setup_64.c revision 0f6b77ca12bea571e0a97b0588f62aa5f6012d61
1/*
2 *
3 * Common boot and setup code.
4 *
5 * Copyright (C) 2001 PPC64 Team, IBM Corp
6 *
7 *      This program is free software; you can redistribute it and/or
8 *      modify it under the terms of the GNU General Public License
9 *      as published by the Free Software Foundation; either version
10 *      2 of the License, or (at your option) any later version.
11 */
12
13#undef DEBUG
14
15#include <linux/module.h>
16#include <linux/string.h>
17#include <linux/sched.h>
18#include <linux/init.h>
19#include <linux/kernel.h>
20#include <linux/reboot.h>
21#include <linux/delay.h>
22#include <linux/initrd.h>
23#include <linux/seq_file.h>
24#include <linux/ioport.h>
25#include <linux/console.h>
26#include <linux/utsname.h>
27#include <linux/tty.h>
28#include <linux/root_dev.h>
29#include <linux/notifier.h>
30#include <linux/cpu.h>
31#include <linux/unistd.h>
32#include <linux/serial.h>
33#include <linux/serial_8250.h>
34#include <linux/bootmem.h>
35#include <linux/pci.h>
36#include <linux/lockdep.h>
37#include <linux/memblock.h>
38#include <asm/io.h>
39#include <asm/kdump.h>
40#include <asm/prom.h>
41#include <asm/processor.h>
42#include <asm/pgtable.h>
43#include <asm/smp.h>
44#include <asm/elf.h>
45#include <asm/machdep.h>
46#include <asm/paca.h>
47#include <asm/time.h>
48#include <asm/cputable.h>
49#include <asm/sections.h>
50#include <asm/btext.h>
51#include <asm/nvram.h>
52#include <asm/setup.h>
53#include <asm/system.h>
54#include <asm/rtas.h>
55#include <asm/iommu.h>
56#include <asm/serial.h>
57#include <asm/cache.h>
58#include <asm/page.h>
59#include <asm/mmu.h>
60#include <asm/firmware.h>
61#include <asm/xmon.h>
62#include <asm/udbg.h>
63#include <asm/kexec.h>
64#include <asm/mmu_context.h>
65
66#include "setup.h"
67
68#ifdef DEBUG
69#define DBG(fmt...) udbg_printf(fmt)
70#else
71#define DBG(fmt...)
72#endif
73
74int boot_cpuid = 0;
75u64 ppc64_pft_size;
76
77/* Pick defaults since we might want to patch instructions
78 * before we've read this from the device tree.
79 */
80struct ppc64_caches ppc64_caches = {
81	.dline_size = 0x40,
82	.log_dline_size = 6,
83	.iline_size = 0x40,
84	.log_iline_size = 6
85};
86EXPORT_SYMBOL_GPL(ppc64_caches);
87
88/*
89 * These are used in binfmt_elf.c to put aux entries on the stack
90 * for each elf executable being started.
91 */
92int dcache_bsize;
93int icache_bsize;
94int ucache_bsize;
95
96#ifdef CONFIG_SMP
97
98static char *smt_enabled_cmdline;
99
100/* Look for ibm,smt-enabled OF option */
101static void check_smt_enabled(void)
102{
103	struct device_node *dn;
104	const char *smt_option;
105
106	/* Default to enabling all threads */
107	smt_enabled_at_boot = threads_per_core;
108
109	/* Allow the command line to overrule the OF option */
110	if (smt_enabled_cmdline) {
111		if (!strcmp(smt_enabled_cmdline, "on"))
112			smt_enabled_at_boot = threads_per_core;
113		else if (!strcmp(smt_enabled_cmdline, "off"))
114			smt_enabled_at_boot = 0;
115		else {
116			long smt;
117			int rc;
118
119			rc = strict_strtol(smt_enabled_cmdline, 10, &smt);
120			if (!rc)
121				smt_enabled_at_boot =
122					min(threads_per_core, (int)smt);
123		}
124	} else {
125		dn = of_find_node_by_path("/options");
126		if (dn) {
127			smt_option = of_get_property(dn, "ibm,smt-enabled",
128						     NULL);
129
130			if (smt_option) {
131				if (!strcmp(smt_option, "on"))
132					smt_enabled_at_boot = threads_per_core;
133				else if (!strcmp(smt_option, "off"))
134					smt_enabled_at_boot = 0;
135			}
136
137			of_node_put(dn);
138		}
139	}
140}
141
142/* Look for smt-enabled= cmdline option */
143static int __init early_smt_enabled(char *p)
144{
145	smt_enabled_cmdline = p;
146	return 0;
147}
148early_param("smt-enabled", early_smt_enabled);
149
150#else
151#define check_smt_enabled()
152#endif /* CONFIG_SMP */
153
154/*
155 * Early initialization entry point. This is called by head.S
156 * with MMU translation disabled. We rely on the "feature" of
157 * the CPU that ignores the top 2 bits of the address in real
158 * mode so we can access kernel globals normally provided we
159 * only toy with things in the RMO region. From here, we do
160 * some early parsing of the device-tree to setup out MEMBLOCK
161 * data structures, and allocate & initialize the hash table
162 * and segment tables so we can start running with translation
163 * enabled.
164 *
165 * It is this function which will call the probe() callback of
166 * the various platform types and copy the matching one to the
167 * global ppc_md structure. Your platform can eventually do
168 * some very early initializations from the probe() routine, but
169 * this is not recommended, be very careful as, for example, the
170 * device-tree is not accessible via normal means at this point.
171 */
172
173void __init early_setup(unsigned long dt_ptr)
174{
175	/* -------- printk is _NOT_ safe to use here ! ------- */
176
177	/* Identify CPU type */
178	identify_cpu(0, mfspr(SPRN_PVR));
179
180	/* Assume we're on cpu 0 for now. Don't write to the paca yet! */
181	initialise_paca(&boot_paca, 0);
182	setup_paca(&boot_paca);
183
184	/* Initialize lockdep early or else spinlocks will blow */
185	lockdep_init();
186
187	/* -------- printk is now safe to use ------- */
188
189	/* Enable early debugging if any specified (see udbg.h) */
190	udbg_early_init();
191
192 	DBG(" -> early_setup(), dt_ptr: 0x%lx\n", dt_ptr);
193
194	/*
195	 * Do early initialization using the flattened device
196	 * tree, such as retrieving the physical memory map or
197	 * calculating/retrieving the hash table size.
198	 */
199	early_init_devtree(__va(dt_ptr));
200
201	/* Now we know the logical id of our boot cpu, setup the paca. */
202	setup_paca(&paca[boot_cpuid]);
203
204	/* Fix up paca fields required for the boot cpu */
205	get_paca()->cpu_start = 1;
206
207	/* Probe the machine type */
208	probe_machine();
209
210	setup_kdump_trampoline();
211
212	DBG("Found, Initializing memory management...\n");
213
214	/* Initialize the hash table or TLB handling */
215	early_init_mmu();
216
217	DBG(" <- early_setup()\n");
218}
219
220#ifdef CONFIG_SMP
221void early_setup_secondary(void)
222{
223	/* Mark interrupts enabled in PACA */
224	get_paca()->soft_enabled = 0;
225
226	/* Initialize the hash table or TLB handling */
227	early_init_mmu_secondary();
228}
229
230#endif /* CONFIG_SMP */
231
232#if defined(CONFIG_SMP) || defined(CONFIG_KEXEC)
233void smp_release_cpus(void)
234{
235	unsigned long *ptr;
236
237	DBG(" -> smp_release_cpus()\n");
238
239	/* All secondary cpus are spinning on a common spinloop, release them
240	 * all now so they can start to spin on their individual paca
241	 * spinloops. For non SMP kernels, the secondary cpus never get out
242	 * of the common spinloop.
243	 */
244
245	ptr  = (unsigned long *)((unsigned long)&__secondary_hold_spinloop
246			- PHYSICAL_START);
247	*ptr = __pa(generic_secondary_smp_init);
248	mb();
249
250	DBG(" <- smp_release_cpus()\n");
251}
252#endif /* CONFIG_SMP || CONFIG_KEXEC */
253
254/*
255 * Initialize some remaining members of the ppc64_caches and systemcfg
256 * structures
257 * (at least until we get rid of them completely). This is mostly some
258 * cache informations about the CPU that will be used by cache flush
259 * routines and/or provided to userland
260 */
261static void __init initialize_cache_info(void)
262{
263	struct device_node *np;
264	unsigned long num_cpus = 0;
265
266	DBG(" -> initialize_cache_info()\n");
267
268	for (np = NULL; (np = of_find_node_by_type(np, "cpu"));) {
269		num_cpus += 1;
270
271		/* We're assuming *all* of the CPUs have the same
272		 * d-cache and i-cache sizes... -Peter
273		 */
274
275		if ( num_cpus == 1 ) {
276			const u32 *sizep, *lsizep;
277			u32 size, lsize;
278
279			size = 0;
280			lsize = cur_cpu_spec->dcache_bsize;
281			sizep = of_get_property(np, "d-cache-size", NULL);
282			if (sizep != NULL)
283				size = *sizep;
284			lsizep = of_get_property(np, "d-cache-block-size", NULL);
285			/* fallback if block size missing */
286			if (lsizep == NULL)
287				lsizep = of_get_property(np, "d-cache-line-size", NULL);
288			if (lsizep != NULL)
289				lsize = *lsizep;
290			if (sizep == 0 || lsizep == 0)
291				DBG("Argh, can't find dcache properties ! "
292				    "sizep: %p, lsizep: %p\n", sizep, lsizep);
293
294			ppc64_caches.dsize = size;
295			ppc64_caches.dline_size = lsize;
296			ppc64_caches.log_dline_size = __ilog2(lsize);
297			ppc64_caches.dlines_per_page = PAGE_SIZE / lsize;
298
299			size = 0;
300			lsize = cur_cpu_spec->icache_bsize;
301			sizep = of_get_property(np, "i-cache-size", NULL);
302			if (sizep != NULL)
303				size = *sizep;
304			lsizep = of_get_property(np, "i-cache-block-size", NULL);
305			if (lsizep == NULL)
306				lsizep = of_get_property(np, "i-cache-line-size", NULL);
307			if (lsizep != NULL)
308				lsize = *lsizep;
309			if (sizep == 0 || lsizep == 0)
310				DBG("Argh, can't find icache properties ! "
311				    "sizep: %p, lsizep: %p\n", sizep, lsizep);
312
313			ppc64_caches.isize = size;
314			ppc64_caches.iline_size = lsize;
315			ppc64_caches.log_iline_size = __ilog2(lsize);
316			ppc64_caches.ilines_per_page = PAGE_SIZE / lsize;
317		}
318	}
319
320	DBG(" <- initialize_cache_info()\n");
321}
322
323
324/*
325 * Do some initial setup of the system.  The parameters are those which
326 * were passed in from the bootloader.
327 */
328void __init setup_system(void)
329{
330	DBG(" -> setup_system()\n");
331
332	/* Apply the CPUs-specific and firmware specific fixups to kernel
333	 * text (nop out sections not relevant to this CPU or this firmware)
334	 */
335	do_feature_fixups(cur_cpu_spec->cpu_features,
336			  &__start___ftr_fixup, &__stop___ftr_fixup);
337	do_feature_fixups(cur_cpu_spec->mmu_features,
338			  &__start___mmu_ftr_fixup, &__stop___mmu_ftr_fixup);
339	do_feature_fixups(powerpc_firmware_features,
340			  &__start___fw_ftr_fixup, &__stop___fw_ftr_fixup);
341	do_lwsync_fixups(cur_cpu_spec->cpu_features,
342			 &__start___lwsync_fixup, &__stop___lwsync_fixup);
343
344	/*
345	 * Unflatten the device-tree passed by prom_init or kexec
346	 */
347	unflatten_device_tree();
348
349	/*
350	 * Fill the ppc64_caches & systemcfg structures with informations
351 	 * retrieved from the device-tree.
352	 */
353	initialize_cache_info();
354
355#ifdef CONFIG_PPC_RTAS
356	/*
357	 * Initialize RTAS if available
358	 */
359	rtas_initialize();
360#endif /* CONFIG_PPC_RTAS */
361
362	/*
363	 * Check if we have an initrd provided via the device-tree
364	 */
365	check_for_initrd();
366
367	/*
368	 * Do some platform specific early initializations, that includes
369	 * setting up the hash table pointers. It also sets up some interrupt-mapping
370	 * related options that will be used by finish_device_tree()
371	 */
372	if (ppc_md.init_early)
373		ppc_md.init_early();
374
375 	/*
376	 * We can discover serial ports now since the above did setup the
377	 * hash table management for us, thus ioremap works. We do that early
378	 * so that further code can be debugged
379	 */
380	find_legacy_serial_ports();
381
382	/*
383	 * Register early console
384	 */
385	register_early_udbg_console();
386
387	/*
388	 * Initialize xmon
389	 */
390	xmon_setup();
391
392	smp_setup_cpu_maps();
393	check_smt_enabled();
394
395#ifdef CONFIG_SMP
396	/* Release secondary cpus out of their spinloops at 0x60 now that
397	 * we can map physical -> logical CPU ids
398	 */
399	smp_release_cpus();
400#endif
401
402	printk("Starting Linux PPC64 %s\n", init_utsname()->version);
403
404	printk("-----------------------------------------------------\n");
405	printk("ppc64_pft_size                = 0x%llx\n", ppc64_pft_size);
406	printk("physicalMemorySize            = 0x%llx\n", memblock_phys_mem_size());
407	if (ppc64_caches.dline_size != 0x80)
408		printk("ppc64_caches.dcache_line_size = 0x%x\n",
409		       ppc64_caches.dline_size);
410	if (ppc64_caches.iline_size != 0x80)
411		printk("ppc64_caches.icache_line_size = 0x%x\n",
412		       ppc64_caches.iline_size);
413#ifdef CONFIG_PPC_STD_MMU_64
414	if (htab_address)
415		printk("htab_address                  = 0x%p\n", htab_address);
416	printk("htab_hash_mask                = 0x%lx\n", htab_hash_mask);
417#endif /* CONFIG_PPC_STD_MMU_64 */
418	if (PHYSICAL_START > 0)
419		printk("physical_start                = 0x%llx\n",
420		       (unsigned long long)PHYSICAL_START);
421	printk("-----------------------------------------------------\n");
422
423	DBG(" <- setup_system()\n");
424}
425
426static u64 slb0_limit(void)
427{
428	if (cpu_has_feature(CPU_FTR_1T_SEGMENT)) {
429		return 1UL << SID_SHIFT_1T;
430	}
431	return 1UL << SID_SHIFT;
432}
433
434static void __init irqstack_early_init(void)
435{
436	u64 limit = slb0_limit();
437	unsigned int i;
438
439	/*
440	 * interrupt stacks must be under 256MB, we cannot afford to take
441	 * SLB misses on them.
442	 */
443	for_each_possible_cpu(i) {
444		softirq_ctx[i] = (struct thread_info *)
445			__va(memblock_alloc_base(THREAD_SIZE,
446					    THREAD_SIZE, limit));
447		hardirq_ctx[i] = (struct thread_info *)
448			__va(memblock_alloc_base(THREAD_SIZE,
449					    THREAD_SIZE, limit));
450	}
451}
452
453#ifdef CONFIG_PPC_BOOK3E
454static void __init exc_lvl_early_init(void)
455{
456	unsigned int i;
457
458	for_each_possible_cpu(i) {
459		critirq_ctx[i] = (struct thread_info *)
460			__va(memblock_alloc(THREAD_SIZE, THREAD_SIZE));
461		dbgirq_ctx[i] = (struct thread_info *)
462			__va(memblock_alloc(THREAD_SIZE, THREAD_SIZE));
463		mcheckirq_ctx[i] = (struct thread_info *)
464			__va(memblock_alloc(THREAD_SIZE, THREAD_SIZE));
465	}
466}
467#else
468#define exc_lvl_early_init()
469#endif
470
471/*
472 * Stack space used when we detect a bad kernel stack pointer, and
473 * early in SMP boots before relocation is enabled.
474 */
475static void __init emergency_stack_init(void)
476{
477	u64 limit;
478	unsigned int i;
479
480	/*
481	 * Emergency stacks must be under 256MB, we cannot afford to take
482	 * SLB misses on them. The ABI also requires them to be 128-byte
483	 * aligned.
484	 *
485	 * Since we use these as temporary stacks during secondary CPU
486	 * bringup, we need to get at them in real mode. This means they
487	 * must also be within the RMO region.
488	 */
489	limit = min(slb0_limit(), ppc64_rma_size);
490
491	for_each_possible_cpu(i) {
492		unsigned long sp;
493		sp  = memblock_alloc_base(THREAD_SIZE, THREAD_SIZE, limit);
494		sp += THREAD_SIZE;
495		paca[i].emergency_sp = __va(sp);
496	}
497}
498
499/*
500 * Called into from start_kernel this initializes bootmem, which is used
501 * to manage page allocation until mem_init is called.
502 */
503void __init setup_arch(char **cmdline_p)
504{
505	ppc64_boot_msg(0x12, "Setup Arch");
506
507	*cmdline_p = cmd_line;
508
509	/*
510	 * Set cache line size based on type of cpu as a default.
511	 * Systems with OF can look in the properties on the cpu node(s)
512	 * for a possibly more accurate value.
513	 */
514	dcache_bsize = ppc64_caches.dline_size;
515	icache_bsize = ppc64_caches.iline_size;
516
517	/* reboot on panic */
518	panic_timeout = 180;
519
520	if (ppc_md.panic)
521		setup_panic();
522
523	init_mm.start_code = (unsigned long)_stext;
524	init_mm.end_code = (unsigned long) _etext;
525	init_mm.end_data = (unsigned long) _edata;
526	init_mm.brk = klimit;
527
528	irqstack_early_init();
529	exc_lvl_early_init();
530	emergency_stack_init();
531
532#ifdef CONFIG_PPC_STD_MMU_64
533	stabs_alloc();
534#endif
535	/* set up the bootmem stuff with available memory */
536	do_init_bootmem();
537	sparse_init();
538
539#ifdef CONFIG_DUMMY_CONSOLE
540	conswitchp = &dummy_con;
541#endif
542
543	if (ppc_md.setup_arch)
544		ppc_md.setup_arch();
545
546	paging_init();
547
548	/* Initialize the MMU context management stuff */
549	mmu_context_init();
550
551	ppc64_boot_msg(0x15, "Setup Done");
552}
553
554
555/* ToDo: do something useful if ppc_md is not yet setup. */
556#define PPC64_LINUX_FUNCTION 0x0f000000
557#define PPC64_IPL_MESSAGE 0xc0000000
558#define PPC64_TERM_MESSAGE 0xb0000000
559
560static void ppc64_do_msg(unsigned int src, const char *msg)
561{
562	if (ppc_md.progress) {
563		char buf[128];
564
565		sprintf(buf, "%08X\n", src);
566		ppc_md.progress(buf, 0);
567		snprintf(buf, 128, "%s", msg);
568		ppc_md.progress(buf, 0);
569	}
570}
571
572/* Print a boot progress message. */
573void ppc64_boot_msg(unsigned int src, const char *msg)
574{
575	ppc64_do_msg(PPC64_LINUX_FUNCTION|PPC64_IPL_MESSAGE|src, msg);
576	printk("[boot]%04x %s\n", src, msg);
577}
578
579#ifdef CONFIG_SMP
580#define PCPU_DYN_SIZE		()
581
582static void * __init pcpu_fc_alloc(unsigned int cpu, size_t size, size_t align)
583{
584	return __alloc_bootmem_node(NODE_DATA(cpu_to_node(cpu)), size, align,
585				    __pa(MAX_DMA_ADDRESS));
586}
587
588static void __init pcpu_fc_free(void *ptr, size_t size)
589{
590	free_bootmem(__pa(ptr), size);
591}
592
593static int pcpu_cpu_distance(unsigned int from, unsigned int to)
594{
595	if (cpu_to_node(from) == cpu_to_node(to))
596		return LOCAL_DISTANCE;
597	else
598		return REMOTE_DISTANCE;
599}
600
601unsigned long __per_cpu_offset[NR_CPUS] __read_mostly;
602EXPORT_SYMBOL(__per_cpu_offset);
603
604void __init setup_per_cpu_areas(void)
605{
606	const size_t dyn_size = PERCPU_MODULE_RESERVE + PERCPU_DYNAMIC_RESERVE;
607	size_t atom_size;
608	unsigned long delta;
609	unsigned int cpu;
610	int rc;
611
612	/*
613	 * Linear mapping is one of 4K, 1M and 16M.  For 4K, no need
614	 * to group units.  For larger mappings, use 1M atom which
615	 * should be large enough to contain a number of units.
616	 */
617	if (mmu_linear_psize == MMU_PAGE_4K)
618		atom_size = PAGE_SIZE;
619	else
620		atom_size = 1 << 20;
621
622	rc = pcpu_embed_first_chunk(0, dyn_size, atom_size, pcpu_cpu_distance,
623				    pcpu_fc_alloc, pcpu_fc_free);
624	if (rc < 0)
625		panic("cannot initialize percpu area (err=%d)", rc);
626
627	delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start;
628	for_each_possible_cpu(cpu) {
629                __per_cpu_offset[cpu] = delta + pcpu_unit_offsets[cpu];
630		paca[cpu].data_offset = __per_cpu_offset[cpu];
631	}
632}
633#endif
634
635
636#ifdef CONFIG_PPC_INDIRECT_IO
637struct ppc_pci_io ppc_pci_io;
638EXPORT_SYMBOL(ppc_pci_io);
639#endif /* CONFIG_PPC_INDIRECT_IO */
640
641