setup.c revision c70c754ff916cedd969a73549799d2167ffefcd6
1/*
2 * arch/blackfin/kernel/setup.c
3 *
4 * Copyright 2004-2006 Analog Devices Inc.
5 *
6 * Enter bugs at http://blackfin.uclinux.org/
7 *
8 * Licensed under the GPL-2 or later.
9 */
10
11#include <linux/delay.h>
12#include <linux/console.h>
13#include <linux/bootmem.h>
14#include <linux/seq_file.h>
15#include <linux/cpu.h>
16#include <linux/mm.h>
17#include <linux/module.h>
18#include <linux/tty.h>
19#include <linux/pfn.h>
20
21#ifdef CONFIG_MTD_UCLINUX
22#include <linux/mtd/map.h>
23#include <linux/ext2_fs.h>
24#include <linux/cramfs_fs.h>
25#include <linux/romfs_fs.h>
26#endif
27
28#include <asm/cplb.h>
29#include <asm/cacheflush.h>
30#include <asm/blackfin.h>
31#include <asm/cplbinit.h>
32#include <asm/div64.h>
33#include <asm/cpu.h>
34#include <asm/fixed_code.h>
35#include <asm/early_printk.h>
36
37u16 _bfin_swrst;
38EXPORT_SYMBOL(_bfin_swrst);
39
40unsigned long memory_start, memory_end, physical_mem_end;
41unsigned long _rambase, _ramstart, _ramend;
42unsigned long reserved_mem_dcache_on;
43unsigned long reserved_mem_icache_on;
44EXPORT_SYMBOL(memory_start);
45EXPORT_SYMBOL(memory_end);
46EXPORT_SYMBOL(physical_mem_end);
47EXPORT_SYMBOL(_ramend);
48EXPORT_SYMBOL(reserved_mem_dcache_on);
49
50#ifdef CONFIG_MTD_UCLINUX
51extern struct map_info uclinux_ram_map;
52unsigned long memory_mtd_end, memory_mtd_start, mtd_size;
53unsigned long _ebss;
54EXPORT_SYMBOL(memory_mtd_end);
55EXPORT_SYMBOL(memory_mtd_start);
56EXPORT_SYMBOL(mtd_size);
57#endif
58
59char __initdata command_line[COMMAND_LINE_SIZE];
60void __initdata *init_retx, *init_saved_retx, *init_saved_seqstat,
61	*init_saved_icplb_fault_addr, *init_saved_dcplb_fault_addr;
62
63/* boot memmap, for parsing "memmap=" */
64#define BFIN_MEMMAP_MAX		128 /* number of entries in bfin_memmap */
65#define BFIN_MEMMAP_RAM		1
66#define BFIN_MEMMAP_RESERVED	2
67static struct bfin_memmap {
68	int nr_map;
69	struct bfin_memmap_entry {
70		unsigned long long addr; /* start of memory segment */
71		unsigned long long size;
72		unsigned long type;
73	} map[BFIN_MEMMAP_MAX];
74} bfin_memmap __initdata;
75
76/* for memmap sanitization */
77struct change_member {
78	struct bfin_memmap_entry *pentry; /* pointer to original entry */
79	unsigned long long addr; /* address for this change point */
80};
81static struct change_member change_point_list[2*BFIN_MEMMAP_MAX] __initdata;
82static struct change_member *change_point[2*BFIN_MEMMAP_MAX] __initdata;
83static struct bfin_memmap_entry *overlap_list[BFIN_MEMMAP_MAX] __initdata;
84static struct bfin_memmap_entry new_map[BFIN_MEMMAP_MAX] __initdata;
85
86DEFINE_PER_CPU(struct blackfin_cpudata, cpu_data);
87
88static int early_init_clkin_hz(char *buf);
89
90#if defined(CONFIG_BFIN_DCACHE) || defined(CONFIG_BFIN_ICACHE)
91void __init generate_cplb_tables(void)
92{
93	unsigned int cpu;
94
95	generate_cplb_tables_all();
96	/* Generate per-CPU I&D CPLB tables */
97	for (cpu = 0; cpu < num_possible_cpus(); ++cpu)
98		generate_cplb_tables_cpu(cpu);
99}
100#endif
101
102void __cpuinit bfin_setup_caches(unsigned int cpu)
103{
104#ifdef CONFIG_BFIN_ICACHE
105	bfin_icache_init(icplb_tbl[cpu]);
106#endif
107
108#ifdef CONFIG_BFIN_DCACHE
109	bfin_dcache_init(dcplb_tbl[cpu]);
110#endif
111
112	/*
113	 * In cache coherence emulation mode, we need to have the
114	 * D-cache enabled before running any atomic operation which
115	 * might invove cache invalidation (i.e. spinlock, rwlock).
116	 * So printk's are deferred until then.
117	 */
118#ifdef CONFIG_BFIN_ICACHE
119	printk(KERN_INFO "Instruction Cache Enabled for CPU%u\n", cpu);
120	printk(KERN_INFO "  External memory:"
121# ifdef CONFIG_BFIN_EXTMEM_ICACHEABLE
122	       " cacheable"
123# else
124	       " uncacheable"
125# endif
126	       " in instruction cache\n");
127	if (L2_LENGTH)
128		printk(KERN_INFO "  L2 SRAM        :"
129# ifdef CONFIG_BFIN_L2_ICACHEABLE
130		       " cacheable"
131# else
132		       " uncacheable"
133# endif
134		       " in instruction cache\n");
135
136#else
137	printk(KERN_INFO "Instruction Cache Disabled for CPU%u\n", cpu);
138#endif
139
140#ifdef CONFIG_BFIN_DCACHE
141	printk(KERN_INFO "Data Cache Enabled for CPU%u\n", cpu);
142	printk(KERN_INFO "  External memory:"
143# if defined CONFIG_BFIN_EXTMEM_WRITEBACK
144	       " cacheable (write-back)"
145# elif defined CONFIG_BFIN_EXTMEM_WRITETHROUGH
146	       " cacheable (write-through)"
147# else
148	       " uncacheable"
149# endif
150	       " in data cache\n");
151	if (L2_LENGTH)
152		printk(KERN_INFO "  L2 SRAM        :"
153# if defined CONFIG_BFIN_L2_WRITEBACK
154		       " cacheable (write-back)"
155# elif defined CONFIG_BFIN_L2_WRITETHROUGH
156		       " cacheable (write-through)"
157# else
158		       " uncacheable"
159# endif
160		       " in data cache\n");
161#else
162	printk(KERN_INFO "Data Cache Disabled for CPU%u\n", cpu);
163#endif
164}
165
166void __cpuinit bfin_setup_cpudata(unsigned int cpu)
167{
168	struct blackfin_cpudata *cpudata = &per_cpu(cpu_data, cpu);
169
170	cpudata->idle = current;
171	cpudata->imemctl = bfin_read_IMEM_CONTROL();
172	cpudata->dmemctl = bfin_read_DMEM_CONTROL();
173}
174
175void __init bfin_cache_init(void)
176{
177#if defined(CONFIG_BFIN_DCACHE) || defined(CONFIG_BFIN_ICACHE)
178	generate_cplb_tables();
179#endif
180	bfin_setup_caches(0);
181}
182
183void __init bfin_relocate_l1_mem(void)
184{
185	unsigned long l1_code_length;
186	unsigned long l1_data_a_length;
187	unsigned long l1_data_b_length;
188	unsigned long l2_length;
189
190	/*
191	 * due to the ALIGN(4) in the arch/blackfin/kernel/vmlinux.lds.S
192	 * we know that everything about l1 text/data is nice and aligned,
193	 * so copy by 4 byte chunks, and don't worry about overlapping
194	 * src/dest.
195	 *
196	 * We can't use the dma_memcpy functions, since they can call
197	 * scheduler functions which might be in L1 :( and core writes
198	 * into L1 instruction cause bad access errors, so we are stuck,
199	 * we are required to use DMA, but can't use the common dma
200	 * functions. We can't use memcpy either - since that might be
201	 * going to be in the relocated L1
202	 */
203
204	blackfin_dma_early_init();
205
206	/* if necessary, copy _stext_l1 to _etext_l1 to L1 instruction SRAM */
207	l1_code_length = _etext_l1 - _stext_l1;
208	if (l1_code_length)
209		early_dma_memcpy(_stext_l1, _l1_lma_start, l1_code_length);
210
211	/* if necessary, copy _sdata_l1 to _sbss_l1 to L1 data bank A SRAM */
212	l1_data_a_length = _sbss_l1 - _sdata_l1;
213	if (l1_data_a_length)
214		early_dma_memcpy(_sdata_l1, _l1_lma_start + l1_code_length, l1_data_a_length);
215
216	/* if necessary, copy _sdata_b_l1 to _sbss_b_l1 to L1 data bank B SRAM */
217	l1_data_b_length = _sbss_b_l1 - _sdata_b_l1;
218	if (l1_data_b_length)
219		early_dma_memcpy(_sdata_b_l1, _l1_lma_start + l1_code_length +
220			l1_data_a_length, l1_data_b_length);
221
222	early_dma_memcpy_done();
223
224	/* if necessary, copy _stext_l2 to _edata_l2 to L2 SRAM */
225	if (L2_LENGTH != 0) {
226		l2_length = _sbss_l2 - _stext_l2;
227		if (l2_length)
228			memcpy(_stext_l2, _l2_lma_start, l2_length);
229	}
230}
231
232/* add_memory_region to memmap */
233static void __init add_memory_region(unsigned long long start,
234			      unsigned long long size, int type)
235{
236	int i;
237
238	i = bfin_memmap.nr_map;
239
240	if (i == BFIN_MEMMAP_MAX) {
241		printk(KERN_ERR "Ooops! Too many entries in the memory map!\n");
242		return;
243	}
244
245	bfin_memmap.map[i].addr = start;
246	bfin_memmap.map[i].size = size;
247	bfin_memmap.map[i].type = type;
248	bfin_memmap.nr_map++;
249}
250
251/*
252 * Sanitize the boot memmap, removing overlaps.
253 */
254static int __init sanitize_memmap(struct bfin_memmap_entry *map, int *pnr_map)
255{
256	struct change_member *change_tmp;
257	unsigned long current_type, last_type;
258	unsigned long long last_addr;
259	int chgidx, still_changing;
260	int overlap_entries;
261	int new_entry;
262	int old_nr, new_nr, chg_nr;
263	int i;
264
265	/*
266		Visually we're performing the following (1,2,3,4 = memory types)
267
268		Sample memory map (w/overlaps):
269		   ____22__________________
270		   ______________________4_
271		   ____1111________________
272		   _44_____________________
273		   11111111________________
274		   ____________________33__
275		   ___________44___________
276		   __________33333_________
277		   ______________22________
278		   ___________________2222_
279		   _________111111111______
280		   _____________________11_
281		   _________________4______
282
283		Sanitized equivalent (no overlap):
284		   1_______________________
285		   _44_____________________
286		   ___1____________________
287		   ____22__________________
288		   ______11________________
289		   _________1______________
290		   __________3_____________
291		   ___________44___________
292		   _____________33_________
293		   _______________2________
294		   ________________1_______
295		   _________________4______
296		   ___________________2____
297		   ____________________33__
298		   ______________________4_
299	*/
300	/* if there's only one memory region, don't bother */
301	if (*pnr_map < 2)
302		return -1;
303
304	old_nr = *pnr_map;
305
306	/* bail out if we find any unreasonable addresses in memmap */
307	for (i = 0; i < old_nr; i++)
308		if (map[i].addr + map[i].size < map[i].addr)
309			return -1;
310
311	/* create pointers for initial change-point information (for sorting) */
312	for (i = 0; i < 2*old_nr; i++)
313		change_point[i] = &change_point_list[i];
314
315	/* record all known change-points (starting and ending addresses),
316	   omitting those that are for empty memory regions */
317	chgidx = 0;
318	for (i = 0; i < old_nr; i++) {
319		if (map[i].size != 0) {
320			change_point[chgidx]->addr = map[i].addr;
321			change_point[chgidx++]->pentry = &map[i];
322			change_point[chgidx]->addr = map[i].addr + map[i].size;
323			change_point[chgidx++]->pentry = &map[i];
324		}
325	}
326	chg_nr = chgidx;	/* true number of change-points */
327
328	/* sort change-point list by memory addresses (low -> high) */
329	still_changing = 1;
330	while (still_changing) {
331		still_changing = 0;
332		for (i = 1; i < chg_nr; i++) {
333			/* if <current_addr> > <last_addr>, swap */
334			/* or, if current=<start_addr> & last=<end_addr>, swap */
335			if ((change_point[i]->addr < change_point[i-1]->addr) ||
336				((change_point[i]->addr == change_point[i-1]->addr) &&
337				 (change_point[i]->addr == change_point[i]->pentry->addr) &&
338				 (change_point[i-1]->addr != change_point[i-1]->pentry->addr))
339			   ) {
340				change_tmp = change_point[i];
341				change_point[i] = change_point[i-1];
342				change_point[i-1] = change_tmp;
343				still_changing = 1;
344			}
345		}
346	}
347
348	/* create a new memmap, removing overlaps */
349	overlap_entries = 0;	/* number of entries in the overlap table */
350	new_entry = 0;		/* index for creating new memmap entries */
351	last_type = 0;		/* start with undefined memory type */
352	last_addr = 0;		/* start with 0 as last starting address */
353	/* loop through change-points, determining affect on the new memmap */
354	for (chgidx = 0; chgidx < chg_nr; chgidx++) {
355		/* keep track of all overlapping memmap entries */
356		if (change_point[chgidx]->addr == change_point[chgidx]->pentry->addr) {
357			/* add map entry to overlap list (> 1 entry implies an overlap) */
358			overlap_list[overlap_entries++] = change_point[chgidx]->pentry;
359		} else {
360			/* remove entry from list (order independent, so swap with last) */
361			for (i = 0; i < overlap_entries; i++) {
362				if (overlap_list[i] == change_point[chgidx]->pentry)
363					overlap_list[i] = overlap_list[overlap_entries-1];
364			}
365			overlap_entries--;
366		}
367		/* if there are overlapping entries, decide which "type" to use */
368		/* (larger value takes precedence -- 1=usable, 2,3,4,4+=unusable) */
369		current_type = 0;
370		for (i = 0; i < overlap_entries; i++)
371			if (overlap_list[i]->type > current_type)
372				current_type = overlap_list[i]->type;
373		/* continue building up new memmap based on this information */
374		if (current_type != last_type) {
375			if (last_type != 0) {
376				new_map[new_entry].size =
377					change_point[chgidx]->addr - last_addr;
378				/* move forward only if the new size was non-zero */
379				if (new_map[new_entry].size != 0)
380					if (++new_entry >= BFIN_MEMMAP_MAX)
381						break;	/* no more space left for new entries */
382			}
383			if (current_type != 0) {
384				new_map[new_entry].addr = change_point[chgidx]->addr;
385				new_map[new_entry].type = current_type;
386				last_addr = change_point[chgidx]->addr;
387			}
388			last_type = current_type;
389		}
390	}
391	new_nr = new_entry;	/* retain count for new entries */
392
393	/* copy new mapping into original location */
394	memcpy(map, new_map, new_nr*sizeof(struct bfin_memmap_entry));
395	*pnr_map = new_nr;
396
397	return 0;
398}
399
400static void __init print_memory_map(char *who)
401{
402	int i;
403
404	for (i = 0; i < bfin_memmap.nr_map; i++) {
405		printk(KERN_DEBUG " %s: %016Lx - %016Lx ", who,
406			bfin_memmap.map[i].addr,
407			bfin_memmap.map[i].addr + bfin_memmap.map[i].size);
408		switch (bfin_memmap.map[i].type) {
409		case BFIN_MEMMAP_RAM:
410			printk(KERN_CONT "(usable)\n");
411			break;
412		case BFIN_MEMMAP_RESERVED:
413			printk(KERN_CONT "(reserved)\n");
414			break;
415		default:
416			printk(KERN_CONT "type %lu\n", bfin_memmap.map[i].type);
417			break;
418		}
419	}
420}
421
422static __init int parse_memmap(char *arg)
423{
424	unsigned long long start_at, mem_size;
425
426	if (!arg)
427		return -EINVAL;
428
429	mem_size = memparse(arg, &arg);
430	if (*arg == '@') {
431		start_at = memparse(arg+1, &arg);
432		add_memory_region(start_at, mem_size, BFIN_MEMMAP_RAM);
433	} else if (*arg == '$') {
434		start_at = memparse(arg+1, &arg);
435		add_memory_region(start_at, mem_size, BFIN_MEMMAP_RESERVED);
436	}
437
438	return 0;
439}
440
441/*
442 * Initial parsing of the command line.  Currently, we support:
443 *  - Controlling the linux memory size: mem=xxx[KMG]
444 *  - Controlling the physical memory size: max_mem=xxx[KMG][$][#]
445 *       $ -> reserved memory is dcacheable
446 *       # -> reserved memory is icacheable
447 *  - "memmap=XXX[KkmM][@][$]XXX[KkmM]" defines a memory region
448 *       @ from <start> to <start>+<mem>, type RAM
449 *       $ from <start> to <start>+<mem>, type RESERVED
450 */
451static __init void parse_cmdline_early(char *cmdline_p)
452{
453	char c = ' ', *to = cmdline_p;
454	unsigned int memsize;
455	for (;;) {
456		if (c == ' ') {
457			if (!memcmp(to, "mem=", 4)) {
458				to += 4;
459				memsize = memparse(to, &to);
460				if (memsize)
461					_ramend = memsize;
462
463			} else if (!memcmp(to, "max_mem=", 8)) {
464				to += 8;
465				memsize = memparse(to, &to);
466				if (memsize) {
467					physical_mem_end = memsize;
468					if (*to != ' ') {
469						if (*to == '$'
470						    || *(to + 1) == '$')
471							reserved_mem_dcache_on = 1;
472						if (*to == '#'
473						    || *(to + 1) == '#')
474							reserved_mem_icache_on = 1;
475					}
476				}
477			} else if (!memcmp(to, "clkin_hz=", 9)) {
478				to += 9;
479				early_init_clkin_hz(to);
480#ifdef CONFIG_EARLY_PRINTK
481			} else if (!memcmp(to, "earlyprintk=", 12)) {
482				to += 12;
483				setup_early_printk(to);
484#endif
485			} else if (!memcmp(to, "memmap=", 7)) {
486				to += 7;
487				parse_memmap(to);
488			}
489		}
490		c = *(to++);
491		if (!c)
492			break;
493	}
494}
495
496/*
497 * Setup memory defaults from user config.
498 * The physical memory layout looks like:
499 *
500 *  [_rambase, _ramstart]:		kernel image
501 *  [memory_start, memory_end]:		dynamic memory managed by kernel
502 *  [memory_end, _ramend]:		reserved memory
503 *  	[memory_mtd_start(memory_end),
504 *  		memory_mtd_start + mtd_size]:	rootfs (if any)
505 *	[_ramend - DMA_UNCACHED_REGION,
506 *		_ramend]:			uncached DMA region
507 *  [_ramend, physical_mem_end]:	memory not managed by kernel
508 */
509static __init void memory_setup(void)
510{
511#ifdef CONFIG_MTD_UCLINUX
512	unsigned long mtd_phys = 0;
513#endif
514
515	_rambase = (unsigned long)_stext;
516	_ramstart = (unsigned long)_end;
517
518	if (DMA_UNCACHED_REGION > (_ramend - _ramstart)) {
519		console_init();
520		panic("DMA region exceeds memory limit: %lu.",
521			_ramend - _ramstart);
522	}
523	memory_end = _ramend - DMA_UNCACHED_REGION;
524
525#ifdef CONFIG_MPU
526	/* Round up to multiple of 4MB */
527	memory_start = (_ramstart + 0x3fffff) & ~0x3fffff;
528#else
529	memory_start = PAGE_ALIGN(_ramstart);
530#endif
531
532#if defined(CONFIG_MTD_UCLINUX)
533	/* generic memory mapped MTD driver */
534	memory_mtd_end = memory_end;
535
536	mtd_phys = _ramstart;
537	mtd_size = PAGE_ALIGN(*((unsigned long *)(mtd_phys + 8)));
538
539# if defined(CONFIG_EXT2_FS) || defined(CONFIG_EXT3_FS)
540	if (*((unsigned short *)(mtd_phys + 0x438)) == EXT2_SUPER_MAGIC)
541		mtd_size =
542		    PAGE_ALIGN(*((unsigned long *)(mtd_phys + 0x404)) << 10);
543# endif
544
545# if defined(CONFIG_CRAMFS)
546	if (*((unsigned long *)(mtd_phys)) == CRAMFS_MAGIC)
547		mtd_size = PAGE_ALIGN(*((unsigned long *)(mtd_phys + 0x4)));
548# endif
549
550# if defined(CONFIG_ROMFS_FS)
551	if (((unsigned long *)mtd_phys)[0] == ROMSB_WORD0
552	    && ((unsigned long *)mtd_phys)[1] == ROMSB_WORD1)
553		mtd_size =
554		    PAGE_ALIGN(be32_to_cpu(((unsigned long *)mtd_phys)[2]));
555#  if (defined(CONFIG_BFIN_EXTMEM_ICACHEABLE) && ANOMALY_05000263)
556	/* Due to a Hardware Anomaly we need to limit the size of usable
557	 * instruction memory to max 60MB, 56 if HUNT_FOR_ZERO is on
558	 * 05000263 - Hardware loop corrupted when taking an ICPLB exception
559	 */
560#   if (defined(CONFIG_DEBUG_HUNT_FOR_ZERO))
561	if (memory_end >= 56 * 1024 * 1024)
562		memory_end = 56 * 1024 * 1024;
563#   else
564	if (memory_end >= 60 * 1024 * 1024)
565		memory_end = 60 * 1024 * 1024;
566#   endif				/* CONFIG_DEBUG_HUNT_FOR_ZERO */
567#  endif				/* ANOMALY_05000263 */
568# endif				/* CONFIG_ROMFS_FS */
569
570	/* Since the default MTD_UCLINUX has no magic number, we just blindly
571	 * read 8 past the end of the kernel's image, and look at it.
572	 * When no image is attached, mtd_size is set to a random number
573	 * Do some basic sanity checks before operating on things
574	 */
575	if (mtd_size == 0 || memory_end <= mtd_size) {
576		pr_emerg("Could not find valid ram mtd attached.\n");
577	} else {
578		memory_end -= mtd_size;
579
580		/* Relocate MTD image to the top of memory after the uncached memory area */
581		uclinux_ram_map.phys = memory_mtd_start = memory_end;
582		uclinux_ram_map.size = mtd_size;
583		pr_info("Found mtd parition at 0x%p, (len=0x%lx), moving to 0x%p\n",
584			_end, mtd_size, (void *)memory_mtd_start);
585		dma_memcpy((void *)uclinux_ram_map.phys, _end, uclinux_ram_map.size);
586	}
587#endif				/* CONFIG_MTD_UCLINUX */
588
589#if (defined(CONFIG_BFIN_EXTMEM_ICACHEABLE) && ANOMALY_05000263)
590	/* Due to a Hardware Anomaly we need to limit the size of usable
591	 * instruction memory to max 60MB, 56 if HUNT_FOR_ZERO is on
592	 * 05000263 - Hardware loop corrupted when taking an ICPLB exception
593	 */
594#if (defined(CONFIG_DEBUG_HUNT_FOR_ZERO))
595	if (memory_end >= 56 * 1024 * 1024)
596		memory_end = 56 * 1024 * 1024;
597#else
598	if (memory_end >= 60 * 1024 * 1024)
599		memory_end = 60 * 1024 * 1024;
600#endif				/* CONFIG_DEBUG_HUNT_FOR_ZERO */
601	printk(KERN_NOTICE "Warning: limiting memory to %liMB due to hardware anomaly 05000263\n", memory_end >> 20);
602#endif				/* ANOMALY_05000263 */
603
604#ifdef CONFIG_MPU
605	page_mask_nelts = ((_ramend >> PAGE_SHIFT) + 31) / 32;
606	page_mask_order = get_order(3 * page_mask_nelts * sizeof(long));
607#endif
608
609#if !defined(CONFIG_MTD_UCLINUX)
610	/*In case there is no valid CPLB behind memory_end make sure we don't get to close*/
611	memory_end -= SIZE_4K;
612#endif
613
614	init_mm.start_code = (unsigned long)_stext;
615	init_mm.end_code = (unsigned long)_etext;
616	init_mm.end_data = (unsigned long)_edata;
617	init_mm.brk = (unsigned long)0;
618
619	printk(KERN_INFO "Board Memory: %ldMB\n", physical_mem_end >> 20);
620	printk(KERN_INFO "Kernel Managed Memory: %ldMB\n", _ramend >> 20);
621
622	printk(KERN_INFO "Memory map:\n"
623	       "  fixedcode = 0x%p-0x%p\n"
624	       "  text      = 0x%p-0x%p\n"
625	       "  rodata    = 0x%p-0x%p\n"
626	       "  bss       = 0x%p-0x%p\n"
627	       "  data      = 0x%p-0x%p\n"
628	       "    stack   = 0x%p-0x%p\n"
629	       "  init      = 0x%p-0x%p\n"
630	       "  available = 0x%p-0x%p\n"
631#ifdef CONFIG_MTD_UCLINUX
632	       "  rootfs    = 0x%p-0x%p\n"
633#endif
634#if DMA_UNCACHED_REGION > 0
635	       "  DMA Zone  = 0x%p-0x%p\n"
636#endif
637		, (void *)FIXED_CODE_START, (void *)FIXED_CODE_END,
638		_stext, _etext,
639		__start_rodata, __end_rodata,
640		__bss_start, __bss_stop,
641		_sdata, _edata,
642		(void *)&init_thread_union,
643		(void *)((int)(&init_thread_union) + 0x2000),
644		__init_begin, __init_end,
645		(void *)_ramstart, (void *)memory_end
646#ifdef CONFIG_MTD_UCLINUX
647		, (void *)memory_mtd_start, (void *)(memory_mtd_start + mtd_size)
648#endif
649#if DMA_UNCACHED_REGION > 0
650		, (void *)(_ramend - DMA_UNCACHED_REGION), (void *)(_ramend)
651#endif
652		);
653}
654
655/*
656 * Find the lowest, highest page frame number we have available
657 */
658void __init find_min_max_pfn(void)
659{
660	int i;
661
662	max_pfn = 0;
663	min_low_pfn = memory_end;
664
665	for (i = 0; i < bfin_memmap.nr_map; i++) {
666		unsigned long start, end;
667		/* RAM? */
668		if (bfin_memmap.map[i].type != BFIN_MEMMAP_RAM)
669			continue;
670		start = PFN_UP(bfin_memmap.map[i].addr);
671		end = PFN_DOWN(bfin_memmap.map[i].addr +
672				bfin_memmap.map[i].size);
673		if (start >= end)
674			continue;
675		if (end > max_pfn)
676			max_pfn = end;
677		if (start < min_low_pfn)
678			min_low_pfn = start;
679	}
680}
681
682static __init void setup_bootmem_allocator(void)
683{
684	int bootmap_size;
685	int i;
686	unsigned long start_pfn, end_pfn;
687	unsigned long curr_pfn, last_pfn, size;
688
689	/* mark memory between memory_start and memory_end usable */
690	add_memory_region(memory_start,
691		memory_end - memory_start, BFIN_MEMMAP_RAM);
692	/* sanity check for overlap */
693	sanitize_memmap(bfin_memmap.map, &bfin_memmap.nr_map);
694	print_memory_map("boot memmap");
695
696	/* intialize globals in linux/bootmem.h */
697	find_min_max_pfn();
698	/* pfn of the last usable page frame */
699	if (max_pfn > memory_end >> PAGE_SHIFT)
700		max_pfn = memory_end >> PAGE_SHIFT;
701	/* pfn of last page frame directly mapped by kernel */
702	max_low_pfn = max_pfn;
703	/* pfn of the first usable page frame after kernel image*/
704	if (min_low_pfn < memory_start >> PAGE_SHIFT)
705		min_low_pfn = memory_start >> PAGE_SHIFT;
706
707	start_pfn = PAGE_OFFSET >> PAGE_SHIFT;
708	end_pfn = memory_end >> PAGE_SHIFT;
709
710	/*
711	 * give all the memory to the bootmap allocator, tell it to put the
712	 * boot mem_map at the start of memory.
713	 */
714	bootmap_size = init_bootmem_node(NODE_DATA(0),
715			memory_start >> PAGE_SHIFT,	/* map goes here */
716			start_pfn, end_pfn);
717
718	/* register the memmap regions with the bootmem allocator */
719	for (i = 0; i < bfin_memmap.nr_map; i++) {
720		/*
721		 * Reserve usable memory
722		 */
723		if (bfin_memmap.map[i].type != BFIN_MEMMAP_RAM)
724			continue;
725		/*
726		 * We are rounding up the start address of usable memory:
727		 */
728		curr_pfn = PFN_UP(bfin_memmap.map[i].addr);
729		if (curr_pfn >= end_pfn)
730			continue;
731		/*
732		 * ... and at the end of the usable range downwards:
733		 */
734		last_pfn = PFN_DOWN(bfin_memmap.map[i].addr +
735					 bfin_memmap.map[i].size);
736
737		if (last_pfn > end_pfn)
738			last_pfn = end_pfn;
739
740		/*
741		 * .. finally, did all the rounding and playing
742		 * around just make the area go away?
743		 */
744		if (last_pfn <= curr_pfn)
745			continue;
746
747		size = last_pfn - curr_pfn;
748		free_bootmem(PFN_PHYS(curr_pfn), PFN_PHYS(size));
749	}
750
751	/* reserve memory before memory_start, including bootmap */
752	reserve_bootmem(PAGE_OFFSET,
753		memory_start + bootmap_size + PAGE_SIZE - 1 - PAGE_OFFSET,
754		BOOTMEM_DEFAULT);
755}
756
757#define EBSZ_TO_MEG(ebsz) \
758({ \
759	int meg = 0; \
760	switch (ebsz & 0xf) { \
761		case 0x1: meg =  16; break; \
762		case 0x3: meg =  32; break; \
763		case 0x5: meg =  64; break; \
764		case 0x7: meg = 128; break; \
765		case 0x9: meg = 256; break; \
766		case 0xb: meg = 512; break; \
767	} \
768	meg; \
769})
770static inline int __init get_mem_size(void)
771{
772#if defined(EBIU_SDBCTL)
773# if defined(BF561_FAMILY)
774	int ret = 0;
775	u32 sdbctl = bfin_read_EBIU_SDBCTL();
776	ret += EBSZ_TO_MEG(sdbctl >>  0);
777	ret += EBSZ_TO_MEG(sdbctl >>  8);
778	ret += EBSZ_TO_MEG(sdbctl >> 16);
779	ret += EBSZ_TO_MEG(sdbctl >> 24);
780	return ret;
781# else
782	return EBSZ_TO_MEG(bfin_read_EBIU_SDBCTL());
783# endif
784#elif defined(EBIU_DDRCTL1)
785	u32 ddrctl = bfin_read_EBIU_DDRCTL1();
786	int ret = 0;
787	switch (ddrctl & 0xc0000) {
788		case DEVSZ_64:  ret = 64 / 8;
789		case DEVSZ_128: ret = 128 / 8;
790		case DEVSZ_256: ret = 256 / 8;
791		case DEVSZ_512: ret = 512 / 8;
792	}
793	switch (ddrctl & 0x30000) {
794		case DEVWD_4:  ret *= 2;
795		case DEVWD_8:  ret *= 2;
796		case DEVWD_16: break;
797	}
798	if ((ddrctl & 0xc000) == 0x4000)
799		ret *= 2;
800	return ret;
801#endif
802	BUG();
803}
804
805void __init setup_arch(char **cmdline_p)
806{
807	unsigned long sclk, cclk;
808
809	/* Check to make sure we are running on the right processor */
810	if (unlikely(CPUID != bfin_cpuid()))
811		printk(KERN_ERR "ERROR: Not running on ADSP-%s: unknown CPUID 0x%04x Rev 0.%d\n",
812			CPU, bfin_cpuid(), bfin_revid());
813
814#ifdef CONFIG_DUMMY_CONSOLE
815	conswitchp = &dummy_con;
816#endif
817
818#if defined(CONFIG_CMDLINE_BOOL)
819	strncpy(&command_line[0], CONFIG_CMDLINE, sizeof(command_line));
820	command_line[sizeof(command_line) - 1] = 0;
821#endif
822
823	/* Keep a copy of command line */
824	*cmdline_p = &command_line[0];
825	memcpy(boot_command_line, command_line, COMMAND_LINE_SIZE);
826	boot_command_line[COMMAND_LINE_SIZE - 1] = '\0';
827
828	memset(&bfin_memmap, 0, sizeof(bfin_memmap));
829
830	/* If the user does not specify things on the command line, use
831	 * what the bootloader set things up as
832	 */
833	physical_mem_end = 0;
834	parse_cmdline_early(&command_line[0]);
835
836	if (_ramend == 0)
837		_ramend = get_mem_size() * 1024 * 1024;
838
839	if (physical_mem_end == 0)
840		physical_mem_end = _ramend;
841
842	memory_setup();
843
844	/* Initialize Async memory banks */
845	bfin_write_EBIU_AMBCTL0(AMBCTL0VAL);
846	bfin_write_EBIU_AMBCTL1(AMBCTL1VAL);
847	bfin_write_EBIU_AMGCTL(AMGCTLVAL);
848#ifdef CONFIG_EBIU_MBSCTLVAL
849	bfin_write_EBIU_MBSCTL(CONFIG_EBIU_MBSCTLVAL);
850	bfin_write_EBIU_MODE(CONFIG_EBIU_MODEVAL);
851	bfin_write_EBIU_FCTL(CONFIG_EBIU_FCTLVAL);
852#endif
853
854	cclk = get_cclk();
855	sclk = get_sclk();
856
857	if ((ANOMALY_05000273 || ANOMALY_05000274) && (cclk >> 1) < sclk)
858		panic("ANOMALY 05000273 or 05000274: CCLK must be >= 2*SCLK");
859
860#ifdef BF561_FAMILY
861	if (ANOMALY_05000266) {
862		bfin_read_IMDMA_D0_IRQ_STATUS();
863		bfin_read_IMDMA_D1_IRQ_STATUS();
864	}
865#endif
866	printk(KERN_INFO "Hardware Trace ");
867	if (bfin_read_TBUFCTL() & 0x1)
868		printk(KERN_CONT "Active ");
869	else
870		printk(KERN_CONT "Off ");
871	if (bfin_read_TBUFCTL() & 0x2)
872		printk(KERN_CONT "and Enabled\n");
873	else
874		printk(KERN_CONT "and Disabled\n");
875
876	printk(KERN_INFO "Boot Mode: %i\n", bfin_read_SYSCR() & 0xF);
877
878	/* Newer parts mirror SWRST bits in SYSCR */
879#if defined(CONFIG_BF53x) || defined(CONFIG_BF561) || \
880    defined(CONFIG_BF538) || defined(CONFIG_BF539)
881	_bfin_swrst = bfin_read_SWRST();
882#else
883	/* Clear boot mode field */
884	_bfin_swrst = bfin_read_SYSCR() & ~0xf;
885#endif
886
887#ifdef CONFIG_DEBUG_DOUBLEFAULT_PRINT
888	bfin_write_SWRST(_bfin_swrst & ~DOUBLE_FAULT);
889#endif
890#ifdef CONFIG_DEBUG_DOUBLEFAULT_RESET
891	bfin_write_SWRST(_bfin_swrst | DOUBLE_FAULT);
892#endif
893
894#ifdef CONFIG_SMP
895	if (_bfin_swrst & SWRST_DBL_FAULT_A) {
896#else
897	if (_bfin_swrst & RESET_DOUBLE) {
898#endif
899		printk(KERN_EMERG "Recovering from DOUBLE FAULT event\n");
900#ifdef CONFIG_DEBUG_DOUBLEFAULT
901		/* We assume the crashing kernel, and the current symbol table match */
902		printk(KERN_EMERG " While handling exception (EXCAUSE = 0x%x) at %pF\n",
903			(int)init_saved_seqstat & SEQSTAT_EXCAUSE, init_saved_retx);
904		printk(KERN_NOTICE "   DCPLB_FAULT_ADDR: %pF\n", init_saved_dcplb_fault_addr);
905		printk(KERN_NOTICE "   ICPLB_FAULT_ADDR: %pF\n", init_saved_icplb_fault_addr);
906#endif
907		printk(KERN_NOTICE " The instruction at %pF caused a double exception\n",
908			init_retx);
909	} else if (_bfin_swrst & RESET_WDOG)
910		printk(KERN_INFO "Recovering from Watchdog event\n");
911	else if (_bfin_swrst & RESET_SOFTWARE)
912		printk(KERN_NOTICE "Reset caused by Software reset\n");
913
914	printk(KERN_INFO "Blackfin support (C) 2004-2009 Analog Devices, Inc.\n");
915	if (bfin_compiled_revid() == 0xffff)
916		printk(KERN_INFO "Compiled for ADSP-%s Rev any\n", CPU);
917	else if (bfin_compiled_revid() == -1)
918		printk(KERN_INFO "Compiled for ADSP-%s Rev none\n", CPU);
919	else
920		printk(KERN_INFO "Compiled for ADSP-%s Rev 0.%d\n", CPU, bfin_compiled_revid());
921
922	if (likely(CPUID == bfin_cpuid())) {
923		if (bfin_revid() != bfin_compiled_revid()) {
924			if (bfin_compiled_revid() == -1)
925				printk(KERN_ERR "Warning: Compiled for Rev none, but running on Rev %d\n",
926				       bfin_revid());
927			else if (bfin_compiled_revid() != 0xffff) {
928				printk(KERN_ERR "Warning: Compiled for Rev %d, but running on Rev %d\n",
929				       bfin_compiled_revid(), bfin_revid());
930				if (bfin_compiled_revid() > bfin_revid())
931					panic("Error: you are missing anomaly workarounds for this rev");
932			}
933		}
934		if (bfin_revid() < CONFIG_BF_REV_MIN || bfin_revid() > CONFIG_BF_REV_MAX)
935			printk(KERN_ERR "Warning: Unsupported Chip Revision ADSP-%s Rev 0.%d detected\n",
936			       CPU, bfin_revid());
937	}
938
939	printk(KERN_INFO "Blackfin Linux support by http://blackfin.uclinux.org/\n");
940
941	printk(KERN_INFO "Processor Speed: %lu MHz core clock and %lu MHz System Clock\n",
942	       cclk / 1000000, sclk / 1000000);
943
944	setup_bootmem_allocator();
945
946	paging_init();
947
948	/* Copy atomic sequences to their fixed location, and sanity check that
949	   these locations are the ones that we advertise to userspace.  */
950	memcpy((void *)FIXED_CODE_START, &fixed_code_start,
951	       FIXED_CODE_END - FIXED_CODE_START);
952	BUG_ON((char *)&sigreturn_stub - (char *)&fixed_code_start
953	       != SIGRETURN_STUB - FIXED_CODE_START);
954	BUG_ON((char *)&atomic_xchg32 - (char *)&fixed_code_start
955	       != ATOMIC_XCHG32 - FIXED_CODE_START);
956	BUG_ON((char *)&atomic_cas32 - (char *)&fixed_code_start
957	       != ATOMIC_CAS32 - FIXED_CODE_START);
958	BUG_ON((char *)&atomic_add32 - (char *)&fixed_code_start
959	       != ATOMIC_ADD32 - FIXED_CODE_START);
960	BUG_ON((char *)&atomic_sub32 - (char *)&fixed_code_start
961	       != ATOMIC_SUB32 - FIXED_CODE_START);
962	BUG_ON((char *)&atomic_ior32 - (char *)&fixed_code_start
963	       != ATOMIC_IOR32 - FIXED_CODE_START);
964	BUG_ON((char *)&atomic_and32 - (char *)&fixed_code_start
965	       != ATOMIC_AND32 - FIXED_CODE_START);
966	BUG_ON((char *)&atomic_xor32 - (char *)&fixed_code_start
967	       != ATOMIC_XOR32 - FIXED_CODE_START);
968	BUG_ON((char *)&safe_user_instruction - (char *)&fixed_code_start
969		!= SAFE_USER_INSTRUCTION - FIXED_CODE_START);
970
971#ifdef CONFIG_SMP
972	platform_init_cpus();
973#endif
974	init_exception_vectors();
975	bfin_cache_init();	/* Initialize caches for the boot CPU */
976}
977
978static int __init topology_init(void)
979{
980	unsigned int cpu;
981	/* Record CPU-private information for the boot processor. */
982	bfin_setup_cpudata(0);
983
984	for_each_possible_cpu(cpu) {
985		register_cpu(&per_cpu(cpu_data, cpu).cpu, cpu);
986	}
987
988	return 0;
989}
990
991subsys_initcall(topology_init);
992
993/* Get the input clock frequency */
994static u_long cached_clkin_hz = CONFIG_CLKIN_HZ;
995static u_long get_clkin_hz(void)
996{
997	return cached_clkin_hz;
998}
999static int __init early_init_clkin_hz(char *buf)
1000{
1001	cached_clkin_hz = simple_strtoul(buf, NULL, 0);
1002#ifdef BFIN_KERNEL_CLOCK
1003	if (cached_clkin_hz != CONFIG_CLKIN_HZ)
1004		panic("cannot change clkin_hz when reprogramming clocks");
1005#endif
1006	return 1;
1007}
1008early_param("clkin_hz=", early_init_clkin_hz);
1009
1010/* Get the voltage input multiplier */
1011static u_long get_vco(void)
1012{
1013	static u_long cached_vco;
1014	u_long msel, pll_ctl;
1015
1016	/* The assumption here is that VCO never changes at runtime.
1017	 * If, someday, we support that, then we'll have to change this.
1018	 */
1019	if (cached_vco)
1020		return cached_vco;
1021
1022	pll_ctl = bfin_read_PLL_CTL();
1023	msel = (pll_ctl >> 9) & 0x3F;
1024	if (0 == msel)
1025		msel = 64;
1026
1027	cached_vco = get_clkin_hz();
1028	cached_vco >>= (1 & pll_ctl);	/* DF bit */
1029	cached_vco *= msel;
1030	return cached_vco;
1031}
1032
1033/* Get the Core clock */
1034u_long get_cclk(void)
1035{
1036	static u_long cached_cclk_pll_div, cached_cclk;
1037	u_long csel, ssel;
1038
1039	if (bfin_read_PLL_STAT() & 0x1)
1040		return get_clkin_hz();
1041
1042	ssel = bfin_read_PLL_DIV();
1043	if (ssel == cached_cclk_pll_div)
1044		return cached_cclk;
1045	else
1046		cached_cclk_pll_div = ssel;
1047
1048	csel = ((ssel >> 4) & 0x03);
1049	ssel &= 0xf;
1050	if (ssel && ssel < (1 << csel))	/* SCLK > CCLK */
1051		cached_cclk = get_vco() / ssel;
1052	else
1053		cached_cclk = get_vco() >> csel;
1054	return cached_cclk;
1055}
1056EXPORT_SYMBOL(get_cclk);
1057
1058/* Get the System clock */
1059u_long get_sclk(void)
1060{
1061	static u_long cached_sclk;
1062	u_long ssel;
1063
1064	/* The assumption here is that SCLK never changes at runtime.
1065	 * If, someday, we support that, then we'll have to change this.
1066	 */
1067	if (cached_sclk)
1068		return cached_sclk;
1069
1070	if (bfin_read_PLL_STAT() & 0x1)
1071		return get_clkin_hz();
1072
1073	ssel = bfin_read_PLL_DIV() & 0xf;
1074	if (0 == ssel) {
1075		printk(KERN_WARNING "Invalid System Clock\n");
1076		ssel = 1;
1077	}
1078
1079	cached_sclk = get_vco() / ssel;
1080	return cached_sclk;
1081}
1082EXPORT_SYMBOL(get_sclk);
1083
1084unsigned long sclk_to_usecs(unsigned long sclk)
1085{
1086	u64 tmp = USEC_PER_SEC * (u64)sclk;
1087	do_div(tmp, get_sclk());
1088	return tmp;
1089}
1090EXPORT_SYMBOL(sclk_to_usecs);
1091
1092unsigned long usecs_to_sclk(unsigned long usecs)
1093{
1094	u64 tmp = get_sclk() * (u64)usecs;
1095	do_div(tmp, USEC_PER_SEC);
1096	return tmp;
1097}
1098EXPORT_SYMBOL(usecs_to_sclk);
1099
1100/*
1101 *	Get CPU information for use by the procfs.
1102 */
1103static int show_cpuinfo(struct seq_file *m, void *v)
1104{
1105	char *cpu, *mmu, *fpu, *vendor, *cache;
1106	uint32_t revid;
1107	int cpu_num = *(unsigned int *)v;
1108	u_long sclk, cclk;
1109	u_int icache_size = BFIN_ICACHESIZE / 1024, dcache_size = 0, dsup_banks = 0;
1110	struct blackfin_cpudata *cpudata = &per_cpu(cpu_data, cpu_num);
1111
1112	cpu = CPU;
1113	mmu = "none";
1114	fpu = "none";
1115	revid = bfin_revid();
1116
1117	sclk = get_sclk();
1118	cclk = get_cclk();
1119
1120	switch (bfin_read_CHIPID() & CHIPID_MANUFACTURE) {
1121	case 0xca:
1122		vendor = "Analog Devices";
1123		break;
1124	default:
1125		vendor = "unknown";
1126		break;
1127	}
1128
1129	seq_printf(m, "processor\t: %d\n" "vendor_id\t: %s\n", cpu_num, vendor);
1130
1131	if (CPUID == bfin_cpuid())
1132		seq_printf(m, "cpu family\t: 0x%04x\n", CPUID);
1133	else
1134		seq_printf(m, "cpu family\t: Compiled for:0x%04x, running on:0x%04x\n",
1135			CPUID, bfin_cpuid());
1136
1137	seq_printf(m, "model name\t: ADSP-%s %lu(MHz CCLK) %lu(MHz SCLK) (%s)\n"
1138		"stepping\t: %d ",
1139		cpu, cclk/1000000, sclk/1000000,
1140#ifdef CONFIG_MPU
1141		"mpu on",
1142#else
1143		"mpu off",
1144#endif
1145		revid);
1146
1147	if (bfin_revid() != bfin_compiled_revid()) {
1148		if (bfin_compiled_revid() == -1)
1149			seq_printf(m, "(Compiled for Rev none)");
1150		else if (bfin_compiled_revid() == 0xffff)
1151			seq_printf(m, "(Compiled for Rev any)");
1152		else
1153			seq_printf(m, "(Compiled for Rev %d)", bfin_compiled_revid());
1154	}
1155
1156	seq_printf(m, "\ncpu MHz\t\t: %lu.%03lu/%lu.%03lu\n",
1157		cclk/1000000, cclk%1000000,
1158		sclk/1000000, sclk%1000000);
1159	seq_printf(m, "bogomips\t: %lu.%02lu\n"
1160		"Calibration\t: %lu loops\n",
1161		(loops_per_jiffy * HZ) / 500000,
1162		((loops_per_jiffy * HZ) / 5000) % 100,
1163		(loops_per_jiffy * HZ));
1164
1165	/* Check Cache configutation */
1166	switch (cpudata->dmemctl & (1 << DMC0_P | 1 << DMC1_P)) {
1167	case ACACHE_BSRAM:
1168		cache = "dbank-A/B\t: cache/sram";
1169		dcache_size = 16;
1170		dsup_banks = 1;
1171		break;
1172	case ACACHE_BCACHE:
1173		cache = "dbank-A/B\t: cache/cache";
1174		dcache_size = 32;
1175		dsup_banks = 2;
1176		break;
1177	case ASRAM_BSRAM:
1178		cache = "dbank-A/B\t: sram/sram";
1179		dcache_size = 0;
1180		dsup_banks = 0;
1181		break;
1182	default:
1183		cache = "unknown";
1184		dcache_size = 0;
1185		dsup_banks = 0;
1186		break;
1187	}
1188
1189	/* Is it turned on? */
1190	if ((cpudata->dmemctl & (ENDCPLB | DMC_ENABLE)) != (ENDCPLB | DMC_ENABLE))
1191		dcache_size = 0;
1192
1193	if ((cpudata->imemctl & (IMC | ENICPLB)) != (IMC | ENICPLB))
1194		icache_size = 0;
1195
1196	seq_printf(m, "cache size\t: %d KB(L1 icache) "
1197		"%d KB(L1 dcache) %d KB(L2 cache)\n",
1198		icache_size, dcache_size, 0);
1199	seq_printf(m, "%s\n", cache);
1200	seq_printf(m, "external memory\t: "
1201#if defined(CONFIG_BFIN_EXTMEM_ICACHEABLE)
1202		   "cacheable"
1203#else
1204		   "uncacheable"
1205#endif
1206		   " in instruction cache\n");
1207	seq_printf(m, "external memory\t: "
1208#if defined(CONFIG_BFIN_EXTMEM_WRITEBACK)
1209		      "cacheable (write-back)"
1210#elif defined(CONFIG_BFIN_EXTMEM_WRITETHROUGH)
1211		      "cacheable (write-through)"
1212#else
1213		      "uncacheable"
1214#endif
1215		      " in data cache\n");
1216
1217	if (icache_size)
1218		seq_printf(m, "icache setup\t: %d Sub-banks/%d Ways, %d Lines/Way\n",
1219			   BFIN_ISUBBANKS, BFIN_IWAYS, BFIN_ILINES);
1220	else
1221		seq_printf(m, "icache setup\t: off\n");
1222
1223	seq_printf(m,
1224		   "dcache setup\t: %d Super-banks/%d Sub-banks/%d Ways, %d Lines/Way\n",
1225		   dsup_banks, BFIN_DSUBBANKS, BFIN_DWAYS,
1226		   BFIN_DLINES);
1227#ifdef __ARCH_SYNC_CORE_DCACHE
1228	seq_printf(m, "SMP Dcache Flushes\t: %lu\n\n", cpudata->dcache_invld_count);
1229#endif
1230#ifdef __ARCH_SYNC_CORE_ICACHE
1231	seq_printf(m, "SMP Icache Flushes\t: %lu\n\n", cpudata->icache_invld_count);
1232#endif
1233#ifdef CONFIG_BFIN_ICACHE_LOCK
1234	switch ((cpudata->imemctl >> 3) & WAYALL_L) {
1235	case WAY0_L:
1236		seq_printf(m, "Way0 Locked-Down\n");
1237		break;
1238	case WAY1_L:
1239		seq_printf(m, "Way1 Locked-Down\n");
1240		break;
1241	case WAY01_L:
1242		seq_printf(m, "Way0,Way1 Locked-Down\n");
1243		break;
1244	case WAY2_L:
1245		seq_printf(m, "Way2 Locked-Down\n");
1246		break;
1247	case WAY02_L:
1248		seq_printf(m, "Way0,Way2 Locked-Down\n");
1249		break;
1250	case WAY12_L:
1251		seq_printf(m, "Way1,Way2 Locked-Down\n");
1252		break;
1253	case WAY012_L:
1254		seq_printf(m, "Way0,Way1 & Way2 Locked-Down\n");
1255		break;
1256	case WAY3_L:
1257		seq_printf(m, "Way3 Locked-Down\n");
1258		break;
1259	case WAY03_L:
1260		seq_printf(m, "Way0,Way3 Locked-Down\n");
1261		break;
1262	case WAY13_L:
1263		seq_printf(m, "Way1,Way3 Locked-Down\n");
1264		break;
1265	case WAY013_L:
1266		seq_printf(m, "Way 0,Way1,Way3 Locked-Down\n");
1267		break;
1268	case WAY32_L:
1269		seq_printf(m, "Way3,Way2 Locked-Down\n");
1270		break;
1271	case WAY320_L:
1272		seq_printf(m, "Way3,Way2,Way0 Locked-Down\n");
1273		break;
1274	case WAY321_L:
1275		seq_printf(m, "Way3,Way2,Way1 Locked-Down\n");
1276		break;
1277	case WAYALL_L:
1278		seq_printf(m, "All Ways are locked\n");
1279		break;
1280	default:
1281		seq_printf(m, "No Ways are locked\n");
1282	}
1283#endif
1284
1285	if (cpu_num != num_possible_cpus() - 1)
1286		return 0;
1287
1288	if (L2_LENGTH) {
1289		seq_printf(m, "L2 SRAM\t\t: %dKB\n", L2_LENGTH/0x400);
1290		seq_printf(m, "L2 SRAM\t\t: "
1291#if defined(CONFIG_BFIN_L2_ICACHEABLE)
1292			      "cacheable"
1293#else
1294			      "uncacheable"
1295#endif
1296			      " in instruction cache\n");
1297		seq_printf(m, "L2 SRAM\t\t: "
1298#if defined(CONFIG_BFIN_L2_WRITEBACK)
1299			      "cacheable (write-back)"
1300#elif defined(CONFIG_BFIN_L2_WRITETHROUGH)
1301			      "cacheable (write-through)"
1302#else
1303			      "uncacheable"
1304#endif
1305			      " in data cache\n");
1306	}
1307	seq_printf(m, "board name\t: %s\n", bfin_board_name);
1308	seq_printf(m, "board memory\t: %ld kB (0x%p -> 0x%p)\n",
1309		 physical_mem_end >> 10, (void *)0, (void *)physical_mem_end);
1310	seq_printf(m, "kernel memory\t: %d kB (0x%p -> 0x%p)\n",
1311		((int)memory_end - (int)_stext) >> 10,
1312		_stext,
1313		(void *)memory_end);
1314	seq_printf(m, "\n");
1315
1316	return 0;
1317}
1318
1319static void *c_start(struct seq_file *m, loff_t *pos)
1320{
1321	if (*pos == 0)
1322		*pos = first_cpu(cpu_online_map);
1323	if (*pos >= num_online_cpus())
1324		return NULL;
1325
1326	return pos;
1327}
1328
1329static void *c_next(struct seq_file *m, void *v, loff_t *pos)
1330{
1331	*pos = next_cpu(*pos, cpu_online_map);
1332
1333	return c_start(m, pos);
1334}
1335
1336static void c_stop(struct seq_file *m, void *v)
1337{
1338}
1339
1340const struct seq_operations cpuinfo_op = {
1341	.start = c_start,
1342	.next = c_next,
1343	.stop = c_stop,
1344	.show = show_cpuinfo,
1345};
1346
1347void __init cmdline_init(const char *r0)
1348{
1349	if (r0)
1350		strncpy(command_line, r0, COMMAND_LINE_SIZE);
1351}
1352