cp1emu.c revision e7e9cae5db78030abc73fd3daa93f7cc005177db
1/*
2 * cp1emu.c: a MIPS coprocessor 1 (fpu) instruction emulator
3 *
4 * MIPS floating point support
5 * Copyright (C) 1994-2000 Algorithmics Ltd.
6 *
7 * Kevin D. Kissell, kevink@mips.com and Carsten Langgaard, carstenl@mips.com
8 * Copyright (C) 2000  MIPS Technologies, Inc.
9 *
10 *  This program is free software; you can distribute it and/or modify it
11 *  under the terms of the GNU General Public License (Version 2) as
12 *  published by the Free Software Foundation.
13 *
14 *  This program is distributed in the hope it will be useful, but WITHOUT
15 *  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
16 *  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
17 *  for more details.
18 *
19 *  You should have received a copy of the GNU General Public License along
20 *  with this program; if not, write to the Free Software Foundation, Inc.,
21 *  59 Temple Place - Suite 330, Boston MA 02111-1307, USA.
22 *
23 * A complete emulator for MIPS coprocessor 1 instructions.  This is
24 * required for #float(switch) or #float(trap), where it catches all
25 * COP1 instructions via the "CoProcessor Unusable" exception.
26 *
27 * More surprisingly it is also required for #float(ieee), to help out
28 * the hardware fpu at the boundaries of the IEEE-754 representation
29 * (denormalised values, infinities, underflow, etc).  It is made
30 * quite nasty because emulation of some non-COP1 instructions is
31 * required, e.g. in branch delay slots.
32 *
33 * Note if you know that you won't have an fpu, then you'll get much
34 * better performance by compiling with -msoft-float!
35 */
36#include <linux/sched.h>
37#include <linux/module.h>
38#include <linux/debugfs.h>
39#include <linux/perf_event.h>
40
41#include <asm/inst.h>
42#include <asm/bootinfo.h>
43#include <asm/processor.h>
44#include <asm/ptrace.h>
45#include <asm/signal.h>
46#include <asm/mipsregs.h>
47#include <asm/fpu_emulator.h>
48#include <asm/fpu.h>
49#include <asm/uaccess.h>
50#include <asm/branch.h>
51
52#include "ieee754.h"
53
54/* Strap kernel emulator for full MIPS IV emulation */
55
56#ifdef __mips
57#undef __mips
58#endif
59#define __mips 4
60
61/* Function which emulates a floating point instruction. */
62
63static int fpu_emu(struct pt_regs *, struct mips_fpu_struct *,
64	mips_instruction);
65
66#if __mips >= 4 && __mips != 32
67static int fpux_emu(struct pt_regs *,
68	struct mips_fpu_struct *, mips_instruction, void *__user *);
69#endif
70
71/* Further private data for which no space exists in mips_fpu_struct */
72
73#ifdef CONFIG_DEBUG_FS
74DEFINE_PER_CPU(struct mips_fpu_emulator_stats, fpuemustats);
75#endif
76
77/* Control registers */
78
79#define FPCREG_RID	0	/* $0  = revision id */
80#define FPCREG_CSR	31	/* $31 = csr */
81
82/* Determine rounding mode from the RM bits of the FCSR */
83#define modeindex(v) ((v) & FPU_CSR_RM)
84
85/* microMIPS bitfields */
86#define MM_POOL32A_MINOR_MASK	0x3f
87#define MM_POOL32A_MINOR_SHIFT	0x6
88#define MM_MIPS32_COND_FC	0x30
89
90/* Convert Mips rounding mode (0..3) to IEEE library modes. */
91static const unsigned char ieee_rm[4] = {
92	[FPU_CSR_RN] = IEEE754_RN,
93	[FPU_CSR_RZ] = IEEE754_RZ,
94	[FPU_CSR_RU] = IEEE754_RU,
95	[FPU_CSR_RD] = IEEE754_RD,
96};
97/* Convert IEEE library modes to Mips rounding mode (0..3). */
98static const unsigned char mips_rm[4] = {
99	[IEEE754_RN] = FPU_CSR_RN,
100	[IEEE754_RZ] = FPU_CSR_RZ,
101	[IEEE754_RD] = FPU_CSR_RD,
102	[IEEE754_RU] = FPU_CSR_RU,
103};
104
105#if __mips >= 4
106/* convert condition code register number to csr bit */
107static const unsigned int fpucondbit[8] = {
108	FPU_CSR_COND0,
109	FPU_CSR_COND1,
110	FPU_CSR_COND2,
111	FPU_CSR_COND3,
112	FPU_CSR_COND4,
113	FPU_CSR_COND5,
114	FPU_CSR_COND6,
115	FPU_CSR_COND7
116};
117#endif
118
119/* (microMIPS) Convert 16-bit register encoding to 32-bit register encoding. */
120static const unsigned int reg16to32map[8] = {16, 17, 2, 3, 4, 5, 6, 7};
121
122/* (microMIPS) Convert certain microMIPS instructions to MIPS32 format. */
123static const int sd_format[] = {16, 17, 0, 0, 0, 0, 0, 0};
124static const int sdps_format[] = {16, 17, 22, 0, 0, 0, 0, 0};
125static const int dwl_format[] = {17, 20, 21, 0, 0, 0, 0, 0};
126static const int swl_format[] = {16, 20, 21, 0, 0, 0, 0, 0};
127
128/*
129 * This functions translates a 32-bit microMIPS instruction
130 * into a 32-bit MIPS32 instruction. Returns 0 on success
131 * and SIGILL otherwise.
132 */
133static int microMIPS32_to_MIPS32(union mips_instruction *insn_ptr)
134{
135	union mips_instruction insn = *insn_ptr;
136	union mips_instruction mips32_insn = insn;
137	int func, fmt, op;
138
139	switch (insn.mm_i_format.opcode) {
140	case mm_ldc132_op:
141		mips32_insn.mm_i_format.opcode = ldc1_op;
142		mips32_insn.mm_i_format.rt = insn.mm_i_format.rs;
143		mips32_insn.mm_i_format.rs = insn.mm_i_format.rt;
144		break;
145	case mm_lwc132_op:
146		mips32_insn.mm_i_format.opcode = lwc1_op;
147		mips32_insn.mm_i_format.rt = insn.mm_i_format.rs;
148		mips32_insn.mm_i_format.rs = insn.mm_i_format.rt;
149		break;
150	case mm_sdc132_op:
151		mips32_insn.mm_i_format.opcode = sdc1_op;
152		mips32_insn.mm_i_format.rt = insn.mm_i_format.rs;
153		mips32_insn.mm_i_format.rs = insn.mm_i_format.rt;
154		break;
155	case mm_swc132_op:
156		mips32_insn.mm_i_format.opcode = swc1_op;
157		mips32_insn.mm_i_format.rt = insn.mm_i_format.rs;
158		mips32_insn.mm_i_format.rs = insn.mm_i_format.rt;
159		break;
160	case mm_pool32i_op:
161		/* NOTE: offset is << by 1 if in microMIPS mode. */
162		if ((insn.mm_i_format.rt == mm_bc1f_op) ||
163		    (insn.mm_i_format.rt == mm_bc1t_op)) {
164			mips32_insn.fb_format.opcode = cop1_op;
165			mips32_insn.fb_format.bc = bc_op;
166			mips32_insn.fb_format.flag =
167				(insn.mm_i_format.rt == mm_bc1t_op) ? 1 : 0;
168		} else
169			return SIGILL;
170		break;
171	case mm_pool32f_op:
172		switch (insn.mm_fp0_format.func) {
173		case mm_32f_01_op:
174		case mm_32f_11_op:
175		case mm_32f_02_op:
176		case mm_32f_12_op:
177		case mm_32f_41_op:
178		case mm_32f_51_op:
179		case mm_32f_42_op:
180		case mm_32f_52_op:
181			op = insn.mm_fp0_format.func;
182			if (op == mm_32f_01_op)
183				func = madd_s_op;
184			else if (op == mm_32f_11_op)
185				func = madd_d_op;
186			else if (op == mm_32f_02_op)
187				func = nmadd_s_op;
188			else if (op == mm_32f_12_op)
189				func = nmadd_d_op;
190			else if (op == mm_32f_41_op)
191				func = msub_s_op;
192			else if (op == mm_32f_51_op)
193				func = msub_d_op;
194			else if (op == mm_32f_42_op)
195				func = nmsub_s_op;
196			else
197				func = nmsub_d_op;
198			mips32_insn.fp6_format.opcode = cop1x_op;
199			mips32_insn.fp6_format.fr = insn.mm_fp6_format.fr;
200			mips32_insn.fp6_format.ft = insn.mm_fp6_format.ft;
201			mips32_insn.fp6_format.fs = insn.mm_fp6_format.fs;
202			mips32_insn.fp6_format.fd = insn.mm_fp6_format.fd;
203			mips32_insn.fp6_format.func = func;
204			break;
205		case mm_32f_10_op:
206			func = -1;	/* Invalid */
207			op = insn.mm_fp5_format.op & 0x7;
208			if (op == mm_ldxc1_op)
209				func = ldxc1_op;
210			else if (op == mm_sdxc1_op)
211				func = sdxc1_op;
212			else if (op == mm_lwxc1_op)
213				func = lwxc1_op;
214			else if (op == mm_swxc1_op)
215				func = swxc1_op;
216
217			if (func != -1) {
218				mips32_insn.r_format.opcode = cop1x_op;
219				mips32_insn.r_format.rs =
220					insn.mm_fp5_format.base;
221				mips32_insn.r_format.rt =
222					insn.mm_fp5_format.index;
223				mips32_insn.r_format.rd = 0;
224				mips32_insn.r_format.re = insn.mm_fp5_format.fd;
225				mips32_insn.r_format.func = func;
226			} else
227				return SIGILL;
228			break;
229		case mm_32f_40_op:
230			op = -1;	/* Invalid */
231			if (insn.mm_fp2_format.op == mm_fmovt_op)
232				op = 1;
233			else if (insn.mm_fp2_format.op == mm_fmovf_op)
234				op = 0;
235			if (op != -1) {
236				mips32_insn.fp0_format.opcode = cop1_op;
237				mips32_insn.fp0_format.fmt =
238					sdps_format[insn.mm_fp2_format.fmt];
239				mips32_insn.fp0_format.ft =
240					(insn.mm_fp2_format.cc<<2) + op;
241				mips32_insn.fp0_format.fs =
242					insn.mm_fp2_format.fs;
243				mips32_insn.fp0_format.fd =
244					insn.mm_fp2_format.fd;
245				mips32_insn.fp0_format.func = fmovc_op;
246			} else
247				return SIGILL;
248			break;
249		case mm_32f_60_op:
250			func = -1;	/* Invalid */
251			if (insn.mm_fp0_format.op == mm_fadd_op)
252				func = fadd_op;
253			else if (insn.mm_fp0_format.op == mm_fsub_op)
254				func = fsub_op;
255			else if (insn.mm_fp0_format.op == mm_fmul_op)
256				func = fmul_op;
257			else if (insn.mm_fp0_format.op == mm_fdiv_op)
258				func = fdiv_op;
259			if (func != -1) {
260				mips32_insn.fp0_format.opcode = cop1_op;
261				mips32_insn.fp0_format.fmt =
262					sdps_format[insn.mm_fp0_format.fmt];
263				mips32_insn.fp0_format.ft =
264					insn.mm_fp0_format.ft;
265				mips32_insn.fp0_format.fs =
266					insn.mm_fp0_format.fs;
267				mips32_insn.fp0_format.fd =
268					insn.mm_fp0_format.fd;
269				mips32_insn.fp0_format.func = func;
270			} else
271				return SIGILL;
272			break;
273		case mm_32f_70_op:
274			func = -1;	/* Invalid */
275			if (insn.mm_fp0_format.op == mm_fmovn_op)
276				func = fmovn_op;
277			else if (insn.mm_fp0_format.op == mm_fmovz_op)
278				func = fmovz_op;
279			if (func != -1) {
280				mips32_insn.fp0_format.opcode = cop1_op;
281				mips32_insn.fp0_format.fmt =
282					sdps_format[insn.mm_fp0_format.fmt];
283				mips32_insn.fp0_format.ft =
284					insn.mm_fp0_format.ft;
285				mips32_insn.fp0_format.fs =
286					insn.mm_fp0_format.fs;
287				mips32_insn.fp0_format.fd =
288					insn.mm_fp0_format.fd;
289				mips32_insn.fp0_format.func = func;
290			} else
291				return SIGILL;
292			break;
293		case mm_32f_73_op:    /* POOL32FXF */
294			switch (insn.mm_fp1_format.op) {
295			case mm_movf0_op:
296			case mm_movf1_op:
297			case mm_movt0_op:
298			case mm_movt1_op:
299				if ((insn.mm_fp1_format.op & 0x7f) ==
300				    mm_movf0_op)
301					op = 0;
302				else
303					op = 1;
304				mips32_insn.r_format.opcode = spec_op;
305				mips32_insn.r_format.rs = insn.mm_fp4_format.fs;
306				mips32_insn.r_format.rt =
307					(insn.mm_fp4_format.cc << 2) + op;
308				mips32_insn.r_format.rd = insn.mm_fp4_format.rt;
309				mips32_insn.r_format.re = 0;
310				mips32_insn.r_format.func = movc_op;
311				break;
312			case mm_fcvtd0_op:
313			case mm_fcvtd1_op:
314			case mm_fcvts0_op:
315			case mm_fcvts1_op:
316				if ((insn.mm_fp1_format.op & 0x7f) ==
317				    mm_fcvtd0_op) {
318					func = fcvtd_op;
319					fmt = swl_format[insn.mm_fp3_format.fmt];
320				} else {
321					func = fcvts_op;
322					fmt = dwl_format[insn.mm_fp3_format.fmt];
323				}
324				mips32_insn.fp0_format.opcode = cop1_op;
325				mips32_insn.fp0_format.fmt = fmt;
326				mips32_insn.fp0_format.ft = 0;
327				mips32_insn.fp0_format.fs =
328					insn.mm_fp3_format.fs;
329				mips32_insn.fp0_format.fd =
330					insn.mm_fp3_format.rt;
331				mips32_insn.fp0_format.func = func;
332				break;
333			case mm_fmov0_op:
334			case mm_fmov1_op:
335			case mm_fabs0_op:
336			case mm_fabs1_op:
337			case mm_fneg0_op:
338			case mm_fneg1_op:
339				if ((insn.mm_fp1_format.op & 0x7f) ==
340				    mm_fmov0_op)
341					func = fmov_op;
342				else if ((insn.mm_fp1_format.op & 0x7f) ==
343					 mm_fabs0_op)
344					func = fabs_op;
345				else
346					func = fneg_op;
347				mips32_insn.fp0_format.opcode = cop1_op;
348				mips32_insn.fp0_format.fmt =
349					sdps_format[insn.mm_fp3_format.fmt];
350				mips32_insn.fp0_format.ft = 0;
351				mips32_insn.fp0_format.fs =
352					insn.mm_fp3_format.fs;
353				mips32_insn.fp0_format.fd =
354					insn.mm_fp3_format.rt;
355				mips32_insn.fp0_format.func = func;
356				break;
357			case mm_ffloorl_op:
358			case mm_ffloorw_op:
359			case mm_fceill_op:
360			case mm_fceilw_op:
361			case mm_ftruncl_op:
362			case mm_ftruncw_op:
363			case mm_froundl_op:
364			case mm_froundw_op:
365			case mm_fcvtl_op:
366			case mm_fcvtw_op:
367				if (insn.mm_fp1_format.op == mm_ffloorl_op)
368					func = ffloorl_op;
369				else if (insn.mm_fp1_format.op == mm_ffloorw_op)
370					func = ffloor_op;
371				else if (insn.mm_fp1_format.op == mm_fceill_op)
372					func = fceill_op;
373				else if (insn.mm_fp1_format.op == mm_fceilw_op)
374					func = fceil_op;
375				else if (insn.mm_fp1_format.op == mm_ftruncl_op)
376					func = ftruncl_op;
377				else if (insn.mm_fp1_format.op == mm_ftruncw_op)
378					func = ftrunc_op;
379				else if (insn.mm_fp1_format.op == mm_froundl_op)
380					func = froundl_op;
381				else if (insn.mm_fp1_format.op == mm_froundw_op)
382					func = fround_op;
383				else if (insn.mm_fp1_format.op == mm_fcvtl_op)
384					func = fcvtl_op;
385				else
386					func = fcvtw_op;
387				mips32_insn.fp0_format.opcode = cop1_op;
388				mips32_insn.fp0_format.fmt =
389					sd_format[insn.mm_fp1_format.fmt];
390				mips32_insn.fp0_format.ft = 0;
391				mips32_insn.fp0_format.fs =
392					insn.mm_fp1_format.fs;
393				mips32_insn.fp0_format.fd =
394					insn.mm_fp1_format.rt;
395				mips32_insn.fp0_format.func = func;
396				break;
397			case mm_frsqrt_op:
398			case mm_fsqrt_op:
399			case mm_frecip_op:
400				if (insn.mm_fp1_format.op == mm_frsqrt_op)
401					func = frsqrt_op;
402				else if (insn.mm_fp1_format.op == mm_fsqrt_op)
403					func = fsqrt_op;
404				else
405					func = frecip_op;
406				mips32_insn.fp0_format.opcode = cop1_op;
407				mips32_insn.fp0_format.fmt =
408					sdps_format[insn.mm_fp1_format.fmt];
409				mips32_insn.fp0_format.ft = 0;
410				mips32_insn.fp0_format.fs =
411					insn.mm_fp1_format.fs;
412				mips32_insn.fp0_format.fd =
413					insn.mm_fp1_format.rt;
414				mips32_insn.fp0_format.func = func;
415				break;
416			case mm_mfc1_op:
417			case mm_mtc1_op:
418			case mm_cfc1_op:
419			case mm_ctc1_op:
420			case mm_mfhc1_op:
421			case mm_mthc1_op:
422				if (insn.mm_fp1_format.op == mm_mfc1_op)
423					op = mfc_op;
424				else if (insn.mm_fp1_format.op == mm_mtc1_op)
425					op = mtc_op;
426				else if (insn.mm_fp1_format.op == mm_cfc1_op)
427					op = cfc_op;
428				else if (insn.mm_fp1_format.op == mm_ctc1_op)
429					op = ctc_op;
430				else if (insn.mm_fp1_format.op == mm_mfhc1_op)
431					op = mfhc_op;
432				else
433					op = mthc_op;
434				mips32_insn.fp1_format.opcode = cop1_op;
435				mips32_insn.fp1_format.op = op;
436				mips32_insn.fp1_format.rt =
437					insn.mm_fp1_format.rt;
438				mips32_insn.fp1_format.fs =
439					insn.mm_fp1_format.fs;
440				mips32_insn.fp1_format.fd = 0;
441				mips32_insn.fp1_format.func = 0;
442				break;
443			default:
444				return SIGILL;
445			}
446			break;
447		case mm_32f_74_op:	/* c.cond.fmt */
448			mips32_insn.fp0_format.opcode = cop1_op;
449			mips32_insn.fp0_format.fmt =
450				sdps_format[insn.mm_fp4_format.fmt];
451			mips32_insn.fp0_format.ft = insn.mm_fp4_format.rt;
452			mips32_insn.fp0_format.fs = insn.mm_fp4_format.fs;
453			mips32_insn.fp0_format.fd = insn.mm_fp4_format.cc << 2;
454			mips32_insn.fp0_format.func =
455				insn.mm_fp4_format.cond | MM_MIPS32_COND_FC;
456			break;
457		default:
458			return SIGILL;
459		}
460		break;
461	default:
462		return SIGILL;
463	}
464
465	*insn_ptr = mips32_insn;
466	return 0;
467}
468
469int mm_isBranchInstr(struct pt_regs *regs, struct mm_decoded_insn dec_insn,
470		     unsigned long *contpc)
471{
472	union mips_instruction insn = (union mips_instruction)dec_insn.insn;
473	int bc_false = 0;
474	unsigned int fcr31;
475	unsigned int bit;
476
477	if (!cpu_has_mmips)
478		return 0;
479
480	switch (insn.mm_i_format.opcode) {
481	case mm_pool32a_op:
482		if ((insn.mm_i_format.simmediate & MM_POOL32A_MINOR_MASK) ==
483		    mm_pool32axf_op) {
484			switch (insn.mm_i_format.simmediate >>
485				MM_POOL32A_MINOR_SHIFT) {
486			case mm_jalr_op:
487			case mm_jalrhb_op:
488			case mm_jalrs_op:
489			case mm_jalrshb_op:
490				if (insn.mm_i_format.rt != 0)	/* Not mm_jr */
491					regs->regs[insn.mm_i_format.rt] =
492						regs->cp0_epc +
493						dec_insn.pc_inc +
494						dec_insn.next_pc_inc;
495				*contpc = regs->regs[insn.mm_i_format.rs];
496				return 1;
497			}
498		}
499		break;
500	case mm_pool32i_op:
501		switch (insn.mm_i_format.rt) {
502		case mm_bltzals_op:
503		case mm_bltzal_op:
504			regs->regs[31] = regs->cp0_epc +
505				dec_insn.pc_inc +
506				dec_insn.next_pc_inc;
507			/* Fall through */
508		case mm_bltz_op:
509			if ((long)regs->regs[insn.mm_i_format.rs] < 0)
510				*contpc = regs->cp0_epc +
511					dec_insn.pc_inc +
512					(insn.mm_i_format.simmediate << 1);
513			else
514				*contpc = regs->cp0_epc +
515					dec_insn.pc_inc +
516					dec_insn.next_pc_inc;
517			return 1;
518		case mm_bgezals_op:
519		case mm_bgezal_op:
520			regs->regs[31] = regs->cp0_epc +
521					dec_insn.pc_inc +
522					dec_insn.next_pc_inc;
523			/* Fall through */
524		case mm_bgez_op:
525			if ((long)regs->regs[insn.mm_i_format.rs] >= 0)
526				*contpc = regs->cp0_epc +
527					dec_insn.pc_inc +
528					(insn.mm_i_format.simmediate << 1);
529			else
530				*contpc = regs->cp0_epc +
531					dec_insn.pc_inc +
532					dec_insn.next_pc_inc;
533			return 1;
534		case mm_blez_op:
535			if ((long)regs->regs[insn.mm_i_format.rs] <= 0)
536				*contpc = regs->cp0_epc +
537					dec_insn.pc_inc +
538					(insn.mm_i_format.simmediate << 1);
539			else
540				*contpc = regs->cp0_epc +
541					dec_insn.pc_inc +
542					dec_insn.next_pc_inc;
543			return 1;
544		case mm_bgtz_op:
545			if ((long)regs->regs[insn.mm_i_format.rs] <= 0)
546				*contpc = regs->cp0_epc +
547					dec_insn.pc_inc +
548					(insn.mm_i_format.simmediate << 1);
549			else
550				*contpc = regs->cp0_epc +
551					dec_insn.pc_inc +
552					dec_insn.next_pc_inc;
553			return 1;
554		case mm_bc2f_op:
555		case mm_bc1f_op:
556			bc_false = 1;
557			/* Fall through */
558		case mm_bc2t_op:
559		case mm_bc1t_op:
560			preempt_disable();
561			if (is_fpu_owner())
562				asm volatile("cfc1\t%0,$31" : "=r" (fcr31));
563			else
564				fcr31 = current->thread.fpu.fcr31;
565			preempt_enable();
566
567			if (bc_false)
568				fcr31 = ~fcr31;
569
570			bit = (insn.mm_i_format.rs >> 2);
571			bit += (bit != 0);
572			bit += 23;
573			if (fcr31 & (1 << bit))
574				*contpc = regs->cp0_epc +
575					dec_insn.pc_inc +
576					(insn.mm_i_format.simmediate << 1);
577			else
578				*contpc = regs->cp0_epc +
579					dec_insn.pc_inc + dec_insn.next_pc_inc;
580			return 1;
581		}
582		break;
583	case mm_pool16c_op:
584		switch (insn.mm_i_format.rt) {
585		case mm_jalr16_op:
586		case mm_jalrs16_op:
587			regs->regs[31] = regs->cp0_epc +
588				dec_insn.pc_inc + dec_insn.next_pc_inc;
589			/* Fall through */
590		case mm_jr16_op:
591			*contpc = regs->regs[insn.mm_i_format.rs];
592			return 1;
593		}
594		break;
595	case mm_beqz16_op:
596		if ((long)regs->regs[reg16to32map[insn.mm_b1_format.rs]] == 0)
597			*contpc = regs->cp0_epc +
598				dec_insn.pc_inc +
599				(insn.mm_b1_format.simmediate << 1);
600		else
601			*contpc = regs->cp0_epc +
602				dec_insn.pc_inc + dec_insn.next_pc_inc;
603		return 1;
604	case mm_bnez16_op:
605		if ((long)regs->regs[reg16to32map[insn.mm_b1_format.rs]] != 0)
606			*contpc = regs->cp0_epc +
607				dec_insn.pc_inc +
608				(insn.mm_b1_format.simmediate << 1);
609		else
610			*contpc = regs->cp0_epc +
611				dec_insn.pc_inc + dec_insn.next_pc_inc;
612		return 1;
613	case mm_b16_op:
614		*contpc = regs->cp0_epc + dec_insn.pc_inc +
615			 (insn.mm_b0_format.simmediate << 1);
616		return 1;
617	case mm_beq32_op:
618		if (regs->regs[insn.mm_i_format.rs] ==
619		    regs->regs[insn.mm_i_format.rt])
620			*contpc = regs->cp0_epc +
621				dec_insn.pc_inc +
622				(insn.mm_i_format.simmediate << 1);
623		else
624			*contpc = regs->cp0_epc +
625				dec_insn.pc_inc +
626				dec_insn.next_pc_inc;
627		return 1;
628	case mm_bne32_op:
629		if (regs->regs[insn.mm_i_format.rs] !=
630		    regs->regs[insn.mm_i_format.rt])
631			*contpc = regs->cp0_epc +
632				dec_insn.pc_inc +
633				(insn.mm_i_format.simmediate << 1);
634		else
635			*contpc = regs->cp0_epc +
636				dec_insn.pc_inc + dec_insn.next_pc_inc;
637		return 1;
638	case mm_jalx32_op:
639		regs->regs[31] = regs->cp0_epc +
640			dec_insn.pc_inc + dec_insn.next_pc_inc;
641		*contpc = regs->cp0_epc + dec_insn.pc_inc;
642		*contpc >>= 28;
643		*contpc <<= 28;
644		*contpc |= (insn.j_format.target << 2);
645		return 1;
646	case mm_jals32_op:
647	case mm_jal32_op:
648		regs->regs[31] = regs->cp0_epc +
649			dec_insn.pc_inc + dec_insn.next_pc_inc;
650		/* Fall through */
651	case mm_j32_op:
652		*contpc = regs->cp0_epc + dec_insn.pc_inc;
653		*contpc >>= 27;
654		*contpc <<= 27;
655		*contpc |= (insn.j_format.target << 1);
656		set_isa16_mode(*contpc);
657		return 1;
658	}
659	return 0;
660}
661
662/*
663 * Redundant with logic already in kernel/branch.c,
664 * embedded in compute_return_epc.  At some point,
665 * a single subroutine should be used across both
666 * modules.
667 */
668static int isBranchInstr(struct pt_regs *regs, struct mm_decoded_insn dec_insn,
669			 unsigned long *contpc)
670{
671	union mips_instruction insn = (union mips_instruction)dec_insn.insn;
672	unsigned int fcr31;
673	unsigned int bit = 0;
674
675	switch (insn.i_format.opcode) {
676	case spec_op:
677		switch (insn.r_format.func) {
678		case jalr_op:
679			regs->regs[insn.r_format.rd] =
680				regs->cp0_epc + dec_insn.pc_inc +
681				dec_insn.next_pc_inc;
682			/* Fall through */
683		case jr_op:
684			*contpc = regs->regs[insn.r_format.rs];
685			return 1;
686		}
687		break;
688	case bcond_op:
689		switch (insn.i_format.rt) {
690		case bltzal_op:
691		case bltzall_op:
692			regs->regs[31] = regs->cp0_epc +
693				dec_insn.pc_inc +
694				dec_insn.next_pc_inc;
695			/* Fall through */
696		case bltz_op:
697		case bltzl_op:
698			if ((long)regs->regs[insn.i_format.rs] < 0)
699				*contpc = regs->cp0_epc +
700					dec_insn.pc_inc +
701					(insn.i_format.simmediate << 2);
702			else
703				*contpc = regs->cp0_epc +
704					dec_insn.pc_inc +
705					dec_insn.next_pc_inc;
706			return 1;
707		case bgezal_op:
708		case bgezall_op:
709			regs->regs[31] = regs->cp0_epc +
710				dec_insn.pc_inc +
711				dec_insn.next_pc_inc;
712			/* Fall through */
713		case bgez_op:
714		case bgezl_op:
715			if ((long)regs->regs[insn.i_format.rs] >= 0)
716				*contpc = regs->cp0_epc +
717					dec_insn.pc_inc +
718					(insn.i_format.simmediate << 2);
719			else
720				*contpc = regs->cp0_epc +
721					dec_insn.pc_inc +
722					dec_insn.next_pc_inc;
723			return 1;
724		}
725		break;
726	case jalx_op:
727		set_isa16_mode(bit);
728	case jal_op:
729		regs->regs[31] = regs->cp0_epc +
730			dec_insn.pc_inc +
731			dec_insn.next_pc_inc;
732		/* Fall through */
733	case j_op:
734		*contpc = regs->cp0_epc + dec_insn.pc_inc;
735		*contpc >>= 28;
736		*contpc <<= 28;
737		*contpc |= (insn.j_format.target << 2);
738		/* Set microMIPS mode bit: XOR for jalx. */
739		*contpc ^= bit;
740		return 1;
741	case beq_op:
742	case beql_op:
743		if (regs->regs[insn.i_format.rs] ==
744		    regs->regs[insn.i_format.rt])
745			*contpc = regs->cp0_epc +
746				dec_insn.pc_inc +
747				(insn.i_format.simmediate << 2);
748		else
749			*contpc = regs->cp0_epc +
750				dec_insn.pc_inc +
751				dec_insn.next_pc_inc;
752		return 1;
753	case bne_op:
754	case bnel_op:
755		if (regs->regs[insn.i_format.rs] !=
756		    regs->regs[insn.i_format.rt])
757			*contpc = regs->cp0_epc +
758				dec_insn.pc_inc +
759				(insn.i_format.simmediate << 2);
760		else
761			*contpc = regs->cp0_epc +
762				dec_insn.pc_inc +
763				dec_insn.next_pc_inc;
764		return 1;
765	case blez_op:
766	case blezl_op:
767		if ((long)regs->regs[insn.i_format.rs] <= 0)
768			*contpc = regs->cp0_epc +
769				dec_insn.pc_inc +
770				(insn.i_format.simmediate << 2);
771		else
772			*contpc = regs->cp0_epc +
773				dec_insn.pc_inc +
774				dec_insn.next_pc_inc;
775		return 1;
776	case bgtz_op:
777	case bgtzl_op:
778		if ((long)regs->regs[insn.i_format.rs] > 0)
779			*contpc = regs->cp0_epc +
780				dec_insn.pc_inc +
781				(insn.i_format.simmediate << 2);
782		else
783			*contpc = regs->cp0_epc +
784				dec_insn.pc_inc +
785				dec_insn.next_pc_inc;
786		return 1;
787#ifdef CONFIG_CPU_CAVIUM_OCTEON
788	case lwc2_op: /* This is bbit0 on Octeon */
789		if ((regs->regs[insn.i_format.rs] & (1ull<<insn.i_format.rt)) == 0)
790			*contpc = regs->cp0_epc + 4 + (insn.i_format.simmediate << 2);
791		else
792			*contpc = regs->cp0_epc + 8;
793		return 1;
794	case ldc2_op: /* This is bbit032 on Octeon */
795		if ((regs->regs[insn.i_format.rs] & (1ull<<(insn.i_format.rt + 32))) == 0)
796			*contpc = regs->cp0_epc + 4 + (insn.i_format.simmediate << 2);
797		else
798			*contpc = regs->cp0_epc + 8;
799		return 1;
800	case swc2_op: /* This is bbit1 on Octeon */
801		if (regs->regs[insn.i_format.rs] & (1ull<<insn.i_format.rt))
802			*contpc = regs->cp0_epc + 4 + (insn.i_format.simmediate << 2);
803		else
804			*contpc = regs->cp0_epc + 8;
805		return 1;
806	case sdc2_op: /* This is bbit132 on Octeon */
807		if (regs->regs[insn.i_format.rs] & (1ull<<(insn.i_format.rt + 32)))
808			*contpc = regs->cp0_epc + 4 + (insn.i_format.simmediate << 2);
809		else
810			*contpc = regs->cp0_epc + 8;
811		return 1;
812#endif
813	case cop0_op:
814	case cop1_op:
815	case cop2_op:
816	case cop1x_op:
817		if (insn.i_format.rs == bc_op) {
818			preempt_disable();
819			if (is_fpu_owner())
820				asm volatile("cfc1\t%0,$31" : "=r" (fcr31));
821			else
822				fcr31 = current->thread.fpu.fcr31;
823			preempt_enable();
824
825			bit = (insn.i_format.rt >> 2);
826			bit += (bit != 0);
827			bit += 23;
828			switch (insn.i_format.rt & 3) {
829			case 0:	/* bc1f */
830			case 2:	/* bc1fl */
831				if (~fcr31 & (1 << bit))
832					*contpc = regs->cp0_epc +
833						dec_insn.pc_inc +
834						(insn.i_format.simmediate << 2);
835				else
836					*contpc = regs->cp0_epc +
837						dec_insn.pc_inc +
838						dec_insn.next_pc_inc;
839				return 1;
840			case 1:	/* bc1t */
841			case 3:	/* bc1tl */
842				if (fcr31 & (1 << bit))
843					*contpc = regs->cp0_epc +
844						dec_insn.pc_inc +
845						(insn.i_format.simmediate << 2);
846				else
847					*contpc = regs->cp0_epc +
848						dec_insn.pc_inc +
849						dec_insn.next_pc_inc;
850				return 1;
851			}
852		}
853		break;
854	}
855	return 0;
856}
857
858/*
859 * In the Linux kernel, we support selection of FPR format on the
860 * basis of the Status.FR bit.	If an FPU is not present, the FR bit
861 * is hardwired to zero, which would imply a 32-bit FPU even for
862 * 64-bit CPUs so we rather look at TIF_32BIT_FPREGS.
863 * FPU emu is slow and bulky and optimizing this function offers fairly
864 * sizeable benefits so we try to be clever and make this function return
865 * a constant whenever possible, that is on 64-bit kernels without O32
866 * compatibility enabled and on 32-bit without 64-bit FPU support.
867 */
868static inline int cop1_64bit(struct pt_regs *xcp)
869{
870#if defined(CONFIG_64BIT) && !defined(CONFIG_MIPS32_O32)
871	return 1;
872#elif defined(CONFIG_32BIT) && !defined(CONFIG_MIPS_O32_FP64_SUPPORT)
873	return 0;
874#else
875	return !test_thread_flag(TIF_32BIT_FPREGS);
876#endif
877}
878
879#define SIFROMREG(si, x) do {						\
880	if (cop1_64bit(xcp))						\
881		(si) = get_fpr32(&ctx->fpr[x], 0);			\
882	else								\
883		(si) = get_fpr32(&ctx->fpr[(x) & ~1], (x) & 1);		\
884} while (0)
885
886#define SITOREG(si, x) do {						\
887	if (cop1_64bit(xcp)) {						\
888		unsigned i;						\
889		set_fpr32(&ctx->fpr[x], 0, si);				\
890		for (i = 1; i < ARRAY_SIZE(ctx->fpr[x].val32); i++)	\
891			set_fpr32(&ctx->fpr[x], i, 0);			\
892	} else {							\
893		set_fpr32(&ctx->fpr[(x) & ~1], (x) & 1, si);		\
894	}								\
895} while (0)
896
897#define SIFROMHREG(si, x)	((si) = get_fpr32(&ctx->fpr[x], 1))
898
899#define SITOHREG(si, x) do {						\
900	unsigned i;							\
901	set_fpr32(&ctx->fpr[x], 1, si);					\
902	for (i = 2; i < ARRAY_SIZE(ctx->fpr[x].val32); i++)		\
903		set_fpr32(&ctx->fpr[x], i, 0);				\
904} while (0)
905
906#define DIFROMREG(di, x) \
907	((di) = get_fpr64(&ctx->fpr[(x) & ~(cop1_64bit(xcp) == 0)], 0))
908
909#define DITOREG(di, x) do {						\
910	unsigned fpr, i;						\
911	fpr = (x) & ~(cop1_64bit(xcp) == 0);				\
912	set_fpr64(&ctx->fpr[fpr], 0, di);				\
913	for (i = 1; i < ARRAY_SIZE(ctx->fpr[x].val64); i++)		\
914		set_fpr64(&ctx->fpr[fpr], i, 0);			\
915} while (0)
916
917#define SPFROMREG(sp, x) SIFROMREG((sp).bits, x)
918#define SPTOREG(sp, x)	SITOREG((sp).bits, x)
919#define DPFROMREG(dp, x)	DIFROMREG((dp).bits, x)
920#define DPTOREG(dp, x)	DITOREG((dp).bits, x)
921
922/*
923 * Emulate the single floating point instruction pointed at by EPC.
924 * Two instructions if the instruction is in a branch delay slot.
925 */
926
927static int cop1Emulate(struct pt_regs *xcp, struct mips_fpu_struct *ctx,
928		struct mm_decoded_insn dec_insn, void *__user *fault_addr)
929{
930	mips_instruction ir;
931	unsigned long contpc = xcp->cp0_epc + dec_insn.pc_inc;
932	unsigned int cond;
933	int pc_inc;
934
935	/* XXX NEC Vr54xx bug workaround */
936	if (delay_slot(xcp)) {
937		if (dec_insn.micro_mips_mode) {
938			if (!mm_isBranchInstr(xcp, dec_insn, &contpc))
939				clear_delay_slot(xcp);
940		} else {
941			if (!isBranchInstr(xcp, dec_insn, &contpc))
942				clear_delay_slot(xcp);
943		}
944	}
945
946	if (delay_slot(xcp)) {
947		/*
948		 * The instruction to be emulated is in a branch delay slot
949		 * which means that we have to	emulate the branch instruction
950		 * BEFORE we do the cop1 instruction.
951		 *
952		 * This branch could be a COP1 branch, but in that case we
953		 * would have had a trap for that instruction, and would not
954		 * come through this route.
955		 *
956		 * Linux MIPS branch emulator operates on context, updating the
957		 * cp0_epc.
958		 */
959		ir = dec_insn.next_insn;  /* process delay slot instr */
960		pc_inc = dec_insn.next_pc_inc;
961	} else {
962		ir = dec_insn.insn;       /* process current instr */
963		pc_inc = dec_insn.pc_inc;
964	}
965
966	/*
967	 * Since microMIPS FPU instructios are a subset of MIPS32 FPU
968	 * instructions, we want to convert microMIPS FPU instructions
969	 * into MIPS32 instructions so that we could reuse all of the
970	 * FPU emulation code.
971	 *
972	 * NOTE: We cannot do this for branch instructions since they
973	 *       are not a subset. Example: Cannot emulate a 16-bit
974	 *       aligned target address with a MIPS32 instruction.
975	 */
976	if (dec_insn.micro_mips_mode) {
977		/*
978		 * If next instruction is a 16-bit instruction, then it
979		 * it cannot be a FPU instruction. This could happen
980		 * since we can be called for non-FPU instructions.
981		 */
982		if ((pc_inc == 2) ||
983			(microMIPS32_to_MIPS32((union mips_instruction *)&ir)
984			 == SIGILL))
985			return SIGILL;
986	}
987
988      emul:
989	perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS, 1, xcp, 0);
990	MIPS_FPU_EMU_INC_STATS(emulated);
991	switch (MIPSInst_OPCODE(ir)) {
992	case ldc1_op:{
993		u64 __user *va = (u64 __user *) (xcp->regs[MIPSInst_RS(ir)] +
994			MIPSInst_SIMM(ir));
995		u64 val;
996
997		MIPS_FPU_EMU_INC_STATS(loads);
998
999		if (!access_ok(VERIFY_READ, va, sizeof(u64))) {
1000			MIPS_FPU_EMU_INC_STATS(errors);
1001			*fault_addr = va;
1002			return SIGBUS;
1003		}
1004		if (__get_user(val, va)) {
1005			MIPS_FPU_EMU_INC_STATS(errors);
1006			*fault_addr = va;
1007			return SIGSEGV;
1008		}
1009		DITOREG(val, MIPSInst_RT(ir));
1010		break;
1011	}
1012
1013	case sdc1_op:{
1014		u64 __user *va = (u64 __user *) (xcp->regs[MIPSInst_RS(ir)] +
1015			MIPSInst_SIMM(ir));
1016		u64 val;
1017
1018		MIPS_FPU_EMU_INC_STATS(stores);
1019		DIFROMREG(val, MIPSInst_RT(ir));
1020		if (!access_ok(VERIFY_WRITE, va, sizeof(u64))) {
1021			MIPS_FPU_EMU_INC_STATS(errors);
1022			*fault_addr = va;
1023			return SIGBUS;
1024		}
1025		if (__put_user(val, va)) {
1026			MIPS_FPU_EMU_INC_STATS(errors);
1027			*fault_addr = va;
1028			return SIGSEGV;
1029		}
1030		break;
1031	}
1032
1033	case lwc1_op:{
1034		u32 __user *va = (u32 __user *) (xcp->regs[MIPSInst_RS(ir)] +
1035			MIPSInst_SIMM(ir));
1036		u32 val;
1037
1038		MIPS_FPU_EMU_INC_STATS(loads);
1039		if (!access_ok(VERIFY_READ, va, sizeof(u32))) {
1040			MIPS_FPU_EMU_INC_STATS(errors);
1041			*fault_addr = va;
1042			return SIGBUS;
1043		}
1044		if (__get_user(val, va)) {
1045			MIPS_FPU_EMU_INC_STATS(errors);
1046			*fault_addr = va;
1047			return SIGSEGV;
1048		}
1049		SITOREG(val, MIPSInst_RT(ir));
1050		break;
1051	}
1052
1053	case swc1_op:{
1054		u32 __user *va = (u32 __user *) (xcp->regs[MIPSInst_RS(ir)] +
1055			MIPSInst_SIMM(ir));
1056		u32 val;
1057
1058		MIPS_FPU_EMU_INC_STATS(stores);
1059		SIFROMREG(val, MIPSInst_RT(ir));
1060		if (!access_ok(VERIFY_WRITE, va, sizeof(u32))) {
1061			MIPS_FPU_EMU_INC_STATS(errors);
1062			*fault_addr = va;
1063			return SIGBUS;
1064		}
1065		if (__put_user(val, va)) {
1066			MIPS_FPU_EMU_INC_STATS(errors);
1067			*fault_addr = va;
1068			return SIGSEGV;
1069		}
1070		break;
1071	}
1072
1073	case cop1_op:
1074		switch (MIPSInst_RS(ir)) {
1075
1076#if defined(__mips64)
1077		case dmfc_op:
1078			/* copregister fs -> gpr[rt] */
1079			if (MIPSInst_RT(ir) != 0) {
1080				DIFROMREG(xcp->regs[MIPSInst_RT(ir)],
1081					MIPSInst_RD(ir));
1082			}
1083			break;
1084
1085		case dmtc_op:
1086			/* copregister fs <- rt */
1087			DITOREG(xcp->regs[MIPSInst_RT(ir)], MIPSInst_RD(ir));
1088			break;
1089#endif
1090
1091		case mfhc_op:
1092			if (!cpu_has_mips_r2)
1093				goto sigill;
1094
1095			/* copregister rd -> gpr[rt] */
1096			if (MIPSInst_RT(ir) != 0) {
1097				SIFROMHREG(xcp->regs[MIPSInst_RT(ir)],
1098					MIPSInst_RD(ir));
1099			}
1100			break;
1101
1102		case mthc_op:
1103			if (!cpu_has_mips_r2)
1104				goto sigill;
1105
1106			/* copregister rd <- gpr[rt] */
1107			SITOHREG(xcp->regs[MIPSInst_RT(ir)], MIPSInst_RD(ir));
1108			break;
1109
1110		case mfc_op:
1111			/* copregister rd -> gpr[rt] */
1112			if (MIPSInst_RT(ir) != 0) {
1113				SIFROMREG(xcp->regs[MIPSInst_RT(ir)],
1114					MIPSInst_RD(ir));
1115			}
1116			break;
1117
1118		case mtc_op:
1119			/* copregister rd <- rt */
1120			SITOREG(xcp->regs[MIPSInst_RT(ir)], MIPSInst_RD(ir));
1121			break;
1122
1123		case cfc_op:{
1124			/* cop control register rd -> gpr[rt] */
1125			u32 value;
1126
1127			if (MIPSInst_RD(ir) == FPCREG_CSR) {
1128				value = ctx->fcr31;
1129				value = (value & ~FPU_CSR_RM) |
1130					mips_rm[modeindex(value)];
1131#ifdef CSRTRACE
1132				printk("%p gpr[%d]<-csr=%08x\n",
1133					(void *) (xcp->cp0_epc),
1134					MIPSInst_RT(ir), value);
1135#endif
1136			}
1137			else if (MIPSInst_RD(ir) == FPCREG_RID)
1138				value = 0;
1139			else
1140				value = 0;
1141			if (MIPSInst_RT(ir))
1142				xcp->regs[MIPSInst_RT(ir)] = value;
1143			break;
1144		}
1145
1146		case ctc_op:{
1147			/* copregister rd <- rt */
1148			u32 value;
1149
1150			if (MIPSInst_RT(ir) == 0)
1151				value = 0;
1152			else
1153				value = xcp->regs[MIPSInst_RT(ir)];
1154
1155			/* we only have one writable control reg
1156			 */
1157			if (MIPSInst_RD(ir) == FPCREG_CSR) {
1158#ifdef CSRTRACE
1159				printk("%p gpr[%d]->csr=%08x\n",
1160					(void *) (xcp->cp0_epc),
1161					MIPSInst_RT(ir), value);
1162#endif
1163
1164				/*
1165				 * Don't write reserved bits,
1166				 * and convert to ieee library modes
1167				 */
1168				ctx->fcr31 = (value &
1169						~(FPU_CSR_RSVD | FPU_CSR_RM)) |
1170						ieee_rm[modeindex(value)];
1171			}
1172			if ((ctx->fcr31 >> 5) & ctx->fcr31 & FPU_CSR_ALL_E) {
1173				return SIGFPE;
1174			}
1175			break;
1176		}
1177
1178		case bc_op:{
1179			int likely = 0;
1180
1181			if (delay_slot(xcp))
1182				return SIGILL;
1183
1184#if __mips >= 4
1185			cond = ctx->fcr31 & fpucondbit[MIPSInst_RT(ir) >> 2];
1186#else
1187			cond = ctx->fcr31 & FPU_CSR_COND;
1188#endif
1189			switch (MIPSInst_RT(ir) & 3) {
1190			case bcfl_op:
1191				likely = 1;
1192			case bcf_op:
1193				cond = !cond;
1194				break;
1195			case bctl_op:
1196				likely = 1;
1197			case bct_op:
1198				break;
1199			default:
1200				/* thats an illegal instruction */
1201				return SIGILL;
1202			}
1203
1204			set_delay_slot(xcp);
1205			if (cond) {
1206				/* branch taken: emulate dslot
1207				 * instruction
1208				 */
1209				xcp->cp0_epc += dec_insn.pc_inc;
1210
1211				contpc = MIPSInst_SIMM(ir);
1212				ir = dec_insn.next_insn;
1213				if (dec_insn.micro_mips_mode) {
1214					contpc = (xcp->cp0_epc + (contpc << 1));
1215
1216					/* If 16-bit instruction, not FPU. */
1217					if ((dec_insn.next_pc_inc == 2) ||
1218						(microMIPS32_to_MIPS32((union mips_instruction *)&ir) == SIGILL)) {
1219
1220						/*
1221						 * Since this instruction will
1222						 * be put on the stack with
1223						 * 32-bit words, get around
1224						 * this problem by putting a
1225						 * NOP16 as the second one.
1226						 */
1227						if (dec_insn.next_pc_inc == 2)
1228							ir = (ir & (~0xffff)) | MM_NOP16;
1229
1230						/*
1231						 * Single step the non-CP1
1232						 * instruction in the dslot.
1233						 */
1234						return mips_dsemul(xcp, ir, contpc);
1235					}
1236				} else
1237					contpc = (xcp->cp0_epc + (contpc << 2));
1238
1239				switch (MIPSInst_OPCODE(ir)) {
1240				case lwc1_op:
1241				case swc1_op:
1242#if (__mips >= 2 || defined(__mips64))
1243				case ldc1_op:
1244				case sdc1_op:
1245#endif
1246				case cop1_op:
1247#if __mips >= 4 && __mips != 32
1248				case cop1x_op:
1249#endif
1250					/* its one of ours */
1251					goto emul;
1252#if __mips >= 4
1253				case spec_op:
1254					if (MIPSInst_FUNC(ir) == movc_op)
1255						goto emul;
1256					break;
1257#endif
1258				}
1259
1260				/*
1261				 * Single step the non-cp1
1262				 * instruction in the dslot
1263				 */
1264				return mips_dsemul(xcp, ir, contpc);
1265			}
1266			else {
1267				/* branch not taken */
1268				if (likely) {
1269					/*
1270					 * branch likely nullifies
1271					 * dslot if not taken
1272					 */
1273					xcp->cp0_epc += dec_insn.pc_inc;
1274					contpc += dec_insn.pc_inc;
1275					/*
1276					 * else continue & execute
1277					 * dslot as normal insn
1278					 */
1279				}
1280			}
1281			break;
1282		}
1283
1284		default:
1285			if (!(MIPSInst_RS(ir) & 0x10))
1286				return SIGILL;
1287			{
1288				int sig;
1289
1290				/* a real fpu computation instruction */
1291				if ((sig = fpu_emu(xcp, ctx, ir)))
1292					return sig;
1293			}
1294		}
1295		break;
1296
1297#if __mips >= 4 && __mips != 32
1298	case cop1x_op:{
1299		int sig = fpux_emu(xcp, ctx, ir, fault_addr);
1300		if (sig)
1301			return sig;
1302		break;
1303	}
1304#endif
1305
1306#if __mips >= 4
1307	case spec_op:
1308		if (MIPSInst_FUNC(ir) != movc_op)
1309			return SIGILL;
1310		cond = fpucondbit[MIPSInst_RT(ir) >> 2];
1311		if (((ctx->fcr31 & cond) != 0) == ((MIPSInst_RT(ir) & 1) != 0))
1312			xcp->regs[MIPSInst_RD(ir)] =
1313				xcp->regs[MIPSInst_RS(ir)];
1314		break;
1315#endif
1316
1317	default:
1318sigill:
1319		return SIGILL;
1320	}
1321
1322	/* we did it !! */
1323	xcp->cp0_epc = contpc;
1324	clear_delay_slot(xcp);
1325
1326	return 0;
1327}
1328
1329/*
1330 * Conversion table from MIPS compare ops 48-63
1331 * cond = ieee754dp_cmp(x,y,IEEE754_UN,sig);
1332 */
1333static const unsigned char cmptab[8] = {
1334	0,			/* cmp_0 (sig) cmp_sf */
1335	IEEE754_CUN,		/* cmp_un (sig) cmp_ngle */
1336	IEEE754_CEQ,		/* cmp_eq (sig) cmp_seq */
1337	IEEE754_CEQ | IEEE754_CUN,	/* cmp_ueq (sig) cmp_ngl  */
1338	IEEE754_CLT,		/* cmp_olt (sig) cmp_lt */
1339	IEEE754_CLT | IEEE754_CUN,	/* cmp_ult (sig) cmp_nge */
1340	IEEE754_CLT | IEEE754_CEQ,	/* cmp_ole (sig) cmp_le */
1341	IEEE754_CLT | IEEE754_CEQ | IEEE754_CUN,	/* cmp_ule (sig) cmp_ngt */
1342};
1343
1344
1345#if __mips >= 4 && __mips != 32
1346
1347/*
1348 * Additional MIPS4 instructions
1349 */
1350
1351#define DEF3OP(name, p, f1, f2, f3) \
1352static union ieee754##p fpemu_##p##_##name(union ieee754##p r, union ieee754##p s, \
1353    union ieee754##p t) \
1354{ \
1355	struct _ieee754_csr ieee754_csr_save; \
1356	s = f1(s, t); \
1357	ieee754_csr_save = ieee754_csr; \
1358	s = f2(s, r); \
1359	ieee754_csr_save.cx |= ieee754_csr.cx; \
1360	ieee754_csr_save.sx |= ieee754_csr.sx; \
1361	s = f3(s); \
1362	ieee754_csr.cx |= ieee754_csr_save.cx; \
1363	ieee754_csr.sx |= ieee754_csr_save.sx; \
1364	return s; \
1365}
1366
1367static union ieee754dp fpemu_dp_recip(union ieee754dp d)
1368{
1369	return ieee754dp_div(ieee754dp_one(0), d);
1370}
1371
1372static union ieee754dp fpemu_dp_rsqrt(union ieee754dp d)
1373{
1374	return ieee754dp_div(ieee754dp_one(0), ieee754dp_sqrt(d));
1375}
1376
1377static union ieee754sp fpemu_sp_recip(union ieee754sp s)
1378{
1379	return ieee754sp_div(ieee754sp_one(0), s);
1380}
1381
1382static union ieee754sp fpemu_sp_rsqrt(union ieee754sp s)
1383{
1384	return ieee754sp_div(ieee754sp_one(0), ieee754sp_sqrt(s));
1385}
1386
1387DEF3OP(madd, sp, ieee754sp_mul, ieee754sp_add, );
1388DEF3OP(msub, sp, ieee754sp_mul, ieee754sp_sub, );
1389DEF3OP(nmadd, sp, ieee754sp_mul, ieee754sp_add, ieee754sp_neg);
1390DEF3OP(nmsub, sp, ieee754sp_mul, ieee754sp_sub, ieee754sp_neg);
1391DEF3OP(madd, dp, ieee754dp_mul, ieee754dp_add, );
1392DEF3OP(msub, dp, ieee754dp_mul, ieee754dp_sub, );
1393DEF3OP(nmadd, dp, ieee754dp_mul, ieee754dp_add, ieee754dp_neg);
1394DEF3OP(nmsub, dp, ieee754dp_mul, ieee754dp_sub, ieee754dp_neg);
1395
1396static int fpux_emu(struct pt_regs *xcp, struct mips_fpu_struct *ctx,
1397	mips_instruction ir, void *__user *fault_addr)
1398{
1399	unsigned rcsr = 0;	/* resulting csr */
1400
1401	MIPS_FPU_EMU_INC_STATS(cp1xops);
1402
1403	switch (MIPSInst_FMA_FFMT(ir)) {
1404	case s_fmt:{		/* 0 */
1405
1406		union ieee754sp(*handler) (union ieee754sp, union ieee754sp, union ieee754sp);
1407		union ieee754sp fd, fr, fs, ft;
1408		u32 __user *va;
1409		u32 val;
1410
1411		switch (MIPSInst_FUNC(ir)) {
1412		case lwxc1_op:
1413			va = (void __user *) (xcp->regs[MIPSInst_FR(ir)] +
1414				xcp->regs[MIPSInst_FT(ir)]);
1415
1416			MIPS_FPU_EMU_INC_STATS(loads);
1417			if (!access_ok(VERIFY_READ, va, sizeof(u32))) {
1418				MIPS_FPU_EMU_INC_STATS(errors);
1419				*fault_addr = va;
1420				return SIGBUS;
1421			}
1422			if (__get_user(val, va)) {
1423				MIPS_FPU_EMU_INC_STATS(errors);
1424				*fault_addr = va;
1425				return SIGSEGV;
1426			}
1427			SITOREG(val, MIPSInst_FD(ir));
1428			break;
1429
1430		case swxc1_op:
1431			va = (void __user *) (xcp->regs[MIPSInst_FR(ir)] +
1432				xcp->regs[MIPSInst_FT(ir)]);
1433
1434			MIPS_FPU_EMU_INC_STATS(stores);
1435
1436			SIFROMREG(val, MIPSInst_FS(ir));
1437			if (!access_ok(VERIFY_WRITE, va, sizeof(u32))) {
1438				MIPS_FPU_EMU_INC_STATS(errors);
1439				*fault_addr = va;
1440				return SIGBUS;
1441			}
1442			if (put_user(val, va)) {
1443				MIPS_FPU_EMU_INC_STATS(errors);
1444				*fault_addr = va;
1445				return SIGSEGV;
1446			}
1447			break;
1448
1449		case madd_s_op:
1450			handler = fpemu_sp_madd;
1451			goto scoptop;
1452		case msub_s_op:
1453			handler = fpemu_sp_msub;
1454			goto scoptop;
1455		case nmadd_s_op:
1456			handler = fpemu_sp_nmadd;
1457			goto scoptop;
1458		case nmsub_s_op:
1459			handler = fpemu_sp_nmsub;
1460			goto scoptop;
1461
1462		      scoptop:
1463			SPFROMREG(fr, MIPSInst_FR(ir));
1464			SPFROMREG(fs, MIPSInst_FS(ir));
1465			SPFROMREG(ft, MIPSInst_FT(ir));
1466			fd = (*handler) (fr, fs, ft);
1467			SPTOREG(fd, MIPSInst_FD(ir));
1468
1469		      copcsr:
1470			if (ieee754_cxtest(IEEE754_INEXACT))
1471				rcsr |= FPU_CSR_INE_X | FPU_CSR_INE_S;
1472			if (ieee754_cxtest(IEEE754_UNDERFLOW))
1473				rcsr |= FPU_CSR_UDF_X | FPU_CSR_UDF_S;
1474			if (ieee754_cxtest(IEEE754_OVERFLOW))
1475				rcsr |= FPU_CSR_OVF_X | FPU_CSR_OVF_S;
1476			if (ieee754_cxtest(IEEE754_INVALID_OPERATION))
1477				rcsr |= FPU_CSR_INV_X | FPU_CSR_INV_S;
1478
1479			ctx->fcr31 = (ctx->fcr31 & ~FPU_CSR_ALL_X) | rcsr;
1480			if ((ctx->fcr31 >> 5) & ctx->fcr31 & FPU_CSR_ALL_E) {
1481				/*printk ("SIGFPE: fpu csr = %08x\n",
1482				   ctx->fcr31); */
1483				return SIGFPE;
1484			}
1485
1486			break;
1487
1488		default:
1489			return SIGILL;
1490		}
1491		break;
1492	}
1493
1494	case d_fmt:{		/* 1 */
1495		union ieee754dp(*handler) (union ieee754dp, union ieee754dp, union ieee754dp);
1496		union ieee754dp fd, fr, fs, ft;
1497		u64 __user *va;
1498		u64 val;
1499
1500		switch (MIPSInst_FUNC(ir)) {
1501		case ldxc1_op:
1502			va = (void __user *) (xcp->regs[MIPSInst_FR(ir)] +
1503				xcp->regs[MIPSInst_FT(ir)]);
1504
1505			MIPS_FPU_EMU_INC_STATS(loads);
1506			if (!access_ok(VERIFY_READ, va, sizeof(u64))) {
1507				MIPS_FPU_EMU_INC_STATS(errors);
1508				*fault_addr = va;
1509				return SIGBUS;
1510			}
1511			if (__get_user(val, va)) {
1512				MIPS_FPU_EMU_INC_STATS(errors);
1513				*fault_addr = va;
1514				return SIGSEGV;
1515			}
1516			DITOREG(val, MIPSInst_FD(ir));
1517			break;
1518
1519		case sdxc1_op:
1520			va = (void __user *) (xcp->regs[MIPSInst_FR(ir)] +
1521				xcp->regs[MIPSInst_FT(ir)]);
1522
1523			MIPS_FPU_EMU_INC_STATS(stores);
1524			DIFROMREG(val, MIPSInst_FS(ir));
1525			if (!access_ok(VERIFY_WRITE, va, sizeof(u64))) {
1526				MIPS_FPU_EMU_INC_STATS(errors);
1527				*fault_addr = va;
1528				return SIGBUS;
1529			}
1530			if (__put_user(val, va)) {
1531				MIPS_FPU_EMU_INC_STATS(errors);
1532				*fault_addr = va;
1533				return SIGSEGV;
1534			}
1535			break;
1536
1537		case madd_d_op:
1538			handler = fpemu_dp_madd;
1539			goto dcoptop;
1540		case msub_d_op:
1541			handler = fpemu_dp_msub;
1542			goto dcoptop;
1543		case nmadd_d_op:
1544			handler = fpemu_dp_nmadd;
1545			goto dcoptop;
1546		case nmsub_d_op:
1547			handler = fpemu_dp_nmsub;
1548			goto dcoptop;
1549
1550		      dcoptop:
1551			DPFROMREG(fr, MIPSInst_FR(ir));
1552			DPFROMREG(fs, MIPSInst_FS(ir));
1553			DPFROMREG(ft, MIPSInst_FT(ir));
1554			fd = (*handler) (fr, fs, ft);
1555			DPTOREG(fd, MIPSInst_FD(ir));
1556			goto copcsr;
1557
1558		default:
1559			return SIGILL;
1560		}
1561		break;
1562	}
1563
1564	case 0x3:
1565		if (MIPSInst_FUNC(ir) != pfetch_op)
1566			return SIGILL;
1567
1568		/* ignore prefx operation */
1569		break;
1570
1571	default:
1572		return SIGILL;
1573	}
1574
1575	return 0;
1576}
1577#endif
1578
1579
1580
1581/*
1582 * Emulate a single COP1 arithmetic instruction.
1583 */
1584static int fpu_emu(struct pt_regs *xcp, struct mips_fpu_struct *ctx,
1585	mips_instruction ir)
1586{
1587	int rfmt;		/* resulting format */
1588	unsigned rcsr = 0;	/* resulting csr */
1589	unsigned cond;
1590	union {
1591		union ieee754dp d;
1592		union ieee754sp s;
1593		int w;
1594#ifdef __mips64
1595		s64 l;
1596#endif
1597	} rv;			/* resulting value */
1598
1599	MIPS_FPU_EMU_INC_STATS(cp1ops);
1600	switch (rfmt = (MIPSInst_FFMT(ir) & 0xf)) {
1601	case s_fmt:{		/* 0 */
1602		union {
1603			union ieee754sp(*b) (union ieee754sp, union ieee754sp);
1604			union ieee754sp(*u) (union ieee754sp);
1605		} handler;
1606
1607		switch (MIPSInst_FUNC(ir)) {
1608			/* binary ops */
1609		case fadd_op:
1610			handler.b = ieee754sp_add;
1611			goto scopbop;
1612		case fsub_op:
1613			handler.b = ieee754sp_sub;
1614			goto scopbop;
1615		case fmul_op:
1616			handler.b = ieee754sp_mul;
1617			goto scopbop;
1618		case fdiv_op:
1619			handler.b = ieee754sp_div;
1620			goto scopbop;
1621
1622			/* unary  ops */
1623#if __mips >= 2 || defined(__mips64)
1624		case fsqrt_op:
1625			handler.u = ieee754sp_sqrt;
1626			goto scopuop;
1627#endif
1628#if __mips >= 4 && __mips != 32
1629		case frsqrt_op:
1630			handler.u = fpemu_sp_rsqrt;
1631			goto scopuop;
1632		case frecip_op:
1633			handler.u = fpemu_sp_recip;
1634			goto scopuop;
1635#endif
1636#if __mips >= 4
1637		case fmovc_op:
1638			cond = fpucondbit[MIPSInst_FT(ir) >> 2];
1639			if (((ctx->fcr31 & cond) != 0) !=
1640				((MIPSInst_FT(ir) & 1) != 0))
1641				return 0;
1642			SPFROMREG(rv.s, MIPSInst_FS(ir));
1643			break;
1644		case fmovz_op:
1645			if (xcp->regs[MIPSInst_FT(ir)] != 0)
1646				return 0;
1647			SPFROMREG(rv.s, MIPSInst_FS(ir));
1648			break;
1649		case fmovn_op:
1650			if (xcp->regs[MIPSInst_FT(ir)] == 0)
1651				return 0;
1652			SPFROMREG(rv.s, MIPSInst_FS(ir));
1653			break;
1654#endif
1655		case fabs_op:
1656			handler.u = ieee754sp_abs;
1657			goto scopuop;
1658		case fneg_op:
1659			handler.u = ieee754sp_neg;
1660			goto scopuop;
1661		case fmov_op:
1662			/* an easy one */
1663			SPFROMREG(rv.s, MIPSInst_FS(ir));
1664			goto copcsr;
1665
1666			/* binary op on handler */
1667		      scopbop:
1668			{
1669				union ieee754sp fs, ft;
1670
1671				SPFROMREG(fs, MIPSInst_FS(ir));
1672				SPFROMREG(ft, MIPSInst_FT(ir));
1673
1674				rv.s = (*handler.b) (fs, ft);
1675				goto copcsr;
1676			}
1677		      scopuop:
1678			{
1679				union ieee754sp fs;
1680
1681				SPFROMREG(fs, MIPSInst_FS(ir));
1682				rv.s = (*handler.u) (fs);
1683				goto copcsr;
1684			}
1685		      copcsr:
1686			if (ieee754_cxtest(IEEE754_INEXACT))
1687				rcsr |= FPU_CSR_INE_X | FPU_CSR_INE_S;
1688			if (ieee754_cxtest(IEEE754_UNDERFLOW))
1689				rcsr |= FPU_CSR_UDF_X | FPU_CSR_UDF_S;
1690			if (ieee754_cxtest(IEEE754_OVERFLOW))
1691				rcsr |= FPU_CSR_OVF_X | FPU_CSR_OVF_S;
1692			if (ieee754_cxtest(IEEE754_ZERO_DIVIDE))
1693				rcsr |= FPU_CSR_DIV_X | FPU_CSR_DIV_S;
1694			if (ieee754_cxtest(IEEE754_INVALID_OPERATION))
1695				rcsr |= FPU_CSR_INV_X | FPU_CSR_INV_S;
1696			break;
1697
1698			/* unary conv ops */
1699		case fcvts_op:
1700			return SIGILL;	/* not defined */
1701		case fcvtd_op:{
1702			union ieee754sp fs;
1703
1704			SPFROMREG(fs, MIPSInst_FS(ir));
1705			rv.d = ieee754dp_fsp(fs);
1706			rfmt = d_fmt;
1707			goto copcsr;
1708		}
1709		case fcvtw_op:{
1710			union ieee754sp fs;
1711
1712			SPFROMREG(fs, MIPSInst_FS(ir));
1713			rv.w = ieee754sp_tint(fs);
1714			rfmt = w_fmt;
1715			goto copcsr;
1716		}
1717
1718#if __mips >= 2 || defined(__mips64)
1719		case fround_op:
1720		case ftrunc_op:
1721		case fceil_op:
1722		case ffloor_op:{
1723			unsigned int oldrm = ieee754_csr.rm;
1724			union ieee754sp fs;
1725
1726			SPFROMREG(fs, MIPSInst_FS(ir));
1727			ieee754_csr.rm = ieee_rm[modeindex(MIPSInst_FUNC(ir))];
1728			rv.w = ieee754sp_tint(fs);
1729			ieee754_csr.rm = oldrm;
1730			rfmt = w_fmt;
1731			goto copcsr;
1732		}
1733#endif /* __mips >= 2 */
1734
1735#if defined(__mips64)
1736		case fcvtl_op:{
1737			union ieee754sp fs;
1738
1739			SPFROMREG(fs, MIPSInst_FS(ir));
1740			rv.l = ieee754sp_tlong(fs);
1741			rfmt = l_fmt;
1742			goto copcsr;
1743		}
1744
1745		case froundl_op:
1746		case ftruncl_op:
1747		case fceill_op:
1748		case ffloorl_op:{
1749			unsigned int oldrm = ieee754_csr.rm;
1750			union ieee754sp fs;
1751
1752			SPFROMREG(fs, MIPSInst_FS(ir));
1753			ieee754_csr.rm = ieee_rm[modeindex(MIPSInst_FUNC(ir))];
1754			rv.l = ieee754sp_tlong(fs);
1755			ieee754_csr.rm = oldrm;
1756			rfmt = l_fmt;
1757			goto copcsr;
1758		}
1759#endif /* defined(__mips64) */
1760
1761		default:
1762			if (MIPSInst_FUNC(ir) >= fcmp_op) {
1763				unsigned cmpop = MIPSInst_FUNC(ir) - fcmp_op;
1764				union ieee754sp fs, ft;
1765
1766				SPFROMREG(fs, MIPSInst_FS(ir));
1767				SPFROMREG(ft, MIPSInst_FT(ir));
1768				rv.w = ieee754sp_cmp(fs, ft,
1769					cmptab[cmpop & 0x7], cmpop & 0x8);
1770				rfmt = -1;
1771				if ((cmpop & 0x8) && ieee754_cxtest
1772					(IEEE754_INVALID_OPERATION))
1773					rcsr = FPU_CSR_INV_X | FPU_CSR_INV_S;
1774				else
1775					goto copcsr;
1776
1777			}
1778			else {
1779				return SIGILL;
1780			}
1781			break;
1782		}
1783		break;
1784	}
1785
1786	case d_fmt:{
1787		union {
1788			union ieee754dp(*b) (union ieee754dp, union ieee754dp);
1789			union ieee754dp(*u) (union ieee754dp);
1790		} handler;
1791
1792		switch (MIPSInst_FUNC(ir)) {
1793			/* binary ops */
1794		case fadd_op:
1795			handler.b = ieee754dp_add;
1796			goto dcopbop;
1797		case fsub_op:
1798			handler.b = ieee754dp_sub;
1799			goto dcopbop;
1800		case fmul_op:
1801			handler.b = ieee754dp_mul;
1802			goto dcopbop;
1803		case fdiv_op:
1804			handler.b = ieee754dp_div;
1805			goto dcopbop;
1806
1807			/* unary  ops */
1808#if __mips >= 2 || defined(__mips64)
1809		case fsqrt_op:
1810			handler.u = ieee754dp_sqrt;
1811			goto dcopuop;
1812#endif
1813#if __mips >= 4 && __mips != 32
1814		case frsqrt_op:
1815			handler.u = fpemu_dp_rsqrt;
1816			goto dcopuop;
1817		case frecip_op:
1818			handler.u = fpemu_dp_recip;
1819			goto dcopuop;
1820#endif
1821#if __mips >= 4
1822		case fmovc_op:
1823			cond = fpucondbit[MIPSInst_FT(ir) >> 2];
1824			if (((ctx->fcr31 & cond) != 0) !=
1825				((MIPSInst_FT(ir) & 1) != 0))
1826				return 0;
1827			DPFROMREG(rv.d, MIPSInst_FS(ir));
1828			break;
1829		case fmovz_op:
1830			if (xcp->regs[MIPSInst_FT(ir)] != 0)
1831				return 0;
1832			DPFROMREG(rv.d, MIPSInst_FS(ir));
1833			break;
1834		case fmovn_op:
1835			if (xcp->regs[MIPSInst_FT(ir)] == 0)
1836				return 0;
1837			DPFROMREG(rv.d, MIPSInst_FS(ir));
1838			break;
1839#endif
1840		case fabs_op:
1841			handler.u = ieee754dp_abs;
1842			goto dcopuop;
1843
1844		case fneg_op:
1845			handler.u = ieee754dp_neg;
1846			goto dcopuop;
1847
1848		case fmov_op:
1849			/* an easy one */
1850			DPFROMREG(rv.d, MIPSInst_FS(ir));
1851			goto copcsr;
1852
1853			/* binary op on handler */
1854		      dcopbop:{
1855				union ieee754dp fs, ft;
1856
1857				DPFROMREG(fs, MIPSInst_FS(ir));
1858				DPFROMREG(ft, MIPSInst_FT(ir));
1859
1860				rv.d = (*handler.b) (fs, ft);
1861				goto copcsr;
1862			}
1863		      dcopuop:{
1864				union ieee754dp fs;
1865
1866				DPFROMREG(fs, MIPSInst_FS(ir));
1867				rv.d = (*handler.u) (fs);
1868				goto copcsr;
1869			}
1870
1871			/* unary conv ops */
1872		case fcvts_op:{
1873			union ieee754dp fs;
1874
1875			DPFROMREG(fs, MIPSInst_FS(ir));
1876			rv.s = ieee754sp_fdp(fs);
1877			rfmt = s_fmt;
1878			goto copcsr;
1879		}
1880		case fcvtd_op:
1881			return SIGILL;	/* not defined */
1882
1883		case fcvtw_op:{
1884			union ieee754dp fs;
1885
1886			DPFROMREG(fs, MIPSInst_FS(ir));
1887			rv.w = ieee754dp_tint(fs);	/* wrong */
1888			rfmt = w_fmt;
1889			goto copcsr;
1890		}
1891
1892#if __mips >= 2 || defined(__mips64)
1893		case fround_op:
1894		case ftrunc_op:
1895		case fceil_op:
1896		case ffloor_op:{
1897			unsigned int oldrm = ieee754_csr.rm;
1898			union ieee754dp fs;
1899
1900			DPFROMREG(fs, MIPSInst_FS(ir));
1901			ieee754_csr.rm = ieee_rm[modeindex(MIPSInst_FUNC(ir))];
1902			rv.w = ieee754dp_tint(fs);
1903			ieee754_csr.rm = oldrm;
1904			rfmt = w_fmt;
1905			goto copcsr;
1906		}
1907#endif
1908
1909#if defined(__mips64)
1910		case fcvtl_op:{
1911			union ieee754dp fs;
1912
1913			DPFROMREG(fs, MIPSInst_FS(ir));
1914			rv.l = ieee754dp_tlong(fs);
1915			rfmt = l_fmt;
1916			goto copcsr;
1917		}
1918
1919		case froundl_op:
1920		case ftruncl_op:
1921		case fceill_op:
1922		case ffloorl_op:{
1923			unsigned int oldrm = ieee754_csr.rm;
1924			union ieee754dp fs;
1925
1926			DPFROMREG(fs, MIPSInst_FS(ir));
1927			ieee754_csr.rm = ieee_rm[modeindex(MIPSInst_FUNC(ir))];
1928			rv.l = ieee754dp_tlong(fs);
1929			ieee754_csr.rm = oldrm;
1930			rfmt = l_fmt;
1931			goto copcsr;
1932		}
1933#endif /* __mips >= 3 */
1934
1935		default:
1936			if (MIPSInst_FUNC(ir) >= fcmp_op) {
1937				unsigned cmpop = MIPSInst_FUNC(ir) - fcmp_op;
1938				union ieee754dp fs, ft;
1939
1940				DPFROMREG(fs, MIPSInst_FS(ir));
1941				DPFROMREG(ft, MIPSInst_FT(ir));
1942				rv.w = ieee754dp_cmp(fs, ft,
1943					cmptab[cmpop & 0x7], cmpop & 0x8);
1944				rfmt = -1;
1945				if ((cmpop & 0x8)
1946					&&
1947					ieee754_cxtest
1948					(IEEE754_INVALID_OPERATION))
1949					rcsr = FPU_CSR_INV_X | FPU_CSR_INV_S;
1950				else
1951					goto copcsr;
1952
1953			}
1954			else {
1955				return SIGILL;
1956			}
1957			break;
1958		}
1959		break;
1960	}
1961
1962	case w_fmt:{
1963		union ieee754sp fs;
1964
1965		switch (MIPSInst_FUNC(ir)) {
1966		case fcvts_op:
1967			/* convert word to single precision real */
1968			SPFROMREG(fs, MIPSInst_FS(ir));
1969			rv.s = ieee754sp_fint(fs.bits);
1970			rfmt = s_fmt;
1971			goto copcsr;
1972		case fcvtd_op:
1973			/* convert word to double precision real */
1974			SPFROMREG(fs, MIPSInst_FS(ir));
1975			rv.d = ieee754dp_fint(fs.bits);
1976			rfmt = d_fmt;
1977			goto copcsr;
1978		default:
1979			return SIGILL;
1980		}
1981		break;
1982	}
1983
1984#if defined(__mips64)
1985	case l_fmt:{
1986		u64 bits;
1987		DIFROMREG(bits, MIPSInst_FS(ir));
1988
1989		switch (MIPSInst_FUNC(ir)) {
1990		case fcvts_op:
1991			/* convert long to single precision real */
1992			rv.s = ieee754sp_flong(bits);
1993			rfmt = s_fmt;
1994			goto copcsr;
1995		case fcvtd_op:
1996			/* convert long to double precision real */
1997			rv.d = ieee754dp_flong(bits);
1998			rfmt = d_fmt;
1999			goto copcsr;
2000		default:
2001			return SIGILL;
2002		}
2003		break;
2004	}
2005#endif
2006
2007	default:
2008		return SIGILL;
2009	}
2010
2011	/*
2012	 * Update the fpu CSR register for this operation.
2013	 * If an exception is required, generate a tidy SIGFPE exception,
2014	 * without updating the result register.
2015	 * Note: cause exception bits do not accumulate, they are rewritten
2016	 * for each op; only the flag/sticky bits accumulate.
2017	 */
2018	ctx->fcr31 = (ctx->fcr31 & ~FPU_CSR_ALL_X) | rcsr;
2019	if ((ctx->fcr31 >> 5) & ctx->fcr31 & FPU_CSR_ALL_E) {
2020		/*printk ("SIGFPE: fpu csr = %08x\n",ctx->fcr31); */
2021		return SIGFPE;
2022	}
2023
2024	/*
2025	 * Now we can safely write the result back to the register file.
2026	 */
2027	switch (rfmt) {
2028	case -1:{
2029#if __mips >= 4
2030		cond = fpucondbit[MIPSInst_FD(ir) >> 2];
2031#else
2032		cond = FPU_CSR_COND;
2033#endif
2034		if (rv.w)
2035			ctx->fcr31 |= cond;
2036		else
2037			ctx->fcr31 &= ~cond;
2038		break;
2039	}
2040	case d_fmt:
2041		DPTOREG(rv.d, MIPSInst_FD(ir));
2042		break;
2043	case s_fmt:
2044		SPTOREG(rv.s, MIPSInst_FD(ir));
2045		break;
2046	case w_fmt:
2047		SITOREG(rv.w, MIPSInst_FD(ir));
2048		break;
2049#if defined(__mips64)
2050	case l_fmt:
2051		DITOREG(rv.l, MIPSInst_FD(ir));
2052		break;
2053#endif
2054	default:
2055		return SIGILL;
2056	}
2057
2058	return 0;
2059}
2060
2061int fpu_emulator_cop1Handler(struct pt_regs *xcp, struct mips_fpu_struct *ctx,
2062	int has_fpu, void *__user *fault_addr)
2063{
2064	unsigned long oldepc, prevepc;
2065	struct mm_decoded_insn dec_insn;
2066	u16 instr[4];
2067	u16 *instr_ptr;
2068	int sig = 0;
2069
2070	oldepc = xcp->cp0_epc;
2071	do {
2072		prevepc = xcp->cp0_epc;
2073
2074		if (get_isa16_mode(prevepc) && cpu_has_mmips) {
2075			/*
2076			 * Get next 2 microMIPS instructions and convert them
2077			 * into 32-bit instructions.
2078			 */
2079			if ((get_user(instr[0], (u16 __user *)msk_isa16_mode(xcp->cp0_epc))) ||
2080			    (get_user(instr[1], (u16 __user *)msk_isa16_mode(xcp->cp0_epc + 2))) ||
2081			    (get_user(instr[2], (u16 __user *)msk_isa16_mode(xcp->cp0_epc + 4))) ||
2082			    (get_user(instr[3], (u16 __user *)msk_isa16_mode(xcp->cp0_epc + 6)))) {
2083				MIPS_FPU_EMU_INC_STATS(errors);
2084				return SIGBUS;
2085			}
2086			instr_ptr = instr;
2087
2088			/* Get first instruction. */
2089			if (mm_insn_16bit(*instr_ptr)) {
2090				/* Duplicate the half-word. */
2091				dec_insn.insn = (*instr_ptr << 16) |
2092					(*instr_ptr);
2093				/* 16-bit instruction. */
2094				dec_insn.pc_inc = 2;
2095				instr_ptr += 1;
2096			} else {
2097				dec_insn.insn = (*instr_ptr << 16) |
2098					*(instr_ptr+1);
2099				/* 32-bit instruction. */
2100				dec_insn.pc_inc = 4;
2101				instr_ptr += 2;
2102			}
2103			/* Get second instruction. */
2104			if (mm_insn_16bit(*instr_ptr)) {
2105				/* Duplicate the half-word. */
2106				dec_insn.next_insn = (*instr_ptr << 16) |
2107					(*instr_ptr);
2108				/* 16-bit instruction. */
2109				dec_insn.next_pc_inc = 2;
2110			} else {
2111				dec_insn.next_insn = (*instr_ptr << 16) |
2112					*(instr_ptr+1);
2113				/* 32-bit instruction. */
2114				dec_insn.next_pc_inc = 4;
2115			}
2116			dec_insn.micro_mips_mode = 1;
2117		} else {
2118			if ((get_user(dec_insn.insn,
2119			    (mips_instruction __user *) xcp->cp0_epc)) ||
2120			    (get_user(dec_insn.next_insn,
2121			    (mips_instruction __user *)(xcp->cp0_epc+4)))) {
2122				MIPS_FPU_EMU_INC_STATS(errors);
2123				return SIGBUS;
2124			}
2125			dec_insn.pc_inc = 4;
2126			dec_insn.next_pc_inc = 4;
2127			dec_insn.micro_mips_mode = 0;
2128		}
2129
2130		if ((dec_insn.insn == 0) ||
2131		   ((dec_insn.pc_inc == 2) &&
2132		   ((dec_insn.insn & 0xffff) == MM_NOP16)))
2133			xcp->cp0_epc += dec_insn.pc_inc;	/* Skip NOPs */
2134		else {
2135			/*
2136			 * The 'ieee754_csr' is an alias of
2137			 * ctx->fcr31.	No need to copy ctx->fcr31 to
2138			 * ieee754_csr.	 But ieee754_csr.rm is ieee
2139			 * library modes. (not mips rounding mode)
2140			 */
2141			/* convert to ieee library modes */
2142			ieee754_csr.rm = ieee_rm[ieee754_csr.rm];
2143			sig = cop1Emulate(xcp, ctx, dec_insn, fault_addr);
2144			/* revert to mips rounding mode */
2145			ieee754_csr.rm = mips_rm[ieee754_csr.rm];
2146		}
2147
2148		if (has_fpu)
2149			break;
2150		if (sig)
2151			break;
2152
2153		cond_resched();
2154	} while (xcp->cp0_epc > prevepc);
2155
2156	/* SIGILL indicates a non-fpu instruction */
2157	if (sig == SIGILL && xcp->cp0_epc != oldepc)
2158		/* but if epc has advanced, then ignore it */
2159		sig = 0;
2160
2161	return sig;
2162}
2163
2164#ifdef CONFIG_DEBUG_FS
2165
2166static int fpuemu_stat_get(void *data, u64 *val)
2167{
2168	int cpu;
2169	unsigned long sum = 0;
2170	for_each_online_cpu(cpu) {
2171		struct mips_fpu_emulator_stats *ps;
2172		local_t *pv;
2173		ps = &per_cpu(fpuemustats, cpu);
2174		pv = (void *)ps + (unsigned long)data;
2175		sum += local_read(pv);
2176	}
2177	*val = sum;
2178	return 0;
2179}
2180DEFINE_SIMPLE_ATTRIBUTE(fops_fpuemu_stat, fpuemu_stat_get, NULL, "%llu\n");
2181
2182extern struct dentry *mips_debugfs_dir;
2183static int __init debugfs_fpuemu(void)
2184{
2185	struct dentry *d, *dir;
2186
2187	if (!mips_debugfs_dir)
2188		return -ENODEV;
2189	dir = debugfs_create_dir("fpuemustats", mips_debugfs_dir);
2190	if (!dir)
2191		return -ENOMEM;
2192
2193#define FPU_STAT_CREATE(M)						\
2194	do {								\
2195		d = debugfs_create_file(#M , S_IRUGO, dir,		\
2196			(void *)offsetof(struct mips_fpu_emulator_stats, M), \
2197			&fops_fpuemu_stat);				\
2198		if (!d)							\
2199			return -ENOMEM;					\
2200	} while (0)
2201
2202	FPU_STAT_CREATE(emulated);
2203	FPU_STAT_CREATE(loads);
2204	FPU_STAT_CREATE(stores);
2205	FPU_STAT_CREATE(cp1ops);
2206	FPU_STAT_CREATE(cp1xops);
2207	FPU_STAT_CREATE(errors);
2208
2209	return 0;
2210}
2211__initcall(debugfs_fpuemu);
2212#endif
2213