sn2_smp.c revision c1902aae322952f8726469a6657df7b9d5c794fe
1/*
2 * SN2 Platform specific SMP Support
3 *
4 * This file is subject to the terms and conditions of the GNU General Public
5 * License.  See the file "COPYING" in the main directory of this archive
6 * for more details.
7 *
8 * Copyright (C) 2000-2005 Silicon Graphics, Inc. All rights reserved.
9 */
10
11#include <linux/init.h>
12#include <linux/kernel.h>
13#include <linux/spinlock.h>
14#include <linux/threads.h>
15#include <linux/sched.h>
16#include <linux/smp.h>
17#include <linux/interrupt.h>
18#include <linux/irq.h>
19#include <linux/mmzone.h>
20#include <linux/module.h>
21#include <linux/bitops.h>
22#include <linux/nodemask.h>
23#include <linux/proc_fs.h>
24#include <linux/seq_file.h>
25
26#include <asm/processor.h>
27#include <asm/irq.h>
28#include <asm/sal.h>
29#include <asm/system.h>
30#include <asm/delay.h>
31#include <asm/io.h>
32#include <asm/smp.h>
33#include <asm/tlb.h>
34#include <asm/numa.h>
35#include <asm/hw_irq.h>
36#include <asm/current.h>
37#include <asm/sn/sn_cpuid.h>
38#include <asm/sn/sn_sal.h>
39#include <asm/sn/addrs.h>
40#include <asm/sn/shub_mmr.h>
41#include <asm/sn/nodepda.h>
42#include <asm/sn/rw_mmr.h>
43
44DEFINE_PER_CPU(struct ptc_stats, ptcstats);
45DECLARE_PER_CPU(struct ptc_stats, ptcstats);
46
47static  __cacheline_aligned DEFINE_SPINLOCK(sn2_global_ptc_lock);
48
49void sn2_ptc_deadlock_recovery(short *, short, int, volatile unsigned long *, unsigned long data0,
50	volatile unsigned long *, unsigned long data1);
51
52#ifdef DEBUG_PTC
53/*
54 * ptctest:
55 *
56 * 	xyz - 3 digit hex number:
57 * 		x - Force PTC purges to use shub:
58 * 			0 - no force
59 * 			1 - force
60 * 		y - interupt enable
61 * 			0 - disable interrupts
62 * 			1 - leave interuupts enabled
63 * 		z - type of lock:
64 * 			0 - global lock
65 * 			1 - node local lock
66 * 			2 - no lock
67 *
68 *   	Note: on shub1, only ptctest == 0 is supported. Don't try other values!
69 */
70
71static unsigned int sn2_ptctest = 0;
72
73static int __init ptc_test(char *str)
74{
75	get_option(&str, &sn2_ptctest);
76	return 1;
77}
78__setup("ptctest=", ptc_test);
79
80static inline int ptc_lock(unsigned long *flagp)
81{
82	unsigned long opt = sn2_ptctest & 255;
83
84	switch (opt) {
85	case 0x00:
86		spin_lock_irqsave(&sn2_global_ptc_lock, *flagp);
87		break;
88	case 0x01:
89		spin_lock_irqsave(&sn_nodepda->ptc_lock, *flagp);
90		break;
91	case 0x02:
92		local_irq_save(*flagp);
93		break;
94	case 0x10:
95		spin_lock(&sn2_global_ptc_lock);
96		break;
97	case 0x11:
98		spin_lock(&sn_nodepda->ptc_lock);
99		break;
100	case 0x12:
101		break;
102	default:
103		BUG();
104	}
105	return opt;
106}
107
108static inline void ptc_unlock(unsigned long flags, int opt)
109{
110	switch (opt) {
111	case 0x00:
112		spin_unlock_irqrestore(&sn2_global_ptc_lock, flags);
113		break;
114	case 0x01:
115		spin_unlock_irqrestore(&sn_nodepda->ptc_lock, flags);
116		break;
117	case 0x02:
118		local_irq_restore(flags);
119		break;
120	case 0x10:
121		spin_unlock(&sn2_global_ptc_lock);
122		break;
123	case 0x11:
124		spin_unlock(&sn_nodepda->ptc_lock);
125		break;
126	case 0x12:
127		break;
128	default:
129		BUG();
130	}
131}
132#else
133
134#define sn2_ptctest	0
135
136static inline int ptc_lock(unsigned long *flagp)
137{
138	spin_lock_irqsave(&sn2_global_ptc_lock, *flagp);
139	return 0;
140}
141
142static inline void ptc_unlock(unsigned long flags, int opt)
143{
144	spin_unlock_irqrestore(&sn2_global_ptc_lock, flags);
145}
146#endif
147
148struct ptc_stats {
149	unsigned long ptc_l;
150	unsigned long change_rid;
151	unsigned long shub_ptc_flushes;
152	unsigned long nodes_flushed;
153	unsigned long deadlocks;
154	unsigned long lock_itc_clocks;
155	unsigned long shub_itc_clocks;
156	unsigned long shub_itc_clocks_max;
157};
158
159static inline unsigned long wait_piowc(void)
160{
161	volatile unsigned long *piows, zeroval;
162	unsigned long ws;
163
164	piows = pda->pio_write_status_addr;
165	zeroval = pda->pio_write_status_val;
166	do {
167		cpu_relax();
168	} while (((ws = *piows) & SH_PIO_WRITE_STATUS_PENDING_WRITE_COUNT_MASK) != zeroval);
169	return ws;
170}
171
172void sn_tlb_migrate_finish(struct mm_struct *mm)
173{
174	if (mm == current->mm)
175		flush_tlb_mm(mm);
176}
177
178/**
179 * sn2_global_tlb_purge - globally purge translation cache of virtual address range
180 * @mm: mm_struct containing virtual address range
181 * @start: start of virtual address range
182 * @end: end of virtual address range
183 * @nbits: specifies number of bytes to purge per instruction (num = 1<<(nbits & 0xfc))
184 *
185 * Purges the translation caches of all processors of the given virtual address
186 * range.
187 *
188 * Note:
189 * 	- cpu_vm_mask is a bit mask that indicates which cpus have loaded the context.
190 * 	- cpu_vm_mask is converted into a nodemask of the nodes containing the
191 * 	  cpus in cpu_vm_mask.
192 *	- if only one bit is set in cpu_vm_mask & it is the current cpu & the
193 *	  process is purging its own virtual address range, then only the
194 *	  local TLB needs to be flushed. This flushing can be done using
195 *	  ptc.l. This is the common case & avoids the global spinlock.
196 *	- if multiple cpus have loaded the context, then flushing has to be
197 *	  done with ptc.g/MMRs under protection of the global ptc_lock.
198 */
199
200void
201sn2_global_tlb_purge(struct mm_struct *mm, unsigned long start,
202		     unsigned long end, unsigned long nbits)
203{
204	int i, opt, shub1, cnode, mynasid, cpu, lcpu = 0, nasid, flushed = 0;
205	int mymm = (mm == current->active_mm);
206	volatile unsigned long *ptc0, *ptc1;
207	unsigned long itc, itc2, flags, data0 = 0, data1 = 0, rr_value;
208	short nasids[MAX_NUMNODES], nix;
209	nodemask_t nodes_flushed;
210
211	nodes_clear(nodes_flushed);
212	i = 0;
213
214	for_each_cpu_mask(cpu, mm->cpu_vm_mask) {
215		cnode = cpu_to_node(cpu);
216		node_set(cnode, nodes_flushed);
217		lcpu = cpu;
218		i++;
219	}
220
221	if (i == 0)
222		return;
223
224	preempt_disable();
225
226	if (likely(i == 1 && lcpu == smp_processor_id() && mymm)) {
227		do {
228			ia64_ptcl(start, nbits << 2);
229			start += (1UL << nbits);
230		} while (start < end);
231		ia64_srlz_i();
232		__get_cpu_var(ptcstats).ptc_l++;
233		preempt_enable();
234		return;
235	}
236
237	if (atomic_read(&mm->mm_users) == 1 && mymm) {
238		flush_tlb_mm(mm);
239		__get_cpu_var(ptcstats).change_rid++;
240		preempt_enable();
241		return;
242	}
243
244	itc = ia64_get_itc();
245	nix = 0;
246	for_each_node_mask(cnode, nodes_flushed)
247		nasids[nix++] = cnodeid_to_nasid(cnode);
248
249	rr_value = (mm->context << 3) | REGION_NUMBER(start);
250
251	shub1 = is_shub1();
252	if (shub1) {
253		data0 = (1UL << SH1_PTC_0_A_SHFT) |
254		    	(nbits << SH1_PTC_0_PS_SHFT) |
255			(rr_value << SH1_PTC_0_RID_SHFT) |
256		    	(1UL << SH1_PTC_0_START_SHFT);
257		ptc0 = (long *)GLOBAL_MMR_PHYS_ADDR(0, SH1_PTC_0);
258		ptc1 = (long *)GLOBAL_MMR_PHYS_ADDR(0, SH1_PTC_1);
259	} else {
260		data0 = (1UL << SH2_PTC_A_SHFT) |
261			(nbits << SH2_PTC_PS_SHFT) |
262		    	(1UL << SH2_PTC_START_SHFT);
263		ptc0 = (long *)GLOBAL_MMR_PHYS_ADDR(0, SH2_PTC +
264			(rr_value << SH2_PTC_RID_SHFT));
265		ptc1 = NULL;
266	}
267
268
269	mynasid = get_nasid();
270
271	itc = ia64_get_itc();
272	opt = ptc_lock(&flags);
273	itc2 = ia64_get_itc();
274	__get_cpu_var(ptcstats).lock_itc_clocks += itc2 - itc;
275	__get_cpu_var(ptcstats).shub_ptc_flushes++;
276	__get_cpu_var(ptcstats).nodes_flushed += nix;
277
278	do {
279		if (shub1)
280			data1 = start | (1UL << SH1_PTC_1_START_SHFT);
281		else
282			data0 = (data0 & ~SH2_PTC_ADDR_MASK) | (start & SH2_PTC_ADDR_MASK);
283		for (i = 0; i < nix; i++) {
284			nasid = nasids[i];
285			if ((!(sn2_ptctest & 3)) && unlikely(nasid == mynasid && mymm)) {
286				ia64_ptcga(start, nbits << 2);
287				ia64_srlz_i();
288			} else {
289				ptc0 = CHANGE_NASID(nasid, ptc0);
290				if (ptc1)
291					ptc1 = CHANGE_NASID(nasid, ptc1);
292				pio_atomic_phys_write_mmrs(ptc0, data0, ptc1,
293							   data1);
294				flushed = 1;
295			}
296		}
297		if (flushed
298		    && (wait_piowc() &
299				(SH_PIO_WRITE_STATUS_WRITE_DEADLOCK_MASK))) {
300			sn2_ptc_deadlock_recovery(nasids, nix, mynasid, ptc0, data0, ptc1, data1);
301		}
302
303		start += (1UL << nbits);
304
305	} while (start < end);
306
307	itc2 = ia64_get_itc() - itc2;
308	__get_cpu_var(ptcstats).shub_itc_clocks += itc2;
309	if (itc2 > __get_cpu_var(ptcstats).shub_itc_clocks_max)
310		__get_cpu_var(ptcstats).shub_itc_clocks_max = itc2;
311
312	ptc_unlock(flags, opt);
313
314	preempt_enable();
315}
316
317/*
318 * sn2_ptc_deadlock_recovery
319 *
320 * Recover from PTC deadlocks conditions. Recovery requires stepping thru each
321 * TLB flush transaction.  The recovery sequence is somewhat tricky & is
322 * coded in assembly language.
323 */
324void sn2_ptc_deadlock_recovery(short *nasids, short nix, int mynasid, volatile unsigned long *ptc0, unsigned long data0,
325	volatile unsigned long *ptc1, unsigned long data1)
326{
327	extern void sn2_ptc_deadlock_recovery_core(volatile unsigned long *, unsigned long,
328	        volatile unsigned long *, unsigned long, volatile unsigned long *, unsigned long);
329	short nasid, i;
330	unsigned long *piows, zeroval;
331
332	__get_cpu_var(ptcstats).deadlocks++;
333
334	piows = (unsigned long *) pda->pio_write_status_addr;
335	zeroval = pda->pio_write_status_val;
336
337	for (i=0; i < nix; i++) {
338		nasid = nasids[i];
339		if (!(sn2_ptctest & 3) && nasid == mynasid)
340			continue;
341		ptc0 = CHANGE_NASID(nasid, ptc0);
342		if (ptc1)
343			ptc1 = CHANGE_NASID(nasid, ptc1);
344		sn2_ptc_deadlock_recovery_core(ptc0, data0, ptc1, data1, piows, zeroval);
345	}
346
347}
348
349/**
350 * sn_send_IPI_phys - send an IPI to a Nasid and slice
351 * @nasid: nasid to receive the interrupt (may be outside partition)
352 * @physid: physical cpuid to receive the interrupt.
353 * @vector: command to send
354 * @delivery_mode: delivery mechanism
355 *
356 * Sends an IPI (interprocessor interrupt) to the processor specified by
357 * @physid
358 *
359 * @delivery_mode can be one of the following
360 *
361 * %IA64_IPI_DM_INT - pend an interrupt
362 * %IA64_IPI_DM_PMI - pend a PMI
363 * %IA64_IPI_DM_NMI - pend an NMI
364 * %IA64_IPI_DM_INIT - pend an INIT interrupt
365 */
366void sn_send_IPI_phys(int nasid, long physid, int vector, int delivery_mode)
367{
368	long val;
369	unsigned long flags = 0;
370	volatile long *p;
371
372	p = (long *)GLOBAL_MMR_PHYS_ADDR(nasid, SH_IPI_INT);
373	val = (1UL << SH_IPI_INT_SEND_SHFT) |
374	    (physid << SH_IPI_INT_PID_SHFT) |
375	    ((long)delivery_mode << SH_IPI_INT_TYPE_SHFT) |
376	    ((long)vector << SH_IPI_INT_IDX_SHFT) |
377	    (0x000feeUL << SH_IPI_INT_BASE_SHFT);
378
379	mb();
380	if (enable_shub_wars_1_1()) {
381		spin_lock_irqsave(&sn2_global_ptc_lock, flags);
382	}
383	pio_phys_write_mmr(p, val);
384	if (enable_shub_wars_1_1()) {
385		wait_piowc();
386		spin_unlock_irqrestore(&sn2_global_ptc_lock, flags);
387	}
388
389}
390
391EXPORT_SYMBOL(sn_send_IPI_phys);
392
393/**
394 * sn2_send_IPI - send an IPI to a processor
395 * @cpuid: target of the IPI
396 * @vector: command to send
397 * @delivery_mode: delivery mechanism
398 * @redirect: redirect the IPI?
399 *
400 * Sends an IPI (InterProcessor Interrupt) to the processor specified by
401 * @cpuid.  @vector specifies the command to send, while @delivery_mode can
402 * be one of the following
403 *
404 * %IA64_IPI_DM_INT - pend an interrupt
405 * %IA64_IPI_DM_PMI - pend a PMI
406 * %IA64_IPI_DM_NMI - pend an NMI
407 * %IA64_IPI_DM_INIT - pend an INIT interrupt
408 */
409void sn2_send_IPI(int cpuid, int vector, int delivery_mode, int redirect)
410{
411	long physid;
412	int nasid;
413
414	physid = cpu_physical_id(cpuid);
415	nasid = cpuid_to_nasid(cpuid);
416
417	/* the following is used only when starting cpus at boot time */
418	if (unlikely(nasid == -1))
419		ia64_sn_get_sapic_info(physid, &nasid, NULL, NULL);
420
421	sn_send_IPI_phys(nasid, physid, vector, delivery_mode);
422}
423
424#ifdef CONFIG_PROC_FS
425
426#define PTC_BASENAME	"sgi_sn/ptc_statistics"
427
428static void *sn2_ptc_seq_start(struct seq_file *file, loff_t * offset)
429{
430	if (*offset < NR_CPUS)
431		return offset;
432	return NULL;
433}
434
435static void *sn2_ptc_seq_next(struct seq_file *file, void *data, loff_t * offset)
436{
437	(*offset)++;
438	if (*offset < NR_CPUS)
439		return offset;
440	return NULL;
441}
442
443static void sn2_ptc_seq_stop(struct seq_file *file, void *data)
444{
445}
446
447static int sn2_ptc_seq_show(struct seq_file *file, void *data)
448{
449	struct ptc_stats *stat;
450	int cpu;
451
452	cpu = *(loff_t *) data;
453
454	if (!cpu) {
455		seq_printf(file, "# ptc_l change_rid shub_ptc_flushes shub_nodes_flushed deadlocks lock_nsec shub_nsec shub_nsec_max\n");
456		seq_printf(file, "# ptctest %d\n", sn2_ptctest);
457	}
458
459	if (cpu < NR_CPUS && cpu_online(cpu)) {
460		stat = &per_cpu(ptcstats, cpu);
461		seq_printf(file, "cpu %d %ld %ld %ld %ld %ld %ld %ld %ld\n", cpu, stat->ptc_l,
462				stat->change_rid, stat->shub_ptc_flushes, stat->nodes_flushed,
463				stat->deadlocks,
464				1000 * stat->lock_itc_clocks / per_cpu(cpu_info, cpu).cyc_per_usec,
465				1000 * stat->shub_itc_clocks / per_cpu(cpu_info, cpu).cyc_per_usec,
466				1000 * stat->shub_itc_clocks_max / per_cpu(cpu_info, cpu).cyc_per_usec);
467	}
468
469	return 0;
470}
471
472static struct seq_operations sn2_ptc_seq_ops = {
473	.start = sn2_ptc_seq_start,
474	.next = sn2_ptc_seq_next,
475	.stop = sn2_ptc_seq_stop,
476	.show = sn2_ptc_seq_show
477};
478
479int sn2_ptc_proc_open(struct inode *inode, struct file *file)
480{
481	return seq_open(file, &sn2_ptc_seq_ops);
482}
483
484static struct file_operations proc_sn2_ptc_operations = {
485	.open = sn2_ptc_proc_open,
486	.read = seq_read,
487	.llseek = seq_lseek,
488	.release = seq_release,
489};
490
491static struct proc_dir_entry *proc_sn2_ptc;
492
493static int __init sn2_ptc_init(void)
494{
495	if (!(proc_sn2_ptc = create_proc_entry(PTC_BASENAME, 0444, NULL))) {
496		printk(KERN_ERR "unable to create %s proc entry", PTC_BASENAME);
497		return -EINVAL;
498	}
499	proc_sn2_ptc->proc_fops = &proc_sn2_ptc_operations;
500	spin_lock_init(&sn2_global_ptc_lock);
501	return 0;
502}
503
504static void __exit sn2_ptc_exit(void)
505{
506	remove_proc_entry(PTC_BASENAME, NULL);
507}
508
509module_init(sn2_ptc_init);
510module_exit(sn2_ptc_exit);
511#endif /* CONFIG_PROC_FS */
512
513