cp1emu.c revision eae89076e696f51762d81d6e2538c3beb59fa7bd
1/*
2 * cp1emu.c: a MIPS coprocessor 1 (fpu) instruction emulator
3 *
4 * MIPS floating point support
5 * Copyright (C) 1994-2000 Algorithmics Ltd.
6 * http://www.algor.co.uk
7 *
8 * Kevin D. Kissell, kevink@mips.com and Carsten Langgaard, carstenl@mips.com
9 * Copyright (C) 2000  MIPS Technologies, Inc.
10 *
11 *  This program is free software; you can distribute it and/or modify it
12 *  under the terms of the GNU General Public License (Version 2) as
13 *  published by the Free Software Foundation.
14 *
15 *  This program is distributed in the hope it will be useful, but WITHOUT
16 *  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
17 *  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
18 *  for more details.
19 *
20 *  You should have received a copy of the GNU General Public License along
21 *  with this program; if not, write to the Free Software Foundation, Inc.,
22 *  59 Temple Place - Suite 330, Boston MA 02111-1307, USA.
23 *
24 * A complete emulator for MIPS coprocessor 1 instructions.  This is
25 * required for #float(switch) or #float(trap), where it catches all
26 * COP1 instructions via the "CoProcessor Unusable" exception.
27 *
28 * More surprisingly it is also required for #float(ieee), to help out
29 * the hardware fpu at the boundaries of the IEEE-754 representation
30 * (denormalised values, infinities, underflow, etc).  It is made
31 * quite nasty because emulation of some non-COP1 instructions is
32 * required, e.g. in branch delay slots.
33 *
34 * Note if you know that you won't have an fpu, then you'll get much
35 * better performance by compiling with -msoft-float!
36 */
37#include <linux/sched.h>
38
39#include <asm/inst.h>
40#include <asm/bootinfo.h>
41#include <asm/cpu.h>
42#include <asm/cpu-features.h>
43#include <asm/processor.h>
44#include <asm/ptrace.h>
45#include <asm/signal.h>
46#include <asm/mipsregs.h>
47#include <asm/fpu_emulator.h>
48#include <asm/uaccess.h>
49#include <asm/branch.h>
50
51#include "ieee754.h"
52#include "dsemul.h"
53
54/* Strap kernel emulator for full MIPS IV emulation */
55
56#ifdef __mips
57#undef __mips
58#endif
59#define __mips 4
60
61/* Function which emulates a floating point instruction. */
62
63static int fpu_emu(struct pt_regs *, struct mips_fpu_struct *,
64	mips_instruction);
65
66#if __mips >= 4 && __mips != 32
67static int fpux_emu(struct pt_regs *,
68	struct mips_fpu_struct *, mips_instruction);
69#endif
70
71/* Further private data for which no space exists in mips_fpu_struct */
72
73struct mips_fpu_emulator_stats fpuemustats;
74
75/* Control registers */
76
77#define FPCREG_RID	0	/* $0  = revision id */
78#define FPCREG_CSR	31	/* $31 = csr */
79
80/* Convert Mips rounding mode (0..3) to IEEE library modes. */
81static const unsigned char ieee_rm[4] = {
82	[FPU_CSR_RN] = IEEE754_RN,
83	[FPU_CSR_RZ] = IEEE754_RZ,
84	[FPU_CSR_RU] = IEEE754_RU,
85	[FPU_CSR_RD] = IEEE754_RD,
86};
87/* Convert IEEE library modes to Mips rounding mode (0..3). */
88static const unsigned char mips_rm[4] = {
89	[IEEE754_RN] = FPU_CSR_RN,
90	[IEEE754_RZ] = FPU_CSR_RZ,
91	[IEEE754_RD] = FPU_CSR_RD,
92	[IEEE754_RU] = FPU_CSR_RU,
93};
94
95#if __mips >= 4
96/* convert condition code register number to csr bit */
97static const unsigned int fpucondbit[8] = {
98	FPU_CSR_COND0,
99	FPU_CSR_COND1,
100	FPU_CSR_COND2,
101	FPU_CSR_COND3,
102	FPU_CSR_COND4,
103	FPU_CSR_COND5,
104	FPU_CSR_COND6,
105	FPU_CSR_COND7
106};
107#endif
108
109
110/*
111 * Redundant with logic already in kernel/branch.c,
112 * embedded in compute_return_epc.  At some point,
113 * a single subroutine should be used across both
114 * modules.
115 */
116static int isBranchInstr(mips_instruction * i)
117{
118	switch (MIPSInst_OPCODE(*i)) {
119	case spec_op:
120		switch (MIPSInst_FUNC(*i)) {
121		case jalr_op:
122		case jr_op:
123			return 1;
124		}
125		break;
126
127	case bcond_op:
128		switch (MIPSInst_RT(*i)) {
129		case bltz_op:
130		case bgez_op:
131		case bltzl_op:
132		case bgezl_op:
133		case bltzal_op:
134		case bgezal_op:
135		case bltzall_op:
136		case bgezall_op:
137			return 1;
138		}
139		break;
140
141	case j_op:
142	case jal_op:
143	case jalx_op:
144	case beq_op:
145	case bne_op:
146	case blez_op:
147	case bgtz_op:
148	case beql_op:
149	case bnel_op:
150	case blezl_op:
151	case bgtzl_op:
152		return 1;
153
154	case cop0_op:
155	case cop1_op:
156	case cop2_op:
157	case cop1x_op:
158		if (MIPSInst_RS(*i) == bc_op)
159			return 1;
160		break;
161	}
162
163	return 0;
164}
165
166/*
167 * In the Linux kernel, we support selection of FPR format on the
168 * basis of the Status.FR bit.  This does imply that, if a full 32
169 * FPRs are desired, there needs to be a flip-flop that can be written
170 * to one at that bit position.  In any case, O32 MIPS ABI uses
171 * only the even FPRs (Status.FR = 0).
172 */
173
174#define CP0_STATUS_FR_SUPPORT
175
176#ifdef CP0_STATUS_FR_SUPPORT
177#define FR_BIT ST0_FR
178#else
179#define FR_BIT 0
180#endif
181
182#define SIFROMREG(si,x)	((si) = \
183			(xcp->cp0_status & FR_BIT) || !(x & 1) ? \
184			(int)ctx->fpr[x] : \
185			(int)(ctx->fpr[x & ~1] >> 32 ))
186#define SITOREG(si,x)	(ctx->fpr[x & ~((xcp->cp0_status & FR_BIT) == 0)] = \
187			(xcp->cp0_status & FR_BIT) || !(x & 1) ? \
188			ctx->fpr[x & ~1] >> 32 << 32 | (u32)(si) : \
189			ctx->fpr[x & ~1] << 32 >> 32 | (u64)(si) << 32)
190
191#define DIFROMREG(di,x)	((di) = \
192			ctx->fpr[x & ~((xcp->cp0_status & FR_BIT) == 0)])
193#define DITOREG(di,x)	(ctx->fpr[x & ~((xcp->cp0_status & FR_BIT) == 0)] \
194			= (di))
195
196#define SPFROMREG(sp,x)	SIFROMREG((sp).bits,x)
197#define SPTOREG(sp,x)	SITOREG((sp).bits,x)
198#define DPFROMREG(dp,x)	DIFROMREG((dp).bits,x)
199#define DPTOREG(dp,x)	DITOREG((dp).bits,x)
200
201/*
202 * Emulate the single floating point instruction pointed at by EPC.
203 * Two instructions if the instruction is in a branch delay slot.
204 */
205
206static int cop1Emulate(struct pt_regs *xcp, struct mips_fpu_struct *ctx)
207{
208	mips_instruction ir;
209	void * emulpc, *contpc;
210	unsigned int cond;
211
212	if (get_user(ir, (mips_instruction __user *) xcp->cp0_epc)) {
213		fpuemustats.errors++;
214		return SIGBUS;
215	}
216
217	/* XXX NEC Vr54xx bug workaround */
218	if ((xcp->cp0_cause & CAUSEF_BD) && !isBranchInstr(&ir))
219		xcp->cp0_cause &= ~CAUSEF_BD;
220
221	if (xcp->cp0_cause & CAUSEF_BD) {
222		/*
223		 * The instruction to be emulated is in a branch delay slot
224		 * which means that we have to  emulate the branch instruction
225		 * BEFORE we do the cop1 instruction.
226		 *
227		 * This branch could be a COP1 branch, but in that case we
228		 * would have had a trap for that instruction, and would not
229		 * come through this route.
230		 *
231		 * Linux MIPS branch emulator operates on context, updating the
232		 * cp0_epc.
233		 */
234		emulpc = (void *) (xcp->cp0_epc + 4);	/* Snapshot emulation target */
235
236		if (__compute_return_epc(xcp)) {
237#ifdef CP1DBG
238			printk("failed to emulate branch at %p\n",
239				(void *) (xcp->cp0_epc));
240#endif
241			return SIGILL;
242		}
243		if (get_user(ir, (mips_instruction __user *) emulpc)) {
244			fpuemustats.errors++;
245			return SIGBUS;
246		}
247		/* __compute_return_epc() will have updated cp0_epc */
248		contpc = (void *)  xcp->cp0_epc;
249		/* In order not to confuse ptrace() et al, tweak context */
250		xcp->cp0_epc = (unsigned long) emulpc - 4;
251	} else {
252		emulpc = (void *)  xcp->cp0_epc;
253		contpc = (void *) (xcp->cp0_epc + 4);
254	}
255
256      emul:
257	fpuemustats.emulated++;
258	switch (MIPSInst_OPCODE(ir)) {
259	case ldc1_op:{
260		u64 __user *va = (u64 __user *) (xcp->regs[MIPSInst_RS(ir)] +
261			MIPSInst_SIMM(ir));
262		u64 val;
263
264		fpuemustats.loads++;
265		if (get_user(val, va)) {
266			fpuemustats.errors++;
267			return SIGBUS;
268		}
269		DITOREG(val, MIPSInst_RT(ir));
270		break;
271	}
272
273	case sdc1_op:{
274		u64 __user *va = (u64 __user *) (xcp->regs[MIPSInst_RS(ir)] +
275			MIPSInst_SIMM(ir));
276		u64 val;
277
278		fpuemustats.stores++;
279		DIFROMREG(val, MIPSInst_RT(ir));
280		if (put_user(val, va)) {
281			fpuemustats.errors++;
282			return SIGBUS;
283		}
284		break;
285	}
286
287	case lwc1_op:{
288		u32 __user *va = (u32 __user *) (xcp->regs[MIPSInst_RS(ir)] +
289			MIPSInst_SIMM(ir));
290		u32 val;
291
292		fpuemustats.loads++;
293		if (get_user(val, va)) {
294			fpuemustats.errors++;
295			return SIGBUS;
296		}
297		SITOREG(val, MIPSInst_RT(ir));
298		break;
299	}
300
301	case swc1_op:{
302		u32 __user *va = (u32 __user *) (xcp->regs[MIPSInst_RS(ir)] +
303			MIPSInst_SIMM(ir));
304		u32 val;
305
306		fpuemustats.stores++;
307		SIFROMREG(val, MIPSInst_RT(ir));
308		if (put_user(val, va)) {
309			fpuemustats.errors++;
310			return SIGBUS;
311		}
312		break;
313	}
314
315	case cop1_op:
316		switch (MIPSInst_RS(ir)) {
317
318#if defined(__mips64)
319		case dmfc_op:
320			/* copregister fs -> gpr[rt] */
321			if (MIPSInst_RT(ir) != 0) {
322				DIFROMREG(xcp->regs[MIPSInst_RT(ir)],
323					MIPSInst_RD(ir));
324			}
325			break;
326
327		case dmtc_op:
328			/* copregister fs <- rt */
329			DITOREG(xcp->regs[MIPSInst_RT(ir)], MIPSInst_RD(ir));
330			break;
331#endif
332
333		case mfc_op:
334			/* copregister rd -> gpr[rt] */
335			if (MIPSInst_RT(ir) != 0) {
336				SIFROMREG(xcp->regs[MIPSInst_RT(ir)],
337					MIPSInst_RD(ir));
338			}
339			break;
340
341		case mtc_op:
342			/* copregister rd <- rt */
343			SITOREG(xcp->regs[MIPSInst_RT(ir)], MIPSInst_RD(ir));
344			break;
345
346		case cfc_op:{
347			/* cop control register rd -> gpr[rt] */
348			u32 value;
349
350			if (ir == CP1UNDEF) {
351				return do_dsemulret(xcp);
352			}
353			if (MIPSInst_RD(ir) == FPCREG_CSR) {
354				value = ctx->fcr31;
355				value = (value & ~0x3) | mips_rm[value & 0x3];
356#ifdef CSRTRACE
357				printk("%p gpr[%d]<-csr=%08x\n",
358					(void *) (xcp->cp0_epc),
359					MIPSInst_RT(ir), value);
360#endif
361			}
362			else if (MIPSInst_RD(ir) == FPCREG_RID)
363				value = 0;
364			else
365				value = 0;
366			if (MIPSInst_RT(ir))
367				xcp->regs[MIPSInst_RT(ir)] = value;
368			break;
369		}
370
371		case ctc_op:{
372			/* copregister rd <- rt */
373			u32 value;
374
375			if (MIPSInst_RT(ir) == 0)
376				value = 0;
377			else
378				value = xcp->regs[MIPSInst_RT(ir)];
379
380			/* we only have one writable control reg
381			 */
382			if (MIPSInst_RD(ir) == FPCREG_CSR) {
383#ifdef CSRTRACE
384				printk("%p gpr[%d]->csr=%08x\n",
385					(void *) (xcp->cp0_epc),
386					MIPSInst_RT(ir), value);
387#endif
388				value &= (FPU_CSR_FLUSH | FPU_CSR_ALL_E | FPU_CSR_ALL_S | 0x03);
389				ctx->fcr31 &= ~(FPU_CSR_FLUSH | FPU_CSR_ALL_E | FPU_CSR_ALL_S | 0x03);
390				/* convert to ieee library modes */
391				ctx->fcr31 |= (value & ~0x3) | ieee_rm[value & 0x3];
392			}
393			if ((ctx->fcr31 >> 5) & ctx->fcr31 & FPU_CSR_ALL_E) {
394				return SIGFPE;
395			}
396			break;
397		}
398
399		case bc_op:{
400			int likely = 0;
401
402			if (xcp->cp0_cause & CAUSEF_BD)
403				return SIGILL;
404
405#if __mips >= 4
406			cond = ctx->fcr31 & fpucondbit[MIPSInst_RT(ir) >> 2];
407#else
408			cond = ctx->fcr31 & FPU_CSR_COND;
409#endif
410			switch (MIPSInst_RT(ir) & 3) {
411			case bcfl_op:
412				likely = 1;
413			case bcf_op:
414				cond = !cond;
415				break;
416			case bctl_op:
417				likely = 1;
418			case bct_op:
419				break;
420			default:
421				/* thats an illegal instruction */
422				return SIGILL;
423			}
424
425			xcp->cp0_cause |= CAUSEF_BD;
426			if (cond) {
427				/* branch taken: emulate dslot
428				 * instruction
429				 */
430				xcp->cp0_epc += 4;
431				contpc = (void *)
432					(xcp->cp0_epc +
433					(MIPSInst_SIMM(ir) << 2));
434
435				if (get_user(ir,
436				    (mips_instruction __user *) xcp->cp0_epc)) {
437					fpuemustats.errors++;
438					return SIGBUS;
439				}
440
441				switch (MIPSInst_OPCODE(ir)) {
442				case lwc1_op:
443				case swc1_op:
444#if (__mips >= 2 || defined(__mips64))
445				case ldc1_op:
446				case sdc1_op:
447#endif
448				case cop1_op:
449#if __mips >= 4 && __mips != 32
450				case cop1x_op:
451#endif
452					/* its one of ours */
453					goto emul;
454#if __mips >= 4
455				case spec_op:
456					if (MIPSInst_FUNC(ir) == movc_op)
457						goto emul;
458					break;
459#endif
460				}
461
462				/*
463				 * Single step the non-cp1
464				 * instruction in the dslot
465				 */
466				return mips_dsemul(xcp, ir, (unsigned long) contpc);
467			}
468			else {
469				/* branch not taken */
470				if (likely) {
471					/*
472					 * branch likely nullifies
473					 * dslot if not taken
474					 */
475					xcp->cp0_epc += 4;
476					contpc += 4;
477					/*
478					 * else continue & execute
479					 * dslot as normal insn
480					 */
481				}
482			}
483			break;
484		}
485
486		default:
487			if (!(MIPSInst_RS(ir) & 0x10))
488				return SIGILL;
489			{
490				int sig;
491
492				/* a real fpu computation instruction */
493				if ((sig = fpu_emu(xcp, ctx, ir)))
494					return sig;
495			}
496		}
497		break;
498
499#if __mips >= 4 && __mips != 32
500	case cop1x_op:{
501		int sig;
502
503		if ((sig = fpux_emu(xcp, ctx, ir)))
504			return sig;
505		break;
506	}
507#endif
508
509#if __mips >= 4
510	case spec_op:
511		if (MIPSInst_FUNC(ir) != movc_op)
512			return SIGILL;
513		cond = fpucondbit[MIPSInst_RT(ir) >> 2];
514		if (((ctx->fcr31 & cond) != 0) == ((MIPSInst_RT(ir) & 1) != 0))
515			xcp->regs[MIPSInst_RD(ir)] =
516				xcp->regs[MIPSInst_RS(ir)];
517		break;
518#endif
519
520	default:
521		return SIGILL;
522	}
523
524	/* we did it !! */
525	xcp->cp0_epc = (unsigned long) contpc;
526	xcp->cp0_cause &= ~CAUSEF_BD;
527
528	return 0;
529}
530
531/*
532 * Conversion table from MIPS compare ops 48-63
533 * cond = ieee754dp_cmp(x,y,IEEE754_UN,sig);
534 */
535static const unsigned char cmptab[8] = {
536	0,			/* cmp_0 (sig) cmp_sf */
537	IEEE754_CUN,		/* cmp_un (sig) cmp_ngle */
538	IEEE754_CEQ,		/* cmp_eq (sig) cmp_seq */
539	IEEE754_CEQ | IEEE754_CUN,	/* cmp_ueq (sig) cmp_ngl  */
540	IEEE754_CLT,		/* cmp_olt (sig) cmp_lt */
541	IEEE754_CLT | IEEE754_CUN,	/* cmp_ult (sig) cmp_nge */
542	IEEE754_CLT | IEEE754_CEQ,	/* cmp_ole (sig) cmp_le */
543	IEEE754_CLT | IEEE754_CEQ | IEEE754_CUN,	/* cmp_ule (sig) cmp_ngt */
544};
545
546
547#if __mips >= 4 && __mips != 32
548
549/*
550 * Additional MIPS4 instructions
551 */
552
553#define DEF3OP(name, p, f1, f2, f3) \
554static ieee754##p fpemu_##p##_##name (ieee754##p r, ieee754##p s, \
555    ieee754##p t) \
556{ \
557	struct _ieee754_csr ieee754_csr_save; \
558	s = f1 (s, t); \
559	ieee754_csr_save = ieee754_csr; \
560	s = f2 (s, r); \
561	ieee754_csr_save.cx |= ieee754_csr.cx; \
562	ieee754_csr_save.sx |= ieee754_csr.sx; \
563	s = f3 (s); \
564	ieee754_csr.cx |= ieee754_csr_save.cx; \
565	ieee754_csr.sx |= ieee754_csr_save.sx; \
566	return s; \
567}
568
569static ieee754dp fpemu_dp_recip(ieee754dp d)
570{
571	return ieee754dp_div(ieee754dp_one(0), d);
572}
573
574static ieee754dp fpemu_dp_rsqrt(ieee754dp d)
575{
576	return ieee754dp_div(ieee754dp_one(0), ieee754dp_sqrt(d));
577}
578
579static ieee754sp fpemu_sp_recip(ieee754sp s)
580{
581	return ieee754sp_div(ieee754sp_one(0), s);
582}
583
584static ieee754sp fpemu_sp_rsqrt(ieee754sp s)
585{
586	return ieee754sp_div(ieee754sp_one(0), ieee754sp_sqrt(s));
587}
588
589DEF3OP(madd, sp, ieee754sp_mul, ieee754sp_add,);
590DEF3OP(msub, sp, ieee754sp_mul, ieee754sp_sub,);
591DEF3OP(nmadd, sp, ieee754sp_mul, ieee754sp_add, ieee754sp_neg);
592DEF3OP(nmsub, sp, ieee754sp_mul, ieee754sp_sub, ieee754sp_neg);
593DEF3OP(madd, dp, ieee754dp_mul, ieee754dp_add,);
594DEF3OP(msub, dp, ieee754dp_mul, ieee754dp_sub,);
595DEF3OP(nmadd, dp, ieee754dp_mul, ieee754dp_add, ieee754dp_neg);
596DEF3OP(nmsub, dp, ieee754dp_mul, ieee754dp_sub, ieee754dp_neg);
597
598static int fpux_emu(struct pt_regs *xcp, struct mips_fpu_struct *ctx,
599	mips_instruction ir)
600{
601	unsigned rcsr = 0;	/* resulting csr */
602
603	fpuemustats.cp1xops++;
604
605	switch (MIPSInst_FMA_FFMT(ir)) {
606	case s_fmt:{		/* 0 */
607
608		ieee754sp(*handler) (ieee754sp, ieee754sp, ieee754sp);
609		ieee754sp fd, fr, fs, ft;
610		u32 __user *va;
611		u32 val;
612
613		switch (MIPSInst_FUNC(ir)) {
614		case lwxc1_op:
615			va = (void __user *) (xcp->regs[MIPSInst_FR(ir)] +
616				xcp->regs[MIPSInst_FT(ir)]);
617
618			fpuemustats.loads++;
619			if (get_user(val, va)) {
620				fpuemustats.errors++;
621				return SIGBUS;
622			}
623			SITOREG(val, MIPSInst_FD(ir));
624			break;
625
626		case swxc1_op:
627			va = (void __user *) (xcp->regs[MIPSInst_FR(ir)] +
628				xcp->regs[MIPSInst_FT(ir)]);
629
630			fpuemustats.stores++;
631
632			SIFROMREG(val, MIPSInst_FS(ir));
633			if (put_user(val, va)) {
634				fpuemustats.errors++;
635				return SIGBUS;
636			}
637			break;
638
639		case madd_s_op:
640			handler = fpemu_sp_madd;
641			goto scoptop;
642		case msub_s_op:
643			handler = fpemu_sp_msub;
644			goto scoptop;
645		case nmadd_s_op:
646			handler = fpemu_sp_nmadd;
647			goto scoptop;
648		case nmsub_s_op:
649			handler = fpemu_sp_nmsub;
650			goto scoptop;
651
652		      scoptop:
653			SPFROMREG(fr, MIPSInst_FR(ir));
654			SPFROMREG(fs, MIPSInst_FS(ir));
655			SPFROMREG(ft, MIPSInst_FT(ir));
656			fd = (*handler) (fr, fs, ft);
657			SPTOREG(fd, MIPSInst_FD(ir));
658
659		      copcsr:
660			if (ieee754_cxtest(IEEE754_INEXACT))
661				rcsr |= FPU_CSR_INE_X | FPU_CSR_INE_S;
662			if (ieee754_cxtest(IEEE754_UNDERFLOW))
663				rcsr |= FPU_CSR_UDF_X | FPU_CSR_UDF_S;
664			if (ieee754_cxtest(IEEE754_OVERFLOW))
665				rcsr |= FPU_CSR_OVF_X | FPU_CSR_OVF_S;
666			if (ieee754_cxtest(IEEE754_INVALID_OPERATION))
667				rcsr |= FPU_CSR_INV_X | FPU_CSR_INV_S;
668
669			ctx->fcr31 = (ctx->fcr31 & ~FPU_CSR_ALL_X) | rcsr;
670			if ((ctx->fcr31 >> 5) & ctx->fcr31 & FPU_CSR_ALL_E) {
671				/*printk ("SIGFPE: fpu csr = %08x\n",
672				   ctx->fcr31); */
673				return SIGFPE;
674			}
675
676			break;
677
678		default:
679			return SIGILL;
680		}
681		break;
682	}
683
684	case d_fmt:{		/* 1 */
685		ieee754dp(*handler) (ieee754dp, ieee754dp, ieee754dp);
686		ieee754dp fd, fr, fs, ft;
687		u64 __user *va;
688		u64 val;
689
690		switch (MIPSInst_FUNC(ir)) {
691		case ldxc1_op:
692			va = (void __user *) (xcp->regs[MIPSInst_FR(ir)] +
693				xcp->regs[MIPSInst_FT(ir)]);
694
695			fpuemustats.loads++;
696			if (get_user(val, va)) {
697				fpuemustats.errors++;
698				return SIGBUS;
699			}
700			DITOREG(val, MIPSInst_FD(ir));
701			break;
702
703		case sdxc1_op:
704			va = (void __user *) (xcp->regs[MIPSInst_FR(ir)] +
705				xcp->regs[MIPSInst_FT(ir)]);
706
707			fpuemustats.stores++;
708			DIFROMREG(val, MIPSInst_FS(ir));
709			if (put_user(val, va)) {
710				fpuemustats.errors++;
711				return SIGBUS;
712			}
713			break;
714
715		case madd_d_op:
716			handler = fpemu_dp_madd;
717			goto dcoptop;
718		case msub_d_op:
719			handler = fpemu_dp_msub;
720			goto dcoptop;
721		case nmadd_d_op:
722			handler = fpemu_dp_nmadd;
723			goto dcoptop;
724		case nmsub_d_op:
725			handler = fpemu_dp_nmsub;
726			goto dcoptop;
727
728		      dcoptop:
729			DPFROMREG(fr, MIPSInst_FR(ir));
730			DPFROMREG(fs, MIPSInst_FS(ir));
731			DPFROMREG(ft, MIPSInst_FT(ir));
732			fd = (*handler) (fr, fs, ft);
733			DPTOREG(fd, MIPSInst_FD(ir));
734			goto copcsr;
735
736		default:
737			return SIGILL;
738		}
739		break;
740	}
741
742	case 0x7:		/* 7 */
743		if (MIPSInst_FUNC(ir) != pfetch_op) {
744			return SIGILL;
745		}
746		/* ignore prefx operation */
747		break;
748
749	default:
750		return SIGILL;
751	}
752
753	return 0;
754}
755#endif
756
757
758
759/*
760 * Emulate a single COP1 arithmetic instruction.
761 */
762static int fpu_emu(struct pt_regs *xcp, struct mips_fpu_struct *ctx,
763	mips_instruction ir)
764{
765	int rfmt;		/* resulting format */
766	unsigned rcsr = 0;	/* resulting csr */
767	unsigned cond;
768	union {
769		ieee754dp d;
770		ieee754sp s;
771		int w;
772#ifdef __mips64
773		s64 l;
774#endif
775	} rv;			/* resulting value */
776
777	fpuemustats.cp1ops++;
778	switch (rfmt = (MIPSInst_FFMT(ir) & 0xf)) {
779	case s_fmt:{		/* 0 */
780		union {
781			ieee754sp(*b) (ieee754sp, ieee754sp);
782			ieee754sp(*u) (ieee754sp);
783		} handler;
784
785		switch (MIPSInst_FUNC(ir)) {
786			/* binary ops */
787		case fadd_op:
788			handler.b = ieee754sp_add;
789			goto scopbop;
790		case fsub_op:
791			handler.b = ieee754sp_sub;
792			goto scopbop;
793		case fmul_op:
794			handler.b = ieee754sp_mul;
795			goto scopbop;
796		case fdiv_op:
797			handler.b = ieee754sp_div;
798			goto scopbop;
799
800			/* unary  ops */
801#if __mips >= 2 || defined(__mips64)
802		case fsqrt_op:
803			handler.u = ieee754sp_sqrt;
804			goto scopuop;
805#endif
806#if __mips >= 4 && __mips != 32
807		case frsqrt_op:
808			handler.u = fpemu_sp_rsqrt;
809			goto scopuop;
810		case frecip_op:
811			handler.u = fpemu_sp_recip;
812			goto scopuop;
813#endif
814#if __mips >= 4
815		case fmovc_op:
816			cond = fpucondbit[MIPSInst_FT(ir) >> 2];
817			if (((ctx->fcr31 & cond) != 0) !=
818				((MIPSInst_FT(ir) & 1) != 0))
819				return 0;
820			SPFROMREG(rv.s, MIPSInst_FS(ir));
821			break;
822		case fmovz_op:
823			if (xcp->regs[MIPSInst_FT(ir)] != 0)
824				return 0;
825			SPFROMREG(rv.s, MIPSInst_FS(ir));
826			break;
827		case fmovn_op:
828			if (xcp->regs[MIPSInst_FT(ir)] == 0)
829				return 0;
830			SPFROMREG(rv.s, MIPSInst_FS(ir));
831			break;
832#endif
833		case fabs_op:
834			handler.u = ieee754sp_abs;
835			goto scopuop;
836		case fneg_op:
837			handler.u = ieee754sp_neg;
838			goto scopuop;
839		case fmov_op:
840			/* an easy one */
841			SPFROMREG(rv.s, MIPSInst_FS(ir));
842			goto copcsr;
843
844			/* binary op on handler */
845		      scopbop:
846			{
847				ieee754sp fs, ft;
848
849				SPFROMREG(fs, MIPSInst_FS(ir));
850				SPFROMREG(ft, MIPSInst_FT(ir));
851
852				rv.s = (*handler.b) (fs, ft);
853				goto copcsr;
854			}
855		      scopuop:
856			{
857				ieee754sp fs;
858
859				SPFROMREG(fs, MIPSInst_FS(ir));
860				rv.s = (*handler.u) (fs);
861				goto copcsr;
862			}
863		      copcsr:
864			if (ieee754_cxtest(IEEE754_INEXACT))
865				rcsr |= FPU_CSR_INE_X | FPU_CSR_INE_S;
866			if (ieee754_cxtest(IEEE754_UNDERFLOW))
867				rcsr |= FPU_CSR_UDF_X | FPU_CSR_UDF_S;
868			if (ieee754_cxtest(IEEE754_OVERFLOW))
869				rcsr |= FPU_CSR_OVF_X | FPU_CSR_OVF_S;
870			if (ieee754_cxtest(IEEE754_ZERO_DIVIDE))
871				rcsr |= FPU_CSR_DIV_X | FPU_CSR_DIV_S;
872			if (ieee754_cxtest(IEEE754_INVALID_OPERATION))
873				rcsr |= FPU_CSR_INV_X | FPU_CSR_INV_S;
874			break;
875
876			/* unary conv ops */
877		case fcvts_op:
878			return SIGILL;	/* not defined */
879		case fcvtd_op:{
880			ieee754sp fs;
881
882			SPFROMREG(fs, MIPSInst_FS(ir));
883			rv.d = ieee754dp_fsp(fs);
884			rfmt = d_fmt;
885			goto copcsr;
886		}
887		case fcvtw_op:{
888			ieee754sp fs;
889
890			SPFROMREG(fs, MIPSInst_FS(ir));
891			rv.w = ieee754sp_tint(fs);
892			rfmt = w_fmt;
893			goto copcsr;
894		}
895
896#if __mips >= 2 || defined(__mips64)
897		case fround_op:
898		case ftrunc_op:
899		case fceil_op:
900		case ffloor_op:{
901			unsigned int oldrm = ieee754_csr.rm;
902			ieee754sp fs;
903
904			SPFROMREG(fs, MIPSInst_FS(ir));
905			ieee754_csr.rm = ieee_rm[MIPSInst_FUNC(ir) & 0x3];
906			rv.w = ieee754sp_tint(fs);
907			ieee754_csr.rm = oldrm;
908			rfmt = w_fmt;
909			goto copcsr;
910		}
911#endif /* __mips >= 2 */
912
913#if defined(__mips64)
914		case fcvtl_op:{
915			ieee754sp fs;
916
917			SPFROMREG(fs, MIPSInst_FS(ir));
918			rv.l = ieee754sp_tlong(fs);
919			rfmt = l_fmt;
920			goto copcsr;
921		}
922
923		case froundl_op:
924		case ftruncl_op:
925		case fceill_op:
926		case ffloorl_op:{
927			unsigned int oldrm = ieee754_csr.rm;
928			ieee754sp fs;
929
930			SPFROMREG(fs, MIPSInst_FS(ir));
931			ieee754_csr.rm = ieee_rm[MIPSInst_FUNC(ir) & 0x3];
932			rv.l = ieee754sp_tlong(fs);
933			ieee754_csr.rm = oldrm;
934			rfmt = l_fmt;
935			goto copcsr;
936		}
937#endif /* defined(__mips64) */
938
939		default:
940			if (MIPSInst_FUNC(ir) >= fcmp_op) {
941				unsigned cmpop = MIPSInst_FUNC(ir) - fcmp_op;
942				ieee754sp fs, ft;
943
944				SPFROMREG(fs, MIPSInst_FS(ir));
945				SPFROMREG(ft, MIPSInst_FT(ir));
946				rv.w = ieee754sp_cmp(fs, ft,
947					cmptab[cmpop & 0x7], cmpop & 0x8);
948				rfmt = -1;
949				if ((cmpop & 0x8) && ieee754_cxtest
950					(IEEE754_INVALID_OPERATION))
951					rcsr = FPU_CSR_INV_X | FPU_CSR_INV_S;
952				else
953					goto copcsr;
954
955			}
956			else {
957				return SIGILL;
958			}
959			break;
960		}
961		break;
962	}
963
964	case d_fmt:{
965		union {
966			ieee754dp(*b) (ieee754dp, ieee754dp);
967			ieee754dp(*u) (ieee754dp);
968		} handler;
969
970		switch (MIPSInst_FUNC(ir)) {
971			/* binary ops */
972		case fadd_op:
973			handler.b = ieee754dp_add;
974			goto dcopbop;
975		case fsub_op:
976			handler.b = ieee754dp_sub;
977			goto dcopbop;
978		case fmul_op:
979			handler.b = ieee754dp_mul;
980			goto dcopbop;
981		case fdiv_op:
982			handler.b = ieee754dp_div;
983			goto dcopbop;
984
985			/* unary  ops */
986#if __mips >= 2 || defined(__mips64)
987		case fsqrt_op:
988			handler.u = ieee754dp_sqrt;
989			goto dcopuop;
990#endif
991#if __mips >= 4 && __mips != 32
992		case frsqrt_op:
993			handler.u = fpemu_dp_rsqrt;
994			goto dcopuop;
995		case frecip_op:
996			handler.u = fpemu_dp_recip;
997			goto dcopuop;
998#endif
999#if __mips >= 4
1000		case fmovc_op:
1001			cond = fpucondbit[MIPSInst_FT(ir) >> 2];
1002			if (((ctx->fcr31 & cond) != 0) !=
1003				((MIPSInst_FT(ir) & 1) != 0))
1004				return 0;
1005			DPFROMREG(rv.d, MIPSInst_FS(ir));
1006			break;
1007		case fmovz_op:
1008			if (xcp->regs[MIPSInst_FT(ir)] != 0)
1009				return 0;
1010			DPFROMREG(rv.d, MIPSInst_FS(ir));
1011			break;
1012		case fmovn_op:
1013			if (xcp->regs[MIPSInst_FT(ir)] == 0)
1014				return 0;
1015			DPFROMREG(rv.d, MIPSInst_FS(ir));
1016			break;
1017#endif
1018		case fabs_op:
1019			handler.u = ieee754dp_abs;
1020			goto dcopuop;
1021
1022		case fneg_op:
1023			handler.u = ieee754dp_neg;
1024			goto dcopuop;
1025
1026		case fmov_op:
1027			/* an easy one */
1028			DPFROMREG(rv.d, MIPSInst_FS(ir));
1029			goto copcsr;
1030
1031			/* binary op on handler */
1032		      dcopbop:{
1033				ieee754dp fs, ft;
1034
1035				DPFROMREG(fs, MIPSInst_FS(ir));
1036				DPFROMREG(ft, MIPSInst_FT(ir));
1037
1038				rv.d = (*handler.b) (fs, ft);
1039				goto copcsr;
1040			}
1041		      dcopuop:{
1042				ieee754dp fs;
1043
1044				DPFROMREG(fs, MIPSInst_FS(ir));
1045				rv.d = (*handler.u) (fs);
1046				goto copcsr;
1047			}
1048
1049			/* unary conv ops */
1050		case fcvts_op:{
1051			ieee754dp fs;
1052
1053			DPFROMREG(fs, MIPSInst_FS(ir));
1054			rv.s = ieee754sp_fdp(fs);
1055			rfmt = s_fmt;
1056			goto copcsr;
1057		}
1058		case fcvtd_op:
1059			return SIGILL;	/* not defined */
1060
1061		case fcvtw_op:{
1062			ieee754dp fs;
1063
1064			DPFROMREG(fs, MIPSInst_FS(ir));
1065			rv.w = ieee754dp_tint(fs);	/* wrong */
1066			rfmt = w_fmt;
1067			goto copcsr;
1068		}
1069
1070#if __mips >= 2 || defined(__mips64)
1071		case fround_op:
1072		case ftrunc_op:
1073		case fceil_op:
1074		case ffloor_op:{
1075			unsigned int oldrm = ieee754_csr.rm;
1076			ieee754dp fs;
1077
1078			DPFROMREG(fs, MIPSInst_FS(ir));
1079			ieee754_csr.rm = ieee_rm[MIPSInst_FUNC(ir) & 0x3];
1080			rv.w = ieee754dp_tint(fs);
1081			ieee754_csr.rm = oldrm;
1082			rfmt = w_fmt;
1083			goto copcsr;
1084		}
1085#endif
1086
1087#if defined(__mips64)
1088		case fcvtl_op:{
1089			ieee754dp fs;
1090
1091			DPFROMREG(fs, MIPSInst_FS(ir));
1092			rv.l = ieee754dp_tlong(fs);
1093			rfmt = l_fmt;
1094			goto copcsr;
1095		}
1096
1097		case froundl_op:
1098		case ftruncl_op:
1099		case fceill_op:
1100		case ffloorl_op:{
1101			unsigned int oldrm = ieee754_csr.rm;
1102			ieee754dp fs;
1103
1104			DPFROMREG(fs, MIPSInst_FS(ir));
1105			ieee754_csr.rm = ieee_rm[MIPSInst_FUNC(ir) & 0x3];
1106			rv.l = ieee754dp_tlong(fs);
1107			ieee754_csr.rm = oldrm;
1108			rfmt = l_fmt;
1109			goto copcsr;
1110		}
1111#endif /* __mips >= 3 */
1112
1113		default:
1114			if (MIPSInst_FUNC(ir) >= fcmp_op) {
1115				unsigned cmpop = MIPSInst_FUNC(ir) - fcmp_op;
1116				ieee754dp fs, ft;
1117
1118				DPFROMREG(fs, MIPSInst_FS(ir));
1119				DPFROMREG(ft, MIPSInst_FT(ir));
1120				rv.w = ieee754dp_cmp(fs, ft,
1121					cmptab[cmpop & 0x7], cmpop & 0x8);
1122				rfmt = -1;
1123				if ((cmpop & 0x8)
1124					&&
1125					ieee754_cxtest
1126					(IEEE754_INVALID_OPERATION))
1127					rcsr = FPU_CSR_INV_X | FPU_CSR_INV_S;
1128				else
1129					goto copcsr;
1130
1131			}
1132			else {
1133				return SIGILL;
1134			}
1135			break;
1136		}
1137		break;
1138	}
1139
1140	case w_fmt:{
1141		ieee754sp fs;
1142
1143		switch (MIPSInst_FUNC(ir)) {
1144		case fcvts_op:
1145			/* convert word to single precision real */
1146			SPFROMREG(fs, MIPSInst_FS(ir));
1147			rv.s = ieee754sp_fint(fs.bits);
1148			rfmt = s_fmt;
1149			goto copcsr;
1150		case fcvtd_op:
1151			/* convert word to double precision real */
1152			SPFROMREG(fs, MIPSInst_FS(ir));
1153			rv.d = ieee754dp_fint(fs.bits);
1154			rfmt = d_fmt;
1155			goto copcsr;
1156		default:
1157			return SIGILL;
1158		}
1159		break;
1160	}
1161
1162#if defined(__mips64)
1163	case l_fmt:{
1164		switch (MIPSInst_FUNC(ir)) {
1165		case fcvts_op:
1166			/* convert long to single precision real */
1167			rv.s = ieee754sp_flong(ctx->fpr[MIPSInst_FS(ir)]);
1168			rfmt = s_fmt;
1169			goto copcsr;
1170		case fcvtd_op:
1171			/* convert long to double precision real */
1172			rv.d = ieee754dp_flong(ctx->fpr[MIPSInst_FS(ir)]);
1173			rfmt = d_fmt;
1174			goto copcsr;
1175		default:
1176			return SIGILL;
1177		}
1178		break;
1179	}
1180#endif
1181
1182	default:
1183		return SIGILL;
1184	}
1185
1186	/*
1187	 * Update the fpu CSR register for this operation.
1188	 * If an exception is required, generate a tidy SIGFPE exception,
1189	 * without updating the result register.
1190	 * Note: cause exception bits do not accumulate, they are rewritten
1191	 * for each op; only the flag/sticky bits accumulate.
1192	 */
1193	ctx->fcr31 = (ctx->fcr31 & ~FPU_CSR_ALL_X) | rcsr;
1194	if ((ctx->fcr31 >> 5) & ctx->fcr31 & FPU_CSR_ALL_E) {
1195		/*printk ("SIGFPE: fpu csr = %08x\n",ctx->fcr31); */
1196		return SIGFPE;
1197	}
1198
1199	/*
1200	 * Now we can safely write the result back to the register file.
1201	 */
1202	switch (rfmt) {
1203	case -1:{
1204#if __mips >= 4
1205		cond = fpucondbit[MIPSInst_FD(ir) >> 2];
1206#else
1207		cond = FPU_CSR_COND;
1208#endif
1209		if (rv.w)
1210			ctx->fcr31 |= cond;
1211		else
1212			ctx->fcr31 &= ~cond;
1213		break;
1214	}
1215	case d_fmt:
1216		DPTOREG(rv.d, MIPSInst_FD(ir));
1217		break;
1218	case s_fmt:
1219		SPTOREG(rv.s, MIPSInst_FD(ir));
1220		break;
1221	case w_fmt:
1222		SITOREG(rv.w, MIPSInst_FD(ir));
1223		break;
1224#if defined(__mips64)
1225	case l_fmt:
1226		DITOREG(rv.l, MIPSInst_FD(ir));
1227		break;
1228#endif
1229	default:
1230		return SIGILL;
1231	}
1232
1233	return 0;
1234}
1235
1236int fpu_emulator_cop1Handler(struct pt_regs *xcp, struct mips_fpu_struct *ctx)
1237{
1238	unsigned long oldepc, prevepc;
1239	mips_instruction insn;
1240	int sig = 0;
1241
1242	oldepc = xcp->cp0_epc;
1243	do {
1244		prevepc = xcp->cp0_epc;
1245
1246		if (get_user(insn, (mips_instruction __user *) xcp->cp0_epc)) {
1247			fpuemustats.errors++;
1248			return SIGBUS;
1249		}
1250		if (insn == 0)
1251			xcp->cp0_epc += 4;	/* skip nops */
1252		else {
1253			/*
1254			 * The 'ieee754_csr' is an alias of
1255			 * ctx->fcr31.  No need to copy ctx->fcr31 to
1256			 * ieee754_csr.  But ieee754_csr.rm is ieee
1257			 * library modes. (not mips rounding mode)
1258			 */
1259			/* convert to ieee library modes */
1260			ieee754_csr.rm = ieee_rm[ieee754_csr.rm];
1261			sig = cop1Emulate(xcp, ctx);
1262			/* revert to mips rounding mode */
1263			ieee754_csr.rm = mips_rm[ieee754_csr.rm];
1264		}
1265
1266		if (cpu_has_fpu)
1267			break;
1268		if (sig)
1269			break;
1270
1271		cond_resched();
1272	} while (xcp->cp0_epc > prevepc);
1273
1274	/* SIGILL indicates a non-fpu instruction */
1275	if (sig == SIGILL && xcp->cp0_epc != oldepc)
1276		/* but if epc has advanced, then ignore it */
1277		sig = 0;
1278
1279	return sig;
1280}
1281