setup_64.c revision 1269277a5e7c6d7ae1852e648a8bcdb78035e9fa
1/*
2 *
3 * Common boot and setup code.
4 *
5 * Copyright (C) 2001 PPC64 Team, IBM Corp
6 *
7 *      This program is free software; you can redistribute it and/or
8 *      modify it under the terms of the GNU General Public License
9 *      as published by the Free Software Foundation; either version
10 *      2 of the License, or (at your option) any later version.
11 */
12
13#undef DEBUG
14
15#include <linux/config.h>
16#include <linux/module.h>
17#include <linux/string.h>
18#include <linux/sched.h>
19#include <linux/init.h>
20#include <linux/kernel.h>
21#include <linux/reboot.h>
22#include <linux/delay.h>
23#include <linux/initrd.h>
24#include <linux/ide.h>
25#include <linux/seq_file.h>
26#include <linux/ioport.h>
27#include <linux/console.h>
28#include <linux/utsname.h>
29#include <linux/tty.h>
30#include <linux/root_dev.h>
31#include <linux/notifier.h>
32#include <linux/cpu.h>
33#include <linux/unistd.h>
34#include <linux/serial.h>
35#include <linux/serial_8250.h>
36#include <linux/bootmem.h>
37#include <asm/io.h>
38#include <asm/kdump.h>
39#include <asm/prom.h>
40#include <asm/processor.h>
41#include <asm/pgtable.h>
42#include <asm/smp.h>
43#include <asm/elf.h>
44#include <asm/machdep.h>
45#include <asm/paca.h>
46#include <asm/time.h>
47#include <asm/cputable.h>
48#include <asm/sections.h>
49#include <asm/btext.h>
50#include <asm/nvram.h>
51#include <asm/setup.h>
52#include <asm/system.h>
53#include <asm/rtas.h>
54#include <asm/iommu.h>
55#include <asm/serial.h>
56#include <asm/cache.h>
57#include <asm/page.h>
58#include <asm/mmu.h>
59#include <asm/lmb.h>
60#include <asm/iseries/it_lp_naca.h>
61#include <asm/firmware.h>
62#include <asm/xmon.h>
63#include <asm/udbg.h>
64#include <asm/kexec.h>
65
66#include "setup.h"
67
68#ifdef DEBUG
69#define DBG(fmt...) udbg_printf(fmt)
70#else
71#define DBG(fmt...)
72#endif
73
74int have_of = 1;
75int boot_cpuid = 0;
76dev_t boot_dev;
77u64 ppc64_pft_size;
78
79/* Pick defaults since we might want to patch instructions
80 * before we've read this from the device tree.
81 */
82struct ppc64_caches ppc64_caches = {
83	.dline_size = 0x80,
84	.log_dline_size = 7,
85	.iline_size = 0x80,
86	.log_iline_size = 7
87};
88EXPORT_SYMBOL_GPL(ppc64_caches);
89
90/*
91 * These are used in binfmt_elf.c to put aux entries on the stack
92 * for each elf executable being started.
93 */
94int dcache_bsize;
95int icache_bsize;
96int ucache_bsize;
97
98#ifdef CONFIG_MAGIC_SYSRQ
99unsigned long SYSRQ_KEY;
100#endif /* CONFIG_MAGIC_SYSRQ */
101
102
103static int ppc64_panic_event(struct notifier_block *, unsigned long, void *);
104static struct notifier_block ppc64_panic_block = {
105	.notifier_call = ppc64_panic_event,
106	.priority = INT_MIN /* may not return; must be done last */
107};
108
109#ifdef CONFIG_SMP
110
111static int smt_enabled_cmdline;
112
113/* Look for ibm,smt-enabled OF option */
114static void check_smt_enabled(void)
115{
116	struct device_node *dn;
117	char *smt_option;
118
119	/* Allow the command line to overrule the OF option */
120	if (smt_enabled_cmdline)
121		return;
122
123	dn = of_find_node_by_path("/options");
124
125	if (dn) {
126		smt_option = (char *)get_property(dn, "ibm,smt-enabled", NULL);
127
128                if (smt_option) {
129			if (!strcmp(smt_option, "on"))
130				smt_enabled_at_boot = 1;
131			else if (!strcmp(smt_option, "off"))
132				smt_enabled_at_boot = 0;
133                }
134        }
135}
136
137/* Look for smt-enabled= cmdline option */
138static int __init early_smt_enabled(char *p)
139{
140	smt_enabled_cmdline = 1;
141
142	if (!p)
143		return 0;
144
145	if (!strcmp(p, "on") || !strcmp(p, "1"))
146		smt_enabled_at_boot = 1;
147	else if (!strcmp(p, "off") || !strcmp(p, "0"))
148		smt_enabled_at_boot = 0;
149
150	return 0;
151}
152early_param("smt-enabled", early_smt_enabled);
153
154#else
155#define check_smt_enabled()
156#endif /* CONFIG_SMP */
157
158/*
159 * Early initialization entry point. This is called by head.S
160 * with MMU translation disabled. We rely on the "feature" of
161 * the CPU that ignores the top 2 bits of the address in real
162 * mode so we can access kernel globals normally provided we
163 * only toy with things in the RMO region. From here, we do
164 * some early parsing of the device-tree to setup out LMB
165 * data structures, and allocate & initialize the hash table
166 * and segment tables so we can start running with translation
167 * enabled.
168 *
169 * It is this function which will call the probe() callback of
170 * the various platform types and copy the matching one to the
171 * global ppc_md structure. Your platform can eventually do
172 * some very early initializations from the probe() routine, but
173 * this is not recommended, be very careful as, for example, the
174 * device-tree is not accessible via normal means at this point.
175 */
176
177void __init early_setup(unsigned long dt_ptr)
178{
179	/* Enable early debugging if any specified (see udbg.h) */
180	udbg_early_init();
181
182 	DBG(" -> early_setup(), dt_ptr: 0x%lx\n", dt_ptr);
183
184	/*
185	 * Do early initializations using the flattened device
186	 * tree, like retreiving the physical memory map or
187	 * calculating/retreiving the hash table size
188	 */
189	early_init_devtree(__va(dt_ptr));
190
191	/* Now we know the logical id of our boot cpu, setup the paca. */
192	setup_boot_paca();
193
194	/* Fix up paca fields required for the boot cpu */
195	get_paca()->cpu_start = 1;
196	get_paca()->stab_real = __pa((u64)&initial_stab);
197	get_paca()->stab_addr = (u64)&initial_stab;
198
199	/* Probe the machine type */
200	probe_machine();
201
202#ifdef CONFIG_CRASH_DUMP
203	kdump_setup();
204#endif
205
206	DBG("Found, Initializing memory management...\n");
207
208	/*
209	 * Initialize the MMU Hash table and create the linear mapping
210	 * of memory. Has to be done before stab/slb initialization as
211	 * this is currently where the page size encoding is obtained
212	 */
213	htab_initialize();
214
215	/*
216	 * Initialize stab / SLB management except on iSeries
217	 */
218	if (cpu_has_feature(CPU_FTR_SLB))
219		slb_initialize();
220	else if (!firmware_has_feature(FW_FEATURE_ISERIES))
221		stab_initialize(get_paca()->stab_real);
222
223	DBG(" <- early_setup()\n");
224}
225
226#ifdef CONFIG_SMP
227void early_setup_secondary(void)
228{
229	struct paca_struct *lpaca = get_paca();
230
231	/* Mark enabled in PACA */
232	lpaca->proc_enabled = 0;
233
234	/* Initialize hash table for that CPU */
235	htab_initialize_secondary();
236
237	/* Initialize STAB/SLB. We use a virtual address as it works
238	 * in real mode on pSeries and we want a virutal address on
239	 * iSeries anyway
240	 */
241	if (cpu_has_feature(CPU_FTR_SLB))
242		slb_initialize();
243	else
244		stab_initialize(lpaca->stab_addr);
245}
246
247#endif /* CONFIG_SMP */
248
249#if defined(CONFIG_SMP) || defined(CONFIG_KEXEC)
250void smp_release_cpus(void)
251{
252	extern unsigned long __secondary_hold_spinloop;
253	unsigned long *ptr;
254
255	DBG(" -> smp_release_cpus()\n");
256
257	/* All secondary cpus are spinning on a common spinloop, release them
258	 * all now so they can start to spin on their individual paca
259	 * spinloops. For non SMP kernels, the secondary cpus never get out
260	 * of the common spinloop.
261	 * This is useless but harmless on iSeries, secondaries are already
262	 * waiting on their paca spinloops. */
263
264	ptr  = (unsigned long *)((unsigned long)&__secondary_hold_spinloop
265			- PHYSICAL_START);
266	*ptr = 1;
267	mb();
268
269	DBG(" <- smp_release_cpus()\n");
270}
271#endif /* CONFIG_SMP || CONFIG_KEXEC */
272
273/*
274 * Initialize some remaining members of the ppc64_caches and systemcfg
275 * structures
276 * (at least until we get rid of them completely). This is mostly some
277 * cache informations about the CPU that will be used by cache flush
278 * routines and/or provided to userland
279 */
280static void __init initialize_cache_info(void)
281{
282	struct device_node *np;
283	unsigned long num_cpus = 0;
284
285	DBG(" -> initialize_cache_info()\n");
286
287	for (np = NULL; (np = of_find_node_by_type(np, "cpu"));) {
288		num_cpus += 1;
289
290		/* We're assuming *all* of the CPUs have the same
291		 * d-cache and i-cache sizes... -Peter
292		 */
293
294		if ( num_cpus == 1 ) {
295			u32 *sizep, *lsizep;
296			u32 size, lsize;
297			const char *dc, *ic;
298
299			/* Then read cache informations */
300			if (machine_is(powermac)) {
301				dc = "d-cache-block-size";
302				ic = "i-cache-block-size";
303			} else {
304				dc = "d-cache-line-size";
305				ic = "i-cache-line-size";
306			}
307
308			size = 0;
309			lsize = cur_cpu_spec->dcache_bsize;
310			sizep = (u32 *)get_property(np, "d-cache-size", NULL);
311			if (sizep != NULL)
312				size = *sizep;
313			lsizep = (u32 *) get_property(np, dc, NULL);
314			if (lsizep != NULL)
315				lsize = *lsizep;
316			if (sizep == 0 || lsizep == 0)
317				DBG("Argh, can't find dcache properties ! "
318				    "sizep: %p, lsizep: %p\n", sizep, lsizep);
319
320			ppc64_caches.dsize = size;
321			ppc64_caches.dline_size = lsize;
322			ppc64_caches.log_dline_size = __ilog2(lsize);
323			ppc64_caches.dlines_per_page = PAGE_SIZE / lsize;
324
325			size = 0;
326			lsize = cur_cpu_spec->icache_bsize;
327			sizep = (u32 *)get_property(np, "i-cache-size", NULL);
328			if (sizep != NULL)
329				size = *sizep;
330			lsizep = (u32 *)get_property(np, ic, NULL);
331			if (lsizep != NULL)
332				lsize = *lsizep;
333			if (sizep == 0 || lsizep == 0)
334				DBG("Argh, can't find icache properties ! "
335				    "sizep: %p, lsizep: %p\n", sizep, lsizep);
336
337			ppc64_caches.isize = size;
338			ppc64_caches.iline_size = lsize;
339			ppc64_caches.log_iline_size = __ilog2(lsize);
340			ppc64_caches.ilines_per_page = PAGE_SIZE / lsize;
341		}
342	}
343
344	DBG(" <- initialize_cache_info()\n");
345}
346
347
348/*
349 * Do some initial setup of the system.  The parameters are those which
350 * were passed in from the bootloader.
351 */
352void __init setup_system(void)
353{
354	DBG(" -> setup_system()\n");
355
356#ifdef CONFIG_KEXEC
357	kdump_move_device_tree();
358#endif
359	/*
360	 * Unflatten the device-tree passed by prom_init or kexec
361	 */
362	unflatten_device_tree();
363
364#ifdef CONFIG_KEXEC
365	kexec_setup();	/* requires unflattened device tree. */
366#endif
367
368	/*
369	 * Fill the ppc64_caches & systemcfg structures with informations
370	 * retrieved from the device-tree. Need to be called before
371	 * finish_device_tree() since the later requires some of the
372	 * informations filled up here to properly parse the interrupt
373	 * tree.
374	 * It also sets up the cache line sizes which allows to call
375	 * routines like flush_icache_range (used by the hash init
376	 * later on).
377	 */
378	initialize_cache_info();
379
380#ifdef CONFIG_PPC_RTAS
381	/*
382	 * Initialize RTAS if available
383	 */
384	rtas_initialize();
385#endif /* CONFIG_PPC_RTAS */
386
387	/*
388	 * Check if we have an initrd provided via the device-tree
389	 */
390	check_for_initrd();
391
392	/*
393	 * Do some platform specific early initializations, that includes
394	 * setting up the hash table pointers. It also sets up some interrupt-mapping
395	 * related options that will be used by finish_device_tree()
396	 */
397	ppc_md.init_early();
398
399 	/*
400	 * We can discover serial ports now since the above did setup the
401	 * hash table management for us, thus ioremap works. We do that early
402	 * so that further code can be debugged
403	 */
404	find_legacy_serial_ports();
405
406	/*
407	 * "Finish" the device-tree, that is do the actual parsing of
408	 * some of the properties like the interrupt map
409	 */
410	finish_device_tree();
411
412	/*
413	 * Initialize xmon
414	 */
415#ifdef CONFIG_XMON_DEFAULT
416	xmon_init(1);
417#endif
418	/*
419	 * Register early console
420	 */
421	register_early_udbg_console();
422
423	/* Save unparsed command line copy for /proc/cmdline */
424	strlcpy(saved_command_line, cmd_line, COMMAND_LINE_SIZE);
425
426	parse_early_param();
427
428	check_smt_enabled();
429	smp_setup_cpu_maps();
430
431#ifdef CONFIG_SMP
432	/* Release secondary cpus out of their spinloops at 0x60 now that
433	 * we can map physical -> logical CPU ids
434	 */
435	smp_release_cpus();
436#endif
437
438	printk("Starting Linux PPC64 %s\n", system_utsname.version);
439
440	printk("-----------------------------------------------------\n");
441	printk("ppc64_pft_size                = 0x%lx\n", ppc64_pft_size);
442	printk("ppc64_interrupt_controller    = 0x%ld\n",
443	       ppc64_interrupt_controller);
444	printk("physicalMemorySize            = 0x%lx\n", lmb_phys_mem_size());
445	printk("ppc64_caches.dcache_line_size = 0x%x\n",
446	       ppc64_caches.dline_size);
447	printk("ppc64_caches.icache_line_size = 0x%x\n",
448	       ppc64_caches.iline_size);
449	printk("htab_address                  = 0x%p\n", htab_address);
450	printk("htab_hash_mask                = 0x%lx\n", htab_hash_mask);
451#if PHYSICAL_START > 0
452	printk("physical_start                = 0x%x\n", PHYSICAL_START);
453#endif
454	printk("-----------------------------------------------------\n");
455
456	DBG(" <- setup_system()\n");
457}
458
459static int ppc64_panic_event(struct notifier_block *this,
460                             unsigned long event, void *ptr)
461{
462	ppc_md.panic((char *)ptr);  /* May not return */
463	return NOTIFY_DONE;
464}
465
466#ifdef CONFIG_IRQSTACKS
467static void __init irqstack_early_init(void)
468{
469	unsigned int i;
470
471	/*
472	 * interrupt stacks must be under 256MB, we cannot afford to take
473	 * SLB misses on them.
474	 */
475	for_each_possible_cpu(i) {
476		softirq_ctx[i] = (struct thread_info *)
477			__va(lmb_alloc_base(THREAD_SIZE,
478					    THREAD_SIZE, 0x10000000));
479		hardirq_ctx[i] = (struct thread_info *)
480			__va(lmb_alloc_base(THREAD_SIZE,
481					    THREAD_SIZE, 0x10000000));
482	}
483}
484#else
485#define irqstack_early_init()
486#endif
487
488/*
489 * Stack space used when we detect a bad kernel stack pointer, and
490 * early in SMP boots before relocation is enabled.
491 */
492static void __init emergency_stack_init(void)
493{
494	unsigned long limit;
495	unsigned int i;
496
497	/*
498	 * Emergency stacks must be under 256MB, we cannot afford to take
499	 * SLB misses on them. The ABI also requires them to be 128-byte
500	 * aligned.
501	 *
502	 * Since we use these as temporary stacks during secondary CPU
503	 * bringup, we need to get at them in real mode. This means they
504	 * must also be within the RMO region.
505	 */
506	limit = min(0x10000000UL, lmb.rmo_size);
507
508	for_each_possible_cpu(i)
509		paca[i].emergency_sp =
510		__va(lmb_alloc_base(HW_PAGE_SIZE, 128, limit)) + HW_PAGE_SIZE;
511}
512
513/*
514 * Called into from start_kernel, after lock_kernel has been called.
515 * Initializes bootmem, which is unsed to manage page allocation until
516 * mem_init is called.
517 */
518void __init setup_arch(char **cmdline_p)
519{
520	extern void do_init_bootmem(void);
521
522	ppc64_boot_msg(0x12, "Setup Arch");
523
524	*cmdline_p = cmd_line;
525
526	/*
527	 * Set cache line size based on type of cpu as a default.
528	 * Systems with OF can look in the properties on the cpu node(s)
529	 * for a possibly more accurate value.
530	 */
531	dcache_bsize = ppc64_caches.dline_size;
532	icache_bsize = ppc64_caches.iline_size;
533
534	/* reboot on panic */
535	panic_timeout = 180;
536
537	if (ppc_md.panic)
538		atomic_notifier_chain_register(&panic_notifier_list,
539				&ppc64_panic_block);
540
541	init_mm.start_code = PAGE_OFFSET;
542	init_mm.end_code = (unsigned long) _etext;
543	init_mm.end_data = (unsigned long) _edata;
544	init_mm.brk = klimit;
545
546	irqstack_early_init();
547	emergency_stack_init();
548
549	stabs_alloc();
550
551	/* set up the bootmem stuff with available memory */
552	do_init_bootmem();
553	sparse_init();
554
555#ifdef CONFIG_DUMMY_CONSOLE
556	conswitchp = &dummy_con;
557#endif
558
559	ppc_md.setup_arch();
560
561	paging_init();
562	ppc64_boot_msg(0x15, "Setup Done");
563}
564
565
566/* ToDo: do something useful if ppc_md is not yet setup. */
567#define PPC64_LINUX_FUNCTION 0x0f000000
568#define PPC64_IPL_MESSAGE 0xc0000000
569#define PPC64_TERM_MESSAGE 0xb0000000
570
571static void ppc64_do_msg(unsigned int src, const char *msg)
572{
573	if (ppc_md.progress) {
574		char buf[128];
575
576		sprintf(buf, "%08X\n", src);
577		ppc_md.progress(buf, 0);
578		snprintf(buf, 128, "%s", msg);
579		ppc_md.progress(buf, 0);
580	}
581}
582
583/* Print a boot progress message. */
584void ppc64_boot_msg(unsigned int src, const char *msg)
585{
586	ppc64_do_msg(PPC64_LINUX_FUNCTION|PPC64_IPL_MESSAGE|src, msg);
587	printk("[boot]%04x %s\n", src, msg);
588}
589
590/* Print a termination message (print only -- does not stop the kernel) */
591void ppc64_terminate_msg(unsigned int src, const char *msg)
592{
593	ppc64_do_msg(PPC64_LINUX_FUNCTION|PPC64_TERM_MESSAGE|src, msg);
594	printk("[terminate]%04x %s\n", src, msg);
595}
596
597void cpu_die(void)
598{
599	if (ppc_md.cpu_die)
600		ppc_md.cpu_die();
601}
602
603#ifdef CONFIG_SMP
604void __init setup_per_cpu_areas(void)
605{
606	int i;
607	unsigned long size;
608	char *ptr;
609
610	/* Copy section for each CPU (we discard the original) */
611	size = ALIGN(__per_cpu_end - __per_cpu_start, SMP_CACHE_BYTES);
612#ifdef CONFIG_MODULES
613	if (size < PERCPU_ENOUGH_ROOM)
614		size = PERCPU_ENOUGH_ROOM;
615#endif
616
617	for_each_possible_cpu(i) {
618		ptr = alloc_bootmem_node(NODE_DATA(cpu_to_node(i)), size);
619		if (!ptr)
620			panic("Cannot allocate cpu data for CPU %d\n", i);
621
622		paca[i].data_offset = ptr - __per_cpu_start;
623		memcpy(ptr, __per_cpu_start, __per_cpu_end - __per_cpu_start);
624	}
625}
626#endif
627