setup.c revision 96f1050d3df105c9ae6c6ac224f370199ea82fcd
1/*
2 * Copyright 2004-2009 Analog Devices Inc.
3 *
4 * Licensed under the GPL-2 or later.
5 */
6
7#include <linux/delay.h>
8#include <linux/console.h>
9#include <linux/bootmem.h>
10#include <linux/seq_file.h>
11#include <linux/cpu.h>
12#include <linux/mm.h>
13#include <linux/module.h>
14#include <linux/tty.h>
15#include <linux/pfn.h>
16
17#ifdef CONFIG_MTD_UCLINUX
18#include <linux/mtd/map.h>
19#include <linux/ext2_fs.h>
20#include <linux/cramfs_fs.h>
21#include <linux/romfs_fs.h>
22#endif
23
24#include <asm/cplb.h>
25#include <asm/cacheflush.h>
26#include <asm/blackfin.h>
27#include <asm/cplbinit.h>
28#include <asm/div64.h>
29#include <asm/cpu.h>
30#include <asm/fixed_code.h>
31#include <asm/early_printk.h>
32
33u16 _bfin_swrst;
34EXPORT_SYMBOL(_bfin_swrst);
35
36unsigned long memory_start, memory_end, physical_mem_end;
37unsigned long _rambase, _ramstart, _ramend;
38unsigned long reserved_mem_dcache_on;
39unsigned long reserved_mem_icache_on;
40EXPORT_SYMBOL(memory_start);
41EXPORT_SYMBOL(memory_end);
42EXPORT_SYMBOL(physical_mem_end);
43EXPORT_SYMBOL(_ramend);
44EXPORT_SYMBOL(reserved_mem_dcache_on);
45
46#ifdef CONFIG_MTD_UCLINUX
47extern struct map_info uclinux_ram_map;
48unsigned long memory_mtd_end, memory_mtd_start, mtd_size;
49unsigned long _ebss;
50EXPORT_SYMBOL(memory_mtd_end);
51EXPORT_SYMBOL(memory_mtd_start);
52EXPORT_SYMBOL(mtd_size);
53#endif
54
55char __initdata command_line[COMMAND_LINE_SIZE];
56void __initdata *init_retx, *init_saved_retx, *init_saved_seqstat,
57	*init_saved_icplb_fault_addr, *init_saved_dcplb_fault_addr;
58
59/* boot memmap, for parsing "memmap=" */
60#define BFIN_MEMMAP_MAX		128 /* number of entries in bfin_memmap */
61#define BFIN_MEMMAP_RAM		1
62#define BFIN_MEMMAP_RESERVED	2
63static struct bfin_memmap {
64	int nr_map;
65	struct bfin_memmap_entry {
66		unsigned long long addr; /* start of memory segment */
67		unsigned long long size;
68		unsigned long type;
69	} map[BFIN_MEMMAP_MAX];
70} bfin_memmap __initdata;
71
72/* for memmap sanitization */
73struct change_member {
74	struct bfin_memmap_entry *pentry; /* pointer to original entry */
75	unsigned long long addr; /* address for this change point */
76};
77static struct change_member change_point_list[2*BFIN_MEMMAP_MAX] __initdata;
78static struct change_member *change_point[2*BFIN_MEMMAP_MAX] __initdata;
79static struct bfin_memmap_entry *overlap_list[BFIN_MEMMAP_MAX] __initdata;
80static struct bfin_memmap_entry new_map[BFIN_MEMMAP_MAX] __initdata;
81
82DEFINE_PER_CPU(struct blackfin_cpudata, cpu_data);
83
84static int early_init_clkin_hz(char *buf);
85
86#if defined(CONFIG_BFIN_DCACHE) || defined(CONFIG_BFIN_ICACHE)
87void __init generate_cplb_tables(void)
88{
89	unsigned int cpu;
90
91	generate_cplb_tables_all();
92	/* Generate per-CPU I&D CPLB tables */
93	for (cpu = 0; cpu < num_possible_cpus(); ++cpu)
94		generate_cplb_tables_cpu(cpu);
95}
96#endif
97
98void __cpuinit bfin_setup_caches(unsigned int cpu)
99{
100#ifdef CONFIG_BFIN_ICACHE
101	bfin_icache_init(icplb_tbl[cpu]);
102#endif
103
104#ifdef CONFIG_BFIN_DCACHE
105	bfin_dcache_init(dcplb_tbl[cpu]);
106#endif
107
108	/*
109	 * In cache coherence emulation mode, we need to have the
110	 * D-cache enabled before running any atomic operation which
111	 * might involve cache invalidation (i.e. spinlock, rwlock).
112	 * So printk's are deferred until then.
113	 */
114#ifdef CONFIG_BFIN_ICACHE
115	printk(KERN_INFO "Instruction Cache Enabled for CPU%u\n", cpu);
116	printk(KERN_INFO "  External memory:"
117# ifdef CONFIG_BFIN_EXTMEM_ICACHEABLE
118	       " cacheable"
119# else
120	       " uncacheable"
121# endif
122	       " in instruction cache\n");
123	if (L2_LENGTH)
124		printk(KERN_INFO "  L2 SRAM        :"
125# ifdef CONFIG_BFIN_L2_ICACHEABLE
126		       " cacheable"
127# else
128		       " uncacheable"
129# endif
130		       " in instruction cache\n");
131
132#else
133	printk(KERN_INFO "Instruction Cache Disabled for CPU%u\n", cpu);
134#endif
135
136#ifdef CONFIG_BFIN_DCACHE
137	printk(KERN_INFO "Data Cache Enabled for CPU%u\n", cpu);
138	printk(KERN_INFO "  External memory:"
139# if defined CONFIG_BFIN_EXTMEM_WRITEBACK
140	       " cacheable (write-back)"
141# elif defined CONFIG_BFIN_EXTMEM_WRITETHROUGH
142	       " cacheable (write-through)"
143# else
144	       " uncacheable"
145# endif
146	       " in data cache\n");
147	if (L2_LENGTH)
148		printk(KERN_INFO "  L2 SRAM        :"
149# if defined CONFIG_BFIN_L2_WRITEBACK
150		       " cacheable (write-back)"
151# elif defined CONFIG_BFIN_L2_WRITETHROUGH
152		       " cacheable (write-through)"
153# else
154		       " uncacheable"
155# endif
156		       " in data cache\n");
157#else
158	printk(KERN_INFO "Data Cache Disabled for CPU%u\n", cpu);
159#endif
160}
161
162void __cpuinit bfin_setup_cpudata(unsigned int cpu)
163{
164	struct blackfin_cpudata *cpudata = &per_cpu(cpu_data, cpu);
165
166	cpudata->idle = current;
167	cpudata->imemctl = bfin_read_IMEM_CONTROL();
168	cpudata->dmemctl = bfin_read_DMEM_CONTROL();
169}
170
171void __init bfin_cache_init(void)
172{
173#if defined(CONFIG_BFIN_DCACHE) || defined(CONFIG_BFIN_ICACHE)
174	generate_cplb_tables();
175#endif
176	bfin_setup_caches(0);
177}
178
179void __init bfin_relocate_l1_mem(void)
180{
181	unsigned long l1_code_length;
182	unsigned long l1_data_a_length;
183	unsigned long l1_data_b_length;
184	unsigned long l2_length;
185
186	early_shadow_stamp();
187
188	/*
189	 * due to the ALIGN(4) in the arch/blackfin/kernel/vmlinux.lds.S
190	 * we know that everything about l1 text/data is nice and aligned,
191	 * so copy by 4 byte chunks, and don't worry about overlapping
192	 * src/dest.
193	 *
194	 * We can't use the dma_memcpy functions, since they can call
195	 * scheduler functions which might be in L1 :( and core writes
196	 * into L1 instruction cause bad access errors, so we are stuck,
197	 * we are required to use DMA, but can't use the common dma
198	 * functions. We can't use memcpy either - since that might be
199	 * going to be in the relocated L1
200	 */
201
202	blackfin_dma_early_init();
203
204	/* if necessary, copy _stext_l1 to _etext_l1 to L1 instruction SRAM */
205	l1_code_length = _etext_l1 - _stext_l1;
206	if (l1_code_length)
207		early_dma_memcpy(_stext_l1, _l1_lma_start, l1_code_length);
208
209	/* if necessary, copy _sdata_l1 to _sbss_l1 to L1 data bank A SRAM */
210	l1_data_a_length = _sbss_l1 - _sdata_l1;
211	if (l1_data_a_length)
212		early_dma_memcpy(_sdata_l1, _l1_lma_start + l1_code_length, l1_data_a_length);
213
214	/* if necessary, copy _sdata_b_l1 to _sbss_b_l1 to L1 data bank B SRAM */
215	l1_data_b_length = _sbss_b_l1 - _sdata_b_l1;
216	if (l1_data_b_length)
217		early_dma_memcpy(_sdata_b_l1, _l1_lma_start + l1_code_length +
218			l1_data_a_length, l1_data_b_length);
219
220	early_dma_memcpy_done();
221
222	/* if necessary, copy _stext_l2 to _edata_l2 to L2 SRAM */
223	if (L2_LENGTH != 0) {
224		l2_length = _sbss_l2 - _stext_l2;
225		if (l2_length)
226			memcpy(_stext_l2, _l2_lma_start, l2_length);
227	}
228}
229
230/* add_memory_region to memmap */
231static void __init add_memory_region(unsigned long long start,
232			      unsigned long long size, int type)
233{
234	int i;
235
236	i = bfin_memmap.nr_map;
237
238	if (i == BFIN_MEMMAP_MAX) {
239		printk(KERN_ERR "Ooops! Too many entries in the memory map!\n");
240		return;
241	}
242
243	bfin_memmap.map[i].addr = start;
244	bfin_memmap.map[i].size = size;
245	bfin_memmap.map[i].type = type;
246	bfin_memmap.nr_map++;
247}
248
249/*
250 * Sanitize the boot memmap, removing overlaps.
251 */
252static int __init sanitize_memmap(struct bfin_memmap_entry *map, int *pnr_map)
253{
254	struct change_member *change_tmp;
255	unsigned long current_type, last_type;
256	unsigned long long last_addr;
257	int chgidx, still_changing;
258	int overlap_entries;
259	int new_entry;
260	int old_nr, new_nr, chg_nr;
261	int i;
262
263	/*
264		Visually we're performing the following (1,2,3,4 = memory types)
265
266		Sample memory map (w/overlaps):
267		   ____22__________________
268		   ______________________4_
269		   ____1111________________
270		   _44_____________________
271		   11111111________________
272		   ____________________33__
273		   ___________44___________
274		   __________33333_________
275		   ______________22________
276		   ___________________2222_
277		   _________111111111______
278		   _____________________11_
279		   _________________4______
280
281		Sanitized equivalent (no overlap):
282		   1_______________________
283		   _44_____________________
284		   ___1____________________
285		   ____22__________________
286		   ______11________________
287		   _________1______________
288		   __________3_____________
289		   ___________44___________
290		   _____________33_________
291		   _______________2________
292		   ________________1_______
293		   _________________4______
294		   ___________________2____
295		   ____________________33__
296		   ______________________4_
297	*/
298	/* if there's only one memory region, don't bother */
299	if (*pnr_map < 2)
300		return -1;
301
302	old_nr = *pnr_map;
303
304	/* bail out if we find any unreasonable addresses in memmap */
305	for (i = 0; i < old_nr; i++)
306		if (map[i].addr + map[i].size < map[i].addr)
307			return -1;
308
309	/* create pointers for initial change-point information (for sorting) */
310	for (i = 0; i < 2*old_nr; i++)
311		change_point[i] = &change_point_list[i];
312
313	/* record all known change-points (starting and ending addresses),
314	   omitting those that are for empty memory regions */
315	chgidx = 0;
316	for (i = 0; i < old_nr; i++) {
317		if (map[i].size != 0) {
318			change_point[chgidx]->addr = map[i].addr;
319			change_point[chgidx++]->pentry = &map[i];
320			change_point[chgidx]->addr = map[i].addr + map[i].size;
321			change_point[chgidx++]->pentry = &map[i];
322		}
323	}
324	chg_nr = chgidx;	/* true number of change-points */
325
326	/* sort change-point list by memory addresses (low -> high) */
327	still_changing = 1;
328	while (still_changing) {
329		still_changing = 0;
330		for (i = 1; i < chg_nr; i++) {
331			/* if <current_addr> > <last_addr>, swap */
332			/* or, if current=<start_addr> & last=<end_addr>, swap */
333			if ((change_point[i]->addr < change_point[i-1]->addr) ||
334				((change_point[i]->addr == change_point[i-1]->addr) &&
335				 (change_point[i]->addr == change_point[i]->pentry->addr) &&
336				 (change_point[i-1]->addr != change_point[i-1]->pentry->addr))
337			   ) {
338				change_tmp = change_point[i];
339				change_point[i] = change_point[i-1];
340				change_point[i-1] = change_tmp;
341				still_changing = 1;
342			}
343		}
344	}
345
346	/* create a new memmap, removing overlaps */
347	overlap_entries = 0;	/* number of entries in the overlap table */
348	new_entry = 0;		/* index for creating new memmap entries */
349	last_type = 0;		/* start with undefined memory type */
350	last_addr = 0;		/* start with 0 as last starting address */
351	/* loop through change-points, determining affect on the new memmap */
352	for (chgidx = 0; chgidx < chg_nr; chgidx++) {
353		/* keep track of all overlapping memmap entries */
354		if (change_point[chgidx]->addr == change_point[chgidx]->pentry->addr) {
355			/* add map entry to overlap list (> 1 entry implies an overlap) */
356			overlap_list[overlap_entries++] = change_point[chgidx]->pentry;
357		} else {
358			/* remove entry from list (order independent, so swap with last) */
359			for (i = 0; i < overlap_entries; i++) {
360				if (overlap_list[i] == change_point[chgidx]->pentry)
361					overlap_list[i] = overlap_list[overlap_entries-1];
362			}
363			overlap_entries--;
364		}
365		/* if there are overlapping entries, decide which "type" to use */
366		/* (larger value takes precedence -- 1=usable, 2,3,4,4+=unusable) */
367		current_type = 0;
368		for (i = 0; i < overlap_entries; i++)
369			if (overlap_list[i]->type > current_type)
370				current_type = overlap_list[i]->type;
371		/* continue building up new memmap based on this information */
372		if (current_type != last_type) {
373			if (last_type != 0) {
374				new_map[new_entry].size =
375					change_point[chgidx]->addr - last_addr;
376				/* move forward only if the new size was non-zero */
377				if (new_map[new_entry].size != 0)
378					if (++new_entry >= BFIN_MEMMAP_MAX)
379						break;	/* no more space left for new entries */
380			}
381			if (current_type != 0) {
382				new_map[new_entry].addr = change_point[chgidx]->addr;
383				new_map[new_entry].type = current_type;
384				last_addr = change_point[chgidx]->addr;
385			}
386			last_type = current_type;
387		}
388	}
389	new_nr = new_entry;	/* retain count for new entries */
390
391	/* copy new mapping into original location */
392	memcpy(map, new_map, new_nr*sizeof(struct bfin_memmap_entry));
393	*pnr_map = new_nr;
394
395	return 0;
396}
397
398static void __init print_memory_map(char *who)
399{
400	int i;
401
402	for (i = 0; i < bfin_memmap.nr_map; i++) {
403		printk(KERN_DEBUG " %s: %016Lx - %016Lx ", who,
404			bfin_memmap.map[i].addr,
405			bfin_memmap.map[i].addr + bfin_memmap.map[i].size);
406		switch (bfin_memmap.map[i].type) {
407		case BFIN_MEMMAP_RAM:
408			printk(KERN_CONT "(usable)\n");
409			break;
410		case BFIN_MEMMAP_RESERVED:
411			printk(KERN_CONT "(reserved)\n");
412			break;
413		default:
414			printk(KERN_CONT "type %lu\n", bfin_memmap.map[i].type);
415			break;
416		}
417	}
418}
419
420static __init int parse_memmap(char *arg)
421{
422	unsigned long long start_at, mem_size;
423
424	if (!arg)
425		return -EINVAL;
426
427	mem_size = memparse(arg, &arg);
428	if (*arg == '@') {
429		start_at = memparse(arg+1, &arg);
430		add_memory_region(start_at, mem_size, BFIN_MEMMAP_RAM);
431	} else if (*arg == '$') {
432		start_at = memparse(arg+1, &arg);
433		add_memory_region(start_at, mem_size, BFIN_MEMMAP_RESERVED);
434	}
435
436	return 0;
437}
438
439/*
440 * Initial parsing of the command line.  Currently, we support:
441 *  - Controlling the linux memory size: mem=xxx[KMG]
442 *  - Controlling the physical memory size: max_mem=xxx[KMG][$][#]
443 *       $ -> reserved memory is dcacheable
444 *       # -> reserved memory is icacheable
445 *  - "memmap=XXX[KkmM][@][$]XXX[KkmM]" defines a memory region
446 *       @ from <start> to <start>+<mem>, type RAM
447 *       $ from <start> to <start>+<mem>, type RESERVED
448 */
449static __init void parse_cmdline_early(char *cmdline_p)
450{
451	char c = ' ', *to = cmdline_p;
452	unsigned int memsize;
453	for (;;) {
454		if (c == ' ') {
455			if (!memcmp(to, "mem=", 4)) {
456				to += 4;
457				memsize = memparse(to, &to);
458				if (memsize)
459					_ramend = memsize;
460
461			} else if (!memcmp(to, "max_mem=", 8)) {
462				to += 8;
463				memsize = memparse(to, &to);
464				if (memsize) {
465					physical_mem_end = memsize;
466					if (*to != ' ') {
467						if (*to == '$'
468						    || *(to + 1) == '$')
469							reserved_mem_dcache_on = 1;
470						if (*to == '#'
471						    || *(to + 1) == '#')
472							reserved_mem_icache_on = 1;
473					}
474				}
475			} else if (!memcmp(to, "clkin_hz=", 9)) {
476				to += 9;
477				early_init_clkin_hz(to);
478#ifdef CONFIG_EARLY_PRINTK
479			} else if (!memcmp(to, "earlyprintk=", 12)) {
480				to += 12;
481				setup_early_printk(to);
482#endif
483			} else if (!memcmp(to, "memmap=", 7)) {
484				to += 7;
485				parse_memmap(to);
486			}
487		}
488		c = *(to++);
489		if (!c)
490			break;
491	}
492}
493
494/*
495 * Setup memory defaults from user config.
496 * The physical memory layout looks like:
497 *
498 *  [_rambase, _ramstart]:		kernel image
499 *  [memory_start, memory_end]:		dynamic memory managed by kernel
500 *  [memory_end, _ramend]:		reserved memory
501 *  	[memory_mtd_start(memory_end),
502 *  		memory_mtd_start + mtd_size]:	rootfs (if any)
503 *	[_ramend - DMA_UNCACHED_REGION,
504 *		_ramend]:			uncached DMA region
505 *  [_ramend, physical_mem_end]:	memory not managed by kernel
506 */
507static __init void memory_setup(void)
508{
509#ifdef CONFIG_MTD_UCLINUX
510	unsigned long mtd_phys = 0;
511#endif
512	unsigned long max_mem;
513
514	_rambase = (unsigned long)_stext;
515	_ramstart = (unsigned long)_end;
516
517	if (DMA_UNCACHED_REGION > (_ramend - _ramstart)) {
518		console_init();
519		panic("DMA region exceeds memory limit: %lu.",
520			_ramend - _ramstart);
521	}
522	max_mem = memory_end = _ramend - DMA_UNCACHED_REGION;
523
524#if (defined(CONFIG_BFIN_EXTMEM_ICACHEABLE) && ANOMALY_05000263)
525	/* Due to a Hardware Anomaly we need to limit the size of usable
526	 * instruction memory to max 60MB, 56 if HUNT_FOR_ZERO is on
527	 * 05000263 - Hardware loop corrupted when taking an ICPLB exception
528	 */
529# if (defined(CONFIG_DEBUG_HUNT_FOR_ZERO))
530	if (max_mem >= 56 * 1024 * 1024)
531		max_mem = 56 * 1024 * 1024;
532# else
533	if (max_mem >= 60 * 1024 * 1024)
534		max_mem = 60 * 1024 * 1024;
535# endif				/* CONFIG_DEBUG_HUNT_FOR_ZERO */
536#endif				/* ANOMALY_05000263 */
537
538
539#ifdef CONFIG_MPU
540	/* Round up to multiple of 4MB */
541	memory_start = (_ramstart + 0x3fffff) & ~0x3fffff;
542#else
543	memory_start = PAGE_ALIGN(_ramstart);
544#endif
545
546#if defined(CONFIG_MTD_UCLINUX)
547	/* generic memory mapped MTD driver */
548	memory_mtd_end = memory_end;
549
550	mtd_phys = _ramstart;
551	mtd_size = PAGE_ALIGN(*((unsigned long *)(mtd_phys + 8)));
552
553# if defined(CONFIG_EXT2_FS) || defined(CONFIG_EXT3_FS)
554	if (*((unsigned short *)(mtd_phys + 0x438)) == EXT2_SUPER_MAGIC)
555		mtd_size =
556		    PAGE_ALIGN(*((unsigned long *)(mtd_phys + 0x404)) << 10);
557# endif
558
559# if defined(CONFIG_CRAMFS)
560	if (*((unsigned long *)(mtd_phys)) == CRAMFS_MAGIC)
561		mtd_size = PAGE_ALIGN(*((unsigned long *)(mtd_phys + 0x4)));
562# endif
563
564# if defined(CONFIG_ROMFS_FS)
565	if (((unsigned long *)mtd_phys)[0] == ROMSB_WORD0
566	    && ((unsigned long *)mtd_phys)[1] == ROMSB_WORD1) {
567		mtd_size =
568		    PAGE_ALIGN(be32_to_cpu(((unsigned long *)mtd_phys)[2]));
569
570		/* ROM_FS is XIP, so if we found it, we need to limit memory */
571		if (memory_end > max_mem) {
572			pr_info("Limiting kernel memory to %liMB due to anomaly 05000263\n", max_mem >> 20);
573			memory_end = max_mem;
574		}
575	}
576# endif				/* CONFIG_ROMFS_FS */
577
578	/* Since the default MTD_UCLINUX has no magic number, we just blindly
579	 * read 8 past the end of the kernel's image, and look at it.
580	 * When no image is attached, mtd_size is set to a random number
581	 * Do some basic sanity checks before operating on things
582	 */
583	if (mtd_size == 0 || memory_end <= mtd_size) {
584		pr_emerg("Could not find valid ram mtd attached.\n");
585	} else {
586		memory_end -= mtd_size;
587
588		/* Relocate MTD image to the top of memory after the uncached memory area */
589		uclinux_ram_map.phys = memory_mtd_start = memory_end;
590		uclinux_ram_map.size = mtd_size;
591		pr_info("Found mtd parition at 0x%p, (len=0x%lx), moving to 0x%p\n",
592			_end, mtd_size, (void *)memory_mtd_start);
593		dma_memcpy((void *)uclinux_ram_map.phys, _end, uclinux_ram_map.size);
594	}
595#endif				/* CONFIG_MTD_UCLINUX */
596
597	/* We need lo limit memory, since everything could have a text section
598	 * of userspace in it, and expose anomaly 05000263. If the anomaly
599	 * doesn't exist, or we don't need to - then dont.
600	 */
601	if (memory_end > max_mem) {
602		pr_info("Limiting kernel memory to %liMB due to anomaly 05000263\n", max_mem >> 20);
603		memory_end = max_mem;
604	}
605
606#ifdef CONFIG_MPU
607	page_mask_nelts = ((_ramend >> PAGE_SHIFT) + 31) / 32;
608	page_mask_order = get_order(3 * page_mask_nelts * sizeof(long));
609#endif
610
611#if !defined(CONFIG_MTD_UCLINUX)
612	/*In case there is no valid CPLB behind memory_end make sure we don't get to close*/
613	memory_end -= SIZE_4K;
614#endif
615
616	init_mm.start_code = (unsigned long)_stext;
617	init_mm.end_code = (unsigned long)_etext;
618	init_mm.end_data = (unsigned long)_edata;
619	init_mm.brk = (unsigned long)0;
620
621	printk(KERN_INFO "Board Memory: %ldMB\n", physical_mem_end >> 20);
622	printk(KERN_INFO "Kernel Managed Memory: %ldMB\n", _ramend >> 20);
623
624	printk(KERN_INFO "Memory map:\n"
625	       "  fixedcode = 0x%p-0x%p\n"
626	       "  text      = 0x%p-0x%p\n"
627	       "  rodata    = 0x%p-0x%p\n"
628	       "  bss       = 0x%p-0x%p\n"
629	       "  data      = 0x%p-0x%p\n"
630	       "    stack   = 0x%p-0x%p\n"
631	       "  init      = 0x%p-0x%p\n"
632	       "  available = 0x%p-0x%p\n"
633#ifdef CONFIG_MTD_UCLINUX
634	       "  rootfs    = 0x%p-0x%p\n"
635#endif
636#if DMA_UNCACHED_REGION > 0
637	       "  DMA Zone  = 0x%p-0x%p\n"
638#endif
639		, (void *)FIXED_CODE_START, (void *)FIXED_CODE_END,
640		_stext, _etext,
641		__start_rodata, __end_rodata,
642		__bss_start, __bss_stop,
643		_sdata, _edata,
644		(void *)&init_thread_union,
645		(void *)((int)(&init_thread_union) + 0x2000),
646		__init_begin, __init_end,
647		(void *)_ramstart, (void *)memory_end
648#ifdef CONFIG_MTD_UCLINUX
649		, (void *)memory_mtd_start, (void *)(memory_mtd_start + mtd_size)
650#endif
651#if DMA_UNCACHED_REGION > 0
652		, (void *)(_ramend - DMA_UNCACHED_REGION), (void *)(_ramend)
653#endif
654		);
655}
656
657/*
658 * Find the lowest, highest page frame number we have available
659 */
660void __init find_min_max_pfn(void)
661{
662	int i;
663
664	max_pfn = 0;
665	min_low_pfn = memory_end;
666
667	for (i = 0; i < bfin_memmap.nr_map; i++) {
668		unsigned long start, end;
669		/* RAM? */
670		if (bfin_memmap.map[i].type != BFIN_MEMMAP_RAM)
671			continue;
672		start = PFN_UP(bfin_memmap.map[i].addr);
673		end = PFN_DOWN(bfin_memmap.map[i].addr +
674				bfin_memmap.map[i].size);
675		if (start >= end)
676			continue;
677		if (end > max_pfn)
678			max_pfn = end;
679		if (start < min_low_pfn)
680			min_low_pfn = start;
681	}
682}
683
684static __init void setup_bootmem_allocator(void)
685{
686	int bootmap_size;
687	int i;
688	unsigned long start_pfn, end_pfn;
689	unsigned long curr_pfn, last_pfn, size;
690
691	/* mark memory between memory_start and memory_end usable */
692	add_memory_region(memory_start,
693		memory_end - memory_start, BFIN_MEMMAP_RAM);
694	/* sanity check for overlap */
695	sanitize_memmap(bfin_memmap.map, &bfin_memmap.nr_map);
696	print_memory_map("boot memmap");
697
698	/* initialize globals in linux/bootmem.h */
699	find_min_max_pfn();
700	/* pfn of the last usable page frame */
701	if (max_pfn > memory_end >> PAGE_SHIFT)
702		max_pfn = memory_end >> PAGE_SHIFT;
703	/* pfn of last page frame directly mapped by kernel */
704	max_low_pfn = max_pfn;
705	/* pfn of the first usable page frame after kernel image*/
706	if (min_low_pfn < memory_start >> PAGE_SHIFT)
707		min_low_pfn = memory_start >> PAGE_SHIFT;
708
709	start_pfn = PAGE_OFFSET >> PAGE_SHIFT;
710	end_pfn = memory_end >> PAGE_SHIFT;
711
712	/*
713	 * give all the memory to the bootmap allocator, tell it to put the
714	 * boot mem_map at the start of memory.
715	 */
716	bootmap_size = init_bootmem_node(NODE_DATA(0),
717			memory_start >> PAGE_SHIFT,	/* map goes here */
718			start_pfn, end_pfn);
719
720	/* register the memmap regions with the bootmem allocator */
721	for (i = 0; i < bfin_memmap.nr_map; i++) {
722		/*
723		 * Reserve usable memory
724		 */
725		if (bfin_memmap.map[i].type != BFIN_MEMMAP_RAM)
726			continue;
727		/*
728		 * We are rounding up the start address of usable memory:
729		 */
730		curr_pfn = PFN_UP(bfin_memmap.map[i].addr);
731		if (curr_pfn >= end_pfn)
732			continue;
733		/*
734		 * ... and at the end of the usable range downwards:
735		 */
736		last_pfn = PFN_DOWN(bfin_memmap.map[i].addr +
737					 bfin_memmap.map[i].size);
738
739		if (last_pfn > end_pfn)
740			last_pfn = end_pfn;
741
742		/*
743		 * .. finally, did all the rounding and playing
744		 * around just make the area go away?
745		 */
746		if (last_pfn <= curr_pfn)
747			continue;
748
749		size = last_pfn - curr_pfn;
750		free_bootmem(PFN_PHYS(curr_pfn), PFN_PHYS(size));
751	}
752
753	/* reserve memory before memory_start, including bootmap */
754	reserve_bootmem(PAGE_OFFSET,
755		memory_start + bootmap_size + PAGE_SIZE - 1 - PAGE_OFFSET,
756		BOOTMEM_DEFAULT);
757}
758
759#define EBSZ_TO_MEG(ebsz) \
760({ \
761	int meg = 0; \
762	switch (ebsz & 0xf) { \
763		case 0x1: meg =  16; break; \
764		case 0x3: meg =  32; break; \
765		case 0x5: meg =  64; break; \
766		case 0x7: meg = 128; break; \
767		case 0x9: meg = 256; break; \
768		case 0xb: meg = 512; break; \
769	} \
770	meg; \
771})
772static inline int __init get_mem_size(void)
773{
774#if defined(EBIU_SDBCTL)
775# if defined(BF561_FAMILY)
776	int ret = 0;
777	u32 sdbctl = bfin_read_EBIU_SDBCTL();
778	ret += EBSZ_TO_MEG(sdbctl >>  0);
779	ret += EBSZ_TO_MEG(sdbctl >>  8);
780	ret += EBSZ_TO_MEG(sdbctl >> 16);
781	ret += EBSZ_TO_MEG(sdbctl >> 24);
782	return ret;
783# else
784	return EBSZ_TO_MEG(bfin_read_EBIU_SDBCTL());
785# endif
786#elif defined(EBIU_DDRCTL1)
787	u32 ddrctl = bfin_read_EBIU_DDRCTL1();
788	int ret = 0;
789	switch (ddrctl & 0xc0000) {
790		case DEVSZ_64:  ret = 64 / 8;
791		case DEVSZ_128: ret = 128 / 8;
792		case DEVSZ_256: ret = 256 / 8;
793		case DEVSZ_512: ret = 512 / 8;
794	}
795	switch (ddrctl & 0x30000) {
796		case DEVWD_4:  ret *= 2;
797		case DEVWD_8:  ret *= 2;
798		case DEVWD_16: break;
799	}
800	if ((ddrctl & 0xc000) == 0x4000)
801		ret *= 2;
802	return ret;
803#endif
804	BUG();
805}
806
807void __init setup_arch(char **cmdline_p)
808{
809	unsigned long sclk, cclk;
810
811	enable_shadow_console();
812
813	/* Check to make sure we are running on the right processor */
814	if (unlikely(CPUID != bfin_cpuid()))
815		printk(KERN_ERR "ERROR: Not running on ADSP-%s: unknown CPUID 0x%04x Rev 0.%d\n",
816			CPU, bfin_cpuid(), bfin_revid());
817
818#ifdef CONFIG_DUMMY_CONSOLE
819	conswitchp = &dummy_con;
820#endif
821
822#if defined(CONFIG_CMDLINE_BOOL)
823	strncpy(&command_line[0], CONFIG_CMDLINE, sizeof(command_line));
824	command_line[sizeof(command_line) - 1] = 0;
825#endif
826
827	/* Keep a copy of command line */
828	*cmdline_p = &command_line[0];
829	memcpy(boot_command_line, command_line, COMMAND_LINE_SIZE);
830	boot_command_line[COMMAND_LINE_SIZE - 1] = '\0';
831
832	memset(&bfin_memmap, 0, sizeof(bfin_memmap));
833
834	/* If the user does not specify things on the command line, use
835	 * what the bootloader set things up as
836	 */
837	physical_mem_end = 0;
838	parse_cmdline_early(&command_line[0]);
839
840	if (_ramend == 0)
841		_ramend = get_mem_size() * 1024 * 1024;
842
843	if (physical_mem_end == 0)
844		physical_mem_end = _ramend;
845
846	memory_setup();
847
848	/* Initialize Async memory banks */
849	bfin_write_EBIU_AMBCTL0(AMBCTL0VAL);
850	bfin_write_EBIU_AMBCTL1(AMBCTL1VAL);
851	bfin_write_EBIU_AMGCTL(AMGCTLVAL);
852#ifdef CONFIG_EBIU_MBSCTLVAL
853	bfin_write_EBIU_MBSCTL(CONFIG_EBIU_MBSCTLVAL);
854	bfin_write_EBIU_MODE(CONFIG_EBIU_MODEVAL);
855	bfin_write_EBIU_FCTL(CONFIG_EBIU_FCTLVAL);
856#endif
857
858	cclk = get_cclk();
859	sclk = get_sclk();
860
861	if ((ANOMALY_05000273 || ANOMALY_05000274) && (cclk >> 1) < sclk)
862		panic("ANOMALY 05000273 or 05000274: CCLK must be >= 2*SCLK");
863
864#ifdef BF561_FAMILY
865	if (ANOMALY_05000266) {
866		bfin_read_IMDMA_D0_IRQ_STATUS();
867		bfin_read_IMDMA_D1_IRQ_STATUS();
868	}
869#endif
870	printk(KERN_INFO "Hardware Trace ");
871	if (bfin_read_TBUFCTL() & 0x1)
872		printk(KERN_CONT "Active ");
873	else
874		printk(KERN_CONT "Off ");
875	if (bfin_read_TBUFCTL() & 0x2)
876		printk(KERN_CONT "and Enabled\n");
877	else
878		printk(KERN_CONT "and Disabled\n");
879
880	printk(KERN_INFO "Boot Mode: %i\n", bfin_read_SYSCR() & 0xF);
881
882	/* Newer parts mirror SWRST bits in SYSCR */
883#if defined(CONFIG_BF53x) || defined(CONFIG_BF561) || \
884    defined(CONFIG_BF538) || defined(CONFIG_BF539)
885	_bfin_swrst = bfin_read_SWRST();
886#else
887	/* Clear boot mode field */
888	_bfin_swrst = bfin_read_SYSCR() & ~0xf;
889#endif
890
891#ifdef CONFIG_DEBUG_DOUBLEFAULT_PRINT
892	bfin_write_SWRST(_bfin_swrst & ~DOUBLE_FAULT);
893#endif
894#ifdef CONFIG_DEBUG_DOUBLEFAULT_RESET
895	bfin_write_SWRST(_bfin_swrst | DOUBLE_FAULT);
896#endif
897
898#ifdef CONFIG_SMP
899	if (_bfin_swrst & SWRST_DBL_FAULT_A) {
900#else
901	if (_bfin_swrst & RESET_DOUBLE) {
902#endif
903		printk(KERN_EMERG "Recovering from DOUBLE FAULT event\n");
904#ifdef CONFIG_DEBUG_DOUBLEFAULT
905		/* We assume the crashing kernel, and the current symbol table match */
906		printk(KERN_EMERG " While handling exception (EXCAUSE = 0x%x) at %pF\n",
907			(int)init_saved_seqstat & SEQSTAT_EXCAUSE, init_saved_retx);
908		printk(KERN_NOTICE "   DCPLB_FAULT_ADDR: %pF\n", init_saved_dcplb_fault_addr);
909		printk(KERN_NOTICE "   ICPLB_FAULT_ADDR: %pF\n", init_saved_icplb_fault_addr);
910#endif
911		printk(KERN_NOTICE " The instruction at %pF caused a double exception\n",
912			init_retx);
913	} else if (_bfin_swrst & RESET_WDOG)
914		printk(KERN_INFO "Recovering from Watchdog event\n");
915	else if (_bfin_swrst & RESET_SOFTWARE)
916		printk(KERN_NOTICE "Reset caused by Software reset\n");
917
918	printk(KERN_INFO "Blackfin support (C) 2004-2009 Analog Devices, Inc.\n");
919	if (bfin_compiled_revid() == 0xffff)
920		printk(KERN_INFO "Compiled for ADSP-%s Rev any\n", CPU);
921	else if (bfin_compiled_revid() == -1)
922		printk(KERN_INFO "Compiled for ADSP-%s Rev none\n", CPU);
923	else
924		printk(KERN_INFO "Compiled for ADSP-%s Rev 0.%d\n", CPU, bfin_compiled_revid());
925
926	if (likely(CPUID == bfin_cpuid())) {
927		if (bfin_revid() != bfin_compiled_revid()) {
928			if (bfin_compiled_revid() == -1)
929				printk(KERN_ERR "Warning: Compiled for Rev none, but running on Rev %d\n",
930				       bfin_revid());
931			else if (bfin_compiled_revid() != 0xffff) {
932				printk(KERN_ERR "Warning: Compiled for Rev %d, but running on Rev %d\n",
933				       bfin_compiled_revid(), bfin_revid());
934				if (bfin_compiled_revid() > bfin_revid())
935					panic("Error: you are missing anomaly workarounds for this rev");
936			}
937		}
938		if (bfin_revid() < CONFIG_BF_REV_MIN || bfin_revid() > CONFIG_BF_REV_MAX)
939			printk(KERN_ERR "Warning: Unsupported Chip Revision ADSP-%s Rev 0.%d detected\n",
940			       CPU, bfin_revid());
941	}
942
943	printk(KERN_INFO "Blackfin Linux support by http://blackfin.uclinux.org/\n");
944
945	printk(KERN_INFO "Processor Speed: %lu MHz core clock and %lu MHz System Clock\n",
946	       cclk / 1000000, sclk / 1000000);
947
948	setup_bootmem_allocator();
949
950	paging_init();
951
952	/* Copy atomic sequences to their fixed location, and sanity check that
953	   these locations are the ones that we advertise to userspace.  */
954	memcpy((void *)FIXED_CODE_START, &fixed_code_start,
955	       FIXED_CODE_END - FIXED_CODE_START);
956	BUG_ON((char *)&sigreturn_stub - (char *)&fixed_code_start
957	       != SIGRETURN_STUB - FIXED_CODE_START);
958	BUG_ON((char *)&atomic_xchg32 - (char *)&fixed_code_start
959	       != ATOMIC_XCHG32 - FIXED_CODE_START);
960	BUG_ON((char *)&atomic_cas32 - (char *)&fixed_code_start
961	       != ATOMIC_CAS32 - FIXED_CODE_START);
962	BUG_ON((char *)&atomic_add32 - (char *)&fixed_code_start
963	       != ATOMIC_ADD32 - FIXED_CODE_START);
964	BUG_ON((char *)&atomic_sub32 - (char *)&fixed_code_start
965	       != ATOMIC_SUB32 - FIXED_CODE_START);
966	BUG_ON((char *)&atomic_ior32 - (char *)&fixed_code_start
967	       != ATOMIC_IOR32 - FIXED_CODE_START);
968	BUG_ON((char *)&atomic_and32 - (char *)&fixed_code_start
969	       != ATOMIC_AND32 - FIXED_CODE_START);
970	BUG_ON((char *)&atomic_xor32 - (char *)&fixed_code_start
971	       != ATOMIC_XOR32 - FIXED_CODE_START);
972	BUG_ON((char *)&safe_user_instruction - (char *)&fixed_code_start
973		!= SAFE_USER_INSTRUCTION - FIXED_CODE_START);
974
975#ifdef CONFIG_SMP
976	platform_init_cpus();
977#endif
978	init_exception_vectors();
979	bfin_cache_init();	/* Initialize caches for the boot CPU */
980}
981
982static int __init topology_init(void)
983{
984	unsigned int cpu;
985	/* Record CPU-private information for the boot processor. */
986	bfin_setup_cpudata(0);
987
988	for_each_possible_cpu(cpu) {
989		register_cpu(&per_cpu(cpu_data, cpu).cpu, cpu);
990	}
991
992	return 0;
993}
994
995subsys_initcall(topology_init);
996
997/* Get the input clock frequency */
998static u_long cached_clkin_hz = CONFIG_CLKIN_HZ;
999static u_long get_clkin_hz(void)
1000{
1001	return cached_clkin_hz;
1002}
1003static int __init early_init_clkin_hz(char *buf)
1004{
1005	cached_clkin_hz = simple_strtoul(buf, NULL, 0);
1006#ifdef BFIN_KERNEL_CLOCK
1007	if (cached_clkin_hz != CONFIG_CLKIN_HZ)
1008		panic("cannot change clkin_hz when reprogramming clocks");
1009#endif
1010	return 1;
1011}
1012early_param("clkin_hz=", early_init_clkin_hz);
1013
1014/* Get the voltage input multiplier */
1015static u_long get_vco(void)
1016{
1017	static u_long cached_vco;
1018	u_long msel, pll_ctl;
1019
1020	/* The assumption here is that VCO never changes at runtime.
1021	 * If, someday, we support that, then we'll have to change this.
1022	 */
1023	if (cached_vco)
1024		return cached_vco;
1025
1026	pll_ctl = bfin_read_PLL_CTL();
1027	msel = (pll_ctl >> 9) & 0x3F;
1028	if (0 == msel)
1029		msel = 64;
1030
1031	cached_vco = get_clkin_hz();
1032	cached_vco >>= (1 & pll_ctl);	/* DF bit */
1033	cached_vco *= msel;
1034	return cached_vco;
1035}
1036
1037/* Get the Core clock */
1038u_long get_cclk(void)
1039{
1040	static u_long cached_cclk_pll_div, cached_cclk;
1041	u_long csel, ssel;
1042
1043	if (bfin_read_PLL_STAT() & 0x1)
1044		return get_clkin_hz();
1045
1046	ssel = bfin_read_PLL_DIV();
1047	if (ssel == cached_cclk_pll_div)
1048		return cached_cclk;
1049	else
1050		cached_cclk_pll_div = ssel;
1051
1052	csel = ((ssel >> 4) & 0x03);
1053	ssel &= 0xf;
1054	if (ssel && ssel < (1 << csel))	/* SCLK > CCLK */
1055		cached_cclk = get_vco() / ssel;
1056	else
1057		cached_cclk = get_vco() >> csel;
1058	return cached_cclk;
1059}
1060EXPORT_SYMBOL(get_cclk);
1061
1062/* Get the System clock */
1063u_long get_sclk(void)
1064{
1065	static u_long cached_sclk;
1066	u_long ssel;
1067
1068	/* The assumption here is that SCLK never changes at runtime.
1069	 * If, someday, we support that, then we'll have to change this.
1070	 */
1071	if (cached_sclk)
1072		return cached_sclk;
1073
1074	if (bfin_read_PLL_STAT() & 0x1)
1075		return get_clkin_hz();
1076
1077	ssel = bfin_read_PLL_DIV() & 0xf;
1078	if (0 == ssel) {
1079		printk(KERN_WARNING "Invalid System Clock\n");
1080		ssel = 1;
1081	}
1082
1083	cached_sclk = get_vco() / ssel;
1084	return cached_sclk;
1085}
1086EXPORT_SYMBOL(get_sclk);
1087
1088unsigned long sclk_to_usecs(unsigned long sclk)
1089{
1090	u64 tmp = USEC_PER_SEC * (u64)sclk;
1091	do_div(tmp, get_sclk());
1092	return tmp;
1093}
1094EXPORT_SYMBOL(sclk_to_usecs);
1095
1096unsigned long usecs_to_sclk(unsigned long usecs)
1097{
1098	u64 tmp = get_sclk() * (u64)usecs;
1099	do_div(tmp, USEC_PER_SEC);
1100	return tmp;
1101}
1102EXPORT_SYMBOL(usecs_to_sclk);
1103
1104/*
1105 *	Get CPU information for use by the procfs.
1106 */
1107static int show_cpuinfo(struct seq_file *m, void *v)
1108{
1109	char *cpu, *mmu, *fpu, *vendor, *cache;
1110	uint32_t revid;
1111	int cpu_num = *(unsigned int *)v;
1112	u_long sclk, cclk;
1113	u_int icache_size = BFIN_ICACHESIZE / 1024, dcache_size = 0, dsup_banks = 0;
1114	struct blackfin_cpudata *cpudata = &per_cpu(cpu_data, cpu_num);
1115
1116	cpu = CPU;
1117	mmu = "none";
1118	fpu = "none";
1119	revid = bfin_revid();
1120
1121	sclk = get_sclk();
1122	cclk = get_cclk();
1123
1124	switch (bfin_read_CHIPID() & CHIPID_MANUFACTURE) {
1125	case 0xca:
1126		vendor = "Analog Devices";
1127		break;
1128	default:
1129		vendor = "unknown";
1130		break;
1131	}
1132
1133	seq_printf(m, "processor\t: %d\n" "vendor_id\t: %s\n", cpu_num, vendor);
1134
1135	if (CPUID == bfin_cpuid())
1136		seq_printf(m, "cpu family\t: 0x%04x\n", CPUID);
1137	else
1138		seq_printf(m, "cpu family\t: Compiled for:0x%04x, running on:0x%04x\n",
1139			CPUID, bfin_cpuid());
1140
1141	seq_printf(m, "model name\t: ADSP-%s %lu(MHz CCLK) %lu(MHz SCLK) (%s)\n"
1142		"stepping\t: %d ",
1143		cpu, cclk/1000000, sclk/1000000,
1144#ifdef CONFIG_MPU
1145		"mpu on",
1146#else
1147		"mpu off",
1148#endif
1149		revid);
1150
1151	if (bfin_revid() != bfin_compiled_revid()) {
1152		if (bfin_compiled_revid() == -1)
1153			seq_printf(m, "(Compiled for Rev none)");
1154		else if (bfin_compiled_revid() == 0xffff)
1155			seq_printf(m, "(Compiled for Rev any)");
1156		else
1157			seq_printf(m, "(Compiled for Rev %d)", bfin_compiled_revid());
1158	}
1159
1160	seq_printf(m, "\ncpu MHz\t\t: %lu.%03lu/%lu.%03lu\n",
1161		cclk/1000000, cclk%1000000,
1162		sclk/1000000, sclk%1000000);
1163	seq_printf(m, "bogomips\t: %lu.%02lu\n"
1164		"Calibration\t: %lu loops\n",
1165		(loops_per_jiffy * HZ) / 500000,
1166		((loops_per_jiffy * HZ) / 5000) % 100,
1167		(loops_per_jiffy * HZ));
1168
1169	/* Check Cache configutation */
1170	switch (cpudata->dmemctl & (1 << DMC0_P | 1 << DMC1_P)) {
1171	case ACACHE_BSRAM:
1172		cache = "dbank-A/B\t: cache/sram";
1173		dcache_size = 16;
1174		dsup_banks = 1;
1175		break;
1176	case ACACHE_BCACHE:
1177		cache = "dbank-A/B\t: cache/cache";
1178		dcache_size = 32;
1179		dsup_banks = 2;
1180		break;
1181	case ASRAM_BSRAM:
1182		cache = "dbank-A/B\t: sram/sram";
1183		dcache_size = 0;
1184		dsup_banks = 0;
1185		break;
1186	default:
1187		cache = "unknown";
1188		dcache_size = 0;
1189		dsup_banks = 0;
1190		break;
1191	}
1192
1193	/* Is it turned on? */
1194	if ((cpudata->dmemctl & (ENDCPLB | DMC_ENABLE)) != (ENDCPLB | DMC_ENABLE))
1195		dcache_size = 0;
1196
1197	if ((cpudata->imemctl & (IMC | ENICPLB)) != (IMC | ENICPLB))
1198		icache_size = 0;
1199
1200	seq_printf(m, "cache size\t: %d KB(L1 icache) "
1201		"%d KB(L1 dcache) %d KB(L2 cache)\n",
1202		icache_size, dcache_size, 0);
1203	seq_printf(m, "%s\n", cache);
1204	seq_printf(m, "external memory\t: "
1205#if defined(CONFIG_BFIN_EXTMEM_ICACHEABLE)
1206		   "cacheable"
1207#else
1208		   "uncacheable"
1209#endif
1210		   " in instruction cache\n");
1211	seq_printf(m, "external memory\t: "
1212#if defined(CONFIG_BFIN_EXTMEM_WRITEBACK)
1213		      "cacheable (write-back)"
1214#elif defined(CONFIG_BFIN_EXTMEM_WRITETHROUGH)
1215		      "cacheable (write-through)"
1216#else
1217		      "uncacheable"
1218#endif
1219		      " in data cache\n");
1220
1221	if (icache_size)
1222		seq_printf(m, "icache setup\t: %d Sub-banks/%d Ways, %d Lines/Way\n",
1223			   BFIN_ISUBBANKS, BFIN_IWAYS, BFIN_ILINES);
1224	else
1225		seq_printf(m, "icache setup\t: off\n");
1226
1227	seq_printf(m,
1228		   "dcache setup\t: %d Super-banks/%d Sub-banks/%d Ways, %d Lines/Way\n",
1229		   dsup_banks, BFIN_DSUBBANKS, BFIN_DWAYS,
1230		   BFIN_DLINES);
1231#ifdef __ARCH_SYNC_CORE_DCACHE
1232	seq_printf(m, "SMP Dcache Flushes\t: %lu\n\n", cpudata->dcache_invld_count);
1233#endif
1234#ifdef __ARCH_SYNC_CORE_ICACHE
1235	seq_printf(m, "SMP Icache Flushes\t: %lu\n\n", cpudata->icache_invld_count);
1236#endif
1237
1238	if (cpu_num != num_possible_cpus() - 1)
1239		return 0;
1240
1241	if (L2_LENGTH) {
1242		seq_printf(m, "L2 SRAM\t\t: %dKB\n", L2_LENGTH/0x400);
1243		seq_printf(m, "L2 SRAM\t\t: "
1244#if defined(CONFIG_BFIN_L2_ICACHEABLE)
1245			      "cacheable"
1246#else
1247			      "uncacheable"
1248#endif
1249			      " in instruction cache\n");
1250		seq_printf(m, "L2 SRAM\t\t: "
1251#if defined(CONFIG_BFIN_L2_WRITEBACK)
1252			      "cacheable (write-back)"
1253#elif defined(CONFIG_BFIN_L2_WRITETHROUGH)
1254			      "cacheable (write-through)"
1255#else
1256			      "uncacheable"
1257#endif
1258			      " in data cache\n");
1259	}
1260	seq_printf(m, "board name\t: %s\n", bfin_board_name);
1261	seq_printf(m, "board memory\t: %ld kB (0x%p -> 0x%p)\n",
1262		 physical_mem_end >> 10, (void *)0, (void *)physical_mem_end);
1263	seq_printf(m, "kernel memory\t: %d kB (0x%p -> 0x%p)\n",
1264		((int)memory_end - (int)_stext) >> 10,
1265		_stext,
1266		(void *)memory_end);
1267	seq_printf(m, "\n");
1268
1269	return 0;
1270}
1271
1272static void *c_start(struct seq_file *m, loff_t *pos)
1273{
1274	if (*pos == 0)
1275		*pos = first_cpu(cpu_online_map);
1276	if (*pos >= num_online_cpus())
1277		return NULL;
1278
1279	return pos;
1280}
1281
1282static void *c_next(struct seq_file *m, void *v, loff_t *pos)
1283{
1284	*pos = next_cpu(*pos, cpu_online_map);
1285
1286	return c_start(m, pos);
1287}
1288
1289static void c_stop(struct seq_file *m, void *v)
1290{
1291}
1292
1293const struct seq_operations cpuinfo_op = {
1294	.start = c_start,
1295	.next = c_next,
1296	.stop = c_stop,
1297	.show = show_cpuinfo,
1298};
1299
1300void __init cmdline_init(const char *r0)
1301{
1302	early_shadow_stamp();
1303	if (r0)
1304		strncpy(command_line, r0, COMMAND_LINE_SIZE);
1305}
1306