cp1emu.c revision 9355e59c332858f0e52c62659bb41a7c2bca0a1b
1/*
2 * cp1emu.c: a MIPS coprocessor 1 (fpu) instruction emulator
3 *
4 * MIPS floating point support
5 * Copyright (C) 1994-2000 Algorithmics Ltd.
6 *
7 * Kevin D. Kissell, kevink@mips.com and Carsten Langgaard, carstenl@mips.com
8 * Copyright (C) 2000  MIPS Technologies, Inc.
9 *
10 *  This program is free software; you can distribute it and/or modify it
11 *  under the terms of the GNU General Public License (Version 2) as
12 *  published by the Free Software Foundation.
13 *
14 *  This program is distributed in the hope it will be useful, but WITHOUT
15 *  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
16 *  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
17 *  for more details.
18 *
19 *  You should have received a copy of the GNU General Public License along
20 *  with this program; if not, write to the Free Software Foundation, Inc.,
21 *  59 Temple Place - Suite 330, Boston MA 02111-1307, USA.
22 *
23 * A complete emulator for MIPS coprocessor 1 instructions.  This is
24 * required for #float(switch) or #float(trap), where it catches all
25 * COP1 instructions via the "CoProcessor Unusable" exception.
26 *
27 * More surprisingly it is also required for #float(ieee), to help out
28 * the hardware fpu at the boundaries of the IEEE-754 representation
29 * (denormalised values, infinities, underflow, etc).  It is made
30 * quite nasty because emulation of some non-COP1 instructions is
31 * required, e.g. in branch delay slots.
32 *
33 * Note if you know that you won't have an fpu, then you'll get much
34 * better performance by compiling with -msoft-float!
35 */
36#include <linux/sched.h>
37#include <linux/module.h>
38#include <linux/debugfs.h>
39#include <linux/perf_event.h>
40
41#include <asm/inst.h>
42#include <asm/bootinfo.h>
43#include <asm/processor.h>
44#include <asm/ptrace.h>
45#include <asm/signal.h>
46#include <asm/mipsregs.h>
47#include <asm/fpu_emulator.h>
48#include <asm/fpu.h>
49#include <asm/uaccess.h>
50#include <asm/branch.h>
51
52#include "ieee754.h"
53
54/* Strap kernel emulator for full MIPS IV emulation */
55
56#ifdef __mips
57#undef __mips
58#endif
59#define __mips 4
60
61/* Function which emulates a floating point instruction. */
62
63static int fpu_emu(struct pt_regs *, struct mips_fpu_struct *,
64	mips_instruction);
65
66#if __mips >= 4 && __mips != 32
67static int fpux_emu(struct pt_regs *,
68	struct mips_fpu_struct *, mips_instruction, void *__user *);
69#endif
70
71/* Further private data for which no space exists in mips_fpu_struct */
72
73#ifdef CONFIG_DEBUG_FS
74DEFINE_PER_CPU(struct mips_fpu_emulator_stats, fpuemustats);
75#endif
76
77/* Control registers */
78
79#define FPCREG_RID	0	/* $0  = revision id */
80#define FPCREG_CSR	31	/* $31 = csr */
81
82/* Determine rounding mode from the RM bits of the FCSR */
83#define modeindex(v) ((v) & FPU_CSR_RM)
84
85/* microMIPS bitfields */
86#define MM_POOL32A_MINOR_MASK	0x3f
87#define MM_POOL32A_MINOR_SHIFT	0x6
88#define MM_MIPS32_COND_FC	0x30
89
90/* Convert Mips rounding mode (0..3) to IEEE library modes. */
91static const unsigned char ieee_rm[4] = {
92	[FPU_CSR_RN] = IEEE754_RN,
93	[FPU_CSR_RZ] = IEEE754_RZ,
94	[FPU_CSR_RU] = IEEE754_RU,
95	[FPU_CSR_RD] = IEEE754_RD,
96};
97/* Convert IEEE library modes to Mips rounding mode (0..3). */
98static const unsigned char mips_rm[4] = {
99	[IEEE754_RN] = FPU_CSR_RN,
100	[IEEE754_RZ] = FPU_CSR_RZ,
101	[IEEE754_RD] = FPU_CSR_RD,
102	[IEEE754_RU] = FPU_CSR_RU,
103};
104
105#if __mips >= 4
106/* convert condition code register number to csr bit */
107static const unsigned int fpucondbit[8] = {
108	FPU_CSR_COND0,
109	FPU_CSR_COND1,
110	FPU_CSR_COND2,
111	FPU_CSR_COND3,
112	FPU_CSR_COND4,
113	FPU_CSR_COND5,
114	FPU_CSR_COND6,
115	FPU_CSR_COND7
116};
117#endif
118
119/* (microMIPS) Convert 16-bit register encoding to 32-bit register encoding. */
120static const unsigned int reg16to32map[8] = {16, 17, 2, 3, 4, 5, 6, 7};
121
122/* (microMIPS) Convert certain microMIPS instructions to MIPS32 format. */
123static const int sd_format[] = {16, 17, 0, 0, 0, 0, 0, 0};
124static const int sdps_format[] = {16, 17, 22, 0, 0, 0, 0, 0};
125static const int dwl_format[] = {17, 20, 21, 0, 0, 0, 0, 0};
126static const int swl_format[] = {16, 20, 21, 0, 0, 0, 0, 0};
127
128/*
129 * This functions translates a 32-bit microMIPS instruction
130 * into a 32-bit MIPS32 instruction. Returns 0 on success
131 * and SIGILL otherwise.
132 */
133static int microMIPS32_to_MIPS32(union mips_instruction *insn_ptr)
134{
135	union mips_instruction insn = *insn_ptr;
136	union mips_instruction mips32_insn = insn;
137	int func, fmt, op;
138
139	switch (insn.mm_i_format.opcode) {
140	case mm_ldc132_op:
141		mips32_insn.mm_i_format.opcode = ldc1_op;
142		mips32_insn.mm_i_format.rt = insn.mm_i_format.rs;
143		mips32_insn.mm_i_format.rs = insn.mm_i_format.rt;
144		break;
145	case mm_lwc132_op:
146		mips32_insn.mm_i_format.opcode = lwc1_op;
147		mips32_insn.mm_i_format.rt = insn.mm_i_format.rs;
148		mips32_insn.mm_i_format.rs = insn.mm_i_format.rt;
149		break;
150	case mm_sdc132_op:
151		mips32_insn.mm_i_format.opcode = sdc1_op;
152		mips32_insn.mm_i_format.rt = insn.mm_i_format.rs;
153		mips32_insn.mm_i_format.rs = insn.mm_i_format.rt;
154		break;
155	case mm_swc132_op:
156		mips32_insn.mm_i_format.opcode = swc1_op;
157		mips32_insn.mm_i_format.rt = insn.mm_i_format.rs;
158		mips32_insn.mm_i_format.rs = insn.mm_i_format.rt;
159		break;
160	case mm_pool32i_op:
161		/* NOTE: offset is << by 1 if in microMIPS mode. */
162		if ((insn.mm_i_format.rt == mm_bc1f_op) ||
163		    (insn.mm_i_format.rt == mm_bc1t_op)) {
164			mips32_insn.fb_format.opcode = cop1_op;
165			mips32_insn.fb_format.bc = bc_op;
166			mips32_insn.fb_format.flag =
167				(insn.mm_i_format.rt == mm_bc1t_op) ? 1 : 0;
168		} else
169			return SIGILL;
170		break;
171	case mm_pool32f_op:
172		switch (insn.mm_fp0_format.func) {
173		case mm_32f_01_op:
174		case mm_32f_11_op:
175		case mm_32f_02_op:
176		case mm_32f_12_op:
177		case mm_32f_41_op:
178		case mm_32f_51_op:
179		case mm_32f_42_op:
180		case mm_32f_52_op:
181			op = insn.mm_fp0_format.func;
182			if (op == mm_32f_01_op)
183				func = madd_s_op;
184			else if (op == mm_32f_11_op)
185				func = madd_d_op;
186			else if (op == mm_32f_02_op)
187				func = nmadd_s_op;
188			else if (op == mm_32f_12_op)
189				func = nmadd_d_op;
190			else if (op == mm_32f_41_op)
191				func = msub_s_op;
192			else if (op == mm_32f_51_op)
193				func = msub_d_op;
194			else if (op == mm_32f_42_op)
195				func = nmsub_s_op;
196			else
197				func = nmsub_d_op;
198			mips32_insn.fp6_format.opcode = cop1x_op;
199			mips32_insn.fp6_format.fr = insn.mm_fp6_format.fr;
200			mips32_insn.fp6_format.ft = insn.mm_fp6_format.ft;
201			mips32_insn.fp6_format.fs = insn.mm_fp6_format.fs;
202			mips32_insn.fp6_format.fd = insn.mm_fp6_format.fd;
203			mips32_insn.fp6_format.func = func;
204			break;
205		case mm_32f_10_op:
206			func = -1;	/* Invalid */
207			op = insn.mm_fp5_format.op & 0x7;
208			if (op == mm_ldxc1_op)
209				func = ldxc1_op;
210			else if (op == mm_sdxc1_op)
211				func = sdxc1_op;
212			else if (op == mm_lwxc1_op)
213				func = lwxc1_op;
214			else if (op == mm_swxc1_op)
215				func = swxc1_op;
216
217			if (func != -1) {
218				mips32_insn.r_format.opcode = cop1x_op;
219				mips32_insn.r_format.rs =
220					insn.mm_fp5_format.base;
221				mips32_insn.r_format.rt =
222					insn.mm_fp5_format.index;
223				mips32_insn.r_format.rd = 0;
224				mips32_insn.r_format.re = insn.mm_fp5_format.fd;
225				mips32_insn.r_format.func = func;
226			} else
227				return SIGILL;
228			break;
229		case mm_32f_40_op:
230			op = -1;	/* Invalid */
231			if (insn.mm_fp2_format.op == mm_fmovt_op)
232				op = 1;
233			else if (insn.mm_fp2_format.op == mm_fmovf_op)
234				op = 0;
235			if (op != -1) {
236				mips32_insn.fp0_format.opcode = cop1_op;
237				mips32_insn.fp0_format.fmt =
238					sdps_format[insn.mm_fp2_format.fmt];
239				mips32_insn.fp0_format.ft =
240					(insn.mm_fp2_format.cc<<2) + op;
241				mips32_insn.fp0_format.fs =
242					insn.mm_fp2_format.fs;
243				mips32_insn.fp0_format.fd =
244					insn.mm_fp2_format.fd;
245				mips32_insn.fp0_format.func = fmovc_op;
246			} else
247				return SIGILL;
248			break;
249		case mm_32f_60_op:
250			func = -1;	/* Invalid */
251			if (insn.mm_fp0_format.op == mm_fadd_op)
252				func = fadd_op;
253			else if (insn.mm_fp0_format.op == mm_fsub_op)
254				func = fsub_op;
255			else if (insn.mm_fp0_format.op == mm_fmul_op)
256				func = fmul_op;
257			else if (insn.mm_fp0_format.op == mm_fdiv_op)
258				func = fdiv_op;
259			if (func != -1) {
260				mips32_insn.fp0_format.opcode = cop1_op;
261				mips32_insn.fp0_format.fmt =
262					sdps_format[insn.mm_fp0_format.fmt];
263				mips32_insn.fp0_format.ft =
264					insn.mm_fp0_format.ft;
265				mips32_insn.fp0_format.fs =
266					insn.mm_fp0_format.fs;
267				mips32_insn.fp0_format.fd =
268					insn.mm_fp0_format.fd;
269				mips32_insn.fp0_format.func = func;
270			} else
271				return SIGILL;
272			break;
273		case mm_32f_70_op:
274			func = -1;	/* Invalid */
275			if (insn.mm_fp0_format.op == mm_fmovn_op)
276				func = fmovn_op;
277			else if (insn.mm_fp0_format.op == mm_fmovz_op)
278				func = fmovz_op;
279			if (func != -1) {
280				mips32_insn.fp0_format.opcode = cop1_op;
281				mips32_insn.fp0_format.fmt =
282					sdps_format[insn.mm_fp0_format.fmt];
283				mips32_insn.fp0_format.ft =
284					insn.mm_fp0_format.ft;
285				mips32_insn.fp0_format.fs =
286					insn.mm_fp0_format.fs;
287				mips32_insn.fp0_format.fd =
288					insn.mm_fp0_format.fd;
289				mips32_insn.fp0_format.func = func;
290			} else
291				return SIGILL;
292			break;
293		case mm_32f_73_op:    /* POOL32FXF */
294			switch (insn.mm_fp1_format.op) {
295			case mm_movf0_op:
296			case mm_movf1_op:
297			case mm_movt0_op:
298			case mm_movt1_op:
299				if ((insn.mm_fp1_format.op & 0x7f) ==
300				    mm_movf0_op)
301					op = 0;
302				else
303					op = 1;
304				mips32_insn.r_format.opcode = spec_op;
305				mips32_insn.r_format.rs = insn.mm_fp4_format.fs;
306				mips32_insn.r_format.rt =
307					(insn.mm_fp4_format.cc << 2) + op;
308				mips32_insn.r_format.rd = insn.mm_fp4_format.rt;
309				mips32_insn.r_format.re = 0;
310				mips32_insn.r_format.func = movc_op;
311				break;
312			case mm_fcvtd0_op:
313			case mm_fcvtd1_op:
314			case mm_fcvts0_op:
315			case mm_fcvts1_op:
316				if ((insn.mm_fp1_format.op & 0x7f) ==
317				    mm_fcvtd0_op) {
318					func = fcvtd_op;
319					fmt = swl_format[insn.mm_fp3_format.fmt];
320				} else {
321					func = fcvts_op;
322					fmt = dwl_format[insn.mm_fp3_format.fmt];
323				}
324				mips32_insn.fp0_format.opcode = cop1_op;
325				mips32_insn.fp0_format.fmt = fmt;
326				mips32_insn.fp0_format.ft = 0;
327				mips32_insn.fp0_format.fs =
328					insn.mm_fp3_format.fs;
329				mips32_insn.fp0_format.fd =
330					insn.mm_fp3_format.rt;
331				mips32_insn.fp0_format.func = func;
332				break;
333			case mm_fmov0_op:
334			case mm_fmov1_op:
335			case mm_fabs0_op:
336			case mm_fabs1_op:
337			case mm_fneg0_op:
338			case mm_fneg1_op:
339				if ((insn.mm_fp1_format.op & 0x7f) ==
340				    mm_fmov0_op)
341					func = fmov_op;
342				else if ((insn.mm_fp1_format.op & 0x7f) ==
343					 mm_fabs0_op)
344					func = fabs_op;
345				else
346					func = fneg_op;
347				mips32_insn.fp0_format.opcode = cop1_op;
348				mips32_insn.fp0_format.fmt =
349					sdps_format[insn.mm_fp3_format.fmt];
350				mips32_insn.fp0_format.ft = 0;
351				mips32_insn.fp0_format.fs =
352					insn.mm_fp3_format.fs;
353				mips32_insn.fp0_format.fd =
354					insn.mm_fp3_format.rt;
355				mips32_insn.fp0_format.func = func;
356				break;
357			case mm_ffloorl_op:
358			case mm_ffloorw_op:
359			case mm_fceill_op:
360			case mm_fceilw_op:
361			case mm_ftruncl_op:
362			case mm_ftruncw_op:
363			case mm_froundl_op:
364			case mm_froundw_op:
365			case mm_fcvtl_op:
366			case mm_fcvtw_op:
367				if (insn.mm_fp1_format.op == mm_ffloorl_op)
368					func = ffloorl_op;
369				else if (insn.mm_fp1_format.op == mm_ffloorw_op)
370					func = ffloor_op;
371				else if (insn.mm_fp1_format.op == mm_fceill_op)
372					func = fceill_op;
373				else if (insn.mm_fp1_format.op == mm_fceilw_op)
374					func = fceil_op;
375				else if (insn.mm_fp1_format.op == mm_ftruncl_op)
376					func = ftruncl_op;
377				else if (insn.mm_fp1_format.op == mm_ftruncw_op)
378					func = ftrunc_op;
379				else if (insn.mm_fp1_format.op == mm_froundl_op)
380					func = froundl_op;
381				else if (insn.mm_fp1_format.op == mm_froundw_op)
382					func = fround_op;
383				else if (insn.mm_fp1_format.op == mm_fcvtl_op)
384					func = fcvtl_op;
385				else
386					func = fcvtw_op;
387				mips32_insn.fp0_format.opcode = cop1_op;
388				mips32_insn.fp0_format.fmt =
389					sd_format[insn.mm_fp1_format.fmt];
390				mips32_insn.fp0_format.ft = 0;
391				mips32_insn.fp0_format.fs =
392					insn.mm_fp1_format.fs;
393				mips32_insn.fp0_format.fd =
394					insn.mm_fp1_format.rt;
395				mips32_insn.fp0_format.func = func;
396				break;
397			case mm_frsqrt_op:
398			case mm_fsqrt_op:
399			case mm_frecip_op:
400				if (insn.mm_fp1_format.op == mm_frsqrt_op)
401					func = frsqrt_op;
402				else if (insn.mm_fp1_format.op == mm_fsqrt_op)
403					func = fsqrt_op;
404				else
405					func = frecip_op;
406				mips32_insn.fp0_format.opcode = cop1_op;
407				mips32_insn.fp0_format.fmt =
408					sdps_format[insn.mm_fp1_format.fmt];
409				mips32_insn.fp0_format.ft = 0;
410				mips32_insn.fp0_format.fs =
411					insn.mm_fp1_format.fs;
412				mips32_insn.fp0_format.fd =
413					insn.mm_fp1_format.rt;
414				mips32_insn.fp0_format.func = func;
415				break;
416			case mm_mfc1_op:
417			case mm_mtc1_op:
418			case mm_cfc1_op:
419			case mm_ctc1_op:
420			case mm_mfhc1_op:
421			case mm_mthc1_op:
422				if (insn.mm_fp1_format.op == mm_mfc1_op)
423					op = mfc_op;
424				else if (insn.mm_fp1_format.op == mm_mtc1_op)
425					op = mtc_op;
426				else if (insn.mm_fp1_format.op == mm_cfc1_op)
427					op = cfc_op;
428				else if (insn.mm_fp1_format.op == mm_ctc1_op)
429					op = ctc_op;
430				else if (insn.mm_fp1_format.op == mm_mfhc1_op)
431					op = mfhc_op;
432				else
433					op = mthc_op;
434				mips32_insn.fp1_format.opcode = cop1_op;
435				mips32_insn.fp1_format.op = op;
436				mips32_insn.fp1_format.rt =
437					insn.mm_fp1_format.rt;
438				mips32_insn.fp1_format.fs =
439					insn.mm_fp1_format.fs;
440				mips32_insn.fp1_format.fd = 0;
441				mips32_insn.fp1_format.func = 0;
442				break;
443			default:
444				return SIGILL;
445			}
446			break;
447		case mm_32f_74_op:	/* c.cond.fmt */
448			mips32_insn.fp0_format.opcode = cop1_op;
449			mips32_insn.fp0_format.fmt =
450				sdps_format[insn.mm_fp4_format.fmt];
451			mips32_insn.fp0_format.ft = insn.mm_fp4_format.rt;
452			mips32_insn.fp0_format.fs = insn.mm_fp4_format.fs;
453			mips32_insn.fp0_format.fd = insn.mm_fp4_format.cc << 2;
454			mips32_insn.fp0_format.func =
455				insn.mm_fp4_format.cond | MM_MIPS32_COND_FC;
456			break;
457		default:
458			return SIGILL;
459		}
460		break;
461	default:
462		return SIGILL;
463	}
464
465	*insn_ptr = mips32_insn;
466	return 0;
467}
468
469int mm_isBranchInstr(struct pt_regs *regs, struct mm_decoded_insn dec_insn,
470		     unsigned long *contpc)
471{
472	union mips_instruction insn = (union mips_instruction)dec_insn.insn;
473	int bc_false = 0;
474	unsigned int fcr31;
475	unsigned int bit;
476
477	if (!cpu_has_mmips)
478		return 0;
479
480	switch (insn.mm_i_format.opcode) {
481	case mm_pool32a_op:
482		if ((insn.mm_i_format.simmediate & MM_POOL32A_MINOR_MASK) ==
483		    mm_pool32axf_op) {
484			switch (insn.mm_i_format.simmediate >>
485				MM_POOL32A_MINOR_SHIFT) {
486			case mm_jalr_op:
487			case mm_jalrhb_op:
488			case mm_jalrs_op:
489			case mm_jalrshb_op:
490				if (insn.mm_i_format.rt != 0)	/* Not mm_jr */
491					regs->regs[insn.mm_i_format.rt] =
492						regs->cp0_epc +
493						dec_insn.pc_inc +
494						dec_insn.next_pc_inc;
495				*contpc = regs->regs[insn.mm_i_format.rs];
496				return 1;
497			}
498		}
499		break;
500	case mm_pool32i_op:
501		switch (insn.mm_i_format.rt) {
502		case mm_bltzals_op:
503		case mm_bltzal_op:
504			regs->regs[31] = regs->cp0_epc +
505				dec_insn.pc_inc +
506				dec_insn.next_pc_inc;
507			/* Fall through */
508		case mm_bltz_op:
509			if ((long)regs->regs[insn.mm_i_format.rs] < 0)
510				*contpc = regs->cp0_epc +
511					dec_insn.pc_inc +
512					(insn.mm_i_format.simmediate << 1);
513			else
514				*contpc = regs->cp0_epc +
515					dec_insn.pc_inc +
516					dec_insn.next_pc_inc;
517			return 1;
518		case mm_bgezals_op:
519		case mm_bgezal_op:
520			regs->regs[31] = regs->cp0_epc +
521					dec_insn.pc_inc +
522					dec_insn.next_pc_inc;
523			/* Fall through */
524		case mm_bgez_op:
525			if ((long)regs->regs[insn.mm_i_format.rs] >= 0)
526				*contpc = regs->cp0_epc +
527					dec_insn.pc_inc +
528					(insn.mm_i_format.simmediate << 1);
529			else
530				*contpc = regs->cp0_epc +
531					dec_insn.pc_inc +
532					dec_insn.next_pc_inc;
533			return 1;
534		case mm_blez_op:
535			if ((long)regs->regs[insn.mm_i_format.rs] <= 0)
536				*contpc = regs->cp0_epc +
537					dec_insn.pc_inc +
538					(insn.mm_i_format.simmediate << 1);
539			else
540				*contpc = regs->cp0_epc +
541					dec_insn.pc_inc +
542					dec_insn.next_pc_inc;
543			return 1;
544		case mm_bgtz_op:
545			if ((long)regs->regs[insn.mm_i_format.rs] <= 0)
546				*contpc = regs->cp0_epc +
547					dec_insn.pc_inc +
548					(insn.mm_i_format.simmediate << 1);
549			else
550				*contpc = regs->cp0_epc +
551					dec_insn.pc_inc +
552					dec_insn.next_pc_inc;
553			return 1;
554		case mm_bc2f_op:
555		case mm_bc1f_op:
556			bc_false = 1;
557			/* Fall through */
558		case mm_bc2t_op:
559		case mm_bc1t_op:
560			preempt_disable();
561			if (is_fpu_owner())
562				asm volatile("cfc1\t%0,$31" : "=r" (fcr31));
563			else
564				fcr31 = current->thread.fpu.fcr31;
565			preempt_enable();
566
567			if (bc_false)
568				fcr31 = ~fcr31;
569
570			bit = (insn.mm_i_format.rs >> 2);
571			bit += (bit != 0);
572			bit += 23;
573			if (fcr31 & (1 << bit))
574				*contpc = regs->cp0_epc +
575					dec_insn.pc_inc +
576					(insn.mm_i_format.simmediate << 1);
577			else
578				*contpc = regs->cp0_epc +
579					dec_insn.pc_inc + dec_insn.next_pc_inc;
580			return 1;
581		}
582		break;
583	case mm_pool16c_op:
584		switch (insn.mm_i_format.rt) {
585		case mm_jalr16_op:
586		case mm_jalrs16_op:
587			regs->regs[31] = regs->cp0_epc +
588				dec_insn.pc_inc + dec_insn.next_pc_inc;
589			/* Fall through */
590		case mm_jr16_op:
591			*contpc = regs->regs[insn.mm_i_format.rs];
592			return 1;
593		}
594		break;
595	case mm_beqz16_op:
596		if ((long)regs->regs[reg16to32map[insn.mm_b1_format.rs]] == 0)
597			*contpc = regs->cp0_epc +
598				dec_insn.pc_inc +
599				(insn.mm_b1_format.simmediate << 1);
600		else
601			*contpc = regs->cp0_epc +
602				dec_insn.pc_inc + dec_insn.next_pc_inc;
603		return 1;
604	case mm_bnez16_op:
605		if ((long)regs->regs[reg16to32map[insn.mm_b1_format.rs]] != 0)
606			*contpc = regs->cp0_epc +
607				dec_insn.pc_inc +
608				(insn.mm_b1_format.simmediate << 1);
609		else
610			*contpc = regs->cp0_epc +
611				dec_insn.pc_inc + dec_insn.next_pc_inc;
612		return 1;
613	case mm_b16_op:
614		*contpc = regs->cp0_epc + dec_insn.pc_inc +
615			 (insn.mm_b0_format.simmediate << 1);
616		return 1;
617	case mm_beq32_op:
618		if (regs->regs[insn.mm_i_format.rs] ==
619		    regs->regs[insn.mm_i_format.rt])
620			*contpc = regs->cp0_epc +
621				dec_insn.pc_inc +
622				(insn.mm_i_format.simmediate << 1);
623		else
624			*contpc = regs->cp0_epc +
625				dec_insn.pc_inc +
626				dec_insn.next_pc_inc;
627		return 1;
628	case mm_bne32_op:
629		if (regs->regs[insn.mm_i_format.rs] !=
630		    regs->regs[insn.mm_i_format.rt])
631			*contpc = regs->cp0_epc +
632				dec_insn.pc_inc +
633				(insn.mm_i_format.simmediate << 1);
634		else
635			*contpc = regs->cp0_epc +
636				dec_insn.pc_inc + dec_insn.next_pc_inc;
637		return 1;
638	case mm_jalx32_op:
639		regs->regs[31] = regs->cp0_epc +
640			dec_insn.pc_inc + dec_insn.next_pc_inc;
641		*contpc = regs->cp0_epc + dec_insn.pc_inc;
642		*contpc >>= 28;
643		*contpc <<= 28;
644		*contpc |= (insn.j_format.target << 2);
645		return 1;
646	case mm_jals32_op:
647	case mm_jal32_op:
648		regs->regs[31] = regs->cp0_epc +
649			dec_insn.pc_inc + dec_insn.next_pc_inc;
650		/* Fall through */
651	case mm_j32_op:
652		*contpc = regs->cp0_epc + dec_insn.pc_inc;
653		*contpc >>= 27;
654		*contpc <<= 27;
655		*contpc |= (insn.j_format.target << 1);
656		set_isa16_mode(*contpc);
657		return 1;
658	}
659	return 0;
660}
661
662/*
663 * Redundant with logic already in kernel/branch.c,
664 * embedded in compute_return_epc.  At some point,
665 * a single subroutine should be used across both
666 * modules.
667 */
668static int isBranchInstr(struct pt_regs *regs, struct mm_decoded_insn dec_insn,
669			 unsigned long *contpc)
670{
671	union mips_instruction insn = (union mips_instruction)dec_insn.insn;
672	unsigned int fcr31;
673	unsigned int bit = 0;
674
675	switch (insn.i_format.opcode) {
676	case spec_op:
677		switch (insn.r_format.func) {
678		case jalr_op:
679			regs->regs[insn.r_format.rd] =
680				regs->cp0_epc + dec_insn.pc_inc +
681				dec_insn.next_pc_inc;
682			/* Fall through */
683		case jr_op:
684			*contpc = regs->regs[insn.r_format.rs];
685			return 1;
686		}
687		break;
688	case bcond_op:
689		switch (insn.i_format.rt) {
690		case bltzal_op:
691		case bltzall_op:
692			regs->regs[31] = regs->cp0_epc +
693				dec_insn.pc_inc +
694				dec_insn.next_pc_inc;
695			/* Fall through */
696		case bltz_op:
697		case bltzl_op:
698			if ((long)regs->regs[insn.i_format.rs] < 0)
699				*contpc = regs->cp0_epc +
700					dec_insn.pc_inc +
701					(insn.i_format.simmediate << 2);
702			else
703				*contpc = regs->cp0_epc +
704					dec_insn.pc_inc +
705					dec_insn.next_pc_inc;
706			return 1;
707		case bgezal_op:
708		case bgezall_op:
709			regs->regs[31] = regs->cp0_epc +
710				dec_insn.pc_inc +
711				dec_insn.next_pc_inc;
712			/* Fall through */
713		case bgez_op:
714		case bgezl_op:
715			if ((long)regs->regs[insn.i_format.rs] >= 0)
716				*contpc = regs->cp0_epc +
717					dec_insn.pc_inc +
718					(insn.i_format.simmediate << 2);
719			else
720				*contpc = regs->cp0_epc +
721					dec_insn.pc_inc +
722					dec_insn.next_pc_inc;
723			return 1;
724		}
725		break;
726	case jalx_op:
727		set_isa16_mode(bit);
728	case jal_op:
729		regs->regs[31] = regs->cp0_epc +
730			dec_insn.pc_inc +
731			dec_insn.next_pc_inc;
732		/* Fall through */
733	case j_op:
734		*contpc = regs->cp0_epc + dec_insn.pc_inc;
735		*contpc >>= 28;
736		*contpc <<= 28;
737		*contpc |= (insn.j_format.target << 2);
738		/* Set microMIPS mode bit: XOR for jalx. */
739		*contpc ^= bit;
740		return 1;
741	case beq_op:
742	case beql_op:
743		if (regs->regs[insn.i_format.rs] ==
744		    regs->regs[insn.i_format.rt])
745			*contpc = regs->cp0_epc +
746				dec_insn.pc_inc +
747				(insn.i_format.simmediate << 2);
748		else
749			*contpc = regs->cp0_epc +
750				dec_insn.pc_inc +
751				dec_insn.next_pc_inc;
752		return 1;
753	case bne_op:
754	case bnel_op:
755		if (regs->regs[insn.i_format.rs] !=
756		    regs->regs[insn.i_format.rt])
757			*contpc = regs->cp0_epc +
758				dec_insn.pc_inc +
759				(insn.i_format.simmediate << 2);
760		else
761			*contpc = regs->cp0_epc +
762				dec_insn.pc_inc +
763				dec_insn.next_pc_inc;
764		return 1;
765	case blez_op:
766	case blezl_op:
767		if ((long)regs->regs[insn.i_format.rs] <= 0)
768			*contpc = regs->cp0_epc +
769				dec_insn.pc_inc +
770				(insn.i_format.simmediate << 2);
771		else
772			*contpc = regs->cp0_epc +
773				dec_insn.pc_inc +
774				dec_insn.next_pc_inc;
775		return 1;
776	case bgtz_op:
777	case bgtzl_op:
778		if ((long)regs->regs[insn.i_format.rs] > 0)
779			*contpc = regs->cp0_epc +
780				dec_insn.pc_inc +
781				(insn.i_format.simmediate << 2);
782		else
783			*contpc = regs->cp0_epc +
784				dec_insn.pc_inc +
785				dec_insn.next_pc_inc;
786		return 1;
787#ifdef CONFIG_CPU_CAVIUM_OCTEON
788	case lwc2_op: /* This is bbit0 on Octeon */
789		if ((regs->regs[insn.i_format.rs] & (1ull<<insn.i_format.rt)) == 0)
790			*contpc = regs->cp0_epc + 4 + (insn.i_format.simmediate << 2);
791		else
792			*contpc = regs->cp0_epc + 8;
793		return 1;
794	case ldc2_op: /* This is bbit032 on Octeon */
795		if ((regs->regs[insn.i_format.rs] & (1ull<<(insn.i_format.rt + 32))) == 0)
796			*contpc = regs->cp0_epc + 4 + (insn.i_format.simmediate << 2);
797		else
798			*contpc = regs->cp0_epc + 8;
799		return 1;
800	case swc2_op: /* This is bbit1 on Octeon */
801		if (regs->regs[insn.i_format.rs] & (1ull<<insn.i_format.rt))
802			*contpc = regs->cp0_epc + 4 + (insn.i_format.simmediate << 2);
803		else
804			*contpc = regs->cp0_epc + 8;
805		return 1;
806	case sdc2_op: /* This is bbit132 on Octeon */
807		if (regs->regs[insn.i_format.rs] & (1ull<<(insn.i_format.rt + 32)))
808			*contpc = regs->cp0_epc + 4 + (insn.i_format.simmediate << 2);
809		else
810			*contpc = regs->cp0_epc + 8;
811		return 1;
812#endif
813	case cop0_op:
814	case cop1_op:
815	case cop2_op:
816	case cop1x_op:
817		if (insn.i_format.rs == bc_op) {
818			preempt_disable();
819			if (is_fpu_owner())
820				asm volatile("cfc1\t%0,$31" : "=r" (fcr31));
821			else
822				fcr31 = current->thread.fpu.fcr31;
823			preempt_enable();
824
825			bit = (insn.i_format.rt >> 2);
826			bit += (bit != 0);
827			bit += 23;
828			switch (insn.i_format.rt & 3) {
829			case 0:	/* bc1f */
830			case 2:	/* bc1fl */
831				if (~fcr31 & (1 << bit))
832					*contpc = regs->cp0_epc +
833						dec_insn.pc_inc +
834						(insn.i_format.simmediate << 2);
835				else
836					*contpc = regs->cp0_epc +
837						dec_insn.pc_inc +
838						dec_insn.next_pc_inc;
839				return 1;
840			case 1:	/* bc1t */
841			case 3:	/* bc1tl */
842				if (fcr31 & (1 << bit))
843					*contpc = regs->cp0_epc +
844						dec_insn.pc_inc +
845						(insn.i_format.simmediate << 2);
846				else
847					*contpc = regs->cp0_epc +
848						dec_insn.pc_inc +
849						dec_insn.next_pc_inc;
850				return 1;
851			}
852		}
853		break;
854	}
855	return 0;
856}
857
858/*
859 * In the Linux kernel, we support selection of FPR format on the
860 * basis of the Status.FR bit.	If an FPU is not present, the FR bit
861 * is hardwired to zero, which would imply a 32-bit FPU even for
862 * 64-bit CPUs so we rather look at TIF_32BIT_REGS.
863 * FPU emu is slow and bulky and optimizing this function offers fairly
864 * sizeable benefits so we try to be clever and make this function return
865 * a constant whenever possible, that is on 64-bit kernels without O32
866 * compatibility enabled and on 32-bit kernels.
867 */
868static inline int cop1_64bit(struct pt_regs *xcp)
869{
870#if defined(CONFIG_64BIT) && !defined(CONFIG_MIPS32_O32)
871	return 1;
872#elif defined(CONFIG_64BIT) && defined(CONFIG_MIPS32_O32)
873	return !test_thread_flag(TIF_32BIT_REGS);
874#else
875	return 0;
876#endif
877}
878
879#define SIFROMREG(si, x) ((si) = cop1_64bit(xcp) || !(x & 1) ? \
880			(int)ctx->fpr[x] : (int)(ctx->fpr[x & ~1] >> 32))
881
882#define SITOREG(si, x)	(ctx->fpr[x & ~(cop1_64bit(xcp) == 0)] = \
883			cop1_64bit(xcp) || !(x & 1) ? \
884			ctx->fpr[x & ~1] >> 32 << 32 | (u32)(si) : \
885			ctx->fpr[x & ~1] << 32 >> 32 | (u64)(si) << 32)
886
887#define SIFROMHREG(si, x)	((si) = (int)(ctx->fpr[x] >> 32))
888#define SITOHREG(si, x)		(ctx->fpr[x] = \
889				ctx->fpr[x] << 32 >> 32 | (u64)(si) << 32)
890
891#define DIFROMREG(di, x) ((di) = ctx->fpr[x & ~(cop1_64bit(xcp) == 0)])
892#define DITOREG(di, x)	(ctx->fpr[x & ~(cop1_64bit(xcp) == 0)] = (di))
893
894#define SPFROMREG(sp, x) SIFROMREG((sp).bits, x)
895#define SPTOREG(sp, x)	SITOREG((sp).bits, x)
896#define DPFROMREG(dp, x)	DIFROMREG((dp).bits, x)
897#define DPTOREG(dp, x)	DITOREG((dp).bits, x)
898
899/*
900 * Emulate the single floating point instruction pointed at by EPC.
901 * Two instructions if the instruction is in a branch delay slot.
902 */
903
904static int cop1Emulate(struct pt_regs *xcp, struct mips_fpu_struct *ctx,
905		struct mm_decoded_insn dec_insn, void *__user *fault_addr)
906{
907	mips_instruction ir;
908	unsigned long contpc = xcp->cp0_epc + dec_insn.pc_inc;
909	unsigned int cond;
910	int pc_inc;
911
912	/* XXX NEC Vr54xx bug workaround */
913	if (xcp->cp0_cause & CAUSEF_BD) {
914		if (dec_insn.micro_mips_mode) {
915			if (!mm_isBranchInstr(xcp, dec_insn, &contpc))
916				xcp->cp0_cause &= ~CAUSEF_BD;
917		} else {
918			if (!isBranchInstr(xcp, dec_insn, &contpc))
919				xcp->cp0_cause &= ~CAUSEF_BD;
920		}
921	}
922
923	if (xcp->cp0_cause & CAUSEF_BD) {
924		/*
925		 * The instruction to be emulated is in a branch delay slot
926		 * which means that we have to	emulate the branch instruction
927		 * BEFORE we do the cop1 instruction.
928		 *
929		 * This branch could be a COP1 branch, but in that case we
930		 * would have had a trap for that instruction, and would not
931		 * come through this route.
932		 *
933		 * Linux MIPS branch emulator operates on context, updating the
934		 * cp0_epc.
935		 */
936		ir = dec_insn.next_insn;  /* process delay slot instr */
937		pc_inc = dec_insn.next_pc_inc;
938	} else {
939		ir = dec_insn.insn;       /* process current instr */
940		pc_inc = dec_insn.pc_inc;
941	}
942
943	/*
944	 * Since microMIPS FPU instructios are a subset of MIPS32 FPU
945	 * instructions, we want to convert microMIPS FPU instructions
946	 * into MIPS32 instructions so that we could reuse all of the
947	 * FPU emulation code.
948	 *
949	 * NOTE: We cannot do this for branch instructions since they
950	 *       are not a subset. Example: Cannot emulate a 16-bit
951	 *       aligned target address with a MIPS32 instruction.
952	 */
953	if (dec_insn.micro_mips_mode) {
954		/*
955		 * If next instruction is a 16-bit instruction, then it
956		 * it cannot be a FPU instruction. This could happen
957		 * since we can be called for non-FPU instructions.
958		 */
959		if ((pc_inc == 2) ||
960			(microMIPS32_to_MIPS32((union mips_instruction *)&ir)
961			 == SIGILL))
962			return SIGILL;
963	}
964
965      emul:
966	perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS, 1, xcp, 0);
967	MIPS_FPU_EMU_INC_STATS(emulated);
968	switch (MIPSInst_OPCODE(ir)) {
969	case ldc1_op:{
970		u64 __user *va = (u64 __user *) (xcp->regs[MIPSInst_RS(ir)] +
971			MIPSInst_SIMM(ir));
972		u64 val;
973
974		MIPS_FPU_EMU_INC_STATS(loads);
975
976		if (!access_ok(VERIFY_READ, va, sizeof(u64))) {
977			MIPS_FPU_EMU_INC_STATS(errors);
978			*fault_addr = va;
979			return SIGBUS;
980		}
981		if (__get_user(val, va)) {
982			MIPS_FPU_EMU_INC_STATS(errors);
983			*fault_addr = va;
984			return SIGSEGV;
985		}
986		DITOREG(val, MIPSInst_RT(ir));
987		break;
988	}
989
990	case sdc1_op:{
991		u64 __user *va = (u64 __user *) (xcp->regs[MIPSInst_RS(ir)] +
992			MIPSInst_SIMM(ir));
993		u64 val;
994
995		MIPS_FPU_EMU_INC_STATS(stores);
996		DIFROMREG(val, MIPSInst_RT(ir));
997		if (!access_ok(VERIFY_WRITE, va, sizeof(u64))) {
998			MIPS_FPU_EMU_INC_STATS(errors);
999			*fault_addr = va;
1000			return SIGBUS;
1001		}
1002		if (__put_user(val, va)) {
1003			MIPS_FPU_EMU_INC_STATS(errors);
1004			*fault_addr = va;
1005			return SIGSEGV;
1006		}
1007		break;
1008	}
1009
1010	case lwc1_op:{
1011		u32 __user *va = (u32 __user *) (xcp->regs[MIPSInst_RS(ir)] +
1012			MIPSInst_SIMM(ir));
1013		u32 val;
1014
1015		MIPS_FPU_EMU_INC_STATS(loads);
1016		if (!access_ok(VERIFY_READ, va, sizeof(u32))) {
1017			MIPS_FPU_EMU_INC_STATS(errors);
1018			*fault_addr = va;
1019			return SIGBUS;
1020		}
1021		if (__get_user(val, va)) {
1022			MIPS_FPU_EMU_INC_STATS(errors);
1023			*fault_addr = va;
1024			return SIGSEGV;
1025		}
1026		SITOREG(val, MIPSInst_RT(ir));
1027		break;
1028	}
1029
1030	case swc1_op:{
1031		u32 __user *va = (u32 __user *) (xcp->regs[MIPSInst_RS(ir)] +
1032			MIPSInst_SIMM(ir));
1033		u32 val;
1034
1035		MIPS_FPU_EMU_INC_STATS(stores);
1036		SIFROMREG(val, MIPSInst_RT(ir));
1037		if (!access_ok(VERIFY_WRITE, va, sizeof(u32))) {
1038			MIPS_FPU_EMU_INC_STATS(errors);
1039			*fault_addr = va;
1040			return SIGBUS;
1041		}
1042		if (__put_user(val, va)) {
1043			MIPS_FPU_EMU_INC_STATS(errors);
1044			*fault_addr = va;
1045			return SIGSEGV;
1046		}
1047		break;
1048	}
1049
1050	case cop1_op:
1051		switch (MIPSInst_RS(ir)) {
1052
1053#if defined(__mips64)
1054		case dmfc_op:
1055			/* copregister fs -> gpr[rt] */
1056			if (MIPSInst_RT(ir) != 0) {
1057				DIFROMREG(xcp->regs[MIPSInst_RT(ir)],
1058					MIPSInst_RD(ir));
1059			}
1060			break;
1061
1062		case dmtc_op:
1063			/* copregister fs <- rt */
1064			DITOREG(xcp->regs[MIPSInst_RT(ir)], MIPSInst_RD(ir));
1065			break;
1066#endif
1067
1068		case mfhc_op:
1069			if (!cpu_has_mips_r2)
1070				goto sigill;
1071
1072			/* copregister rd -> gpr[rt] */
1073			if (MIPSInst_RT(ir) != 0) {
1074				SIFROMHREG(xcp->regs[MIPSInst_RT(ir)],
1075					MIPSInst_RD(ir));
1076			}
1077			break;
1078
1079		case mthc_op:
1080			if (!cpu_has_mips_r2)
1081				goto sigill;
1082
1083			/* copregister rd <- gpr[rt] */
1084			SITOHREG(xcp->regs[MIPSInst_RT(ir)], MIPSInst_RD(ir));
1085			break;
1086
1087		case mfc_op:
1088			/* copregister rd -> gpr[rt] */
1089			if (MIPSInst_RT(ir) != 0) {
1090				SIFROMREG(xcp->regs[MIPSInst_RT(ir)],
1091					MIPSInst_RD(ir));
1092			}
1093			break;
1094
1095		case mtc_op:
1096			/* copregister rd <- rt */
1097			SITOREG(xcp->regs[MIPSInst_RT(ir)], MIPSInst_RD(ir));
1098			break;
1099
1100		case cfc_op:{
1101			/* cop control register rd -> gpr[rt] */
1102			u32 value;
1103
1104			if (MIPSInst_RD(ir) == FPCREG_CSR) {
1105				value = ctx->fcr31;
1106				value = (value & ~FPU_CSR_RM) |
1107					mips_rm[modeindex(value)];
1108#ifdef CSRTRACE
1109				printk("%p gpr[%d]<-csr=%08x\n",
1110					(void *) (xcp->cp0_epc),
1111					MIPSInst_RT(ir), value);
1112#endif
1113			}
1114			else if (MIPSInst_RD(ir) == FPCREG_RID)
1115				value = 0;
1116			else
1117				value = 0;
1118			if (MIPSInst_RT(ir))
1119				xcp->regs[MIPSInst_RT(ir)] = value;
1120			break;
1121		}
1122
1123		case ctc_op:{
1124			/* copregister rd <- rt */
1125			u32 value;
1126
1127			if (MIPSInst_RT(ir) == 0)
1128				value = 0;
1129			else
1130				value = xcp->regs[MIPSInst_RT(ir)];
1131
1132			/* we only have one writable control reg
1133			 */
1134			if (MIPSInst_RD(ir) == FPCREG_CSR) {
1135#ifdef CSRTRACE
1136				printk("%p gpr[%d]->csr=%08x\n",
1137					(void *) (xcp->cp0_epc),
1138					MIPSInst_RT(ir), value);
1139#endif
1140
1141				/*
1142				 * Don't write reserved bits,
1143				 * and convert to ieee library modes
1144				 */
1145				ctx->fcr31 = (value &
1146						~(FPU_CSR_RSVD | FPU_CSR_RM)) |
1147						ieee_rm[modeindex(value)];
1148			}
1149			if ((ctx->fcr31 >> 5) & ctx->fcr31 & FPU_CSR_ALL_E) {
1150				return SIGFPE;
1151			}
1152			break;
1153		}
1154
1155		case bc_op:{
1156			int likely = 0;
1157
1158			if (xcp->cp0_cause & CAUSEF_BD)
1159				return SIGILL;
1160
1161#if __mips >= 4
1162			cond = ctx->fcr31 & fpucondbit[MIPSInst_RT(ir) >> 2];
1163#else
1164			cond = ctx->fcr31 & FPU_CSR_COND;
1165#endif
1166			switch (MIPSInst_RT(ir) & 3) {
1167			case bcfl_op:
1168				likely = 1;
1169			case bcf_op:
1170				cond = !cond;
1171				break;
1172			case bctl_op:
1173				likely = 1;
1174			case bct_op:
1175				break;
1176			default:
1177				/* thats an illegal instruction */
1178				return SIGILL;
1179			}
1180
1181			xcp->cp0_cause |= CAUSEF_BD;
1182			if (cond) {
1183				/* branch taken: emulate dslot
1184				 * instruction
1185				 */
1186				xcp->cp0_epc += dec_insn.pc_inc;
1187
1188				contpc = MIPSInst_SIMM(ir);
1189				ir = dec_insn.next_insn;
1190				if (dec_insn.micro_mips_mode) {
1191					contpc = (xcp->cp0_epc + (contpc << 1));
1192
1193					/* If 16-bit instruction, not FPU. */
1194					if ((dec_insn.next_pc_inc == 2) ||
1195						(microMIPS32_to_MIPS32((union mips_instruction *)&ir) == SIGILL)) {
1196
1197						/*
1198						 * Since this instruction will
1199						 * be put on the stack with
1200						 * 32-bit words, get around
1201						 * this problem by putting a
1202						 * NOP16 as the second one.
1203						 */
1204						if (dec_insn.next_pc_inc == 2)
1205							ir = (ir & (~0xffff)) | MM_NOP16;
1206
1207						/*
1208						 * Single step the non-CP1
1209						 * instruction in the dslot.
1210						 */
1211						return mips_dsemul(xcp, ir, contpc);
1212					}
1213				} else
1214					contpc = (xcp->cp0_epc + (contpc << 2));
1215
1216				switch (MIPSInst_OPCODE(ir)) {
1217				case lwc1_op:
1218				case swc1_op:
1219#if (__mips >= 2 || defined(__mips64))
1220				case ldc1_op:
1221				case sdc1_op:
1222#endif
1223				case cop1_op:
1224#if __mips >= 4 && __mips != 32
1225				case cop1x_op:
1226#endif
1227					/* its one of ours */
1228					goto emul;
1229#if __mips >= 4
1230				case spec_op:
1231					if (MIPSInst_FUNC(ir) == movc_op)
1232						goto emul;
1233					break;
1234#endif
1235				}
1236
1237				/*
1238				 * Single step the non-cp1
1239				 * instruction in the dslot
1240				 */
1241				return mips_dsemul(xcp, ir, contpc);
1242			}
1243			else {
1244				/* branch not taken */
1245				if (likely) {
1246					/*
1247					 * branch likely nullifies
1248					 * dslot if not taken
1249					 */
1250					xcp->cp0_epc += dec_insn.pc_inc;
1251					contpc += dec_insn.pc_inc;
1252					/*
1253					 * else continue & execute
1254					 * dslot as normal insn
1255					 */
1256				}
1257			}
1258			break;
1259		}
1260
1261		default:
1262			if (!(MIPSInst_RS(ir) & 0x10))
1263				return SIGILL;
1264			{
1265				int sig;
1266
1267				/* a real fpu computation instruction */
1268				if ((sig = fpu_emu(xcp, ctx, ir)))
1269					return sig;
1270			}
1271		}
1272		break;
1273
1274#if __mips >= 4 && __mips != 32
1275	case cop1x_op:{
1276		int sig = fpux_emu(xcp, ctx, ir, fault_addr);
1277		if (sig)
1278			return sig;
1279		break;
1280	}
1281#endif
1282
1283#if __mips >= 4
1284	case spec_op:
1285		if (MIPSInst_FUNC(ir) != movc_op)
1286			return SIGILL;
1287		cond = fpucondbit[MIPSInst_RT(ir) >> 2];
1288		if (((ctx->fcr31 & cond) != 0) == ((MIPSInst_RT(ir) & 1) != 0))
1289			xcp->regs[MIPSInst_RD(ir)] =
1290				xcp->regs[MIPSInst_RS(ir)];
1291		break;
1292#endif
1293
1294	default:
1295sigill:
1296		return SIGILL;
1297	}
1298
1299	/* we did it !! */
1300	xcp->cp0_epc = contpc;
1301	xcp->cp0_cause &= ~CAUSEF_BD;
1302
1303	return 0;
1304}
1305
1306/*
1307 * Conversion table from MIPS compare ops 48-63
1308 * cond = ieee754dp_cmp(x,y,IEEE754_UN,sig);
1309 */
1310static const unsigned char cmptab[8] = {
1311	0,			/* cmp_0 (sig) cmp_sf */
1312	IEEE754_CUN,		/* cmp_un (sig) cmp_ngle */
1313	IEEE754_CEQ,		/* cmp_eq (sig) cmp_seq */
1314	IEEE754_CEQ | IEEE754_CUN,	/* cmp_ueq (sig) cmp_ngl  */
1315	IEEE754_CLT,		/* cmp_olt (sig) cmp_lt */
1316	IEEE754_CLT | IEEE754_CUN,	/* cmp_ult (sig) cmp_nge */
1317	IEEE754_CLT | IEEE754_CEQ,	/* cmp_ole (sig) cmp_le */
1318	IEEE754_CLT | IEEE754_CEQ | IEEE754_CUN,	/* cmp_ule (sig) cmp_ngt */
1319};
1320
1321
1322#if __mips >= 4 && __mips != 32
1323
1324/*
1325 * Additional MIPS4 instructions
1326 */
1327
1328#define DEF3OP(name, p, f1, f2, f3) \
1329static ieee754##p fpemu_##p##_##name(ieee754##p r, ieee754##p s, \
1330    ieee754##p t) \
1331{ \
1332	struct _ieee754_csr ieee754_csr_save; \
1333	s = f1(s, t); \
1334	ieee754_csr_save = ieee754_csr; \
1335	s = f2(s, r); \
1336	ieee754_csr_save.cx |= ieee754_csr.cx; \
1337	ieee754_csr_save.sx |= ieee754_csr.sx; \
1338	s = f3(s); \
1339	ieee754_csr.cx |= ieee754_csr_save.cx; \
1340	ieee754_csr.sx |= ieee754_csr_save.sx; \
1341	return s; \
1342}
1343
1344static ieee754dp fpemu_dp_recip(ieee754dp d)
1345{
1346	return ieee754dp_div(ieee754dp_one(0), d);
1347}
1348
1349static ieee754dp fpemu_dp_rsqrt(ieee754dp d)
1350{
1351	return ieee754dp_div(ieee754dp_one(0), ieee754dp_sqrt(d));
1352}
1353
1354static ieee754sp fpemu_sp_recip(ieee754sp s)
1355{
1356	return ieee754sp_div(ieee754sp_one(0), s);
1357}
1358
1359static ieee754sp fpemu_sp_rsqrt(ieee754sp s)
1360{
1361	return ieee754sp_div(ieee754sp_one(0), ieee754sp_sqrt(s));
1362}
1363
1364DEF3OP(madd, sp, ieee754sp_mul, ieee754sp_add, );
1365DEF3OP(msub, sp, ieee754sp_mul, ieee754sp_sub, );
1366DEF3OP(nmadd, sp, ieee754sp_mul, ieee754sp_add, ieee754sp_neg);
1367DEF3OP(nmsub, sp, ieee754sp_mul, ieee754sp_sub, ieee754sp_neg);
1368DEF3OP(madd, dp, ieee754dp_mul, ieee754dp_add, );
1369DEF3OP(msub, dp, ieee754dp_mul, ieee754dp_sub, );
1370DEF3OP(nmadd, dp, ieee754dp_mul, ieee754dp_add, ieee754dp_neg);
1371DEF3OP(nmsub, dp, ieee754dp_mul, ieee754dp_sub, ieee754dp_neg);
1372
1373static int fpux_emu(struct pt_regs *xcp, struct mips_fpu_struct *ctx,
1374	mips_instruction ir, void *__user *fault_addr)
1375{
1376	unsigned rcsr = 0;	/* resulting csr */
1377
1378	MIPS_FPU_EMU_INC_STATS(cp1xops);
1379
1380	switch (MIPSInst_FMA_FFMT(ir)) {
1381	case s_fmt:{		/* 0 */
1382
1383		ieee754sp(*handler) (ieee754sp, ieee754sp, ieee754sp);
1384		ieee754sp fd, fr, fs, ft;
1385		u32 __user *va;
1386		u32 val;
1387
1388		switch (MIPSInst_FUNC(ir)) {
1389		case lwxc1_op:
1390			va = (void __user *) (xcp->regs[MIPSInst_FR(ir)] +
1391				xcp->regs[MIPSInst_FT(ir)]);
1392
1393			MIPS_FPU_EMU_INC_STATS(loads);
1394			if (!access_ok(VERIFY_READ, va, sizeof(u32))) {
1395				MIPS_FPU_EMU_INC_STATS(errors);
1396				*fault_addr = va;
1397				return SIGBUS;
1398			}
1399			if (__get_user(val, va)) {
1400				MIPS_FPU_EMU_INC_STATS(errors);
1401				*fault_addr = va;
1402				return SIGSEGV;
1403			}
1404			SITOREG(val, MIPSInst_FD(ir));
1405			break;
1406
1407		case swxc1_op:
1408			va = (void __user *) (xcp->regs[MIPSInst_FR(ir)] +
1409				xcp->regs[MIPSInst_FT(ir)]);
1410
1411			MIPS_FPU_EMU_INC_STATS(stores);
1412
1413			SIFROMREG(val, MIPSInst_FS(ir));
1414			if (!access_ok(VERIFY_WRITE, va, sizeof(u32))) {
1415				MIPS_FPU_EMU_INC_STATS(errors);
1416				*fault_addr = va;
1417				return SIGBUS;
1418			}
1419			if (put_user(val, va)) {
1420				MIPS_FPU_EMU_INC_STATS(errors);
1421				*fault_addr = va;
1422				return SIGSEGV;
1423			}
1424			break;
1425
1426		case madd_s_op:
1427			handler = fpemu_sp_madd;
1428			goto scoptop;
1429		case msub_s_op:
1430			handler = fpemu_sp_msub;
1431			goto scoptop;
1432		case nmadd_s_op:
1433			handler = fpemu_sp_nmadd;
1434			goto scoptop;
1435		case nmsub_s_op:
1436			handler = fpemu_sp_nmsub;
1437			goto scoptop;
1438
1439		      scoptop:
1440			SPFROMREG(fr, MIPSInst_FR(ir));
1441			SPFROMREG(fs, MIPSInst_FS(ir));
1442			SPFROMREG(ft, MIPSInst_FT(ir));
1443			fd = (*handler) (fr, fs, ft);
1444			SPTOREG(fd, MIPSInst_FD(ir));
1445
1446		      copcsr:
1447			if (ieee754_cxtest(IEEE754_INEXACT))
1448				rcsr |= FPU_CSR_INE_X | FPU_CSR_INE_S;
1449			if (ieee754_cxtest(IEEE754_UNDERFLOW))
1450				rcsr |= FPU_CSR_UDF_X | FPU_CSR_UDF_S;
1451			if (ieee754_cxtest(IEEE754_OVERFLOW))
1452				rcsr |= FPU_CSR_OVF_X | FPU_CSR_OVF_S;
1453			if (ieee754_cxtest(IEEE754_INVALID_OPERATION))
1454				rcsr |= FPU_CSR_INV_X | FPU_CSR_INV_S;
1455
1456			ctx->fcr31 = (ctx->fcr31 & ~FPU_CSR_ALL_X) | rcsr;
1457			if ((ctx->fcr31 >> 5) & ctx->fcr31 & FPU_CSR_ALL_E) {
1458				/*printk ("SIGFPE: fpu csr = %08x\n",
1459				   ctx->fcr31); */
1460				return SIGFPE;
1461			}
1462
1463			break;
1464
1465		default:
1466			return SIGILL;
1467		}
1468		break;
1469	}
1470
1471	case d_fmt:{		/* 1 */
1472		ieee754dp(*handler) (ieee754dp, ieee754dp, ieee754dp);
1473		ieee754dp fd, fr, fs, ft;
1474		u64 __user *va;
1475		u64 val;
1476
1477		switch (MIPSInst_FUNC(ir)) {
1478		case ldxc1_op:
1479			va = (void __user *) (xcp->regs[MIPSInst_FR(ir)] +
1480				xcp->regs[MIPSInst_FT(ir)]);
1481
1482			MIPS_FPU_EMU_INC_STATS(loads);
1483			if (!access_ok(VERIFY_READ, va, sizeof(u64))) {
1484				MIPS_FPU_EMU_INC_STATS(errors);
1485				*fault_addr = va;
1486				return SIGBUS;
1487			}
1488			if (__get_user(val, va)) {
1489				MIPS_FPU_EMU_INC_STATS(errors);
1490				*fault_addr = va;
1491				return SIGSEGV;
1492			}
1493			DITOREG(val, MIPSInst_FD(ir));
1494			break;
1495
1496		case sdxc1_op:
1497			va = (void __user *) (xcp->regs[MIPSInst_FR(ir)] +
1498				xcp->regs[MIPSInst_FT(ir)]);
1499
1500			MIPS_FPU_EMU_INC_STATS(stores);
1501			DIFROMREG(val, MIPSInst_FS(ir));
1502			if (!access_ok(VERIFY_WRITE, va, sizeof(u64))) {
1503				MIPS_FPU_EMU_INC_STATS(errors);
1504				*fault_addr = va;
1505				return SIGBUS;
1506			}
1507			if (__put_user(val, va)) {
1508				MIPS_FPU_EMU_INC_STATS(errors);
1509				*fault_addr = va;
1510				return SIGSEGV;
1511			}
1512			break;
1513
1514		case madd_d_op:
1515			handler = fpemu_dp_madd;
1516			goto dcoptop;
1517		case msub_d_op:
1518			handler = fpemu_dp_msub;
1519			goto dcoptop;
1520		case nmadd_d_op:
1521			handler = fpemu_dp_nmadd;
1522			goto dcoptop;
1523		case nmsub_d_op:
1524			handler = fpemu_dp_nmsub;
1525			goto dcoptop;
1526
1527		      dcoptop:
1528			DPFROMREG(fr, MIPSInst_FR(ir));
1529			DPFROMREG(fs, MIPSInst_FS(ir));
1530			DPFROMREG(ft, MIPSInst_FT(ir));
1531			fd = (*handler) (fr, fs, ft);
1532			DPTOREG(fd, MIPSInst_FD(ir));
1533			goto copcsr;
1534
1535		default:
1536			return SIGILL;
1537		}
1538		break;
1539	}
1540
1541	case 0x7:		/* 7 */
1542		if (MIPSInst_FUNC(ir) != pfetch_op) {
1543			return SIGILL;
1544		}
1545		/* ignore prefx operation */
1546		break;
1547
1548	default:
1549		return SIGILL;
1550	}
1551
1552	return 0;
1553}
1554#endif
1555
1556
1557
1558/*
1559 * Emulate a single COP1 arithmetic instruction.
1560 */
1561static int fpu_emu(struct pt_regs *xcp, struct mips_fpu_struct *ctx,
1562	mips_instruction ir)
1563{
1564	int rfmt;		/* resulting format */
1565	unsigned rcsr = 0;	/* resulting csr */
1566	unsigned cond;
1567	union {
1568		ieee754dp d;
1569		ieee754sp s;
1570		int w;
1571#ifdef __mips64
1572		s64 l;
1573#endif
1574	} rv;			/* resulting value */
1575
1576	MIPS_FPU_EMU_INC_STATS(cp1ops);
1577	switch (rfmt = (MIPSInst_FFMT(ir) & 0xf)) {
1578	case s_fmt:{		/* 0 */
1579		union {
1580			ieee754sp(*b) (ieee754sp, ieee754sp);
1581			ieee754sp(*u) (ieee754sp);
1582		} handler;
1583
1584		switch (MIPSInst_FUNC(ir)) {
1585			/* binary ops */
1586		case fadd_op:
1587			handler.b = ieee754sp_add;
1588			goto scopbop;
1589		case fsub_op:
1590			handler.b = ieee754sp_sub;
1591			goto scopbop;
1592		case fmul_op:
1593			handler.b = ieee754sp_mul;
1594			goto scopbop;
1595		case fdiv_op:
1596			handler.b = ieee754sp_div;
1597			goto scopbop;
1598
1599			/* unary  ops */
1600#if __mips >= 2 || defined(__mips64)
1601		case fsqrt_op:
1602			handler.u = ieee754sp_sqrt;
1603			goto scopuop;
1604#endif
1605#if __mips >= 4 && __mips != 32
1606		case frsqrt_op:
1607			handler.u = fpemu_sp_rsqrt;
1608			goto scopuop;
1609		case frecip_op:
1610			handler.u = fpemu_sp_recip;
1611			goto scopuop;
1612#endif
1613#if __mips >= 4
1614		case fmovc_op:
1615			cond = fpucondbit[MIPSInst_FT(ir) >> 2];
1616			if (((ctx->fcr31 & cond) != 0) !=
1617				((MIPSInst_FT(ir) & 1) != 0))
1618				return 0;
1619			SPFROMREG(rv.s, MIPSInst_FS(ir));
1620			break;
1621		case fmovz_op:
1622			if (xcp->regs[MIPSInst_FT(ir)] != 0)
1623				return 0;
1624			SPFROMREG(rv.s, MIPSInst_FS(ir));
1625			break;
1626		case fmovn_op:
1627			if (xcp->regs[MIPSInst_FT(ir)] == 0)
1628				return 0;
1629			SPFROMREG(rv.s, MIPSInst_FS(ir));
1630			break;
1631#endif
1632		case fabs_op:
1633			handler.u = ieee754sp_abs;
1634			goto scopuop;
1635		case fneg_op:
1636			handler.u = ieee754sp_neg;
1637			goto scopuop;
1638		case fmov_op:
1639			/* an easy one */
1640			SPFROMREG(rv.s, MIPSInst_FS(ir));
1641			goto copcsr;
1642
1643			/* binary op on handler */
1644		      scopbop:
1645			{
1646				ieee754sp fs, ft;
1647
1648				SPFROMREG(fs, MIPSInst_FS(ir));
1649				SPFROMREG(ft, MIPSInst_FT(ir));
1650
1651				rv.s = (*handler.b) (fs, ft);
1652				goto copcsr;
1653			}
1654		      scopuop:
1655			{
1656				ieee754sp fs;
1657
1658				SPFROMREG(fs, MIPSInst_FS(ir));
1659				rv.s = (*handler.u) (fs);
1660				goto copcsr;
1661			}
1662		      copcsr:
1663			if (ieee754_cxtest(IEEE754_INEXACT))
1664				rcsr |= FPU_CSR_INE_X | FPU_CSR_INE_S;
1665			if (ieee754_cxtest(IEEE754_UNDERFLOW))
1666				rcsr |= FPU_CSR_UDF_X | FPU_CSR_UDF_S;
1667			if (ieee754_cxtest(IEEE754_OVERFLOW))
1668				rcsr |= FPU_CSR_OVF_X | FPU_CSR_OVF_S;
1669			if (ieee754_cxtest(IEEE754_ZERO_DIVIDE))
1670				rcsr |= FPU_CSR_DIV_X | FPU_CSR_DIV_S;
1671			if (ieee754_cxtest(IEEE754_INVALID_OPERATION))
1672				rcsr |= FPU_CSR_INV_X | FPU_CSR_INV_S;
1673			break;
1674
1675			/* unary conv ops */
1676		case fcvts_op:
1677			return SIGILL;	/* not defined */
1678		case fcvtd_op:{
1679			ieee754sp fs;
1680
1681			SPFROMREG(fs, MIPSInst_FS(ir));
1682			rv.d = ieee754dp_fsp(fs);
1683			rfmt = d_fmt;
1684			goto copcsr;
1685		}
1686		case fcvtw_op:{
1687			ieee754sp fs;
1688
1689			SPFROMREG(fs, MIPSInst_FS(ir));
1690			rv.w = ieee754sp_tint(fs);
1691			rfmt = w_fmt;
1692			goto copcsr;
1693		}
1694
1695#if __mips >= 2 || defined(__mips64)
1696		case fround_op:
1697		case ftrunc_op:
1698		case fceil_op:
1699		case ffloor_op:{
1700			unsigned int oldrm = ieee754_csr.rm;
1701			ieee754sp fs;
1702
1703			SPFROMREG(fs, MIPSInst_FS(ir));
1704			ieee754_csr.rm = ieee_rm[modeindex(MIPSInst_FUNC(ir))];
1705			rv.w = ieee754sp_tint(fs);
1706			ieee754_csr.rm = oldrm;
1707			rfmt = w_fmt;
1708			goto copcsr;
1709		}
1710#endif /* __mips >= 2 */
1711
1712#if defined(__mips64)
1713		case fcvtl_op:{
1714			ieee754sp fs;
1715
1716			SPFROMREG(fs, MIPSInst_FS(ir));
1717			rv.l = ieee754sp_tlong(fs);
1718			rfmt = l_fmt;
1719			goto copcsr;
1720		}
1721
1722		case froundl_op:
1723		case ftruncl_op:
1724		case fceill_op:
1725		case ffloorl_op:{
1726			unsigned int oldrm = ieee754_csr.rm;
1727			ieee754sp fs;
1728
1729			SPFROMREG(fs, MIPSInst_FS(ir));
1730			ieee754_csr.rm = ieee_rm[modeindex(MIPSInst_FUNC(ir))];
1731			rv.l = ieee754sp_tlong(fs);
1732			ieee754_csr.rm = oldrm;
1733			rfmt = l_fmt;
1734			goto copcsr;
1735		}
1736#endif /* defined(__mips64) */
1737
1738		default:
1739			if (MIPSInst_FUNC(ir) >= fcmp_op) {
1740				unsigned cmpop = MIPSInst_FUNC(ir) - fcmp_op;
1741				ieee754sp fs, ft;
1742
1743				SPFROMREG(fs, MIPSInst_FS(ir));
1744				SPFROMREG(ft, MIPSInst_FT(ir));
1745				rv.w = ieee754sp_cmp(fs, ft,
1746					cmptab[cmpop & 0x7], cmpop & 0x8);
1747				rfmt = -1;
1748				if ((cmpop & 0x8) && ieee754_cxtest
1749					(IEEE754_INVALID_OPERATION))
1750					rcsr = FPU_CSR_INV_X | FPU_CSR_INV_S;
1751				else
1752					goto copcsr;
1753
1754			}
1755			else {
1756				return SIGILL;
1757			}
1758			break;
1759		}
1760		break;
1761	}
1762
1763	case d_fmt:{
1764		union {
1765			ieee754dp(*b) (ieee754dp, ieee754dp);
1766			ieee754dp(*u) (ieee754dp);
1767		} handler;
1768
1769		switch (MIPSInst_FUNC(ir)) {
1770			/* binary ops */
1771		case fadd_op:
1772			handler.b = ieee754dp_add;
1773			goto dcopbop;
1774		case fsub_op:
1775			handler.b = ieee754dp_sub;
1776			goto dcopbop;
1777		case fmul_op:
1778			handler.b = ieee754dp_mul;
1779			goto dcopbop;
1780		case fdiv_op:
1781			handler.b = ieee754dp_div;
1782			goto dcopbop;
1783
1784			/* unary  ops */
1785#if __mips >= 2 || defined(__mips64)
1786		case fsqrt_op:
1787			handler.u = ieee754dp_sqrt;
1788			goto dcopuop;
1789#endif
1790#if __mips >= 4 && __mips != 32
1791		case frsqrt_op:
1792			handler.u = fpemu_dp_rsqrt;
1793			goto dcopuop;
1794		case frecip_op:
1795			handler.u = fpemu_dp_recip;
1796			goto dcopuop;
1797#endif
1798#if __mips >= 4
1799		case fmovc_op:
1800			cond = fpucondbit[MIPSInst_FT(ir) >> 2];
1801			if (((ctx->fcr31 & cond) != 0) !=
1802				((MIPSInst_FT(ir) & 1) != 0))
1803				return 0;
1804			DPFROMREG(rv.d, MIPSInst_FS(ir));
1805			break;
1806		case fmovz_op:
1807			if (xcp->regs[MIPSInst_FT(ir)] != 0)
1808				return 0;
1809			DPFROMREG(rv.d, MIPSInst_FS(ir));
1810			break;
1811		case fmovn_op:
1812			if (xcp->regs[MIPSInst_FT(ir)] == 0)
1813				return 0;
1814			DPFROMREG(rv.d, MIPSInst_FS(ir));
1815			break;
1816#endif
1817		case fabs_op:
1818			handler.u = ieee754dp_abs;
1819			goto dcopuop;
1820
1821		case fneg_op:
1822			handler.u = ieee754dp_neg;
1823			goto dcopuop;
1824
1825		case fmov_op:
1826			/* an easy one */
1827			DPFROMREG(rv.d, MIPSInst_FS(ir));
1828			goto copcsr;
1829
1830			/* binary op on handler */
1831		      dcopbop:{
1832				ieee754dp fs, ft;
1833
1834				DPFROMREG(fs, MIPSInst_FS(ir));
1835				DPFROMREG(ft, MIPSInst_FT(ir));
1836
1837				rv.d = (*handler.b) (fs, ft);
1838				goto copcsr;
1839			}
1840		      dcopuop:{
1841				ieee754dp fs;
1842
1843				DPFROMREG(fs, MIPSInst_FS(ir));
1844				rv.d = (*handler.u) (fs);
1845				goto copcsr;
1846			}
1847
1848			/* unary conv ops */
1849		case fcvts_op:{
1850			ieee754dp fs;
1851
1852			DPFROMREG(fs, MIPSInst_FS(ir));
1853			rv.s = ieee754sp_fdp(fs);
1854			rfmt = s_fmt;
1855			goto copcsr;
1856		}
1857		case fcvtd_op:
1858			return SIGILL;	/* not defined */
1859
1860		case fcvtw_op:{
1861			ieee754dp fs;
1862
1863			DPFROMREG(fs, MIPSInst_FS(ir));
1864			rv.w = ieee754dp_tint(fs);	/* wrong */
1865			rfmt = w_fmt;
1866			goto copcsr;
1867		}
1868
1869#if __mips >= 2 || defined(__mips64)
1870		case fround_op:
1871		case ftrunc_op:
1872		case fceil_op:
1873		case ffloor_op:{
1874			unsigned int oldrm = ieee754_csr.rm;
1875			ieee754dp fs;
1876
1877			DPFROMREG(fs, MIPSInst_FS(ir));
1878			ieee754_csr.rm = ieee_rm[modeindex(MIPSInst_FUNC(ir))];
1879			rv.w = ieee754dp_tint(fs);
1880			ieee754_csr.rm = oldrm;
1881			rfmt = w_fmt;
1882			goto copcsr;
1883		}
1884#endif
1885
1886#if defined(__mips64)
1887		case fcvtl_op:{
1888			ieee754dp fs;
1889
1890			DPFROMREG(fs, MIPSInst_FS(ir));
1891			rv.l = ieee754dp_tlong(fs);
1892			rfmt = l_fmt;
1893			goto copcsr;
1894		}
1895
1896		case froundl_op:
1897		case ftruncl_op:
1898		case fceill_op:
1899		case ffloorl_op:{
1900			unsigned int oldrm = ieee754_csr.rm;
1901			ieee754dp fs;
1902
1903			DPFROMREG(fs, MIPSInst_FS(ir));
1904			ieee754_csr.rm = ieee_rm[modeindex(MIPSInst_FUNC(ir))];
1905			rv.l = ieee754dp_tlong(fs);
1906			ieee754_csr.rm = oldrm;
1907			rfmt = l_fmt;
1908			goto copcsr;
1909		}
1910#endif /* __mips >= 3 */
1911
1912		default:
1913			if (MIPSInst_FUNC(ir) >= fcmp_op) {
1914				unsigned cmpop = MIPSInst_FUNC(ir) - fcmp_op;
1915				ieee754dp fs, ft;
1916
1917				DPFROMREG(fs, MIPSInst_FS(ir));
1918				DPFROMREG(ft, MIPSInst_FT(ir));
1919				rv.w = ieee754dp_cmp(fs, ft,
1920					cmptab[cmpop & 0x7], cmpop & 0x8);
1921				rfmt = -1;
1922				if ((cmpop & 0x8)
1923					&&
1924					ieee754_cxtest
1925					(IEEE754_INVALID_OPERATION))
1926					rcsr = FPU_CSR_INV_X | FPU_CSR_INV_S;
1927				else
1928					goto copcsr;
1929
1930			}
1931			else {
1932				return SIGILL;
1933			}
1934			break;
1935		}
1936		break;
1937	}
1938
1939	case w_fmt:{
1940		ieee754sp fs;
1941
1942		switch (MIPSInst_FUNC(ir)) {
1943		case fcvts_op:
1944			/* convert word to single precision real */
1945			SPFROMREG(fs, MIPSInst_FS(ir));
1946			rv.s = ieee754sp_fint(fs.bits);
1947			rfmt = s_fmt;
1948			goto copcsr;
1949		case fcvtd_op:
1950			/* convert word to double precision real */
1951			SPFROMREG(fs, MIPSInst_FS(ir));
1952			rv.d = ieee754dp_fint(fs.bits);
1953			rfmt = d_fmt;
1954			goto copcsr;
1955		default:
1956			return SIGILL;
1957		}
1958		break;
1959	}
1960
1961#if defined(__mips64)
1962	case l_fmt:{
1963		switch (MIPSInst_FUNC(ir)) {
1964		case fcvts_op:
1965			/* convert long to single precision real */
1966			rv.s = ieee754sp_flong(ctx->fpr[MIPSInst_FS(ir)]);
1967			rfmt = s_fmt;
1968			goto copcsr;
1969		case fcvtd_op:
1970			/* convert long to double precision real */
1971			rv.d = ieee754dp_flong(ctx->fpr[MIPSInst_FS(ir)]);
1972			rfmt = d_fmt;
1973			goto copcsr;
1974		default:
1975			return SIGILL;
1976		}
1977		break;
1978	}
1979#endif
1980
1981	default:
1982		return SIGILL;
1983	}
1984
1985	/*
1986	 * Update the fpu CSR register for this operation.
1987	 * If an exception is required, generate a tidy SIGFPE exception,
1988	 * without updating the result register.
1989	 * Note: cause exception bits do not accumulate, they are rewritten
1990	 * for each op; only the flag/sticky bits accumulate.
1991	 */
1992	ctx->fcr31 = (ctx->fcr31 & ~FPU_CSR_ALL_X) | rcsr;
1993	if ((ctx->fcr31 >> 5) & ctx->fcr31 & FPU_CSR_ALL_E) {
1994		/*printk ("SIGFPE: fpu csr = %08x\n",ctx->fcr31); */
1995		return SIGFPE;
1996	}
1997
1998	/*
1999	 * Now we can safely write the result back to the register file.
2000	 */
2001	switch (rfmt) {
2002	case -1:{
2003#if __mips >= 4
2004		cond = fpucondbit[MIPSInst_FD(ir) >> 2];
2005#else
2006		cond = FPU_CSR_COND;
2007#endif
2008		if (rv.w)
2009			ctx->fcr31 |= cond;
2010		else
2011			ctx->fcr31 &= ~cond;
2012		break;
2013	}
2014	case d_fmt:
2015		DPTOREG(rv.d, MIPSInst_FD(ir));
2016		break;
2017	case s_fmt:
2018		SPTOREG(rv.s, MIPSInst_FD(ir));
2019		break;
2020	case w_fmt:
2021		SITOREG(rv.w, MIPSInst_FD(ir));
2022		break;
2023#if defined(__mips64)
2024	case l_fmt:
2025		DITOREG(rv.l, MIPSInst_FD(ir));
2026		break;
2027#endif
2028	default:
2029		return SIGILL;
2030	}
2031
2032	return 0;
2033}
2034
2035int fpu_emulator_cop1Handler(struct pt_regs *xcp, struct mips_fpu_struct *ctx,
2036	int has_fpu, void *__user *fault_addr)
2037{
2038	unsigned long oldepc, prevepc;
2039	struct mm_decoded_insn dec_insn;
2040	u16 instr[4];
2041	u16 *instr_ptr;
2042	int sig = 0;
2043
2044	oldepc = xcp->cp0_epc;
2045	do {
2046		prevepc = xcp->cp0_epc;
2047
2048		if (get_isa16_mode(prevepc) && cpu_has_mmips) {
2049			/*
2050			 * Get next 2 microMIPS instructions and convert them
2051			 * into 32-bit instructions.
2052			 */
2053			if ((get_user(instr[0], (u16 __user *)msk_isa16_mode(xcp->cp0_epc))) ||
2054			    (get_user(instr[1], (u16 __user *)msk_isa16_mode(xcp->cp0_epc + 2))) ||
2055			    (get_user(instr[2], (u16 __user *)msk_isa16_mode(xcp->cp0_epc + 4))) ||
2056			    (get_user(instr[3], (u16 __user *)msk_isa16_mode(xcp->cp0_epc + 6)))) {
2057				MIPS_FPU_EMU_INC_STATS(errors);
2058				return SIGBUS;
2059			}
2060			instr_ptr = instr;
2061
2062			/* Get first instruction. */
2063			if (mm_insn_16bit(*instr_ptr)) {
2064				/* Duplicate the half-word. */
2065				dec_insn.insn = (*instr_ptr << 16) |
2066					(*instr_ptr);
2067				/* 16-bit instruction. */
2068				dec_insn.pc_inc = 2;
2069				instr_ptr += 1;
2070			} else {
2071				dec_insn.insn = (*instr_ptr << 16) |
2072					*(instr_ptr+1);
2073				/* 32-bit instruction. */
2074				dec_insn.pc_inc = 4;
2075				instr_ptr += 2;
2076			}
2077			/* Get second instruction. */
2078			if (mm_insn_16bit(*instr_ptr)) {
2079				/* Duplicate the half-word. */
2080				dec_insn.next_insn = (*instr_ptr << 16) |
2081					(*instr_ptr);
2082				/* 16-bit instruction. */
2083				dec_insn.next_pc_inc = 2;
2084			} else {
2085				dec_insn.next_insn = (*instr_ptr << 16) |
2086					*(instr_ptr+1);
2087				/* 32-bit instruction. */
2088				dec_insn.next_pc_inc = 4;
2089			}
2090			dec_insn.micro_mips_mode = 1;
2091		} else {
2092			if ((get_user(dec_insn.insn,
2093			    (mips_instruction __user *) xcp->cp0_epc)) ||
2094			    (get_user(dec_insn.next_insn,
2095			    (mips_instruction __user *)(xcp->cp0_epc+4)))) {
2096				MIPS_FPU_EMU_INC_STATS(errors);
2097				return SIGBUS;
2098			}
2099			dec_insn.pc_inc = 4;
2100			dec_insn.next_pc_inc = 4;
2101			dec_insn.micro_mips_mode = 0;
2102		}
2103
2104		if ((dec_insn.insn == 0) ||
2105		   ((dec_insn.pc_inc == 2) &&
2106		   ((dec_insn.insn & 0xffff) == MM_NOP16)))
2107			xcp->cp0_epc += dec_insn.pc_inc;	/* Skip NOPs */
2108		else {
2109			/*
2110			 * The 'ieee754_csr' is an alias of
2111			 * ctx->fcr31.	No need to copy ctx->fcr31 to
2112			 * ieee754_csr.	 But ieee754_csr.rm is ieee
2113			 * library modes. (not mips rounding mode)
2114			 */
2115			/* convert to ieee library modes */
2116			ieee754_csr.rm = ieee_rm[ieee754_csr.rm];
2117			sig = cop1Emulate(xcp, ctx, dec_insn, fault_addr);
2118			/* revert to mips rounding mode */
2119			ieee754_csr.rm = mips_rm[ieee754_csr.rm];
2120		}
2121
2122		if (has_fpu)
2123			break;
2124		if (sig)
2125			break;
2126
2127		cond_resched();
2128	} while (xcp->cp0_epc > prevepc);
2129
2130	/* SIGILL indicates a non-fpu instruction */
2131	if (sig == SIGILL && xcp->cp0_epc != oldepc)
2132		/* but if epc has advanced, then ignore it */
2133		sig = 0;
2134
2135	return sig;
2136}
2137
2138#ifdef CONFIG_DEBUG_FS
2139
2140static int fpuemu_stat_get(void *data, u64 *val)
2141{
2142	int cpu;
2143	unsigned long sum = 0;
2144	for_each_online_cpu(cpu) {
2145		struct mips_fpu_emulator_stats *ps;
2146		local_t *pv;
2147		ps = &per_cpu(fpuemustats, cpu);
2148		pv = (void *)ps + (unsigned long)data;
2149		sum += local_read(pv);
2150	}
2151	*val = sum;
2152	return 0;
2153}
2154DEFINE_SIMPLE_ATTRIBUTE(fops_fpuemu_stat, fpuemu_stat_get, NULL, "%llu\n");
2155
2156extern struct dentry *mips_debugfs_dir;
2157static int __init debugfs_fpuemu(void)
2158{
2159	struct dentry *d, *dir;
2160
2161	if (!mips_debugfs_dir)
2162		return -ENODEV;
2163	dir = debugfs_create_dir("fpuemustats", mips_debugfs_dir);
2164	if (!dir)
2165		return -ENOMEM;
2166
2167#define FPU_STAT_CREATE(M)						\
2168	do {								\
2169		d = debugfs_create_file(#M , S_IRUGO, dir,		\
2170			(void *)offsetof(struct mips_fpu_emulator_stats, M), \
2171			&fops_fpuemu_stat);				\
2172		if (!d)							\
2173			return -ENOMEM;					\
2174	} while (0)
2175
2176	FPU_STAT_CREATE(emulated);
2177	FPU_STAT_CREATE(loads);
2178	FPU_STAT_CREATE(stores);
2179	FPU_STAT_CREATE(cp1ops);
2180	FPU_STAT_CREATE(cp1xops);
2181	FPU_STAT_CREATE(errors);
2182
2183	return 0;
2184}
2185__initcall(debugfs_fpuemu);
2186#endif
2187