1/*
2 * Linux performance counter support for MIPS.
3 *
4 * Copyright (C) 2010 MIPS Technologies, Inc.
5 * Copyright (C) 2011 Cavium Networks, Inc.
6 * Author: Deng-Cheng Zhu
7 *
8 * This code is based on the implementation for ARM, which is in turn
9 * based on the sparc64 perf event code and the x86 code. Performance
10 * counter access is based on the MIPS Oprofile code. And the callchain
11 * support references the code of MIPS stacktrace.c.
12 *
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License version 2 as
15 * published by the Free Software Foundation.
16 */
17
18#include <linux/cpumask.h>
19#include <linux/interrupt.h>
20#include <linux/smp.h>
21#include <linux/kernel.h>
22#include <linux/perf_event.h>
23#include <linux/uaccess.h>
24
25#include <asm/irq.h>
26#include <asm/irq_regs.h>
27#include <asm/stacktrace.h>
28#include <asm/time.h> /* For perf_irq */
29
30#define MIPS_MAX_HWEVENTS 4
31#define MIPS_TCS_PER_COUNTER 2
32#define MIPS_CPUID_TO_COUNTER_MASK (MIPS_TCS_PER_COUNTER - 1)
33
34struct cpu_hw_events {
35	/* Array of events on this cpu. */
36	struct perf_event	*events[MIPS_MAX_HWEVENTS];
37
38	/*
39	 * Set the bit (indexed by the counter number) when the counter
40	 * is used for an event.
41	 */
42	unsigned long		used_mask[BITS_TO_LONGS(MIPS_MAX_HWEVENTS)];
43
44	/*
45	 * Software copy of the control register for each performance counter.
46	 * MIPS CPUs vary in performance counters. They use this differently,
47	 * and even may not use it.
48	 */
49	unsigned int		saved_ctrl[MIPS_MAX_HWEVENTS];
50};
51DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events) = {
52	.saved_ctrl = {0},
53};
54
55/* The description of MIPS performance events. */
56struct mips_perf_event {
57	unsigned int event_id;
58	/*
59	 * MIPS performance counters are indexed starting from 0.
60	 * CNTR_EVEN indicates the indexes of the counters to be used are
61	 * even numbers.
62	 */
63	unsigned int cntr_mask;
64	#define CNTR_EVEN	0x55555555
65	#define CNTR_ODD	0xaaaaaaaa
66	#define CNTR_ALL	0xffffffff
67#ifdef CONFIG_MIPS_MT_SMP
68	enum {
69		T  = 0,
70		V  = 1,
71		P  = 2,
72	} range;
73#else
74	#define T
75	#define V
76	#define P
77#endif
78};
79
80static struct mips_perf_event raw_event;
81static DEFINE_MUTEX(raw_event_mutex);
82
83#define C(x) PERF_COUNT_HW_CACHE_##x
84
85struct mips_pmu {
86	u64		max_period;
87	u64		valid_count;
88	u64		overflow;
89	const char	*name;
90	int		irq;
91	u64		(*read_counter)(unsigned int idx);
92	void		(*write_counter)(unsigned int idx, u64 val);
93	const struct mips_perf_event *(*map_raw_event)(u64 config);
94	const struct mips_perf_event (*general_event_map)[PERF_COUNT_HW_MAX];
95	const struct mips_perf_event (*cache_event_map)
96				[PERF_COUNT_HW_CACHE_MAX]
97				[PERF_COUNT_HW_CACHE_OP_MAX]
98				[PERF_COUNT_HW_CACHE_RESULT_MAX];
99	unsigned int	num_counters;
100};
101
102static struct mips_pmu mipspmu;
103
104#define M_CONFIG1_PC	(1 << 4)
105
106#define M_PERFCTL_EXL			(1	<<  0)
107#define M_PERFCTL_KERNEL		(1	<<  1)
108#define M_PERFCTL_SUPERVISOR		(1	<<  2)
109#define M_PERFCTL_USER			(1	<<  3)
110#define M_PERFCTL_INTERRUPT_ENABLE	(1	<<  4)
111#define M_PERFCTL_EVENT(event)		(((event) & 0x3ff)  << 5)
112#define M_PERFCTL_VPEID(vpe)		((vpe)	  << 16)
113
114#ifdef CONFIG_CPU_BMIPS5000
115#define M_PERFCTL_MT_EN(filter)		0
116#else /* !CONFIG_CPU_BMIPS5000 */
117#define M_PERFCTL_MT_EN(filter)		((filter) << 20)
118#endif /* CONFIG_CPU_BMIPS5000 */
119
120#define	   M_TC_EN_ALL			M_PERFCTL_MT_EN(0)
121#define	   M_TC_EN_VPE			M_PERFCTL_MT_EN(1)
122#define	   M_TC_EN_TC			M_PERFCTL_MT_EN(2)
123#define M_PERFCTL_TCID(tcid)		((tcid)	  << 22)
124#define M_PERFCTL_WIDE			(1	<< 30)
125#define M_PERFCTL_MORE			(1	<< 31)
126#define M_PERFCTL_TC			(1	<< 30)
127
128#define M_PERFCTL_COUNT_EVENT_WHENEVER	(M_PERFCTL_EXL |		\
129					M_PERFCTL_KERNEL |		\
130					M_PERFCTL_USER |		\
131					M_PERFCTL_SUPERVISOR |		\
132					M_PERFCTL_INTERRUPT_ENABLE)
133
134#ifdef CONFIG_MIPS_MT_SMP
135#define M_PERFCTL_CONFIG_MASK		0x3fff801f
136#else
137#define M_PERFCTL_CONFIG_MASK		0x1f
138#endif
139#define M_PERFCTL_EVENT_MASK		0xfe0
140
141
142#ifdef CONFIG_MIPS_PERF_SHARED_TC_COUNTERS
143static int cpu_has_mipsmt_pertccounters;
144
145static DEFINE_RWLOCK(pmuint_rwlock);
146
147#if defined(CONFIG_CPU_BMIPS5000)
148#define vpe_id()	(cpu_has_mipsmt_pertccounters ? \
149			 0 : (smp_processor_id() & MIPS_CPUID_TO_COUNTER_MASK))
150#else
151/*
152 * FIXME: For VSMP, vpe_id() is redefined for Perf-events, because
153 * cpu_data[cpuid].vpe_id reports 0 for _both_ CPUs.
154 */
155#define vpe_id()	(cpu_has_mipsmt_pertccounters ? \
156			 0 : smp_processor_id())
157#endif
158
159/* Copied from op_model_mipsxx.c */
160static unsigned int vpe_shift(void)
161{
162	if (num_possible_cpus() > 1)
163		return 1;
164
165	return 0;
166}
167
168static unsigned int counters_total_to_per_cpu(unsigned int counters)
169{
170	return counters >> vpe_shift();
171}
172
173#else /* !CONFIG_MIPS_PERF_SHARED_TC_COUNTERS */
174#define vpe_id()	0
175
176#endif /* CONFIG_MIPS_PERF_SHARED_TC_COUNTERS */
177
178static void resume_local_counters(void);
179static void pause_local_counters(void);
180static irqreturn_t mipsxx_pmu_handle_irq(int, void *);
181static int mipsxx_pmu_handle_shared_irq(void);
182
183static unsigned int mipsxx_pmu_swizzle_perf_idx(unsigned int idx)
184{
185	if (vpe_id() == 1)
186		idx = (idx + 2) & 3;
187	return idx;
188}
189
190static u64 mipsxx_pmu_read_counter(unsigned int idx)
191{
192	idx = mipsxx_pmu_swizzle_perf_idx(idx);
193
194	switch (idx) {
195	case 0:
196		/*
197		 * The counters are unsigned, we must cast to truncate
198		 * off the high bits.
199		 */
200		return (u32)read_c0_perfcntr0();
201	case 1:
202		return (u32)read_c0_perfcntr1();
203	case 2:
204		return (u32)read_c0_perfcntr2();
205	case 3:
206		return (u32)read_c0_perfcntr3();
207	default:
208		WARN_ONCE(1, "Invalid performance counter number (%d)\n", idx);
209		return 0;
210	}
211}
212
213static u64 mipsxx_pmu_read_counter_64(unsigned int idx)
214{
215	idx = mipsxx_pmu_swizzle_perf_idx(idx);
216
217	switch (idx) {
218	case 0:
219		return read_c0_perfcntr0_64();
220	case 1:
221		return read_c0_perfcntr1_64();
222	case 2:
223		return read_c0_perfcntr2_64();
224	case 3:
225		return read_c0_perfcntr3_64();
226	default:
227		WARN_ONCE(1, "Invalid performance counter number (%d)\n", idx);
228		return 0;
229	}
230}
231
232static void mipsxx_pmu_write_counter(unsigned int idx, u64 val)
233{
234	idx = mipsxx_pmu_swizzle_perf_idx(idx);
235
236	switch (idx) {
237	case 0:
238		write_c0_perfcntr0(val);
239		return;
240	case 1:
241		write_c0_perfcntr1(val);
242		return;
243	case 2:
244		write_c0_perfcntr2(val);
245		return;
246	case 3:
247		write_c0_perfcntr3(val);
248		return;
249	}
250}
251
252static void mipsxx_pmu_write_counter_64(unsigned int idx, u64 val)
253{
254	idx = mipsxx_pmu_swizzle_perf_idx(idx);
255
256	switch (idx) {
257	case 0:
258		write_c0_perfcntr0_64(val);
259		return;
260	case 1:
261		write_c0_perfcntr1_64(val);
262		return;
263	case 2:
264		write_c0_perfcntr2_64(val);
265		return;
266	case 3:
267		write_c0_perfcntr3_64(val);
268		return;
269	}
270}
271
272static unsigned int mipsxx_pmu_read_control(unsigned int idx)
273{
274	idx = mipsxx_pmu_swizzle_perf_idx(idx);
275
276	switch (idx) {
277	case 0:
278		return read_c0_perfctrl0();
279	case 1:
280		return read_c0_perfctrl1();
281	case 2:
282		return read_c0_perfctrl2();
283	case 3:
284		return read_c0_perfctrl3();
285	default:
286		WARN_ONCE(1, "Invalid performance counter number (%d)\n", idx);
287		return 0;
288	}
289}
290
291static void mipsxx_pmu_write_control(unsigned int idx, unsigned int val)
292{
293	idx = mipsxx_pmu_swizzle_perf_idx(idx);
294
295	switch (idx) {
296	case 0:
297		write_c0_perfctrl0(val);
298		return;
299	case 1:
300		write_c0_perfctrl1(val);
301		return;
302	case 2:
303		write_c0_perfctrl2(val);
304		return;
305	case 3:
306		write_c0_perfctrl3(val);
307		return;
308	}
309}
310
311static int mipsxx_pmu_alloc_counter(struct cpu_hw_events *cpuc,
312				    struct hw_perf_event *hwc)
313{
314	int i;
315
316	/*
317	 * We only need to care the counter mask. The range has been
318	 * checked definitely.
319	 */
320	unsigned long cntr_mask = (hwc->event_base >> 8) & 0xffff;
321
322	for (i = mipspmu.num_counters - 1; i >= 0; i--) {
323		/*
324		 * Note that some MIPS perf events can be counted by both
325		 * even and odd counters, wheresas many other are only by
326		 * even _or_ odd counters. This introduces an issue that
327		 * when the former kind of event takes the counter the
328		 * latter kind of event wants to use, then the "counter
329		 * allocation" for the latter event will fail. In fact if
330		 * they can be dynamically swapped, they both feel happy.
331		 * But here we leave this issue alone for now.
332		 */
333		if (test_bit(i, &cntr_mask) &&
334			!test_and_set_bit(i, cpuc->used_mask))
335			return i;
336	}
337
338	return -EAGAIN;
339}
340
341static void mipsxx_pmu_enable_event(struct hw_perf_event *evt, int idx)
342{
343	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
344
345	WARN_ON(idx < 0 || idx >= mipspmu.num_counters);
346
347	cpuc->saved_ctrl[idx] = M_PERFCTL_EVENT(evt->event_base & 0xff) |
348		(evt->config_base & M_PERFCTL_CONFIG_MASK) |
349		/* Make sure interrupt enabled. */
350		M_PERFCTL_INTERRUPT_ENABLE;
351	if (IS_ENABLED(CONFIG_CPU_BMIPS5000))
352		/* enable the counter for the calling thread */
353		cpuc->saved_ctrl[idx] |=
354			(1 << (12 + vpe_id())) | M_PERFCTL_TC;
355
356	/*
357	 * We do not actually let the counter run. Leave it until start().
358	 */
359}
360
361static void mipsxx_pmu_disable_event(int idx)
362{
363	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
364	unsigned long flags;
365
366	WARN_ON(idx < 0 || idx >= mipspmu.num_counters);
367
368	local_irq_save(flags);
369	cpuc->saved_ctrl[idx] = mipsxx_pmu_read_control(idx) &
370		~M_PERFCTL_COUNT_EVENT_WHENEVER;
371	mipsxx_pmu_write_control(idx, cpuc->saved_ctrl[idx]);
372	local_irq_restore(flags);
373}
374
375static int mipspmu_event_set_period(struct perf_event *event,
376				    struct hw_perf_event *hwc,
377				    int idx)
378{
379	u64 left = local64_read(&hwc->period_left);
380	u64 period = hwc->sample_period;
381	int ret = 0;
382
383	if (unlikely((left + period) & (1ULL << 63))) {
384		/* left underflowed by more than period. */
385		left = period;
386		local64_set(&hwc->period_left, left);
387		hwc->last_period = period;
388		ret = 1;
389	} else	if (unlikely((left + period) <= period)) {
390		/* left underflowed by less than period. */
391		left += period;
392		local64_set(&hwc->period_left, left);
393		hwc->last_period = period;
394		ret = 1;
395	}
396
397	if (left > mipspmu.max_period) {
398		left = mipspmu.max_period;
399		local64_set(&hwc->period_left, left);
400	}
401
402	local64_set(&hwc->prev_count, mipspmu.overflow - left);
403
404	mipspmu.write_counter(idx, mipspmu.overflow - left);
405
406	perf_event_update_userpage(event);
407
408	return ret;
409}
410
411static void mipspmu_event_update(struct perf_event *event,
412				 struct hw_perf_event *hwc,
413				 int idx)
414{
415	u64 prev_raw_count, new_raw_count;
416	u64 delta;
417
418again:
419	prev_raw_count = local64_read(&hwc->prev_count);
420	new_raw_count = mipspmu.read_counter(idx);
421
422	if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
423				new_raw_count) != prev_raw_count)
424		goto again;
425
426	delta = new_raw_count - prev_raw_count;
427
428	local64_add(delta, &event->count);
429	local64_sub(delta, &hwc->period_left);
430}
431
432static void mipspmu_start(struct perf_event *event, int flags)
433{
434	struct hw_perf_event *hwc = &event->hw;
435
436	if (flags & PERF_EF_RELOAD)
437		WARN_ON_ONCE(!(hwc->state & PERF_HES_UPTODATE));
438
439	hwc->state = 0;
440
441	/* Set the period for the event. */
442	mipspmu_event_set_period(event, hwc, hwc->idx);
443
444	/* Enable the event. */
445	mipsxx_pmu_enable_event(hwc, hwc->idx);
446}
447
448static void mipspmu_stop(struct perf_event *event, int flags)
449{
450	struct hw_perf_event *hwc = &event->hw;
451
452	if (!(hwc->state & PERF_HES_STOPPED)) {
453		/* We are working on a local event. */
454		mipsxx_pmu_disable_event(hwc->idx);
455		barrier();
456		mipspmu_event_update(event, hwc, hwc->idx);
457		hwc->state |= PERF_HES_STOPPED | PERF_HES_UPTODATE;
458	}
459}
460
461static int mipspmu_add(struct perf_event *event, int flags)
462{
463	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
464	struct hw_perf_event *hwc = &event->hw;
465	int idx;
466	int err = 0;
467
468	perf_pmu_disable(event->pmu);
469
470	/* To look for a free counter for this event. */
471	idx = mipsxx_pmu_alloc_counter(cpuc, hwc);
472	if (idx < 0) {
473		err = idx;
474		goto out;
475	}
476
477	/*
478	 * If there is an event in the counter we are going to use then
479	 * make sure it is disabled.
480	 */
481	event->hw.idx = idx;
482	mipsxx_pmu_disable_event(idx);
483	cpuc->events[idx] = event;
484
485	hwc->state = PERF_HES_STOPPED | PERF_HES_UPTODATE;
486	if (flags & PERF_EF_START)
487		mipspmu_start(event, PERF_EF_RELOAD);
488
489	/* Propagate our changes to the userspace mapping. */
490	perf_event_update_userpage(event);
491
492out:
493	perf_pmu_enable(event->pmu);
494	return err;
495}
496
497static void mipspmu_del(struct perf_event *event, int flags)
498{
499	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
500	struct hw_perf_event *hwc = &event->hw;
501	int idx = hwc->idx;
502
503	WARN_ON(idx < 0 || idx >= mipspmu.num_counters);
504
505	mipspmu_stop(event, PERF_EF_UPDATE);
506	cpuc->events[idx] = NULL;
507	clear_bit(idx, cpuc->used_mask);
508
509	perf_event_update_userpage(event);
510}
511
512static void mipspmu_read(struct perf_event *event)
513{
514	struct hw_perf_event *hwc = &event->hw;
515
516	/* Don't read disabled counters! */
517	if (hwc->idx < 0)
518		return;
519
520	mipspmu_event_update(event, hwc, hwc->idx);
521}
522
523static void mipspmu_enable(struct pmu *pmu)
524{
525#ifdef CONFIG_MIPS_PERF_SHARED_TC_COUNTERS
526	write_unlock(&pmuint_rwlock);
527#endif
528	resume_local_counters();
529}
530
531/*
532 * MIPS performance counters can be per-TC. The control registers can
533 * not be directly accessed accross CPUs. Hence if we want to do global
534 * control, we need cross CPU calls. on_each_cpu() can help us, but we
535 * can not make sure this function is called with interrupts enabled. So
536 * here we pause local counters and then grab a rwlock and leave the
537 * counters on other CPUs alone. If any counter interrupt raises while
538 * we own the write lock, simply pause local counters on that CPU and
539 * spin in the handler. Also we know we won't be switched to another
540 * CPU after pausing local counters and before grabbing the lock.
541 */
542static void mipspmu_disable(struct pmu *pmu)
543{
544	pause_local_counters();
545#ifdef CONFIG_MIPS_PERF_SHARED_TC_COUNTERS
546	write_lock(&pmuint_rwlock);
547#endif
548}
549
550static atomic_t active_events = ATOMIC_INIT(0);
551static DEFINE_MUTEX(pmu_reserve_mutex);
552static int (*save_perf_irq)(void);
553
554static int mipspmu_get_irq(void)
555{
556	int err;
557
558	if (mipspmu.irq >= 0) {
559		/* Request my own irq handler. */
560		err = request_irq(mipspmu.irq, mipsxx_pmu_handle_irq,
561			IRQF_PERCPU | IRQF_NOBALANCING | IRQF_NO_THREAD,
562			"mips_perf_pmu", NULL);
563		if (err) {
564			pr_warning("Unable to request IRQ%d for MIPS "
565			   "performance counters!\n", mipspmu.irq);
566		}
567	} else if (cp0_perfcount_irq < 0) {
568		/*
569		 * We are sharing the irq number with the timer interrupt.
570		 */
571		save_perf_irq = perf_irq;
572		perf_irq = mipsxx_pmu_handle_shared_irq;
573		err = 0;
574	} else {
575		pr_warning("The platform hasn't properly defined its "
576			"interrupt controller.\n");
577		err = -ENOENT;
578	}
579
580	return err;
581}
582
583static void mipspmu_free_irq(void)
584{
585	if (mipspmu.irq >= 0)
586		free_irq(mipspmu.irq, NULL);
587	else if (cp0_perfcount_irq < 0)
588		perf_irq = save_perf_irq;
589}
590
591/*
592 * mipsxx/rm9000/loongson2 have different performance counters, they have
593 * specific low-level init routines.
594 */
595static void reset_counters(void *arg);
596static int __hw_perf_event_init(struct perf_event *event);
597
598static void hw_perf_event_destroy(struct perf_event *event)
599{
600	if (atomic_dec_and_mutex_lock(&active_events,
601				&pmu_reserve_mutex)) {
602		/*
603		 * We must not call the destroy function with interrupts
604		 * disabled.
605		 */
606		on_each_cpu(reset_counters,
607			(void *)(long)mipspmu.num_counters, 1);
608		mipspmu_free_irq();
609		mutex_unlock(&pmu_reserve_mutex);
610	}
611}
612
613static int mipspmu_event_init(struct perf_event *event)
614{
615	int err = 0;
616
617	/* does not support taken branch sampling */
618	if (has_branch_stack(event))
619		return -EOPNOTSUPP;
620
621	switch (event->attr.type) {
622	case PERF_TYPE_RAW:
623	case PERF_TYPE_HARDWARE:
624	case PERF_TYPE_HW_CACHE:
625		break;
626
627	default:
628		return -ENOENT;
629	}
630
631	if (event->cpu >= nr_cpumask_bits ||
632	    (event->cpu >= 0 && !cpu_online(event->cpu)))
633		return -ENODEV;
634
635	if (!atomic_inc_not_zero(&active_events)) {
636		mutex_lock(&pmu_reserve_mutex);
637		if (atomic_read(&active_events) == 0)
638			err = mipspmu_get_irq();
639
640		if (!err)
641			atomic_inc(&active_events);
642		mutex_unlock(&pmu_reserve_mutex);
643	}
644
645	if (err)
646		return err;
647
648	return __hw_perf_event_init(event);
649}
650
651static struct pmu pmu = {
652	.pmu_enable	= mipspmu_enable,
653	.pmu_disable	= mipspmu_disable,
654	.event_init	= mipspmu_event_init,
655	.add		= mipspmu_add,
656	.del		= mipspmu_del,
657	.start		= mipspmu_start,
658	.stop		= mipspmu_stop,
659	.read		= mipspmu_read,
660};
661
662static unsigned int mipspmu_perf_event_encode(const struct mips_perf_event *pev)
663{
664/*
665 * Top 8 bits for range, next 16 bits for cntr_mask, lowest 8 bits for
666 * event_id.
667 */
668#ifdef CONFIG_MIPS_MT_SMP
669	return ((unsigned int)pev->range << 24) |
670		(pev->cntr_mask & 0xffff00) |
671		(pev->event_id & 0xff);
672#else
673	return (pev->cntr_mask & 0xffff00) |
674		(pev->event_id & 0xff);
675#endif
676}
677
678static const struct mips_perf_event *mipspmu_map_general_event(int idx)
679{
680
681	if ((*mipspmu.general_event_map)[idx].cntr_mask == 0)
682		return ERR_PTR(-EOPNOTSUPP);
683	return &(*mipspmu.general_event_map)[idx];
684}
685
686static const struct mips_perf_event *mipspmu_map_cache_event(u64 config)
687{
688	unsigned int cache_type, cache_op, cache_result;
689	const struct mips_perf_event *pev;
690
691	cache_type = (config >> 0) & 0xff;
692	if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
693		return ERR_PTR(-EINVAL);
694
695	cache_op = (config >> 8) & 0xff;
696	if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
697		return ERR_PTR(-EINVAL);
698
699	cache_result = (config >> 16) & 0xff;
700	if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
701		return ERR_PTR(-EINVAL);
702
703	pev = &((*mipspmu.cache_event_map)
704					[cache_type]
705					[cache_op]
706					[cache_result]);
707
708	if (pev->cntr_mask == 0)
709		return ERR_PTR(-EOPNOTSUPP);
710
711	return pev;
712
713}
714
715static int validate_group(struct perf_event *event)
716{
717	struct perf_event *sibling, *leader = event->group_leader;
718	struct cpu_hw_events fake_cpuc;
719
720	memset(&fake_cpuc, 0, sizeof(fake_cpuc));
721
722	if (mipsxx_pmu_alloc_counter(&fake_cpuc, &leader->hw) < 0)
723		return -EINVAL;
724
725	list_for_each_entry(sibling, &leader->sibling_list, group_entry) {
726		if (mipsxx_pmu_alloc_counter(&fake_cpuc, &sibling->hw) < 0)
727			return -EINVAL;
728	}
729
730	if (mipsxx_pmu_alloc_counter(&fake_cpuc, &event->hw) < 0)
731		return -EINVAL;
732
733	return 0;
734}
735
736/* This is needed by specific irq handlers in perf_event_*.c */
737static void handle_associated_event(struct cpu_hw_events *cpuc,
738				    int idx, struct perf_sample_data *data,
739				    struct pt_regs *regs)
740{
741	struct perf_event *event = cpuc->events[idx];
742	struct hw_perf_event *hwc = &event->hw;
743
744	mipspmu_event_update(event, hwc, idx);
745	data->period = event->hw.last_period;
746	if (!mipspmu_event_set_period(event, hwc, idx))
747		return;
748
749	if (perf_event_overflow(event, data, regs))
750		mipsxx_pmu_disable_event(idx);
751}
752
753
754static int __n_counters(void)
755{
756	if (!(read_c0_config1() & M_CONFIG1_PC))
757		return 0;
758	if (!(read_c0_perfctrl0() & M_PERFCTL_MORE))
759		return 1;
760	if (!(read_c0_perfctrl1() & M_PERFCTL_MORE))
761		return 2;
762	if (!(read_c0_perfctrl2() & M_PERFCTL_MORE))
763		return 3;
764
765	return 4;
766}
767
768static int n_counters(void)
769{
770	int counters;
771
772	switch (current_cpu_type()) {
773	case CPU_R10000:
774		counters = 2;
775		break;
776
777	case CPU_R12000:
778	case CPU_R14000:
779		counters = 4;
780		break;
781
782	default:
783		counters = __n_counters();
784	}
785
786	return counters;
787}
788
789static void reset_counters(void *arg)
790{
791	int counters = (int)(long)arg;
792	switch (counters) {
793	case 4:
794		mipsxx_pmu_write_control(3, 0);
795		mipspmu.write_counter(3, 0);
796	case 3:
797		mipsxx_pmu_write_control(2, 0);
798		mipspmu.write_counter(2, 0);
799	case 2:
800		mipsxx_pmu_write_control(1, 0);
801		mipspmu.write_counter(1, 0);
802	case 1:
803		mipsxx_pmu_write_control(0, 0);
804		mipspmu.write_counter(0, 0);
805	}
806}
807
808/* 24K/34K/1004K/interAptiv/loongson1 cores share the same event map. */
809static const struct mips_perf_event mipsxxcore_event_map
810				[PERF_COUNT_HW_MAX] = {
811	[PERF_COUNT_HW_CPU_CYCLES] = { 0x00, CNTR_EVEN | CNTR_ODD, P },
812	[PERF_COUNT_HW_INSTRUCTIONS] = { 0x01, CNTR_EVEN | CNTR_ODD, T },
813	[PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x02, CNTR_EVEN, T },
814	[PERF_COUNT_HW_BRANCH_MISSES] = { 0x02, CNTR_ODD, T },
815};
816
817/* 74K/proAptiv core has different branch event code. */
818static const struct mips_perf_event mipsxxcore_event_map2
819				[PERF_COUNT_HW_MAX] = {
820	[PERF_COUNT_HW_CPU_CYCLES] = { 0x00, CNTR_EVEN | CNTR_ODD, P },
821	[PERF_COUNT_HW_INSTRUCTIONS] = { 0x01, CNTR_EVEN | CNTR_ODD, T },
822	[PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x27, CNTR_EVEN, T },
823	[PERF_COUNT_HW_BRANCH_MISSES] = { 0x27, CNTR_ODD, T },
824};
825
826static const struct mips_perf_event octeon_event_map[PERF_COUNT_HW_MAX] = {
827	[PERF_COUNT_HW_CPU_CYCLES] = { 0x01, CNTR_ALL },
828	[PERF_COUNT_HW_INSTRUCTIONS] = { 0x03, CNTR_ALL },
829	[PERF_COUNT_HW_CACHE_REFERENCES] = { 0x2b, CNTR_ALL },
830	[PERF_COUNT_HW_CACHE_MISSES] = { 0x2e, CNTR_ALL	 },
831	[PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x08, CNTR_ALL },
832	[PERF_COUNT_HW_BRANCH_MISSES] = { 0x09, CNTR_ALL },
833	[PERF_COUNT_HW_BUS_CYCLES] = { 0x25, CNTR_ALL },
834};
835
836static const struct mips_perf_event bmips5000_event_map
837				[PERF_COUNT_HW_MAX] = {
838	[PERF_COUNT_HW_CPU_CYCLES] = { 0x00, CNTR_EVEN | CNTR_ODD, T },
839	[PERF_COUNT_HW_INSTRUCTIONS] = { 0x01, CNTR_EVEN | CNTR_ODD, T },
840	[PERF_COUNT_HW_BRANCH_MISSES] = { 0x02, CNTR_ODD, T },
841};
842
843static const struct mips_perf_event xlp_event_map[PERF_COUNT_HW_MAX] = {
844	[PERF_COUNT_HW_CPU_CYCLES] = { 0x01, CNTR_ALL },
845	[PERF_COUNT_HW_INSTRUCTIONS] = { 0x18, CNTR_ALL }, /* PAPI_TOT_INS */
846	[PERF_COUNT_HW_CACHE_REFERENCES] = { 0x04, CNTR_ALL }, /* PAPI_L1_ICA */
847	[PERF_COUNT_HW_CACHE_MISSES] = { 0x07, CNTR_ALL }, /* PAPI_L1_ICM */
848	[PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x1b, CNTR_ALL }, /* PAPI_BR_CN */
849	[PERF_COUNT_HW_BRANCH_MISSES] = { 0x1c, CNTR_ALL }, /* PAPI_BR_MSP */
850};
851
852/* 24K/34K/1004K/interAptiv/loongson1 cores share the same cache event map. */
853static const struct mips_perf_event mipsxxcore_cache_map
854				[PERF_COUNT_HW_CACHE_MAX]
855				[PERF_COUNT_HW_CACHE_OP_MAX]
856				[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
857[C(L1D)] = {
858	/*
859	 * Like some other architectures (e.g. ARM), the performance
860	 * counters don't differentiate between read and write
861	 * accesses/misses, so this isn't strictly correct, but it's the
862	 * best we can do. Writes and reads get combined.
863	 */
864	[C(OP_READ)] = {
865		[C(RESULT_ACCESS)]	= { 0x0a, CNTR_EVEN, T },
866		[C(RESULT_MISS)]	= { 0x0b, CNTR_EVEN | CNTR_ODD, T },
867	},
868	[C(OP_WRITE)] = {
869		[C(RESULT_ACCESS)]	= { 0x0a, CNTR_EVEN, T },
870		[C(RESULT_MISS)]	= { 0x0b, CNTR_EVEN | CNTR_ODD, T },
871	},
872},
873[C(L1I)] = {
874	[C(OP_READ)] = {
875		[C(RESULT_ACCESS)]	= { 0x09, CNTR_EVEN, T },
876		[C(RESULT_MISS)]	= { 0x09, CNTR_ODD, T },
877	},
878	[C(OP_WRITE)] = {
879		[C(RESULT_ACCESS)]	= { 0x09, CNTR_EVEN, T },
880		[C(RESULT_MISS)]	= { 0x09, CNTR_ODD, T },
881	},
882	[C(OP_PREFETCH)] = {
883		[C(RESULT_ACCESS)]	= { 0x14, CNTR_EVEN, T },
884		/*
885		 * Note that MIPS has only "hit" events countable for
886		 * the prefetch operation.
887		 */
888	},
889},
890[C(LL)] = {
891	[C(OP_READ)] = {
892		[C(RESULT_ACCESS)]	= { 0x15, CNTR_ODD, P },
893		[C(RESULT_MISS)]	= { 0x16, CNTR_EVEN, P },
894	},
895	[C(OP_WRITE)] = {
896		[C(RESULT_ACCESS)]	= { 0x15, CNTR_ODD, P },
897		[C(RESULT_MISS)]	= { 0x16, CNTR_EVEN, P },
898	},
899},
900[C(DTLB)] = {
901	[C(OP_READ)] = {
902		[C(RESULT_ACCESS)]	= { 0x06, CNTR_EVEN, T },
903		[C(RESULT_MISS)]	= { 0x06, CNTR_ODD, T },
904	},
905	[C(OP_WRITE)] = {
906		[C(RESULT_ACCESS)]	= { 0x06, CNTR_EVEN, T },
907		[C(RESULT_MISS)]	= { 0x06, CNTR_ODD, T },
908	},
909},
910[C(ITLB)] = {
911	[C(OP_READ)] = {
912		[C(RESULT_ACCESS)]	= { 0x05, CNTR_EVEN, T },
913		[C(RESULT_MISS)]	= { 0x05, CNTR_ODD, T },
914	},
915	[C(OP_WRITE)] = {
916		[C(RESULT_ACCESS)]	= { 0x05, CNTR_EVEN, T },
917		[C(RESULT_MISS)]	= { 0x05, CNTR_ODD, T },
918	},
919},
920[C(BPU)] = {
921	/* Using the same code for *HW_BRANCH* */
922	[C(OP_READ)] = {
923		[C(RESULT_ACCESS)]	= { 0x02, CNTR_EVEN, T },
924		[C(RESULT_MISS)]	= { 0x02, CNTR_ODD, T },
925	},
926	[C(OP_WRITE)] = {
927		[C(RESULT_ACCESS)]	= { 0x02, CNTR_EVEN, T },
928		[C(RESULT_MISS)]	= { 0x02, CNTR_ODD, T },
929	},
930},
931};
932
933/* 74K/proAptiv core has completely different cache event map. */
934static const struct mips_perf_event mipsxxcore_cache_map2
935				[PERF_COUNT_HW_CACHE_MAX]
936				[PERF_COUNT_HW_CACHE_OP_MAX]
937				[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
938[C(L1D)] = {
939	/*
940	 * Like some other architectures (e.g. ARM), the performance
941	 * counters don't differentiate between read and write
942	 * accesses/misses, so this isn't strictly correct, but it's the
943	 * best we can do. Writes and reads get combined.
944	 */
945	[C(OP_READ)] = {
946		[C(RESULT_ACCESS)]	= { 0x17, CNTR_ODD, T },
947		[C(RESULT_MISS)]	= { 0x18, CNTR_ODD, T },
948	},
949	[C(OP_WRITE)] = {
950		[C(RESULT_ACCESS)]	= { 0x17, CNTR_ODD, T },
951		[C(RESULT_MISS)]	= { 0x18, CNTR_ODD, T },
952	},
953},
954[C(L1I)] = {
955	[C(OP_READ)] = {
956		[C(RESULT_ACCESS)]	= { 0x06, CNTR_EVEN, T },
957		[C(RESULT_MISS)]	= { 0x06, CNTR_ODD, T },
958	},
959	[C(OP_WRITE)] = {
960		[C(RESULT_ACCESS)]	= { 0x06, CNTR_EVEN, T },
961		[C(RESULT_MISS)]	= { 0x06, CNTR_ODD, T },
962	},
963	[C(OP_PREFETCH)] = {
964		[C(RESULT_ACCESS)]	= { 0x34, CNTR_EVEN, T },
965		/*
966		 * Note that MIPS has only "hit" events countable for
967		 * the prefetch operation.
968		 */
969	},
970},
971[C(LL)] = {
972	[C(OP_READ)] = {
973		[C(RESULT_ACCESS)]	= { 0x1c, CNTR_ODD, P },
974		[C(RESULT_MISS)]	= { 0x1d, CNTR_EVEN, P },
975	},
976	[C(OP_WRITE)] = {
977		[C(RESULT_ACCESS)]	= { 0x1c, CNTR_ODD, P },
978		[C(RESULT_MISS)]	= { 0x1d, CNTR_EVEN, P },
979	},
980},
981/*
982 * 74K core does not have specific DTLB events. proAptiv core has
983 * "speculative" DTLB events which are numbered 0x63 (even/odd) and
984 * not included here. One can use raw events if really needed.
985 */
986[C(ITLB)] = {
987	[C(OP_READ)] = {
988		[C(RESULT_ACCESS)]	= { 0x04, CNTR_EVEN, T },
989		[C(RESULT_MISS)]	= { 0x04, CNTR_ODD, T },
990	},
991	[C(OP_WRITE)] = {
992		[C(RESULT_ACCESS)]	= { 0x04, CNTR_EVEN, T },
993		[C(RESULT_MISS)]	= { 0x04, CNTR_ODD, T },
994	},
995},
996[C(BPU)] = {
997	/* Using the same code for *HW_BRANCH* */
998	[C(OP_READ)] = {
999		[C(RESULT_ACCESS)]	= { 0x27, CNTR_EVEN, T },
1000		[C(RESULT_MISS)]	= { 0x27, CNTR_ODD, T },
1001	},
1002	[C(OP_WRITE)] = {
1003		[C(RESULT_ACCESS)]	= { 0x27, CNTR_EVEN, T },
1004		[C(RESULT_MISS)]	= { 0x27, CNTR_ODD, T },
1005	},
1006},
1007};
1008
1009/* BMIPS5000 */
1010static const struct mips_perf_event bmips5000_cache_map
1011				[PERF_COUNT_HW_CACHE_MAX]
1012				[PERF_COUNT_HW_CACHE_OP_MAX]
1013				[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1014[C(L1D)] = {
1015	/*
1016	 * Like some other architectures (e.g. ARM), the performance
1017	 * counters don't differentiate between read and write
1018	 * accesses/misses, so this isn't strictly correct, but it's the
1019	 * best we can do. Writes and reads get combined.
1020	 */
1021	[C(OP_READ)] = {
1022		[C(RESULT_ACCESS)]	= { 12, CNTR_EVEN, T },
1023		[C(RESULT_MISS)]	= { 12, CNTR_ODD, T },
1024	},
1025	[C(OP_WRITE)] = {
1026		[C(RESULT_ACCESS)]	= { 12, CNTR_EVEN, T },
1027		[C(RESULT_MISS)]	= { 12, CNTR_ODD, T },
1028	},
1029},
1030[C(L1I)] = {
1031	[C(OP_READ)] = {
1032		[C(RESULT_ACCESS)]	= { 10, CNTR_EVEN, T },
1033		[C(RESULT_MISS)]	= { 10, CNTR_ODD, T },
1034	},
1035	[C(OP_WRITE)] = {
1036		[C(RESULT_ACCESS)]	= { 10, CNTR_EVEN, T },
1037		[C(RESULT_MISS)]	= { 10, CNTR_ODD, T },
1038	},
1039	[C(OP_PREFETCH)] = {
1040		[C(RESULT_ACCESS)]	= { 23, CNTR_EVEN, T },
1041		/*
1042		 * Note that MIPS has only "hit" events countable for
1043		 * the prefetch operation.
1044		 */
1045	},
1046},
1047[C(LL)] = {
1048	[C(OP_READ)] = {
1049		[C(RESULT_ACCESS)]	= { 28, CNTR_EVEN, P },
1050		[C(RESULT_MISS)]	= { 28, CNTR_ODD, P },
1051	},
1052	[C(OP_WRITE)] = {
1053		[C(RESULT_ACCESS)]	= { 28, CNTR_EVEN, P },
1054		[C(RESULT_MISS)]	= { 28, CNTR_ODD, P },
1055	},
1056},
1057[C(BPU)] = {
1058	/* Using the same code for *HW_BRANCH* */
1059	[C(OP_READ)] = {
1060		[C(RESULT_MISS)]	= { 0x02, CNTR_ODD, T },
1061	},
1062	[C(OP_WRITE)] = {
1063		[C(RESULT_MISS)]	= { 0x02, CNTR_ODD, T },
1064	},
1065},
1066};
1067
1068
1069static const struct mips_perf_event octeon_cache_map
1070				[PERF_COUNT_HW_CACHE_MAX]
1071				[PERF_COUNT_HW_CACHE_OP_MAX]
1072				[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1073[C(L1D)] = {
1074	[C(OP_READ)] = {
1075		[C(RESULT_ACCESS)]	= { 0x2b, CNTR_ALL },
1076		[C(RESULT_MISS)]	= { 0x2e, CNTR_ALL },
1077	},
1078	[C(OP_WRITE)] = {
1079		[C(RESULT_ACCESS)]	= { 0x30, CNTR_ALL },
1080	},
1081},
1082[C(L1I)] = {
1083	[C(OP_READ)] = {
1084		[C(RESULT_ACCESS)]	= { 0x18, CNTR_ALL },
1085	},
1086	[C(OP_PREFETCH)] = {
1087		[C(RESULT_ACCESS)]	= { 0x19, CNTR_ALL },
1088	},
1089},
1090[C(DTLB)] = {
1091	/*
1092	 * Only general DTLB misses are counted use the same event for
1093	 * read and write.
1094	 */
1095	[C(OP_READ)] = {
1096		[C(RESULT_MISS)]	= { 0x35, CNTR_ALL },
1097	},
1098	[C(OP_WRITE)] = {
1099		[C(RESULT_MISS)]	= { 0x35, CNTR_ALL },
1100	},
1101},
1102[C(ITLB)] = {
1103	[C(OP_READ)] = {
1104		[C(RESULT_MISS)]	= { 0x37, CNTR_ALL },
1105	},
1106},
1107};
1108
1109static const struct mips_perf_event xlp_cache_map
1110				[PERF_COUNT_HW_CACHE_MAX]
1111				[PERF_COUNT_HW_CACHE_OP_MAX]
1112				[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1113[C(L1D)] = {
1114	[C(OP_READ)] = {
1115		[C(RESULT_ACCESS)]	= { 0x31, CNTR_ALL }, /* PAPI_L1_DCR */
1116		[C(RESULT_MISS)]	= { 0x30, CNTR_ALL }, /* PAPI_L1_LDM */
1117	},
1118	[C(OP_WRITE)] = {
1119		[C(RESULT_ACCESS)]	= { 0x2f, CNTR_ALL }, /* PAPI_L1_DCW */
1120		[C(RESULT_MISS)]	= { 0x2e, CNTR_ALL }, /* PAPI_L1_STM */
1121	},
1122},
1123[C(L1I)] = {
1124	[C(OP_READ)] = {
1125		[C(RESULT_ACCESS)]	= { 0x04, CNTR_ALL }, /* PAPI_L1_ICA */
1126		[C(RESULT_MISS)]	= { 0x07, CNTR_ALL }, /* PAPI_L1_ICM */
1127	},
1128},
1129[C(LL)] = {
1130	[C(OP_READ)] = {
1131		[C(RESULT_ACCESS)]	= { 0x35, CNTR_ALL }, /* PAPI_L2_DCR */
1132		[C(RESULT_MISS)]	= { 0x37, CNTR_ALL }, /* PAPI_L2_LDM */
1133	},
1134	[C(OP_WRITE)] = {
1135		[C(RESULT_ACCESS)]	= { 0x34, CNTR_ALL }, /* PAPI_L2_DCA */
1136		[C(RESULT_MISS)]	= { 0x36, CNTR_ALL }, /* PAPI_L2_DCM */
1137	},
1138},
1139[C(DTLB)] = {
1140	/*
1141	 * Only general DTLB misses are counted use the same event for
1142	 * read and write.
1143	 */
1144	[C(OP_READ)] = {
1145		[C(RESULT_MISS)]	= { 0x2d, CNTR_ALL }, /* PAPI_TLB_DM */
1146	},
1147	[C(OP_WRITE)] = {
1148		[C(RESULT_MISS)]	= { 0x2d, CNTR_ALL }, /* PAPI_TLB_DM */
1149	},
1150},
1151[C(ITLB)] = {
1152	[C(OP_READ)] = {
1153		[C(RESULT_MISS)]	= { 0x08, CNTR_ALL }, /* PAPI_TLB_IM */
1154	},
1155	[C(OP_WRITE)] = {
1156		[C(RESULT_MISS)]	= { 0x08, CNTR_ALL }, /* PAPI_TLB_IM */
1157	},
1158},
1159[C(BPU)] = {
1160	[C(OP_READ)] = {
1161		[C(RESULT_MISS)]	= { 0x25, CNTR_ALL },
1162	},
1163},
1164};
1165
1166#ifdef CONFIG_MIPS_MT_SMP
1167static void check_and_calc_range(struct perf_event *event,
1168				 const struct mips_perf_event *pev)
1169{
1170	struct hw_perf_event *hwc = &event->hw;
1171
1172	if (event->cpu >= 0) {
1173		if (pev->range > V) {
1174			/*
1175			 * The user selected an event that is processor
1176			 * wide, while expecting it to be VPE wide.
1177			 */
1178			hwc->config_base |= M_TC_EN_ALL;
1179		} else {
1180			/*
1181			 * FIXME: cpu_data[event->cpu].vpe_id reports 0
1182			 * for both CPUs.
1183			 */
1184			hwc->config_base |= M_PERFCTL_VPEID(event->cpu);
1185			hwc->config_base |= M_TC_EN_VPE;
1186		}
1187	} else
1188		hwc->config_base |= M_TC_EN_ALL;
1189}
1190#else
1191static void check_and_calc_range(struct perf_event *event,
1192				 const struct mips_perf_event *pev)
1193{
1194}
1195#endif
1196
1197static int __hw_perf_event_init(struct perf_event *event)
1198{
1199	struct perf_event_attr *attr = &event->attr;
1200	struct hw_perf_event *hwc = &event->hw;
1201	const struct mips_perf_event *pev;
1202	int err;
1203
1204	/* Returning MIPS event descriptor for generic perf event. */
1205	if (PERF_TYPE_HARDWARE == event->attr.type) {
1206		if (event->attr.config >= PERF_COUNT_HW_MAX)
1207			return -EINVAL;
1208		pev = mipspmu_map_general_event(event->attr.config);
1209	} else if (PERF_TYPE_HW_CACHE == event->attr.type) {
1210		pev = mipspmu_map_cache_event(event->attr.config);
1211	} else if (PERF_TYPE_RAW == event->attr.type) {
1212		/* We are working on the global raw event. */
1213		mutex_lock(&raw_event_mutex);
1214		pev = mipspmu.map_raw_event(event->attr.config);
1215	} else {
1216		/* The event type is not (yet) supported. */
1217		return -EOPNOTSUPP;
1218	}
1219
1220	if (IS_ERR(pev)) {
1221		if (PERF_TYPE_RAW == event->attr.type)
1222			mutex_unlock(&raw_event_mutex);
1223		return PTR_ERR(pev);
1224	}
1225
1226	/*
1227	 * We allow max flexibility on how each individual counter shared
1228	 * by the single CPU operates (the mode exclusion and the range).
1229	 */
1230	hwc->config_base = M_PERFCTL_INTERRUPT_ENABLE;
1231
1232	/* Calculate range bits and validate it. */
1233	if (num_possible_cpus() > 1)
1234		check_and_calc_range(event, pev);
1235
1236	hwc->event_base = mipspmu_perf_event_encode(pev);
1237	if (PERF_TYPE_RAW == event->attr.type)
1238		mutex_unlock(&raw_event_mutex);
1239
1240	if (!attr->exclude_user)
1241		hwc->config_base |= M_PERFCTL_USER;
1242	if (!attr->exclude_kernel) {
1243		hwc->config_base |= M_PERFCTL_KERNEL;
1244		/* MIPS kernel mode: KSU == 00b || EXL == 1 || ERL == 1 */
1245		hwc->config_base |= M_PERFCTL_EXL;
1246	}
1247	if (!attr->exclude_hv)
1248		hwc->config_base |= M_PERFCTL_SUPERVISOR;
1249
1250	hwc->config_base &= M_PERFCTL_CONFIG_MASK;
1251	/*
1252	 * The event can belong to another cpu. We do not assign a local
1253	 * counter for it for now.
1254	 */
1255	hwc->idx = -1;
1256	hwc->config = 0;
1257
1258	if (!hwc->sample_period) {
1259		hwc->sample_period  = mipspmu.max_period;
1260		hwc->last_period    = hwc->sample_period;
1261		local64_set(&hwc->period_left, hwc->sample_period);
1262	}
1263
1264	err = 0;
1265	if (event->group_leader != event)
1266		err = validate_group(event);
1267
1268	event->destroy = hw_perf_event_destroy;
1269
1270	if (err)
1271		event->destroy(event);
1272
1273	return err;
1274}
1275
1276static void pause_local_counters(void)
1277{
1278	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1279	int ctr = mipspmu.num_counters;
1280	unsigned long flags;
1281
1282	local_irq_save(flags);
1283	do {
1284		ctr--;
1285		cpuc->saved_ctrl[ctr] = mipsxx_pmu_read_control(ctr);
1286		mipsxx_pmu_write_control(ctr, cpuc->saved_ctrl[ctr] &
1287					 ~M_PERFCTL_COUNT_EVENT_WHENEVER);
1288	} while (ctr > 0);
1289	local_irq_restore(flags);
1290}
1291
1292static void resume_local_counters(void)
1293{
1294	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1295	int ctr = mipspmu.num_counters;
1296
1297	do {
1298		ctr--;
1299		mipsxx_pmu_write_control(ctr, cpuc->saved_ctrl[ctr]);
1300	} while (ctr > 0);
1301}
1302
1303static int mipsxx_pmu_handle_shared_irq(void)
1304{
1305	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1306	struct perf_sample_data data;
1307	unsigned int counters = mipspmu.num_counters;
1308	u64 counter;
1309	int handled = IRQ_NONE;
1310	struct pt_regs *regs;
1311
1312	if (cpu_has_perf_cntr_intr_bit && !(read_c0_cause() & CAUSEF_PCI))
1313		return handled;
1314	/*
1315	 * First we pause the local counters, so that when we are locked
1316	 * here, the counters are all paused. When it gets locked due to
1317	 * perf_disable(), the timer interrupt handler will be delayed.
1318	 *
1319	 * See also mipsxx_pmu_start().
1320	 */
1321	pause_local_counters();
1322#ifdef CONFIG_MIPS_PERF_SHARED_TC_COUNTERS
1323	read_lock(&pmuint_rwlock);
1324#endif
1325
1326	regs = get_irq_regs();
1327
1328	perf_sample_data_init(&data, 0, 0);
1329
1330	switch (counters) {
1331#define HANDLE_COUNTER(n)						\
1332	case n + 1:							\
1333		if (test_bit(n, cpuc->used_mask)) {			\
1334			counter = mipspmu.read_counter(n);		\
1335			if (counter & mipspmu.overflow) {		\
1336				handle_associated_event(cpuc, n, &data, regs); \
1337				handled = IRQ_HANDLED;			\
1338			}						\
1339		}
1340	HANDLE_COUNTER(3)
1341	HANDLE_COUNTER(2)
1342	HANDLE_COUNTER(1)
1343	HANDLE_COUNTER(0)
1344	}
1345
1346	/*
1347	 * Do all the work for the pending perf events. We can do this
1348	 * in here because the performance counter interrupt is a regular
1349	 * interrupt, not NMI.
1350	 */
1351	if (handled == IRQ_HANDLED)
1352		irq_work_run();
1353
1354#ifdef CONFIG_MIPS_PERF_SHARED_TC_COUNTERS
1355	read_unlock(&pmuint_rwlock);
1356#endif
1357	resume_local_counters();
1358	return handled;
1359}
1360
1361static irqreturn_t mipsxx_pmu_handle_irq(int irq, void *dev)
1362{
1363	return mipsxx_pmu_handle_shared_irq();
1364}
1365
1366/* 24K */
1367#define IS_BOTH_COUNTERS_24K_EVENT(b)					\
1368	((b) == 0 || (b) == 1 || (b) == 11)
1369
1370/* 34K */
1371#define IS_BOTH_COUNTERS_34K_EVENT(b)					\
1372	((b) == 0 || (b) == 1 || (b) == 11)
1373#ifdef CONFIG_MIPS_MT_SMP
1374#define IS_RANGE_P_34K_EVENT(r, b)					\
1375	((b) == 0 || (r) == 18 || (b) == 21 || (b) == 22 ||		\
1376	 (b) == 25 || (b) == 39 || (r) == 44 || (r) == 174 ||		\
1377	 (r) == 176 || ((b) >= 50 && (b) <= 55) ||			\
1378	 ((b) >= 64 && (b) <= 67))
1379#define IS_RANGE_V_34K_EVENT(r) ((r) == 47)
1380#endif
1381
1382/* 74K */
1383#define IS_BOTH_COUNTERS_74K_EVENT(b)					\
1384	((b) == 0 || (b) == 1)
1385
1386/* proAptiv */
1387#define IS_BOTH_COUNTERS_PROAPTIV_EVENT(b)				\
1388	((b) == 0 || (b) == 1)
1389/* P5600 */
1390#define IS_BOTH_COUNTERS_P5600_EVENT(b)					\
1391	((b) == 0 || (b) == 1)
1392
1393/* 1004K */
1394#define IS_BOTH_COUNTERS_1004K_EVENT(b)					\
1395	((b) == 0 || (b) == 1 || (b) == 11)
1396#ifdef CONFIG_MIPS_MT_SMP
1397#define IS_RANGE_P_1004K_EVENT(r, b)					\
1398	((b) == 0 || (r) == 18 || (b) == 21 || (b) == 22 ||		\
1399	 (b) == 25 || (b) == 36 || (b) == 39 || (r) == 44 ||		\
1400	 (r) == 174 || (r) == 176 || ((b) >= 50 && (b) <= 59) ||	\
1401	 (r) == 188 || (b) == 61 || (b) == 62 ||			\
1402	 ((b) >= 64 && (b) <= 67))
1403#define IS_RANGE_V_1004K_EVENT(r)	((r) == 47)
1404#endif
1405
1406/* interAptiv */
1407#define IS_BOTH_COUNTERS_INTERAPTIV_EVENT(b)				\
1408	((b) == 0 || (b) == 1 || (b) == 11)
1409#ifdef CONFIG_MIPS_MT_SMP
1410/* The P/V/T info is not provided for "(b) == 38" in SUM, assume P. */
1411#define IS_RANGE_P_INTERAPTIV_EVENT(r, b)				\
1412	((b) == 0 || (r) == 18 || (b) == 21 || (b) == 22 ||		\
1413	 (b) == 25 || (b) == 36 || (b) == 38 || (b) == 39 ||		\
1414	 (r) == 44 || (r) == 174 || (r) == 176 || ((b) >= 50 &&		\
1415	 (b) <= 59) || (r) == 188 || (b) == 61 || (b) == 62 ||		\
1416	 ((b) >= 64 && (b) <= 67))
1417#define IS_RANGE_V_INTERAPTIV_EVENT(r)	((r) == 47 || (r) == 175)
1418#endif
1419
1420/* BMIPS5000 */
1421#define IS_BOTH_COUNTERS_BMIPS5000_EVENT(b)				\
1422	((b) == 0 || (b) == 1)
1423
1424
1425/*
1426 * For most cores the user can use 0-255 raw events, where 0-127 for the events
1427 * of even counters, and 128-255 for odd counters. Note that bit 7 is used to
1428 * indicate the even/odd bank selector. So, for example, when user wants to take
1429 * the Event Num of 15 for odd counters (by referring to the user manual), then
1430 * 128 needs to be added to 15 as the input for the event config, i.e., 143 (0x8F)
1431 * to be used.
1432 *
1433 * Some newer cores have even more events, in which case the user can use raw
1434 * events 0-511, where 0-255 are for the events of even counters, and 256-511
1435 * are for odd counters, so bit 8 is used to indicate the even/odd bank selector.
1436 */
1437static const struct mips_perf_event *mipsxx_pmu_map_raw_event(u64 config)
1438{
1439	/* currently most cores have 7-bit event numbers */
1440	unsigned int raw_id = config & 0xff;
1441	unsigned int base_id = raw_id & 0x7f;
1442
1443	switch (current_cpu_type()) {
1444	case CPU_24K:
1445		if (IS_BOTH_COUNTERS_24K_EVENT(base_id))
1446			raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
1447		else
1448			raw_event.cntr_mask =
1449				raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
1450#ifdef CONFIG_MIPS_MT_SMP
1451		/*
1452		 * This is actually doing nothing. Non-multithreading
1453		 * CPUs will not check and calculate the range.
1454		 */
1455		raw_event.range = P;
1456#endif
1457		break;
1458	case CPU_34K:
1459		if (IS_BOTH_COUNTERS_34K_EVENT(base_id))
1460			raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
1461		else
1462			raw_event.cntr_mask =
1463				raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
1464#ifdef CONFIG_MIPS_MT_SMP
1465		if (IS_RANGE_P_34K_EVENT(raw_id, base_id))
1466			raw_event.range = P;
1467		else if (unlikely(IS_RANGE_V_34K_EVENT(raw_id)))
1468			raw_event.range = V;
1469		else
1470			raw_event.range = T;
1471#endif
1472		break;
1473	case CPU_74K:
1474	case CPU_1074K:
1475		if (IS_BOTH_COUNTERS_74K_EVENT(base_id))
1476			raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
1477		else
1478			raw_event.cntr_mask =
1479				raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
1480#ifdef CONFIG_MIPS_MT_SMP
1481		raw_event.range = P;
1482#endif
1483		break;
1484	case CPU_PROAPTIV:
1485		if (IS_BOTH_COUNTERS_PROAPTIV_EVENT(base_id))
1486			raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
1487		else
1488			raw_event.cntr_mask =
1489				raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
1490#ifdef CONFIG_MIPS_MT_SMP
1491		raw_event.range = P;
1492#endif
1493		break;
1494	case CPU_P5600:
1495		/* 8-bit event numbers */
1496		raw_id = config & 0x1ff;
1497		base_id = raw_id & 0xff;
1498		if (IS_BOTH_COUNTERS_P5600_EVENT(base_id))
1499			raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
1500		else
1501			raw_event.cntr_mask =
1502				raw_id > 255 ? CNTR_ODD : CNTR_EVEN;
1503#ifdef CONFIG_MIPS_MT_SMP
1504		raw_event.range = P;
1505#endif
1506		break;
1507	case CPU_1004K:
1508		if (IS_BOTH_COUNTERS_1004K_EVENT(base_id))
1509			raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
1510		else
1511			raw_event.cntr_mask =
1512				raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
1513#ifdef CONFIG_MIPS_MT_SMP
1514		if (IS_RANGE_P_1004K_EVENT(raw_id, base_id))
1515			raw_event.range = P;
1516		else if (unlikely(IS_RANGE_V_1004K_EVENT(raw_id)))
1517			raw_event.range = V;
1518		else
1519			raw_event.range = T;
1520#endif
1521		break;
1522	case CPU_INTERAPTIV:
1523		if (IS_BOTH_COUNTERS_INTERAPTIV_EVENT(base_id))
1524			raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
1525		else
1526			raw_event.cntr_mask =
1527				raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
1528#ifdef CONFIG_MIPS_MT_SMP
1529		if (IS_RANGE_P_INTERAPTIV_EVENT(raw_id, base_id))
1530			raw_event.range = P;
1531		else if (unlikely(IS_RANGE_V_INTERAPTIV_EVENT(raw_id)))
1532			raw_event.range = V;
1533		else
1534			raw_event.range = T;
1535#endif
1536		break;
1537	case CPU_BMIPS5000:
1538		if (IS_BOTH_COUNTERS_BMIPS5000_EVENT(base_id))
1539			raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
1540		else
1541			raw_event.cntr_mask =
1542				raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
1543	}
1544
1545	raw_event.event_id = base_id;
1546
1547	return &raw_event;
1548}
1549
1550static const struct mips_perf_event *octeon_pmu_map_raw_event(u64 config)
1551{
1552	unsigned int raw_id = config & 0xff;
1553	unsigned int base_id = raw_id & 0x7f;
1554
1555
1556	raw_event.cntr_mask = CNTR_ALL;
1557	raw_event.event_id = base_id;
1558
1559	if (current_cpu_type() == CPU_CAVIUM_OCTEON2) {
1560		if (base_id > 0x42)
1561			return ERR_PTR(-EOPNOTSUPP);
1562	} else {
1563		if (base_id > 0x3a)
1564			return ERR_PTR(-EOPNOTSUPP);
1565	}
1566
1567	switch (base_id) {
1568	case 0x00:
1569	case 0x0f:
1570	case 0x1e:
1571	case 0x1f:
1572	case 0x2f:
1573	case 0x34:
1574	case 0x3b ... 0x3f:
1575		return ERR_PTR(-EOPNOTSUPP);
1576	default:
1577		break;
1578	}
1579
1580	return &raw_event;
1581}
1582
1583static const struct mips_perf_event *xlp_pmu_map_raw_event(u64 config)
1584{
1585	unsigned int raw_id = config & 0xff;
1586
1587	/* Only 1-63 are defined */
1588	if ((raw_id < 0x01) || (raw_id > 0x3f))
1589		return ERR_PTR(-EOPNOTSUPP);
1590
1591	raw_event.cntr_mask = CNTR_ALL;
1592	raw_event.event_id = raw_id;
1593
1594	return &raw_event;
1595}
1596
1597static int __init
1598init_hw_perf_events(void)
1599{
1600	int counters, irq;
1601	int counter_bits;
1602
1603	pr_info("Performance counters: ");
1604
1605	counters = n_counters();
1606	if (counters == 0) {
1607		pr_cont("No available PMU.\n");
1608		return -ENODEV;
1609	}
1610
1611#ifdef CONFIG_MIPS_PERF_SHARED_TC_COUNTERS
1612	cpu_has_mipsmt_pertccounters = read_c0_config7() & (1<<19);
1613	if (!cpu_has_mipsmt_pertccounters)
1614		counters = counters_total_to_per_cpu(counters);
1615#endif
1616
1617#ifdef MSC01E_INT_BASE
1618	if (cpu_has_veic) {
1619		/*
1620		 * Using platform specific interrupt controller defines.
1621		 */
1622		irq = MSC01E_INT_BASE + MSC01E_INT_PERFCTR;
1623	} else {
1624#endif
1625		if ((cp0_perfcount_irq >= 0) &&
1626				(cp0_compare_irq != cp0_perfcount_irq))
1627			irq = MIPS_CPU_IRQ_BASE + cp0_perfcount_irq;
1628		else
1629			irq = -1;
1630#ifdef MSC01E_INT_BASE
1631	}
1632#endif
1633
1634	mipspmu.map_raw_event = mipsxx_pmu_map_raw_event;
1635
1636	switch (current_cpu_type()) {
1637	case CPU_24K:
1638		mipspmu.name = "mips/24K";
1639		mipspmu.general_event_map = &mipsxxcore_event_map;
1640		mipspmu.cache_event_map = &mipsxxcore_cache_map;
1641		break;
1642	case CPU_34K:
1643		mipspmu.name = "mips/34K";
1644		mipspmu.general_event_map = &mipsxxcore_event_map;
1645		mipspmu.cache_event_map = &mipsxxcore_cache_map;
1646		break;
1647	case CPU_74K:
1648		mipspmu.name = "mips/74K";
1649		mipspmu.general_event_map = &mipsxxcore_event_map2;
1650		mipspmu.cache_event_map = &mipsxxcore_cache_map2;
1651		break;
1652	case CPU_PROAPTIV:
1653		mipspmu.name = "mips/proAptiv";
1654		mipspmu.general_event_map = &mipsxxcore_event_map2;
1655		mipspmu.cache_event_map = &mipsxxcore_cache_map2;
1656		break;
1657	case CPU_P5600:
1658		mipspmu.name = "mips/P5600";
1659		mipspmu.general_event_map = &mipsxxcore_event_map2;
1660		mipspmu.cache_event_map = &mipsxxcore_cache_map2;
1661		break;
1662	case CPU_1004K:
1663		mipspmu.name = "mips/1004K";
1664		mipspmu.general_event_map = &mipsxxcore_event_map;
1665		mipspmu.cache_event_map = &mipsxxcore_cache_map;
1666		break;
1667	case CPU_1074K:
1668		mipspmu.name = "mips/1074K";
1669		mipspmu.general_event_map = &mipsxxcore_event_map;
1670		mipspmu.cache_event_map = &mipsxxcore_cache_map;
1671		break;
1672	case CPU_INTERAPTIV:
1673		mipspmu.name = "mips/interAptiv";
1674		mipspmu.general_event_map = &mipsxxcore_event_map;
1675		mipspmu.cache_event_map = &mipsxxcore_cache_map;
1676		break;
1677	case CPU_LOONGSON1:
1678		mipspmu.name = "mips/loongson1";
1679		mipspmu.general_event_map = &mipsxxcore_event_map;
1680		mipspmu.cache_event_map = &mipsxxcore_cache_map;
1681		break;
1682	case CPU_CAVIUM_OCTEON:
1683	case CPU_CAVIUM_OCTEON_PLUS:
1684	case CPU_CAVIUM_OCTEON2:
1685		mipspmu.name = "octeon";
1686		mipspmu.general_event_map = &octeon_event_map;
1687		mipspmu.cache_event_map = &octeon_cache_map;
1688		mipspmu.map_raw_event = octeon_pmu_map_raw_event;
1689		break;
1690	case CPU_BMIPS5000:
1691		mipspmu.name = "BMIPS5000";
1692		mipspmu.general_event_map = &bmips5000_event_map;
1693		mipspmu.cache_event_map = &bmips5000_cache_map;
1694		break;
1695	case CPU_XLP:
1696		mipspmu.name = "xlp";
1697		mipspmu.general_event_map = &xlp_event_map;
1698		mipspmu.cache_event_map = &xlp_cache_map;
1699		mipspmu.map_raw_event = xlp_pmu_map_raw_event;
1700		break;
1701	default:
1702		pr_cont("Either hardware does not support performance "
1703			"counters, or not yet implemented.\n");
1704		return -ENODEV;
1705	}
1706
1707	mipspmu.num_counters = counters;
1708	mipspmu.irq = irq;
1709
1710	if (read_c0_perfctrl0() & M_PERFCTL_WIDE) {
1711		mipspmu.max_period = (1ULL << 63) - 1;
1712		mipspmu.valid_count = (1ULL << 63) - 1;
1713		mipspmu.overflow = 1ULL << 63;
1714		mipspmu.read_counter = mipsxx_pmu_read_counter_64;
1715		mipspmu.write_counter = mipsxx_pmu_write_counter_64;
1716		counter_bits = 64;
1717	} else {
1718		mipspmu.max_period = (1ULL << 31) - 1;
1719		mipspmu.valid_count = (1ULL << 31) - 1;
1720		mipspmu.overflow = 1ULL << 31;
1721		mipspmu.read_counter = mipsxx_pmu_read_counter;
1722		mipspmu.write_counter = mipsxx_pmu_write_counter;
1723		counter_bits = 32;
1724	}
1725
1726	on_each_cpu(reset_counters, (void *)(long)counters, 1);
1727
1728	pr_cont("%s PMU enabled, %d %d-bit counters available to each "
1729		"CPU, irq %d%s\n", mipspmu.name, counters, counter_bits, irq,
1730		irq < 0 ? " (share with timer interrupt)" : "");
1731
1732	perf_pmu_register(&pmu, "cpu", PERF_TYPE_RAW);
1733
1734	return 0;
1735}
1736early_initcall(init_hw_perf_events);
1737