sn2_smp.c revision 5dfe4c964a0dd7bb3a1d64a4166835a153146207
1/*
2 * SN2 Platform specific SMP Support
3 *
4 * This file is subject to the terms and conditions of the GNU General Public
5 * License.  See the file "COPYING" in the main directory of this archive
6 * for more details.
7 *
8 * Copyright (C) 2000-2006 Silicon Graphics, Inc. All rights reserved.
9 */
10
11#include <linux/init.h>
12#include <linux/kernel.h>
13#include <linux/spinlock.h>
14#include <linux/threads.h>
15#include <linux/sched.h>
16#include <linux/smp.h>
17#include <linux/interrupt.h>
18#include <linux/irq.h>
19#include <linux/mmzone.h>
20#include <linux/module.h>
21#include <linux/bitops.h>
22#include <linux/nodemask.h>
23#include <linux/proc_fs.h>
24#include <linux/seq_file.h>
25
26#include <asm/processor.h>
27#include <asm/irq.h>
28#include <asm/sal.h>
29#include <asm/system.h>
30#include <asm/delay.h>
31#include <asm/io.h>
32#include <asm/smp.h>
33#include <asm/tlb.h>
34#include <asm/numa.h>
35#include <asm/hw_irq.h>
36#include <asm/current.h>
37#include <asm/sn/sn_cpuid.h>
38#include <asm/sn/sn_sal.h>
39#include <asm/sn/addrs.h>
40#include <asm/sn/shub_mmr.h>
41#include <asm/sn/nodepda.h>
42#include <asm/sn/rw_mmr.h>
43
44DEFINE_PER_CPU(struct ptc_stats, ptcstats);
45DECLARE_PER_CPU(struct ptc_stats, ptcstats);
46
47static  __cacheline_aligned DEFINE_SPINLOCK(sn2_global_ptc_lock);
48
49extern unsigned long
50sn2_ptc_deadlock_recovery_core(volatile unsigned long *, unsigned long,
51			       volatile unsigned long *, unsigned long,
52			       volatile unsigned long *, unsigned long);
53void
54sn2_ptc_deadlock_recovery(short *, short, short, int,
55			  volatile unsigned long *, unsigned long,
56			  volatile unsigned long *, unsigned long);
57
58/*
59 * Note: some is the following is captured here to make degugging easier
60 * (the macros make more sense if you see the debug patch - not posted)
61 */
62#define sn2_ptctest	0
63#define local_node_uses_ptc_ga(sh1)	((sh1) ? 1 : 0)
64#define max_active_pio(sh1)		((sh1) ? 32 : 7)
65#define reset_max_active_on_deadlock()	1
66#define PTC_LOCK(sh1)			((sh1) ? &sn2_global_ptc_lock : &sn_nodepda->ptc_lock)
67
68struct ptc_stats {
69	unsigned long ptc_l;
70	unsigned long change_rid;
71	unsigned long shub_ptc_flushes;
72	unsigned long nodes_flushed;
73	unsigned long deadlocks;
74	unsigned long deadlocks2;
75	unsigned long lock_itc_clocks;
76	unsigned long shub_itc_clocks;
77	unsigned long shub_itc_clocks_max;
78	unsigned long shub_ptc_flushes_not_my_mm;
79};
80
81#define sn2_ptctest	0
82
83static inline unsigned long wait_piowc(void)
84{
85	volatile unsigned long *piows;
86	unsigned long zeroval, ws;
87
88	piows = pda->pio_write_status_addr;
89	zeroval = pda->pio_write_status_val;
90	do {
91		cpu_relax();
92	} while (((ws = *piows) & SH_PIO_WRITE_STATUS_PENDING_WRITE_COUNT_MASK) != zeroval);
93	return (ws & SH_PIO_WRITE_STATUS_WRITE_DEADLOCK_MASK) != 0;
94}
95
96/**
97 * sn_migrate - SN-specific task migration actions
98 * @task: Task being migrated to new CPU
99 *
100 * SN2 PIO writes from separate CPUs are not guaranteed to arrive in order.
101 * Context switching user threads which have memory-mapped MMIO may cause
102 * PIOs to issue from seperate CPUs, thus the PIO writes must be drained
103 * from the previous CPU's Shub before execution resumes on the new CPU.
104 */
105void sn_migrate(struct task_struct *task)
106{
107	pda_t *last_pda = pdacpu(task_thread_info(task)->last_cpu);
108	volatile unsigned long *adr = last_pda->pio_write_status_addr;
109	unsigned long val = last_pda->pio_write_status_val;
110
111	/* Drain PIO writes from old CPU's Shub */
112	while (unlikely((*adr & SH_PIO_WRITE_STATUS_PENDING_WRITE_COUNT_MASK)
113			!= val))
114		cpu_relax();
115}
116
117void sn_tlb_migrate_finish(struct mm_struct *mm)
118{
119	/* flush_tlb_mm is inefficient if more than 1 users of mm */
120	if (mm == current->mm && mm && atomic_read(&mm->mm_users) == 1)
121		flush_tlb_mm(mm);
122}
123
124/**
125 * sn2_global_tlb_purge - globally purge translation cache of virtual address range
126 * @mm: mm_struct containing virtual address range
127 * @start: start of virtual address range
128 * @end: end of virtual address range
129 * @nbits: specifies number of bytes to purge per instruction (num = 1<<(nbits & 0xfc))
130 *
131 * Purges the translation caches of all processors of the given virtual address
132 * range.
133 *
134 * Note:
135 * 	- cpu_vm_mask is a bit mask that indicates which cpus have loaded the context.
136 * 	- cpu_vm_mask is converted into a nodemask of the nodes containing the
137 * 	  cpus in cpu_vm_mask.
138 *	- if only one bit is set in cpu_vm_mask & it is the current cpu & the
139 *	  process is purging its own virtual address range, then only the
140 *	  local TLB needs to be flushed. This flushing can be done using
141 *	  ptc.l. This is the common case & avoids the global spinlock.
142 *	- if multiple cpus have loaded the context, then flushing has to be
143 *	  done with ptc.g/MMRs under protection of the global ptc_lock.
144 */
145
146void
147sn2_global_tlb_purge(struct mm_struct *mm, unsigned long start,
148		     unsigned long end, unsigned long nbits)
149{
150	int i, ibegin, shub1, cnode, mynasid, cpu, lcpu = 0, nasid;
151	int mymm = (mm == current->active_mm && mm == current->mm);
152	int use_cpu_ptcga;
153	volatile unsigned long *ptc0, *ptc1;
154	unsigned long itc, itc2, flags, data0 = 0, data1 = 0, rr_value, old_rr = 0;
155	short nasids[MAX_NUMNODES], nix;
156	nodemask_t nodes_flushed;
157	int active, max_active, deadlock;
158
159	nodes_clear(nodes_flushed);
160	i = 0;
161
162	for_each_cpu_mask(cpu, mm->cpu_vm_mask) {
163		cnode = cpu_to_node(cpu);
164		node_set(cnode, nodes_flushed);
165		lcpu = cpu;
166		i++;
167	}
168
169	if (i == 0)
170		return;
171
172	preempt_disable();
173
174	if (likely(i == 1 && lcpu == smp_processor_id() && mymm)) {
175		do {
176			ia64_ptcl(start, nbits << 2);
177			start += (1UL << nbits);
178		} while (start < end);
179		ia64_srlz_i();
180		__get_cpu_var(ptcstats).ptc_l++;
181		preempt_enable();
182		return;
183	}
184
185	if (atomic_read(&mm->mm_users) == 1 && mymm) {
186		flush_tlb_mm(mm);
187		__get_cpu_var(ptcstats).change_rid++;
188		preempt_enable();
189		return;
190	}
191
192	itc = ia64_get_itc();
193	nix = 0;
194	for_each_node_mask(cnode, nodes_flushed)
195		nasids[nix++] = cnodeid_to_nasid(cnode);
196
197	rr_value = (mm->context << 3) | REGION_NUMBER(start);
198
199	shub1 = is_shub1();
200	if (shub1) {
201		data0 = (1UL << SH1_PTC_0_A_SHFT) |
202		    	(nbits << SH1_PTC_0_PS_SHFT) |
203			(rr_value << SH1_PTC_0_RID_SHFT) |
204		    	(1UL << SH1_PTC_0_START_SHFT);
205		ptc0 = (long *)GLOBAL_MMR_PHYS_ADDR(0, SH1_PTC_0);
206		ptc1 = (long *)GLOBAL_MMR_PHYS_ADDR(0, SH1_PTC_1);
207	} else {
208		data0 = (1UL << SH2_PTC_A_SHFT) |
209			(nbits << SH2_PTC_PS_SHFT) |
210		    	(1UL << SH2_PTC_START_SHFT);
211		ptc0 = (long *)GLOBAL_MMR_PHYS_ADDR(0, SH2_PTC +
212			(rr_value << SH2_PTC_RID_SHFT));
213		ptc1 = NULL;
214	}
215
216
217	mynasid = get_nasid();
218	use_cpu_ptcga = local_node_uses_ptc_ga(shub1);
219	max_active = max_active_pio(shub1);
220
221	itc = ia64_get_itc();
222	spin_lock_irqsave(PTC_LOCK(shub1), flags);
223	itc2 = ia64_get_itc();
224
225	__get_cpu_var(ptcstats).lock_itc_clocks += itc2 - itc;
226	__get_cpu_var(ptcstats).shub_ptc_flushes++;
227	__get_cpu_var(ptcstats).nodes_flushed += nix;
228	if (!mymm)
229		 __get_cpu_var(ptcstats).shub_ptc_flushes_not_my_mm++;
230
231	if (use_cpu_ptcga && !mymm) {
232		old_rr = ia64_get_rr(start);
233		ia64_set_rr(start, (old_rr & 0xff) | (rr_value << 8));
234		ia64_srlz_d();
235	}
236
237	wait_piowc();
238	do {
239		if (shub1)
240			data1 = start | (1UL << SH1_PTC_1_START_SHFT);
241		else
242			data0 = (data0 & ~SH2_PTC_ADDR_MASK) | (start & SH2_PTC_ADDR_MASK);
243		deadlock = 0;
244		active = 0;
245		for (ibegin = 0, i = 0; i < nix; i++) {
246			nasid = nasids[i];
247			if (use_cpu_ptcga && unlikely(nasid == mynasid)) {
248				ia64_ptcga(start, nbits << 2);
249				ia64_srlz_i();
250			} else {
251				ptc0 = CHANGE_NASID(nasid, ptc0);
252				if (ptc1)
253					ptc1 = CHANGE_NASID(nasid, ptc1);
254				pio_atomic_phys_write_mmrs(ptc0, data0, ptc1, data1);
255				active++;
256			}
257			if (active >= max_active || i == (nix - 1)) {
258				if ((deadlock = wait_piowc())) {
259					sn2_ptc_deadlock_recovery(nasids, ibegin, i, mynasid, ptc0, data0, ptc1, data1);
260					if (reset_max_active_on_deadlock())
261						max_active = 1;
262				}
263				active = 0;
264				ibegin = i + 1;
265			}
266		}
267		start += (1UL << nbits);
268	} while (start < end);
269
270	itc2 = ia64_get_itc() - itc2;
271	__get_cpu_var(ptcstats).shub_itc_clocks += itc2;
272	if (itc2 > __get_cpu_var(ptcstats).shub_itc_clocks_max)
273		__get_cpu_var(ptcstats).shub_itc_clocks_max = itc2;
274
275	if (old_rr) {
276		ia64_set_rr(start, old_rr);
277		ia64_srlz_d();
278	}
279
280	spin_unlock_irqrestore(PTC_LOCK(shub1), flags);
281
282	preempt_enable();
283}
284
285/*
286 * sn2_ptc_deadlock_recovery
287 *
288 * Recover from PTC deadlocks conditions. Recovery requires stepping thru each
289 * TLB flush transaction.  The recovery sequence is somewhat tricky & is
290 * coded in assembly language.
291 */
292
293void
294sn2_ptc_deadlock_recovery(short *nasids, short ib, short ie, int mynasid,
295			  volatile unsigned long *ptc0, unsigned long data0,
296			  volatile unsigned long *ptc1, unsigned long data1)
297{
298	short nasid, i;
299	unsigned long *piows, zeroval, n;
300
301	__get_cpu_var(ptcstats).deadlocks++;
302
303	piows = (unsigned long *) pda->pio_write_status_addr;
304	zeroval = pda->pio_write_status_val;
305
306
307	for (i=ib; i <= ie; i++) {
308		nasid = nasids[i];
309		if (local_node_uses_ptc_ga(is_shub1()) && nasid == mynasid)
310			continue;
311		ptc0 = CHANGE_NASID(nasid, ptc0);
312		if (ptc1)
313			ptc1 = CHANGE_NASID(nasid, ptc1);
314
315		n = sn2_ptc_deadlock_recovery_core(ptc0, data0, ptc1, data1, piows, zeroval);
316		__get_cpu_var(ptcstats).deadlocks2 += n;
317	}
318
319}
320
321/**
322 * sn_send_IPI_phys - send an IPI to a Nasid and slice
323 * @nasid: nasid to receive the interrupt (may be outside partition)
324 * @physid: physical cpuid to receive the interrupt.
325 * @vector: command to send
326 * @delivery_mode: delivery mechanism
327 *
328 * Sends an IPI (interprocessor interrupt) to the processor specified by
329 * @physid
330 *
331 * @delivery_mode can be one of the following
332 *
333 * %IA64_IPI_DM_INT - pend an interrupt
334 * %IA64_IPI_DM_PMI - pend a PMI
335 * %IA64_IPI_DM_NMI - pend an NMI
336 * %IA64_IPI_DM_INIT - pend an INIT interrupt
337 */
338void sn_send_IPI_phys(int nasid, long physid, int vector, int delivery_mode)
339{
340	long val;
341	unsigned long flags = 0;
342	volatile long *p;
343
344	p = (long *)GLOBAL_MMR_PHYS_ADDR(nasid, SH_IPI_INT);
345	val = (1UL << SH_IPI_INT_SEND_SHFT) |
346	    (physid << SH_IPI_INT_PID_SHFT) |
347	    ((long)delivery_mode << SH_IPI_INT_TYPE_SHFT) |
348	    ((long)vector << SH_IPI_INT_IDX_SHFT) |
349	    (0x000feeUL << SH_IPI_INT_BASE_SHFT);
350
351	mb();
352	if (enable_shub_wars_1_1()) {
353		spin_lock_irqsave(&sn2_global_ptc_lock, flags);
354	}
355	pio_phys_write_mmr(p, val);
356	if (enable_shub_wars_1_1()) {
357		wait_piowc();
358		spin_unlock_irqrestore(&sn2_global_ptc_lock, flags);
359	}
360
361}
362
363EXPORT_SYMBOL(sn_send_IPI_phys);
364
365/**
366 * sn2_send_IPI - send an IPI to a processor
367 * @cpuid: target of the IPI
368 * @vector: command to send
369 * @delivery_mode: delivery mechanism
370 * @redirect: redirect the IPI?
371 *
372 * Sends an IPI (InterProcessor Interrupt) to the processor specified by
373 * @cpuid.  @vector specifies the command to send, while @delivery_mode can
374 * be one of the following
375 *
376 * %IA64_IPI_DM_INT - pend an interrupt
377 * %IA64_IPI_DM_PMI - pend a PMI
378 * %IA64_IPI_DM_NMI - pend an NMI
379 * %IA64_IPI_DM_INIT - pend an INIT interrupt
380 */
381void sn2_send_IPI(int cpuid, int vector, int delivery_mode, int redirect)
382{
383	long physid;
384	int nasid;
385
386	physid = cpu_physical_id(cpuid);
387	nasid = cpuid_to_nasid(cpuid);
388
389	/* the following is used only when starting cpus at boot time */
390	if (unlikely(nasid == -1))
391		ia64_sn_get_sapic_info(physid, &nasid, NULL, NULL);
392
393	sn_send_IPI_phys(nasid, physid, vector, delivery_mode);
394}
395
396#ifdef CONFIG_PROC_FS
397
398#define PTC_BASENAME	"sgi_sn/ptc_statistics"
399
400static void *sn2_ptc_seq_start(struct seq_file *file, loff_t * offset)
401{
402	if (*offset < NR_CPUS)
403		return offset;
404	return NULL;
405}
406
407static void *sn2_ptc_seq_next(struct seq_file *file, void *data, loff_t * offset)
408{
409	(*offset)++;
410	if (*offset < NR_CPUS)
411		return offset;
412	return NULL;
413}
414
415static void sn2_ptc_seq_stop(struct seq_file *file, void *data)
416{
417}
418
419static int sn2_ptc_seq_show(struct seq_file *file, void *data)
420{
421	struct ptc_stats *stat;
422	int cpu;
423
424	cpu = *(loff_t *) data;
425
426	if (!cpu) {
427		seq_printf(file,
428			   "# cpu ptc_l newrid ptc_flushes nodes_flushed deadlocks lock_nsec shub_nsec shub_nsec_max not_my_mm deadlock2\n");
429		seq_printf(file, "# ptctest %d\n", sn2_ptctest);
430	}
431
432	if (cpu < NR_CPUS && cpu_online(cpu)) {
433		stat = &per_cpu(ptcstats, cpu);
434		seq_printf(file, "cpu %d %ld %ld %ld %ld %ld %ld %ld %ld %ld %ld\n", cpu, stat->ptc_l,
435				stat->change_rid, stat->shub_ptc_flushes, stat->nodes_flushed,
436				stat->deadlocks,
437				1000 * stat->lock_itc_clocks / per_cpu(cpu_info, cpu).cyc_per_usec,
438				1000 * stat->shub_itc_clocks / per_cpu(cpu_info, cpu).cyc_per_usec,
439				1000 * stat->shub_itc_clocks_max / per_cpu(cpu_info, cpu).cyc_per_usec,
440				stat->shub_ptc_flushes_not_my_mm,
441				stat->deadlocks2);
442	}
443	return 0;
444}
445
446static struct seq_operations sn2_ptc_seq_ops = {
447	.start = sn2_ptc_seq_start,
448	.next = sn2_ptc_seq_next,
449	.stop = sn2_ptc_seq_stop,
450	.show = sn2_ptc_seq_show
451};
452
453static int sn2_ptc_proc_open(struct inode *inode, struct file *file)
454{
455	return seq_open(file, &sn2_ptc_seq_ops);
456}
457
458static const struct file_operations proc_sn2_ptc_operations = {
459	.open = sn2_ptc_proc_open,
460	.read = seq_read,
461	.llseek = seq_lseek,
462	.release = seq_release,
463};
464
465static struct proc_dir_entry *proc_sn2_ptc;
466
467static int __init sn2_ptc_init(void)
468{
469	if (!ia64_platform_is("sn2"))
470		return 0;
471
472	if (!(proc_sn2_ptc = create_proc_entry(PTC_BASENAME, 0444, NULL))) {
473		printk(KERN_ERR "unable to create %s proc entry", PTC_BASENAME);
474		return -EINVAL;
475	}
476	proc_sn2_ptc->proc_fops = &proc_sn2_ptc_operations;
477	spin_lock_init(&sn2_global_ptc_lock);
478	return 0;
479}
480
481static void __exit sn2_ptc_exit(void)
482{
483	remove_proc_entry(PTC_BASENAME, NULL);
484}
485
486module_init(sn2_ptc_init);
487module_exit(sn2_ptc_exit);
488#endif /* CONFIG_PROC_FS */
489
490