*
351 * Convert a virtual register number into an index for a thread_info
352 * breakpoint array. Breakpoints are identified using positive numbers
353 * whilst watchpoints are negative. The registers are laid out as pairs
354 * of (address, control), each pair mapping to a unique hw_breakpoint struct.
355 * Register 0 is reserved for describing resource information.
356 */
357static int ptrace_hbp_num_to_idx(long num)
358{
359	if (num < 0)
360		num = (ARM_MAX_BRP << 1) - num;
361	return (num - 1) >> 1;
362}
363
364/*
365 * Returns the virtual register number for the address of the
366 * breakpoint at index idx.
367 */
368static long ptrace_hbp_idx_to_num(int idx)
369{
370	long mid = ARM_MAX_BRP << 1;
371	long num = (idx << 1) + 1;
372	return num > mid ? mid - num : num;
373}
374
375/*
376 * Handle hitting a HW-breakpoint.
377 */
378static void ptrace_hbptriggered(struct perf_event *bp,
379				     struct perf_sample_data *data,
380				     struct pt_regs *regs)
381{
382	struct arch_hw_breakpoint *bkpt = counter_arch_bp(bp);
383	long num;
384	int i;
385	siginfo_t info;
386
387	for (i = 0; i < ARM_MAX_HBP_SLOTS; ++i)
388		if (current->thread.debug.hbp[i] == bp)
389			break;
390
391	num = (i == ARM_MAX_HBP_SLOTS) ? 0 : ptrace_hbp_idx_to_num(i);
392
393	info.si_signo	= SIGTRAP;
394	info.si_errno	= (int)num;
395	info.si_code	= TRAP_HWBKPT;
396	info.si_addr	= (void __user *)(bkpt->trigger);
397
398	force_sig_info(SIGTRAP, &info, current);
399}
400
401/*
402 * Set ptrace breakpoint pointers to zero for this task.
403 * This is required in order to prevent child processes from unregistering
404 * breakpoints held by their parent.
405 */
406void clear_ptrace_hw_breakpoint(struct task_struct *tsk)
407{
408	memset(tsk->thread.debug.hbp, 0, sizeof(tsk->thread.debug.hbp));
409}
410
411/*
412 * Unregister breakpoints from this task and reset the pointers in
413 * the thread_struct.
414 */
415void flush_ptrace_hw_breakpoint(struct task_struct *tsk)
416{
417	int i;
418	struct thread_struct *t = &tsk->thread;
419
420	for (i = 0; i < ARM_MAX_HBP_SLOTS; i++) {
421		if (t->debug.hbp[i]) {
422			unregister_hw_breakpoint(t->debug.hbp[i]);
423			t->debug.hbp[i] = NULL;
424		}
425	}
426}
427
428static u32 ptrace_get_hbp_resource_info(void)
429{
430	u8 num_brps, num_wrps, debug_arch, wp_len;
431	u32 reg = 0;
432
433	num_brps	= hw_breakpoint_slots(TYPE_INST);
434	num_wrps	= hw_breakpoint_slots(TYPE_DATA);
435	debug_arch	= arch_get_debug_arch();
436	wp_len		= arch_get_max_wp_len();
437
438	reg		|= debug_arch;
439	reg		<<= 8;
440	reg		|= wp_len;
441	reg		<<= 8;
442	reg		|= num_wrps;
443	reg		<<= 8;
444	reg		|= num_brps;
445
446	return reg;
447}
448
449static struct perf_event *ptrace_hbp_create(struct task_struct *tsk, int type)
450{
451	struct perf_event_attr attr;
452
453	ptrace_breakpoint_init(&attr);
454
455	/* Initialise fields to sane defaults. */
456	attr.bp_addr	= 0;
457	attr.bp_len	= HW_BREAKPOINT_LEN_4;
458	attr.bp_type	= type;
459	attr.disabled	= 1;
460
461	return register_user_hw_breakpoint(&attr, ptrace_hbptriggered, NULL,
462					   tsk);
463}
464
465static int ptrace_gethbpregs(struct task_struct *tsk, long num,
466			     unsigned long  __user *data)
467{
468	u32 reg;
469	int idx, ret = 0;
470	struct perf_event *bp;
471	struct arch_hw_breakpoint_ctrl arch_ctrl;
472
473	if (num == 0) {
474		reg = ptrace_get_hbp_resource_info();
475	} else {
476		idx = ptrace_hbp_num_to_idx(num);
477		if (idx < 0 || idx >= ARM_MAX_HBP_SLOTS) {
478			ret = -EINVAL;
479			goto out;
480		}
481
482		bp = tsk->thread.debug.hbp[idx];
483		if (!bp) {
484			reg = 0;
485			goto put;
486		}
487
488		arch_ctrl = counter_arch_bp(bp)->ctrl;
489
490		/*
491		 * Fix up the len because we may have adjusted it
492		 * to compensate for an unaligned address.
493		 */
494		while (!(arch_ctrl.len & 0x1))
495			arch_ctrl.len >>= 1;
496
497		if (num & 0x1)
498			reg = bp->attr.bp_addr;
499		else
500			reg = encode_ctrl_reg(arch_ctrl);
501	}
502
503put:
504	if (put_user(reg, data))
505		ret = -EFAULT;
506
507out:
508	return ret;
509}
510
511static int ptrace_sethbpregs(struct task_struct *tsk, long num,
512			     unsigned long __user *data)
513{
514	int idx, gen_len, gen_type, implied_type, ret = 0;
515	u32 user_val;
516	struct perf_event *bp;
517	struct arch_hw_breakpoint_ctrl ctrl;
518	struct perf_event_attr attr;
519
520	if (num == 0)
521		goto out;
522	else if (num < 0)
523		implied_type = HW_BREAKPOINT_RW;
524	else
525		implied_type = HW_BREAKPOINT_X;
526
527	idx = ptrace_hbp_num_to_idx(num);
528	if (idx < 0 || idx >= ARM_MAX_HBP_SLOTS) {
529		ret = -EINVAL;
530		goto out;
531	}
532
533	if (get_user(user_val, data)) {
534		ret = -EFAULT;
535		goto out;
536	}
537
538	bp = tsk->thread.debug.hbp[idx];
539	if (!bp) {
540		bp = ptrace_hbp_create(tsk, implied_type);
541		if (IS_ERR(bp)) {
542			ret = PTR_ERR(bp);
543			goto out;
544		}
545		tsk->thread.debug.hbp[idx] = bp;
546	}
547
548	attr = bp->attr;
549
550	if (num & 0x1) {
551		/* Address */
552		attr.bp_addr	= user_val;
553	} else {
554		/* Control */
555		decode_ctrl_reg(user_val, &ctrl);
556		ret = arch_bp_generic_fields(ctrl, &gen_len, &gen_type);
557		if (ret)
558			goto out;
559
560		if ((gen_type & implied_type) != gen_type) {
561			ret = -EINVAL;
562			goto out;
563		}
564
565		attr.bp_len	= gen_len;
566		attr.bp_type	= gen_type;
567		attr.disabled	= !ctrl.enabled;
568	}
569
570	ret = modify_user_hw_breakpoint(bp, &attr);
571out:
572	return ret;
573}
574#endif
575
576/* regset get/set implementations */
577
578static int gpr_get(struct task_struct *target,
579		   const struct user_regset *regset,
580		   unsigned int pos, unsigned int count,
581		   void *kbuf, void __user *ubuf)
582{
583	struct pt_regs *regs = task_pt_regs(target);
584
585	return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
586				   regs,
587				   0, sizeof(*regs));
588}
589
590static int gpr_set(struct task_struct *target,
591		   const struct user_regset *regset,
592		   unsigned int pos, unsigned int count,
593		   const void *kbuf, const void __user *ubuf)
594{
595	int ret;
596	struct pt_regs newregs;
597
598	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
599				 &newregs,
600				 0, sizeof(newregs));
601	if (ret)
602		return ret;
603
604	if (!valid_user_regs(&newregs))
605		return -EINVAL;
606
607	*task_pt_regs(target) = newregs;
608	return 0;
609}
610
611static int fpa_get(struct task_struct *target,
612		   const struct user_regset *regset,
613		   unsigned int pos, unsigned int count,
614		   void *kbuf, void __user *ubuf)
615{
616	return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
617				   &task_thread_info(target)->fpstate,
618				   0, sizeof(struct user_fp));
619}
620
621static int fpa_set(struct task_struct *target,
622		   const struct user_regset *regset,
623		   unsigned int pos, unsigned int count,
624		   const void *kbuf, const void __user *ubuf)
625{
626	struct thread_info *thread = task_thread_info(target);
627
628	thread->used_cp[1] = thread->used_cp[2] = 1;
629
630	return user_regset_copyin(&pos, &count, &kbuf, &ubuf,
631		&thread->fpstate,
632		0, sizeof(struct user_fp));
633}
634
635#ifdef CONFIG_VFP
636/*
637 * VFP register get/set implementations.
638 *
639 * With respect to the kernel, struct user_fp is divided into three chunks:
640 * 16 or 32 real VFP registers (d0-d15 or d0-31)
641 *	These are transferred to/from the real registers in the task's
642 *	vfp_hard_struct.  The number of registers depends on the kernel
643 *	configuration.
644 *
645 * 16 or 0 fake VFP registers (d16-d31 or empty)
646 *	i.e., the user_vfp structure has space for 32 registers even if
647 *	the kernel doesn't have them all.
648 *
649 *	vfp_get() reads this chunk as zero where applicable
650 *	vfp_set() ignores this chunk
651 *
652 * 1 word for the FPSCR
653 *
654 * The bounds-checking logic built into user_regset_copyout and friends
655 * means that we can make a simple sequence of calls to map the relevant data
656 * to/from the specified slice of the user regset structure.
657 */
658static int vfp_get(struct task_struct *target,
659		   const struct user_regset *regset,
660		   unsigned int pos, unsigned int count,
661		   void *kbuf, void __user *ubuf)
662{
663	int ret;
664	struct thread_info *thread = task_thread_info(target);
665	struct vfp_hard_struct const *vfp = &thread->vfpstate.hard;
666	const size_t user_fpregs_offset = offsetof(struct user_vfp, fpregs);
667	const size_t user_fpscr_offset = offsetof(struct user_vfp, fpscr);
668
669	vfp_sync_hwstate(thread);
670
671	ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
672				  &vfp->fpregs,
673				  user_fpregs_offset,
674				  user_fpregs_offset + sizeof(vfp->fpregs));
675	if (ret)
676		return ret;
677
678	ret = user_regset_copyout_zero(&pos, &count, &kbuf, &ubuf,
679				       user_fpregs_offset + sizeof(vfp->fpregs),
680				       user_fpscr_offset);
681	if (ret)
682		return ret;
683
684	return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
685				   &vfp->fpscr,
686				   user_fpscr_offset,
687				   user_fpscr_offset + sizeof(vfp->fpscr));
688}
689
690/*
691 * For vfp_set() a read-modify-write is done on the VFP registers,
692 * in order to avoid writing back a half-modified set of registers on
693 * failure.
694 */
695static int vfp_set(struct task_struct *target,
696			  const struct user_regset *regset,
697			  unsigned int pos, unsigned int count,
698			  const void *kbuf, const void __user *ubuf)
699{
700	int ret;
701	struct thread_info *thread = task_thread_info(target);
702	struct vfp_hard_struct new_vfp;
703	const size_t user_fpregs_offset = offsetof(struct user_vfp, fpregs);
704	const size_t user_fpscr_offset = offsetof(struct user_vfp, fpscr);
705
706	vfp_sync_hwstate(thread);
707	new_vfp = thread->vfpstate.hard;
708
709	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
710				  &new_vfp.fpregs,
711				  user_fpregs_offset,
712				  user_fpregs_offset + sizeof(new_vfp.fpregs));
713	if (ret)
714		return ret;
715
716	ret = user_regset_copyin_ignore(&pos, &count, &kbuf, &ubuf,
717				user_fpregs_offset + sizeof(new_vfp.fpregs),
718				user_fpscr_offset);
719	if (ret)
720		return ret;
721
722	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
723				 &new_vfp.fpscr,
724				 user_fpscr_offset,
725				 user_fpscr_offset + sizeof(new_vfp.fpscr));
726	if (ret)
727		return ret;
728
729	vfp_flush_hwstate(thread);
730	thread->vfpstate.hard = new_vfp;
731
732	return 0;
733}
734#endif /* CONFIG_VFP */
735
736enum arm_regset {
737	REGSET_GPR,
738	REGSET_FPR,
739#ifdef CONFIG_VFP
740	REGSET_VFP,
741#endif
742};
743
744static const struct user_regset arm_regsets[] = {
745	[REGSET_GPR] = {
746		.core_note_type = NT_PRSTATUS,
747		.n = ELF_NGREG,
748		.size = sizeof(u32),
749		.align = sizeof(u32),
750		.get = gpr_get,
751		.set = gpr_set
752	},
753	[REGSET_FPR] = {
754		/*
755		 * For the FPA regs in fpstate, the real fields are a mixture
756		 * of sizes, so pretend that the registers are word-sized:
757		 */
758		.core_note_type = NT_PRFPREG,
759		.n = sizeof(struct user_fp) / sizeof(u32),
760		.size = sizeof(u32),
761		.align = sizeof(u32),
762		.get = fpa_get,
763		.set = fpa_set
764	},
765#ifdef CONFIG_VFP
766	[REGSET_VFP] = {
767		/*
768		 * Pretend that the VFP regs are word-sized, since the FPSCR is
769		 * a single word dangling at the end of struct user_vfp:
770		 */
771		.core_note_type = NT_ARM_VFP,
772		.n = ARM_VFPREGS_SIZE / sizeof(u32),
773		.size = sizeof(u32),
774		.align = sizeof(u32),
775		.get = vfp_get,
776		.set = vfp_set
777	},
778#endif /* CONFIG_VFP */
779};
780
781static const struct user_regset_view user_arm_view = {
782	.name = "arm", .e_machine = ELF_ARCH, .ei_osabi = ELF_OSABI,
783	.regsets = arm_regsets, .n = ARRAY_SIZE(arm_regsets)
784};
785
786const struct user_regset_view *task_user_regset_view(struct task_struct *task)
787{
788	return &user_arm_view;
789}
790
791long arch_ptrace(struct task_struct *child, long request,
792		 unsigned long addr, unsigned long data)
793{
794	int ret;
795	unsigned long __user *datap = (unsigned long __user *) data;
796
797	switch (request) {
798		case PTRACE_PEEKUSR:
799			ret = ptrace_read_user(child, addr, datap);
800			break;
801
802		case PTRACE_POKEUSR:
803			ret = ptrace_write_user(child, addr, data);
804			break;
805
806		case PTRACE_GETREGS:
807			ret = copy_regset_to_user(child,
808						  &user_arm_view, REGSET_GPR,
809						  0, sizeof(struct pt_regs),
810						  datap);
811			break;
812
813		case PTRACE_SETREGS:
814			ret = copy_regset_from_user(child,
815						    &user_arm_view, REGSET_GPR,
816						    0, sizeof(struct pt_regs),
817						    datap);
818			break;
819
820		case PTRACE_GETFPREGS:
821			ret = copy_regset_to_user(child,
822						  &user_arm_view, REGSET_FPR,
823						  0, sizeof(union fp_state),
824						  datap);
825			break;
826
827		case PTRACE_SETFPREGS:
828			ret = copy_regset_from_user(child,
829						    &user_arm_view, REGSET_FPR,
830						    0, sizeof(union fp_state),
831						    datap);
832			break;
833
834#ifdef CONFIG_IWMMXT
835		case PTRACE_GETWMMXREGS:
836			ret = ptrace_getwmmxregs(child, datap);
837			break;
838
839		case PTRACE_SETWMMXREGS:
840			ret = ptrace_setwmmxregs(child, datap);
841			break;
842#endif
843
844		case PTRACE_GET_THREAD_AREA:
845			ret = put_user(task_thread_info(child)->tp_value,
846				       datap);
847			break;
848
849		case PTRACE_SET_SYSCALL:
850			task_thread_info(child)->syscall = data;
851			ret = 0;
852			break;
853
854#ifdef CONFIG_CRUNCH
855		case PTRACE_GETCRUNCHREGS:
856			ret = ptrace_getcrunchregs(child, datap);
857			break;
858
859		case PTRACE_SETCRUNCHREGS:
860			ret = ptrace_setcrunchregs(child, datap);
861			break;
862#endif
863
864#ifdef CONFIG_VFP
865		case PTRACE_GETVFPREGS:
866			ret = copy_regset_to_user(child,
867						  &user_arm_view, REGSET_VFP,
868						  0, ARM_VFPREGS_SIZE,
869						  datap);
870			break;
871
872		case PTRACE_SETVFPREGS:
873			ret = copy_regset_from_user(child,
874						    &user_arm_view, REGSET_VFP,
875						    0, ARM_VFPREGS_SIZE,
876						    datap);
877			break;
878#endif
879
880#ifdef CONFIG_HAVE_HW_BREAKPOINT
881		case PTRACE_GETHBPREGS:
882			if (ptrace_get_breakpoints(child) < 0)
883				return -ESRCH;
884
885			ret = ptrace_gethbpregs(child, addr,
886						(unsigned long __user *)data);
887			ptrace_put_breakpoints(child);
888			break;
889		case PTRACE_SETHBPREGS:
890			if (ptrace_get_breakpoints(child) < 0)
891				return -ESRCH;
892
893			ret = ptrace_sethbpregs(child, addr,
894						(unsigned long __user *)data);
895			ptrace_put_breakpoints(child);
896			break;
897#endif
898
899		default:
900			ret = ptrace_request(child, request, addr, data);
901			break;
902	}
903
904	return ret;
905}
906
907asmlinkage int syscall_trace(int why, struct pt_regs *regs, int scno)
908{
909	unsigned long ip;
910
911	/*
912	 * Save IP.  IP is used to denote syscall entry/exit:
913	 *  IP = 0 -> entry, = 1 -> exit
914	 */
915	ip = regs->ARM_ip;
916	regs->ARM_ip = why;
917
918	if (!ip)
919		audit_syscall_exit(regs);
920	else
921		audit_syscall_entry(AUDIT_ARCH_ARMEB, scno, regs->ARM_r0,
922				    regs->ARM_r1, regs->ARM_r2, regs->ARM_r3);
923
924	if (!test_thread_flag(TIF_SYSCALL_TRACE))
925		return scno;
926	if (!(current->ptrace & PT_PTRACED))
927		return scno;
928
929	current_thread_info()->syscall = scno;
930
931	/* the 0x80 provides a way for the tracing parent to distinguish
932	   between a syscall stop and SIGTRAP delivery */
933	ptrace_notify(SIGTRAP | ((current->ptrace & PT_TRACESYSGOOD)
934				 ? 0x80 : 0));
935	/*
936	 * this isn't the same as continuing with a signal, but it will do
937	 * for normal use.  strace only continues with a signal if the
938	 * stopping signal is not SIGTRAP.  -brl
939	 */
940	if (current->exit_code) {
941		send_sig(current->exit_code, current, 1);
942		current->exit_code = 0;
943	}
944	regs->ARM_ip = ip;
945
946	return current_thread_info()->syscall;
947}
948