setup.c revision 3a920accbb5f88d753ab5a6a47d0dd48b6269f84
1/*
2 * arch/blackfin/kernel/setup.c
3 *
4 * Copyright 2004-2006 Analog Devices Inc.
5 *
6 * Enter bugs at http://blackfin.uclinux.org/
7 *
8 * Licensed under the GPL-2 or later.
9 */
10
11#include <linux/delay.h>
12#include <linux/console.h>
13#include <linux/bootmem.h>
14#include <linux/seq_file.h>
15#include <linux/cpu.h>
16#include <linux/mm.h>
17#include <linux/module.h>
18#include <linux/tty.h>
19#include <linux/pfn.h>
20
21#ifdef CONFIG_MTD_UCLINUX
22#include <linux/mtd/map.h>
23#include <linux/ext2_fs.h>
24#include <linux/cramfs_fs.h>
25#include <linux/romfs_fs.h>
26#endif
27
28#include <asm/cplb.h>
29#include <asm/cacheflush.h>
30#include <asm/blackfin.h>
31#include <asm/cplbinit.h>
32#include <asm/div64.h>
33#include <asm/cpu.h>
34#include <asm/fixed_code.h>
35#include <asm/early_printk.h>
36
37u16 _bfin_swrst;
38EXPORT_SYMBOL(_bfin_swrst);
39
40unsigned long memory_start, memory_end, physical_mem_end;
41unsigned long _rambase, _ramstart, _ramend;
42unsigned long reserved_mem_dcache_on;
43unsigned long reserved_mem_icache_on;
44EXPORT_SYMBOL(memory_start);
45EXPORT_SYMBOL(memory_end);
46EXPORT_SYMBOL(physical_mem_end);
47EXPORT_SYMBOL(_ramend);
48EXPORT_SYMBOL(reserved_mem_dcache_on);
49
50#ifdef CONFIG_MTD_UCLINUX
51extern struct map_info uclinux_ram_map;
52unsigned long memory_mtd_end, memory_mtd_start, mtd_size;
53unsigned long _ebss;
54EXPORT_SYMBOL(memory_mtd_end);
55EXPORT_SYMBOL(memory_mtd_start);
56EXPORT_SYMBOL(mtd_size);
57#endif
58
59char __initdata command_line[COMMAND_LINE_SIZE];
60void __initdata *init_retx, *init_saved_retx, *init_saved_seqstat,
61	*init_saved_icplb_fault_addr, *init_saved_dcplb_fault_addr;
62
63/* boot memmap, for parsing "memmap=" */
64#define BFIN_MEMMAP_MAX		128 /* number of entries in bfin_memmap */
65#define BFIN_MEMMAP_RAM		1
66#define BFIN_MEMMAP_RESERVED	2
67static struct bfin_memmap {
68	int nr_map;
69	struct bfin_memmap_entry {
70		unsigned long long addr; /* start of memory segment */
71		unsigned long long size;
72		unsigned long type;
73	} map[BFIN_MEMMAP_MAX];
74} bfin_memmap __initdata;
75
76/* for memmap sanitization */
77struct change_member {
78	struct bfin_memmap_entry *pentry; /* pointer to original entry */
79	unsigned long long addr; /* address for this change point */
80};
81static struct change_member change_point_list[2*BFIN_MEMMAP_MAX] __initdata;
82static struct change_member *change_point[2*BFIN_MEMMAP_MAX] __initdata;
83static struct bfin_memmap_entry *overlap_list[BFIN_MEMMAP_MAX] __initdata;
84static struct bfin_memmap_entry new_map[BFIN_MEMMAP_MAX] __initdata;
85
86DEFINE_PER_CPU(struct blackfin_cpudata, cpu_data);
87
88static int early_init_clkin_hz(char *buf);
89
90#if defined(CONFIG_BFIN_DCACHE) || defined(CONFIG_BFIN_ICACHE)
91void __init generate_cplb_tables(void)
92{
93	unsigned int cpu;
94
95	generate_cplb_tables_all();
96	/* Generate per-CPU I&D CPLB tables */
97	for (cpu = 0; cpu < num_possible_cpus(); ++cpu)
98		generate_cplb_tables_cpu(cpu);
99}
100#endif
101
102void __cpuinit bfin_setup_caches(unsigned int cpu)
103{
104#ifdef CONFIG_BFIN_ICACHE
105	bfin_icache_init(icplb_tbl[cpu]);
106#endif
107
108#ifdef CONFIG_BFIN_DCACHE
109	bfin_dcache_init(dcplb_tbl[cpu]);
110#endif
111
112	/*
113	 * In cache coherence emulation mode, we need to have the
114	 * D-cache enabled before running any atomic operation which
115	 * might invove cache invalidation (i.e. spinlock, rwlock).
116	 * So printk's are deferred until then.
117	 */
118#ifdef CONFIG_BFIN_ICACHE
119	printk(KERN_INFO "Instruction Cache Enabled for CPU%u\n", cpu);
120	printk(KERN_INFO "  External memory:"
121# ifdef CONFIG_BFIN_EXTMEM_ICACHEABLE
122	       " cacheable"
123# else
124	       " uncacheable"
125# endif
126	       " in instruction cache\n");
127	if (L2_LENGTH)
128		printk(KERN_INFO "  L2 SRAM        :"
129# ifdef CONFIG_BFIN_L2_ICACHEABLE
130		       " cacheable"
131# else
132		       " uncacheable"
133# endif
134		       " in instruction cache\n");
135
136#else
137	printk(KERN_INFO "Instruction Cache Disabled for CPU%u\n", cpu);
138#endif
139
140#ifdef CONFIG_BFIN_DCACHE
141	printk(KERN_INFO "Data Cache Enabled for CPU%u\n", cpu);
142	printk(KERN_INFO "  External memory:"
143# if defined CONFIG_BFIN_EXTMEM_WRITEBACK
144	       " cacheable (write-back)"
145# elif defined CONFIG_BFIN_EXTMEM_WRITETHROUGH
146	       " cacheable (write-through)"
147# else
148	       " uncacheable"
149# endif
150	       " in data cache\n");
151	if (L2_LENGTH)
152		printk(KERN_INFO "  L2 SRAM        :"
153# if defined CONFIG_BFIN_L2_WRITEBACK
154		       " cacheable (write-back)"
155# elif defined CONFIG_BFIN_L2_WRITETHROUGH
156		       " cacheable (write-through)"
157# else
158		       " uncacheable"
159# endif
160		       " in data cache\n");
161#else
162	printk(KERN_INFO "Data Cache Disabled for CPU%u\n", cpu);
163#endif
164}
165
166void __cpuinit bfin_setup_cpudata(unsigned int cpu)
167{
168	struct blackfin_cpudata *cpudata = &per_cpu(cpu_data, cpu);
169
170	cpudata->idle = current;
171	cpudata->loops_per_jiffy = loops_per_jiffy;
172	cpudata->imemctl = bfin_read_IMEM_CONTROL();
173	cpudata->dmemctl = bfin_read_DMEM_CONTROL();
174}
175
176void __init bfin_cache_init(void)
177{
178#if defined(CONFIG_BFIN_DCACHE) || defined(CONFIG_BFIN_ICACHE)
179	generate_cplb_tables();
180#endif
181	bfin_setup_caches(0);
182}
183
184void __init bfin_relocate_l1_mem(void)
185{
186	unsigned long l1_code_length;
187	unsigned long l1_data_a_length;
188	unsigned long l1_data_b_length;
189	unsigned long l2_length;
190
191	/*
192	 * due to the ALIGN(4) in the arch/blackfin/kernel/vmlinux.lds.S
193	 * we know that everything about l1 text/data is nice and aligned,
194	 * so copy by 4 byte chunks, and don't worry about overlapping
195	 * src/dest.
196	 *
197	 * We can't use the dma_memcpy functions, since they can call
198	 * scheduler functions which might be in L1 :( and core writes
199	 * into L1 instruction cause bad access errors, so we are stuck,
200	 * we are required to use DMA, but can't use the common dma
201	 * functions. We can't use memcpy either - since that might be
202	 * going to be in the relocated L1
203	 */
204
205	blackfin_dma_early_init();
206
207	/* if necessary, copy _stext_l1 to _etext_l1 to L1 instruction SRAM */
208	l1_code_length = _etext_l1 - _stext_l1;
209	if (l1_code_length)
210		early_dma_memcpy(_stext_l1, _l1_lma_start, l1_code_length);
211
212	/* if necessary, copy _sdata_l1 to _sbss_l1 to L1 data bank A SRAM */
213	l1_data_a_length = _sbss_l1 - _sdata_l1;
214	if (l1_data_a_length)
215		early_dma_memcpy(_sdata_l1, _l1_lma_start + l1_code_length, l1_data_a_length);
216
217	/* if necessary, copy _sdata_b_l1 to _sbss_b_l1 to L1 data bank B SRAM */
218	l1_data_b_length = _sbss_b_l1 - _sdata_b_l1;
219	if (l1_data_b_length)
220		early_dma_memcpy(_sdata_b_l1, _l1_lma_start + l1_code_length +
221			l1_data_a_length, l1_data_b_length);
222
223	early_dma_memcpy_done();
224
225	/* if necessary, copy _stext_l2 to _edata_l2 to L2 SRAM */
226	if (L2_LENGTH != 0) {
227		l2_length = _sbss_l2 - _stext_l2;
228		if (l2_length)
229			memcpy(_stext_l2, _l2_lma_start, l2_length);
230	}
231}
232
233/* add_memory_region to memmap */
234static void __init add_memory_region(unsigned long long start,
235			      unsigned long long size, int type)
236{
237	int i;
238
239	i = bfin_memmap.nr_map;
240
241	if (i == BFIN_MEMMAP_MAX) {
242		printk(KERN_ERR "Ooops! Too many entries in the memory map!\n");
243		return;
244	}
245
246	bfin_memmap.map[i].addr = start;
247	bfin_memmap.map[i].size = size;
248	bfin_memmap.map[i].type = type;
249	bfin_memmap.nr_map++;
250}
251
252/*
253 * Sanitize the boot memmap, removing overlaps.
254 */
255static int __init sanitize_memmap(struct bfin_memmap_entry *map, int *pnr_map)
256{
257	struct change_member *change_tmp;
258	unsigned long current_type, last_type;
259	unsigned long long last_addr;
260	int chgidx, still_changing;
261	int overlap_entries;
262	int new_entry;
263	int old_nr, new_nr, chg_nr;
264	int i;
265
266	/*
267		Visually we're performing the following (1,2,3,4 = memory types)
268
269		Sample memory map (w/overlaps):
270		   ____22__________________
271		   ______________________4_
272		   ____1111________________
273		   _44_____________________
274		   11111111________________
275		   ____________________33__
276		   ___________44___________
277		   __________33333_________
278		   ______________22________
279		   ___________________2222_
280		   _________111111111______
281		   _____________________11_
282		   _________________4______
283
284		Sanitized equivalent (no overlap):
285		   1_______________________
286		   _44_____________________
287		   ___1____________________
288		   ____22__________________
289		   ______11________________
290		   _________1______________
291		   __________3_____________
292		   ___________44___________
293		   _____________33_________
294		   _______________2________
295		   ________________1_______
296		   _________________4______
297		   ___________________2____
298		   ____________________33__
299		   ______________________4_
300	*/
301	/* if there's only one memory region, don't bother */
302	if (*pnr_map < 2)
303		return -1;
304
305	old_nr = *pnr_map;
306
307	/* bail out if we find any unreasonable addresses in memmap */
308	for (i = 0; i < old_nr; i++)
309		if (map[i].addr + map[i].size < map[i].addr)
310			return -1;
311
312	/* create pointers for initial change-point information (for sorting) */
313	for (i = 0; i < 2*old_nr; i++)
314		change_point[i] = &change_point_list[i];
315
316	/* record all known change-points (starting and ending addresses),
317	   omitting those that are for empty memory regions */
318	chgidx = 0;
319	for (i = 0; i < old_nr; i++) {
320		if (map[i].size != 0) {
321			change_point[chgidx]->addr = map[i].addr;
322			change_point[chgidx++]->pentry = &map[i];
323			change_point[chgidx]->addr = map[i].addr + map[i].size;
324			change_point[chgidx++]->pentry = &map[i];
325		}
326	}
327	chg_nr = chgidx;	/* true number of change-points */
328
329	/* sort change-point list by memory addresses (low -> high) */
330	still_changing = 1;
331	while (still_changing) {
332		still_changing = 0;
333		for (i = 1; i < chg_nr; i++) {
334			/* if <current_addr> > <last_addr>, swap */
335			/* or, if current=<start_addr> & last=<end_addr>, swap */
336			if ((change_point[i]->addr < change_point[i-1]->addr) ||
337				((change_point[i]->addr == change_point[i-1]->addr) &&
338				 (change_point[i]->addr == change_point[i]->pentry->addr) &&
339				 (change_point[i-1]->addr != change_point[i-1]->pentry->addr))
340			   ) {
341				change_tmp = change_point[i];
342				change_point[i] = change_point[i-1];
343				change_point[i-1] = change_tmp;
344				still_changing = 1;
345			}
346		}
347	}
348
349	/* create a new memmap, removing overlaps */
350	overlap_entries = 0;	/* number of entries in the overlap table */
351	new_entry = 0;		/* index for creating new memmap entries */
352	last_type = 0;		/* start with undefined memory type */
353	last_addr = 0;		/* start with 0 as last starting address */
354	/* loop through change-points, determining affect on the new memmap */
355	for (chgidx = 0; chgidx < chg_nr; chgidx++) {
356		/* keep track of all overlapping memmap entries */
357		if (change_point[chgidx]->addr == change_point[chgidx]->pentry->addr) {
358			/* add map entry to overlap list (> 1 entry implies an overlap) */
359			overlap_list[overlap_entries++] = change_point[chgidx]->pentry;
360		} else {
361			/* remove entry from list (order independent, so swap with last) */
362			for (i = 0; i < overlap_entries; i++) {
363				if (overlap_list[i] == change_point[chgidx]->pentry)
364					overlap_list[i] = overlap_list[overlap_entries-1];
365			}
366			overlap_entries--;
367		}
368		/* if there are overlapping entries, decide which "type" to use */
369		/* (larger value takes precedence -- 1=usable, 2,3,4,4+=unusable) */
370		current_type = 0;
371		for (i = 0; i < overlap_entries; i++)
372			if (overlap_list[i]->type > current_type)
373				current_type = overlap_list[i]->type;
374		/* continue building up new memmap based on this information */
375		if (current_type != last_type) {
376			if (last_type != 0) {
377				new_map[new_entry].size =
378					change_point[chgidx]->addr - last_addr;
379				/* move forward only if the new size was non-zero */
380				if (new_map[new_entry].size != 0)
381					if (++new_entry >= BFIN_MEMMAP_MAX)
382						break;	/* no more space left for new entries */
383			}
384			if (current_type != 0) {
385				new_map[new_entry].addr = change_point[chgidx]->addr;
386				new_map[new_entry].type = current_type;
387				last_addr = change_point[chgidx]->addr;
388			}
389			last_type = current_type;
390		}
391	}
392	new_nr = new_entry;	/* retain count for new entries */
393
394	/* copy new mapping into original location */
395	memcpy(map, new_map, new_nr*sizeof(struct bfin_memmap_entry));
396	*pnr_map = new_nr;
397
398	return 0;
399}
400
401static void __init print_memory_map(char *who)
402{
403	int i;
404
405	for (i = 0; i < bfin_memmap.nr_map; i++) {
406		printk(KERN_DEBUG " %s: %016Lx - %016Lx ", who,
407			bfin_memmap.map[i].addr,
408			bfin_memmap.map[i].addr + bfin_memmap.map[i].size);
409		switch (bfin_memmap.map[i].type) {
410		case BFIN_MEMMAP_RAM:
411			printk(KERN_CONT "(usable)\n");
412			break;
413		case BFIN_MEMMAP_RESERVED:
414			printk(KERN_CONT "(reserved)\n");
415			break;
416		default:
417			printk(KERN_CONT "type %lu\n", bfin_memmap.map[i].type);
418			break;
419		}
420	}
421}
422
423static __init int parse_memmap(char *arg)
424{
425	unsigned long long start_at, mem_size;
426
427	if (!arg)
428		return -EINVAL;
429
430	mem_size = memparse(arg, &arg);
431	if (*arg == '@') {
432		start_at = memparse(arg+1, &arg);
433		add_memory_region(start_at, mem_size, BFIN_MEMMAP_RAM);
434	} else if (*arg == '$') {
435		start_at = memparse(arg+1, &arg);
436		add_memory_region(start_at, mem_size, BFIN_MEMMAP_RESERVED);
437	}
438
439	return 0;
440}
441
442/*
443 * Initial parsing of the command line.  Currently, we support:
444 *  - Controlling the linux memory size: mem=xxx[KMG]
445 *  - Controlling the physical memory size: max_mem=xxx[KMG][$][#]
446 *       $ -> reserved memory is dcacheable
447 *       # -> reserved memory is icacheable
448 *  - "memmap=XXX[KkmM][@][$]XXX[KkmM]" defines a memory region
449 *       @ from <start> to <start>+<mem>, type RAM
450 *       $ from <start> to <start>+<mem>, type RESERVED
451 */
452static __init void parse_cmdline_early(char *cmdline_p)
453{
454	char c = ' ', *to = cmdline_p;
455	unsigned int memsize;
456	for (;;) {
457		if (c == ' ') {
458			if (!memcmp(to, "mem=", 4)) {
459				to += 4;
460				memsize = memparse(to, &to);
461				if (memsize)
462					_ramend = memsize;
463
464			} else if (!memcmp(to, "max_mem=", 8)) {
465				to += 8;
466				memsize = memparse(to, &to);
467				if (memsize) {
468					physical_mem_end = memsize;
469					if (*to != ' ') {
470						if (*to == '$'
471						    || *(to + 1) == '$')
472							reserved_mem_dcache_on = 1;
473						if (*to == '#'
474						    || *(to + 1) == '#')
475							reserved_mem_icache_on = 1;
476					}
477				}
478			} else if (!memcmp(to, "clkin_hz=", 9)) {
479				to += 9;
480				early_init_clkin_hz(to);
481#ifdef CONFIG_EARLY_PRINTK
482			} else if (!memcmp(to, "earlyprintk=", 12)) {
483				to += 12;
484				setup_early_printk(to);
485#endif
486			} else if (!memcmp(to, "memmap=", 7)) {
487				to += 7;
488				parse_memmap(to);
489			}
490		}
491		c = *(to++);
492		if (!c)
493			break;
494	}
495}
496
497/*
498 * Setup memory defaults from user config.
499 * The physical memory layout looks like:
500 *
501 *  [_rambase, _ramstart]:		kernel image
502 *  [memory_start, memory_end]:		dynamic memory managed by kernel
503 *  [memory_end, _ramend]:		reserved memory
504 *  	[memory_mtd_start(memory_end),
505 *  		memory_mtd_start + mtd_size]:	rootfs (if any)
506 *	[_ramend - DMA_UNCACHED_REGION,
507 *		_ramend]:			uncached DMA region
508 *  [_ramend, physical_mem_end]:	memory not managed by kernel
509 */
510static __init void memory_setup(void)
511{
512#ifdef CONFIG_MTD_UCLINUX
513	unsigned long mtd_phys = 0;
514#endif
515
516	_rambase = (unsigned long)_stext;
517	_ramstart = (unsigned long)_end;
518
519	if (DMA_UNCACHED_REGION > (_ramend - _ramstart)) {
520		console_init();
521		panic("DMA region exceeds memory limit: %lu.",
522			_ramend - _ramstart);
523	}
524	memory_end = _ramend - DMA_UNCACHED_REGION;
525
526#ifdef CONFIG_MPU
527	/* Round up to multiple of 4MB */
528	memory_start = (_ramstart + 0x3fffff) & ~0x3fffff;
529#else
530	memory_start = PAGE_ALIGN(_ramstart);
531#endif
532
533#if defined(CONFIG_MTD_UCLINUX)
534	/* generic memory mapped MTD driver */
535	memory_mtd_end = memory_end;
536
537	mtd_phys = _ramstart;
538	mtd_size = PAGE_ALIGN(*((unsigned long *)(mtd_phys + 8)));
539
540# if defined(CONFIG_EXT2_FS) || defined(CONFIG_EXT3_FS)
541	if (*((unsigned short *)(mtd_phys + 0x438)) == EXT2_SUPER_MAGIC)
542		mtd_size =
543		    PAGE_ALIGN(*((unsigned long *)(mtd_phys + 0x404)) << 10);
544# endif
545
546# if defined(CONFIG_CRAMFS)
547	if (*((unsigned long *)(mtd_phys)) == CRAMFS_MAGIC)
548		mtd_size = PAGE_ALIGN(*((unsigned long *)(mtd_phys + 0x4)));
549# endif
550
551# if defined(CONFIG_ROMFS_FS)
552	if (((unsigned long *)mtd_phys)[0] == ROMSB_WORD0
553	    && ((unsigned long *)mtd_phys)[1] == ROMSB_WORD1)
554		mtd_size =
555		    PAGE_ALIGN(be32_to_cpu(((unsigned long *)mtd_phys)[2]));
556#  if (defined(CONFIG_BFIN_EXTMEM_ICACHEABLE) && ANOMALY_05000263)
557	/* Due to a Hardware Anomaly we need to limit the size of usable
558	 * instruction memory to max 60MB, 56 if HUNT_FOR_ZERO is on
559	 * 05000263 - Hardware loop corrupted when taking an ICPLB exception
560	 */
561#   if (defined(CONFIG_DEBUG_HUNT_FOR_ZERO))
562	if (memory_end >= 56 * 1024 * 1024)
563		memory_end = 56 * 1024 * 1024;
564#   else
565	if (memory_end >= 60 * 1024 * 1024)
566		memory_end = 60 * 1024 * 1024;
567#   endif				/* CONFIG_DEBUG_HUNT_FOR_ZERO */
568#  endif				/* ANOMALY_05000263 */
569# endif				/* CONFIG_ROMFS_FS */
570
571	/* Since the default MTD_UCLINUX has no magic number, we just blindly
572	 * read 8 past the end of the kernel's image, and look at it.
573	 * When no image is attached, mtd_size is set to a random number
574	 * Do some basic sanity checks before operating on things
575	 */
576	if (mtd_size == 0 || memory_end <= mtd_size) {
577		pr_emerg("Could not find valid ram mtd attached.\n");
578	} else {
579		memory_end -= mtd_size;
580
581		/* Relocate MTD image to the top of memory after the uncached memory area */
582		uclinux_ram_map.phys = memory_mtd_start = memory_end;
583		uclinux_ram_map.size = mtd_size;
584		pr_info("Found mtd parition at 0x%p, (len=0x%lx), moving to 0x%p\n",
585			_end, mtd_size, (void *)memory_mtd_start);
586		dma_memcpy((void *)uclinux_ram_map.phys, _end, uclinux_ram_map.size);
587	}
588#endif				/* CONFIG_MTD_UCLINUX */
589
590#if (defined(CONFIG_BFIN_EXTMEM_ICACHEABLE) && ANOMALY_05000263)
591	/* Due to a Hardware Anomaly we need to limit the size of usable
592	 * instruction memory to max 60MB, 56 if HUNT_FOR_ZERO is on
593	 * 05000263 - Hardware loop corrupted when taking an ICPLB exception
594	 */
595#if (defined(CONFIG_DEBUG_HUNT_FOR_ZERO))
596	if (memory_end >= 56 * 1024 * 1024)
597		memory_end = 56 * 1024 * 1024;
598#else
599	if (memory_end >= 60 * 1024 * 1024)
600		memory_end = 60 * 1024 * 1024;
601#endif				/* CONFIG_DEBUG_HUNT_FOR_ZERO */
602	printk(KERN_NOTICE "Warning: limiting memory to %liMB due to hardware anomaly 05000263\n", memory_end >> 20);
603#endif				/* ANOMALY_05000263 */
604
605#ifdef CONFIG_MPU
606	page_mask_nelts = ((_ramend >> PAGE_SHIFT) + 31) / 32;
607	page_mask_order = get_order(3 * page_mask_nelts * sizeof(long));
608#endif
609
610#if !defined(CONFIG_MTD_UCLINUX)
611	/*In case there is no valid CPLB behind memory_end make sure we don't get to close*/
612	memory_end -= SIZE_4K;
613#endif
614
615	init_mm.start_code = (unsigned long)_stext;
616	init_mm.end_code = (unsigned long)_etext;
617	init_mm.end_data = (unsigned long)_edata;
618	init_mm.brk = (unsigned long)0;
619
620	printk(KERN_INFO "Board Memory: %ldMB\n", physical_mem_end >> 20);
621	printk(KERN_INFO "Kernel Managed Memory: %ldMB\n", _ramend >> 20);
622
623	printk(KERN_INFO "Memory map:\n"
624	       "  fixedcode = 0x%p-0x%p\n"
625	       "  text      = 0x%p-0x%p\n"
626	       "  rodata    = 0x%p-0x%p\n"
627	       "  bss       = 0x%p-0x%p\n"
628	       "  data      = 0x%p-0x%p\n"
629	       "    stack   = 0x%p-0x%p\n"
630	       "  init      = 0x%p-0x%p\n"
631	       "  available = 0x%p-0x%p\n"
632#ifdef CONFIG_MTD_UCLINUX
633	       "  rootfs    = 0x%p-0x%p\n"
634#endif
635#if DMA_UNCACHED_REGION > 0
636	       "  DMA Zone  = 0x%p-0x%p\n"
637#endif
638		, (void *)FIXED_CODE_START, (void *)FIXED_CODE_END,
639		_stext, _etext,
640		__start_rodata, __end_rodata,
641		__bss_start, __bss_stop,
642		_sdata, _edata,
643		(void *)&init_thread_union,
644		(void *)((int)(&init_thread_union) + 0x2000),
645		__init_begin, __init_end,
646		(void *)_ramstart, (void *)memory_end
647#ifdef CONFIG_MTD_UCLINUX
648		, (void *)memory_mtd_start, (void *)(memory_mtd_start + mtd_size)
649#endif
650#if DMA_UNCACHED_REGION > 0
651		, (void *)(_ramend - DMA_UNCACHED_REGION), (void *)(_ramend)
652#endif
653		);
654}
655
656/*
657 * Find the lowest, highest page frame number we have available
658 */
659void __init find_min_max_pfn(void)
660{
661	int i;
662
663	max_pfn = 0;
664	min_low_pfn = memory_end;
665
666	for (i = 0; i < bfin_memmap.nr_map; i++) {
667		unsigned long start, end;
668		/* RAM? */
669		if (bfin_memmap.map[i].type != BFIN_MEMMAP_RAM)
670			continue;
671		start = PFN_UP(bfin_memmap.map[i].addr);
672		end = PFN_DOWN(bfin_memmap.map[i].addr +
673				bfin_memmap.map[i].size);
674		if (start >= end)
675			continue;
676		if (end > max_pfn)
677			max_pfn = end;
678		if (start < min_low_pfn)
679			min_low_pfn = start;
680	}
681}
682
683static __init void setup_bootmem_allocator(void)
684{
685	int bootmap_size;
686	int i;
687	unsigned long start_pfn, end_pfn;
688	unsigned long curr_pfn, last_pfn, size;
689
690	/* mark memory between memory_start and memory_end usable */
691	add_memory_region(memory_start,
692		memory_end - memory_start, BFIN_MEMMAP_RAM);
693	/* sanity check for overlap */
694	sanitize_memmap(bfin_memmap.map, &bfin_memmap.nr_map);
695	print_memory_map("boot memmap");
696
697	/* intialize globals in linux/bootmem.h */
698	find_min_max_pfn();
699	/* pfn of the last usable page frame */
700	if (max_pfn > memory_end >> PAGE_SHIFT)
701		max_pfn = memory_end >> PAGE_SHIFT;
702	/* pfn of last page frame directly mapped by kernel */
703	max_low_pfn = max_pfn;
704	/* pfn of the first usable page frame after kernel image*/
705	if (min_low_pfn < memory_start >> PAGE_SHIFT)
706		min_low_pfn = memory_start >> PAGE_SHIFT;
707
708	start_pfn = PAGE_OFFSET >> PAGE_SHIFT;
709	end_pfn = memory_end >> PAGE_SHIFT;
710
711	/*
712	 * give all the memory to the bootmap allocator, tell it to put the
713	 * boot mem_map at the start of memory.
714	 */
715	bootmap_size = init_bootmem_node(NODE_DATA(0),
716			memory_start >> PAGE_SHIFT,	/* map goes here */
717			start_pfn, end_pfn);
718
719	/* register the memmap regions with the bootmem allocator */
720	for (i = 0; i < bfin_memmap.nr_map; i++) {
721		/*
722		 * Reserve usable memory
723		 */
724		if (bfin_memmap.map[i].type != BFIN_MEMMAP_RAM)
725			continue;
726		/*
727		 * We are rounding up the start address of usable memory:
728		 */
729		curr_pfn = PFN_UP(bfin_memmap.map[i].addr);
730		if (curr_pfn >= end_pfn)
731			continue;
732		/*
733		 * ... and at the end of the usable range downwards:
734		 */
735		last_pfn = PFN_DOWN(bfin_memmap.map[i].addr +
736					 bfin_memmap.map[i].size);
737
738		if (last_pfn > end_pfn)
739			last_pfn = end_pfn;
740
741		/*
742		 * .. finally, did all the rounding and playing
743		 * around just make the area go away?
744		 */
745		if (last_pfn <= curr_pfn)
746			continue;
747
748		size = last_pfn - curr_pfn;
749		free_bootmem(PFN_PHYS(curr_pfn), PFN_PHYS(size));
750	}
751
752	/* reserve memory before memory_start, including bootmap */
753	reserve_bootmem(PAGE_OFFSET,
754		memory_start + bootmap_size + PAGE_SIZE - 1 - PAGE_OFFSET,
755		BOOTMEM_DEFAULT);
756}
757
758#define EBSZ_TO_MEG(ebsz) \
759({ \
760	int meg = 0; \
761	switch (ebsz & 0xf) { \
762		case 0x1: meg =  16; break; \
763		case 0x3: meg =  32; break; \
764		case 0x5: meg =  64; break; \
765		case 0x7: meg = 128; break; \
766		case 0x9: meg = 256; break; \
767		case 0xb: meg = 512; break; \
768	} \
769	meg; \
770})
771static inline int __init get_mem_size(void)
772{
773#if defined(EBIU_SDBCTL)
774# if defined(BF561_FAMILY)
775	int ret = 0;
776	u32 sdbctl = bfin_read_EBIU_SDBCTL();
777	ret += EBSZ_TO_MEG(sdbctl >>  0);
778	ret += EBSZ_TO_MEG(sdbctl >>  8);
779	ret += EBSZ_TO_MEG(sdbctl >> 16);
780	ret += EBSZ_TO_MEG(sdbctl >> 24);
781	return ret;
782# else
783	return EBSZ_TO_MEG(bfin_read_EBIU_SDBCTL());
784# endif
785#elif defined(EBIU_DDRCTL1)
786	u32 ddrctl = bfin_read_EBIU_DDRCTL1();
787	int ret = 0;
788	switch (ddrctl & 0xc0000) {
789		case DEVSZ_64:  ret = 64 / 8;
790		case DEVSZ_128: ret = 128 / 8;
791		case DEVSZ_256: ret = 256 / 8;
792		case DEVSZ_512: ret = 512 / 8;
793	}
794	switch (ddrctl & 0x30000) {
795		case DEVWD_4:  ret *= 2;
796		case DEVWD_8:  ret *= 2;
797		case DEVWD_16: break;
798	}
799	if ((ddrctl & 0xc000) == 0x4000)
800		ret *= 2;
801	return ret;
802#endif
803	BUG();
804}
805
806void __init setup_arch(char **cmdline_p)
807{
808	unsigned long sclk, cclk;
809
810	/* Check to make sure we are running on the right processor */
811	if (unlikely(CPUID != bfin_cpuid()))
812		printk(KERN_ERR "ERROR: Not running on ADSP-%s: unknown CPUID 0x%04x Rev 0.%d\n",
813			CPU, bfin_cpuid(), bfin_revid());
814
815#ifdef CONFIG_DUMMY_CONSOLE
816	conswitchp = &dummy_con;
817#endif
818
819#if defined(CONFIG_CMDLINE_BOOL)
820	strncpy(&command_line[0], CONFIG_CMDLINE, sizeof(command_line));
821	command_line[sizeof(command_line) - 1] = 0;
822#endif
823
824	/* Keep a copy of command line */
825	*cmdline_p = &command_line[0];
826	memcpy(boot_command_line, command_line, COMMAND_LINE_SIZE);
827	boot_command_line[COMMAND_LINE_SIZE - 1] = '\0';
828
829	memset(&bfin_memmap, 0, sizeof(bfin_memmap));
830
831	/* If the user does not specify things on the command line, use
832	 * what the bootloader set things up as
833	 */
834	physical_mem_end = 0;
835	parse_cmdline_early(&command_line[0]);
836
837	if (_ramend == 0)
838		_ramend = get_mem_size() * 1024 * 1024;
839
840	if (physical_mem_end == 0)
841		physical_mem_end = _ramend;
842
843	memory_setup();
844
845	/* Initialize Async memory banks */
846	bfin_write_EBIU_AMBCTL0(AMBCTL0VAL);
847	bfin_write_EBIU_AMBCTL1(AMBCTL1VAL);
848	bfin_write_EBIU_AMGCTL(AMGCTLVAL);
849#ifdef CONFIG_EBIU_MBSCTLVAL
850	bfin_write_EBIU_MBSCTL(CONFIG_EBIU_MBSCTLVAL);
851	bfin_write_EBIU_MODE(CONFIG_EBIU_MODEVAL);
852	bfin_write_EBIU_FCTL(CONFIG_EBIU_FCTLVAL);
853#endif
854
855	cclk = get_cclk();
856	sclk = get_sclk();
857
858	if ((ANOMALY_05000273 || ANOMALY_05000274) && (cclk >> 1) < sclk)
859		panic("ANOMALY 05000273 or 05000274: CCLK must be >= 2*SCLK");
860
861#ifdef BF561_FAMILY
862	if (ANOMALY_05000266) {
863		bfin_read_IMDMA_D0_IRQ_STATUS();
864		bfin_read_IMDMA_D1_IRQ_STATUS();
865	}
866#endif
867	printk(KERN_INFO "Hardware Trace ");
868	if (bfin_read_TBUFCTL() & 0x1)
869		printk(KERN_CONT "Active ");
870	else
871		printk(KERN_CONT "Off ");
872	if (bfin_read_TBUFCTL() & 0x2)
873		printk(KERN_CONT "and Enabled\n");
874	else
875		printk(KERN_CONT "and Disabled\n");
876
877	printk(KERN_INFO "Boot Mode: %i\n", bfin_read_SYSCR() & 0xF);
878
879	/* Newer parts mirror SWRST bits in SYSCR */
880#if defined(CONFIG_BF53x) || defined(CONFIG_BF561) || \
881    defined(CONFIG_BF538) || defined(CONFIG_BF539)
882	_bfin_swrst = bfin_read_SWRST();
883#else
884	/* Clear boot mode field */
885	_bfin_swrst = bfin_read_SYSCR() & ~0xf;
886#endif
887
888#ifdef CONFIG_DEBUG_DOUBLEFAULT_PRINT
889	bfin_write_SWRST(_bfin_swrst & ~DOUBLE_FAULT);
890#endif
891#ifdef CONFIG_DEBUG_DOUBLEFAULT_RESET
892	bfin_write_SWRST(_bfin_swrst | DOUBLE_FAULT);
893#endif
894
895#ifdef CONFIG_SMP
896	if (_bfin_swrst & SWRST_DBL_FAULT_A) {
897#else
898	if (_bfin_swrst & RESET_DOUBLE) {
899#endif
900		printk(KERN_EMERG "Recovering from DOUBLE FAULT event\n");
901#ifdef CONFIG_DEBUG_DOUBLEFAULT
902		/* We assume the crashing kernel, and the current symbol table match */
903		printk(KERN_EMERG " While handling exception (EXCAUSE = 0x%x) at %pF\n",
904			(int)init_saved_seqstat & SEQSTAT_EXCAUSE, init_saved_retx);
905		printk(KERN_NOTICE "   DCPLB_FAULT_ADDR: %pF\n", init_saved_dcplb_fault_addr);
906		printk(KERN_NOTICE "   ICPLB_FAULT_ADDR: %pF\n", init_saved_icplb_fault_addr);
907#endif
908		printk(KERN_NOTICE " The instruction at %pF caused a double exception\n",
909			init_retx);
910	} else if (_bfin_swrst & RESET_WDOG)
911		printk(KERN_INFO "Recovering from Watchdog event\n");
912	else if (_bfin_swrst & RESET_SOFTWARE)
913		printk(KERN_NOTICE "Reset caused by Software reset\n");
914
915	printk(KERN_INFO "Blackfin support (C) 2004-2009 Analog Devices, Inc.\n");
916	if (bfin_compiled_revid() == 0xffff)
917		printk(KERN_INFO "Compiled for ADSP-%s Rev any\n", CPU);
918	else if (bfin_compiled_revid() == -1)
919		printk(KERN_INFO "Compiled for ADSP-%s Rev none\n", CPU);
920	else
921		printk(KERN_INFO "Compiled for ADSP-%s Rev 0.%d\n", CPU, bfin_compiled_revid());
922
923	if (likely(CPUID == bfin_cpuid())) {
924		if (bfin_revid() != bfin_compiled_revid()) {
925			if (bfin_compiled_revid() == -1)
926				printk(KERN_ERR "Warning: Compiled for Rev none, but running on Rev %d\n",
927				       bfin_revid());
928			else if (bfin_compiled_revid() != 0xffff) {
929				printk(KERN_ERR "Warning: Compiled for Rev %d, but running on Rev %d\n",
930				       bfin_compiled_revid(), bfin_revid());
931				if (bfin_compiled_revid() > bfin_revid())
932					panic("Error: you are missing anomaly workarounds for this rev");
933			}
934		}
935		if (bfin_revid() < CONFIG_BF_REV_MIN || bfin_revid() > CONFIG_BF_REV_MAX)
936			printk(KERN_ERR "Warning: Unsupported Chip Revision ADSP-%s Rev 0.%d detected\n",
937			       CPU, bfin_revid());
938	}
939
940	printk(KERN_INFO "Blackfin Linux support by http://blackfin.uclinux.org/\n");
941
942	printk(KERN_INFO "Processor Speed: %lu MHz core clock and %lu MHz System Clock\n",
943	       cclk / 1000000, sclk / 1000000);
944
945	setup_bootmem_allocator();
946
947	paging_init();
948
949	/* Copy atomic sequences to their fixed location, and sanity check that
950	   these locations are the ones that we advertise to userspace.  */
951	memcpy((void *)FIXED_CODE_START, &fixed_code_start,
952	       FIXED_CODE_END - FIXED_CODE_START);
953	BUG_ON((char *)&sigreturn_stub - (char *)&fixed_code_start
954	       != SIGRETURN_STUB - FIXED_CODE_START);
955	BUG_ON((char *)&atomic_xchg32 - (char *)&fixed_code_start
956	       != ATOMIC_XCHG32 - FIXED_CODE_START);
957	BUG_ON((char *)&atomic_cas32 - (char *)&fixed_code_start
958	       != ATOMIC_CAS32 - FIXED_CODE_START);
959	BUG_ON((char *)&atomic_add32 - (char *)&fixed_code_start
960	       != ATOMIC_ADD32 - FIXED_CODE_START);
961	BUG_ON((char *)&atomic_sub32 - (char *)&fixed_code_start
962	       != ATOMIC_SUB32 - FIXED_CODE_START);
963	BUG_ON((char *)&atomic_ior32 - (char *)&fixed_code_start
964	       != ATOMIC_IOR32 - FIXED_CODE_START);
965	BUG_ON((char *)&atomic_and32 - (char *)&fixed_code_start
966	       != ATOMIC_AND32 - FIXED_CODE_START);
967	BUG_ON((char *)&atomic_xor32 - (char *)&fixed_code_start
968	       != ATOMIC_XOR32 - FIXED_CODE_START);
969	BUG_ON((char *)&safe_user_instruction - (char *)&fixed_code_start
970		!= SAFE_USER_INSTRUCTION - FIXED_CODE_START);
971
972#ifdef CONFIG_SMP
973	platform_init_cpus();
974#endif
975	init_exception_vectors();
976	bfin_cache_init();	/* Initialize caches for the boot CPU */
977}
978
979static int __init topology_init(void)
980{
981	unsigned int cpu;
982	/* Record CPU-private information for the boot processor. */
983	bfin_setup_cpudata(0);
984
985	for_each_possible_cpu(cpu) {
986		register_cpu(&per_cpu(cpu_data, cpu).cpu, cpu);
987	}
988
989	return 0;
990}
991
992subsys_initcall(topology_init);
993
994/* Get the input clock frequency */
995static u_long cached_clkin_hz = CONFIG_CLKIN_HZ;
996static u_long get_clkin_hz(void)
997{
998	return cached_clkin_hz;
999}
1000static int __init early_init_clkin_hz(char *buf)
1001{
1002	cached_clkin_hz = simple_strtoul(buf, NULL, 0);
1003#ifdef BFIN_KERNEL_CLOCK
1004	if (cached_clkin_hz != CONFIG_CLKIN_HZ)
1005		panic("cannot change clkin_hz when reprogramming clocks");
1006#endif
1007	return 1;
1008}
1009early_param("clkin_hz=", early_init_clkin_hz);
1010
1011/* Get the voltage input multiplier */
1012static u_long get_vco(void)
1013{
1014	static u_long cached_vco;
1015	u_long msel, pll_ctl;
1016
1017	/* The assumption here is that VCO never changes at runtime.
1018	 * If, someday, we support that, then we'll have to change this.
1019	 */
1020	if (cached_vco)
1021		return cached_vco;
1022
1023	pll_ctl = bfin_read_PLL_CTL();
1024	msel = (pll_ctl >> 9) & 0x3F;
1025	if (0 == msel)
1026		msel = 64;
1027
1028	cached_vco = get_clkin_hz();
1029	cached_vco >>= (1 & pll_ctl);	/* DF bit */
1030	cached_vco *= msel;
1031	return cached_vco;
1032}
1033
1034/* Get the Core clock */
1035u_long get_cclk(void)
1036{
1037	static u_long cached_cclk_pll_div, cached_cclk;
1038	u_long csel, ssel;
1039
1040	if (bfin_read_PLL_STAT() & 0x1)
1041		return get_clkin_hz();
1042
1043	ssel = bfin_read_PLL_DIV();
1044	if (ssel == cached_cclk_pll_div)
1045		return cached_cclk;
1046	else
1047		cached_cclk_pll_div = ssel;
1048
1049	csel = ((ssel >> 4) & 0x03);
1050	ssel &= 0xf;
1051	if (ssel && ssel < (1 << csel))	/* SCLK > CCLK */
1052		cached_cclk = get_vco() / ssel;
1053	else
1054		cached_cclk = get_vco() >> csel;
1055	return cached_cclk;
1056}
1057EXPORT_SYMBOL(get_cclk);
1058
1059/* Get the System clock */
1060u_long get_sclk(void)
1061{
1062	static u_long cached_sclk;
1063	u_long ssel;
1064
1065	/* The assumption here is that SCLK never changes at runtime.
1066	 * If, someday, we support that, then we'll have to change this.
1067	 */
1068	if (cached_sclk)
1069		return cached_sclk;
1070
1071	if (bfin_read_PLL_STAT() & 0x1)
1072		return get_clkin_hz();
1073
1074	ssel = bfin_read_PLL_DIV() & 0xf;
1075	if (0 == ssel) {
1076		printk(KERN_WARNING "Invalid System Clock\n");
1077		ssel = 1;
1078	}
1079
1080	cached_sclk = get_vco() / ssel;
1081	return cached_sclk;
1082}
1083EXPORT_SYMBOL(get_sclk);
1084
1085unsigned long sclk_to_usecs(unsigned long sclk)
1086{
1087	u64 tmp = USEC_PER_SEC * (u64)sclk;
1088	do_div(tmp, get_sclk());
1089	return tmp;
1090}
1091EXPORT_SYMBOL(sclk_to_usecs);
1092
1093unsigned long usecs_to_sclk(unsigned long usecs)
1094{
1095	u64 tmp = get_sclk() * (u64)usecs;
1096	do_div(tmp, USEC_PER_SEC);
1097	return tmp;
1098}
1099EXPORT_SYMBOL(usecs_to_sclk);
1100
1101/*
1102 *	Get CPU information for use by the procfs.
1103 */
1104static int show_cpuinfo(struct seq_file *m, void *v)
1105{
1106	char *cpu, *mmu, *fpu, *vendor, *cache;
1107	uint32_t revid;
1108	int cpu_num = *(unsigned int *)v;
1109	u_long sclk, cclk;
1110	u_int icache_size = BFIN_ICACHESIZE / 1024, dcache_size = 0, dsup_banks = 0;
1111	struct blackfin_cpudata *cpudata = &per_cpu(cpu_data, cpu_num);
1112
1113	cpu = CPU;
1114	mmu = "none";
1115	fpu = "none";
1116	revid = bfin_revid();
1117
1118	sclk = get_sclk();
1119	cclk = get_cclk();
1120
1121	switch (bfin_read_CHIPID() & CHIPID_MANUFACTURE) {
1122	case 0xca:
1123		vendor = "Analog Devices";
1124		break;
1125	default:
1126		vendor = "unknown";
1127		break;
1128	}
1129
1130	seq_printf(m, "processor\t: %d\n" "vendor_id\t: %s\n", cpu_num, vendor);
1131
1132	if (CPUID == bfin_cpuid())
1133		seq_printf(m, "cpu family\t: 0x%04x\n", CPUID);
1134	else
1135		seq_printf(m, "cpu family\t: Compiled for:0x%04x, running on:0x%04x\n",
1136			CPUID, bfin_cpuid());
1137
1138	seq_printf(m, "model name\t: ADSP-%s %lu(MHz CCLK) %lu(MHz SCLK) (%s)\n"
1139		"stepping\t: %d ",
1140		cpu, cclk/1000000, sclk/1000000,
1141#ifdef CONFIG_MPU
1142		"mpu on",
1143#else
1144		"mpu off",
1145#endif
1146		revid);
1147
1148	if (bfin_revid() != bfin_compiled_revid()) {
1149		if (bfin_compiled_revid() == -1)
1150			seq_printf(m, "(Compiled for Rev none)");
1151		else if (bfin_compiled_revid() == 0xffff)
1152			seq_printf(m, "(Compiled for Rev any)");
1153		else
1154			seq_printf(m, "(Compiled for Rev %d)", bfin_compiled_revid());
1155	}
1156
1157	seq_printf(m, "\ncpu MHz\t\t: %lu.%03lu/%lu.%03lu\n",
1158		cclk/1000000, cclk%1000000,
1159		sclk/1000000, sclk%1000000);
1160	seq_printf(m, "bogomips\t: %lu.%02lu\n"
1161		"Calibration\t: %lu loops\n",
1162		(cpudata->loops_per_jiffy * HZ) / 500000,
1163		((cpudata->loops_per_jiffy * HZ) / 5000) % 100,
1164		(cpudata->loops_per_jiffy * HZ));
1165
1166	/* Check Cache configutation */
1167	switch (cpudata->dmemctl & (1 << DMC0_P | 1 << DMC1_P)) {
1168	case ACACHE_BSRAM:
1169		cache = "dbank-A/B\t: cache/sram";
1170		dcache_size = 16;
1171		dsup_banks = 1;
1172		break;
1173	case ACACHE_BCACHE:
1174		cache = "dbank-A/B\t: cache/cache";
1175		dcache_size = 32;
1176		dsup_banks = 2;
1177		break;
1178	case ASRAM_BSRAM:
1179		cache = "dbank-A/B\t: sram/sram";
1180		dcache_size = 0;
1181		dsup_banks = 0;
1182		break;
1183	default:
1184		cache = "unknown";
1185		dcache_size = 0;
1186		dsup_banks = 0;
1187		break;
1188	}
1189
1190	/* Is it turned on? */
1191	if ((cpudata->dmemctl & (ENDCPLB | DMC_ENABLE)) != (ENDCPLB | DMC_ENABLE))
1192		dcache_size = 0;
1193
1194	if ((cpudata->imemctl & (IMC | ENICPLB)) != (IMC | ENICPLB))
1195		icache_size = 0;
1196
1197	seq_printf(m, "cache size\t: %d KB(L1 icache) "
1198		"%d KB(L1 dcache) %d KB(L2 cache)\n",
1199		icache_size, dcache_size, 0);
1200	seq_printf(m, "%s\n", cache);
1201	seq_printf(m, "external memory\t: "
1202#if defined(CONFIG_BFIN_EXTMEM_ICACHEABLE)
1203		   "cacheable"
1204#else
1205		   "uncacheable"
1206#endif
1207		   " in instruction cache\n");
1208	seq_printf(m, "external memory\t: "
1209#if defined(CONFIG_BFIN_EXTMEM_WRITEBACK)
1210		      "cacheable (write-back)"
1211#elif defined(CONFIG_BFIN_EXTMEM_WRITETHROUGH)
1212		      "cacheable (write-through)"
1213#else
1214		      "uncacheable"
1215#endif
1216		      " in data cache\n");
1217
1218	if (icache_size)
1219		seq_printf(m, "icache setup\t: %d Sub-banks/%d Ways, %d Lines/Way\n",
1220			   BFIN_ISUBBANKS, BFIN_IWAYS, BFIN_ILINES);
1221	else
1222		seq_printf(m, "icache setup\t: off\n");
1223
1224	seq_printf(m,
1225		   "dcache setup\t: %d Super-banks/%d Sub-banks/%d Ways, %d Lines/Way\n",
1226		   dsup_banks, BFIN_DSUBBANKS, BFIN_DWAYS,
1227		   BFIN_DLINES);
1228#ifdef __ARCH_SYNC_CORE_DCACHE
1229	seq_printf(m, "SMP Dcache Flushes\t: %lu\n\n", cpudata->dcache_invld_count);
1230#endif
1231#ifdef __ARCH_SYNC_CORE_ICACHE
1232	seq_printf(m, "SMP Icache Flushes\t: %lu\n\n", cpudata->icache_invld_count);
1233#endif
1234#ifdef CONFIG_BFIN_ICACHE_LOCK
1235	switch ((cpudata->imemctl >> 3) & WAYALL_L) {
1236	case WAY0_L:
1237		seq_printf(m, "Way0 Locked-Down\n");
1238		break;
1239	case WAY1_L:
1240		seq_printf(m, "Way1 Locked-Down\n");
1241		break;
1242	case WAY01_L:
1243		seq_printf(m, "Way0,Way1 Locked-Down\n");
1244		break;
1245	case WAY2_L:
1246		seq_printf(m, "Way2 Locked-Down\n");
1247		break;
1248	case WAY02_L:
1249		seq_printf(m, "Way0,Way2 Locked-Down\n");
1250		break;
1251	case WAY12_L:
1252		seq_printf(m, "Way1,Way2 Locked-Down\n");
1253		break;
1254	case WAY012_L:
1255		seq_printf(m, "Way0,Way1 & Way2 Locked-Down\n");
1256		break;
1257	case WAY3_L:
1258		seq_printf(m, "Way3 Locked-Down\n");
1259		break;
1260	case WAY03_L:
1261		seq_printf(m, "Way0,Way3 Locked-Down\n");
1262		break;
1263	case WAY13_L:
1264		seq_printf(m, "Way1,Way3 Locked-Down\n");
1265		break;
1266	case WAY013_L:
1267		seq_printf(m, "Way 0,Way1,Way3 Locked-Down\n");
1268		break;
1269	case WAY32_L:
1270		seq_printf(m, "Way3,Way2 Locked-Down\n");
1271		break;
1272	case WAY320_L:
1273		seq_printf(m, "Way3,Way2,Way0 Locked-Down\n");
1274		break;
1275	case WAY321_L:
1276		seq_printf(m, "Way3,Way2,Way1 Locked-Down\n");
1277		break;
1278	case WAYALL_L:
1279		seq_printf(m, "All Ways are locked\n");
1280		break;
1281	default:
1282		seq_printf(m, "No Ways are locked\n");
1283	}
1284#endif
1285
1286	if (cpu_num != num_possible_cpus() - 1)
1287		return 0;
1288
1289	if (L2_LENGTH) {
1290		seq_printf(m, "L2 SRAM\t\t: %dKB\n", L2_LENGTH/0x400);
1291		seq_printf(m, "L2 SRAM\t\t: "
1292#if defined(CONFIG_BFIN_L2_ICACHEABLE)
1293			      "cacheable"
1294#else
1295			      "uncacheable"
1296#endif
1297			      " in instruction cache\n");
1298		seq_printf(m, "L2 SRAM\t\t: "
1299#if defined(CONFIG_BFIN_L2_WRITEBACK)
1300			      "cacheable (write-back)"
1301#elif defined(CONFIG_BFIN_L2_WRITETHROUGH)
1302			      "cacheable (write-through)"
1303#else
1304			      "uncacheable"
1305#endif
1306			      " in data cache\n");
1307	}
1308	seq_printf(m, "board name\t: %s\n", bfin_board_name);
1309	seq_printf(m, "board memory\t: %ld kB (0x%p -> 0x%p)\n",
1310		 physical_mem_end >> 10, (void *)0, (void *)physical_mem_end);
1311	seq_printf(m, "kernel memory\t: %d kB (0x%p -> 0x%p)\n",
1312		((int)memory_end - (int)_stext) >> 10,
1313		_stext,
1314		(void *)memory_end);
1315	seq_printf(m, "\n");
1316
1317	return 0;
1318}
1319
1320static void *c_start(struct seq_file *m, loff_t *pos)
1321{
1322	if (*pos == 0)
1323		*pos = first_cpu(cpu_online_map);
1324	if (*pos >= num_online_cpus())
1325		return NULL;
1326
1327	return pos;
1328}
1329
1330static void *c_next(struct seq_file *m, void *v, loff_t *pos)
1331{
1332	*pos = next_cpu(*pos, cpu_online_map);
1333
1334	return c_start(m, pos);
1335}
1336
1337static void c_stop(struct seq_file *m, void *v)
1338{
1339}
1340
1341const struct seq_operations cpuinfo_op = {
1342	.start = c_start,
1343	.next = c_next,
1344	.stop = c_stop,
1345	.show = show_cpuinfo,
1346};
1347
1348void __init cmdline_init(const char *r0)
1349{
1350	if (r0)
1351		strncpy(command_line, r0, COMMAND_LINE_SIZE);
1352}
1353