setup_64.c revision 61e2390ede3cea186cc01f5f3d0c9eb570c42c40
1/*
2 *
3 * Common boot and setup code.
4 *
5 * Copyright (C) 2001 PPC64 Team, IBM Corp
6 *
7 *      This program is free software; you can redistribute it and/or
8 *      modify it under the terms of the GNU General Public License
9 *      as published by the Free Software Foundation; either version
10 *      2 of the License, or (at your option) any later version.
11 */
12
13#undef DEBUG
14
15#include <linux/export.h>
16#include <linux/string.h>
17#include <linux/sched.h>
18#include <linux/init.h>
19#include <linux/kernel.h>
20#include <linux/reboot.h>
21#include <linux/delay.h>
22#include <linux/initrd.h>
23#include <linux/seq_file.h>
24#include <linux/ioport.h>
25#include <linux/console.h>
26#include <linux/utsname.h>
27#include <linux/tty.h>
28#include <linux/root_dev.h>
29#include <linux/notifier.h>
30#include <linux/cpu.h>
31#include <linux/unistd.h>
32#include <linux/serial.h>
33#include <linux/serial_8250.h>
34#include <linux/bootmem.h>
35#include <linux/pci.h>
36#include <linux/lockdep.h>
37#include <linux/memblock.h>
38#include <linux/hugetlb.h>
39
40#include <asm/io.h>
41#include <asm/kdump.h>
42#include <asm/prom.h>
43#include <asm/processor.h>
44#include <asm/pgtable.h>
45#include <asm/smp.h>
46#include <asm/elf.h>
47#include <asm/machdep.h>
48#include <asm/paca.h>
49#include <asm/time.h>
50#include <asm/cputable.h>
51#include <asm/sections.h>
52#include <asm/btext.h>
53#include <asm/nvram.h>
54#include <asm/setup.h>
55#include <asm/rtas.h>
56#include <asm/iommu.h>
57#include <asm/serial.h>
58#include <asm/cache.h>
59#include <asm/page.h>
60#include <asm/mmu.h>
61#include <asm/firmware.h>
62#include <asm/xmon.h>
63#include <asm/udbg.h>
64#include <asm/kexec.h>
65#include <asm/mmu_context.h>
66#include <asm/code-patching.h>
67#include <asm/kvm_ppc.h>
68#include <asm/hugetlb.h>
69
70#include "setup.h"
71
72#ifdef DEBUG
73#define DBG(fmt...) udbg_printf(fmt)
74#else
75#define DBG(fmt...)
76#endif
77
78int boot_cpuid = 0;
79int __initdata spinning_secondaries;
80u64 ppc64_pft_size;
81
82/* Pick defaults since we might want to patch instructions
83 * before we've read this from the device tree.
84 */
85struct ppc64_caches ppc64_caches = {
86	.dline_size = 0x40,
87	.log_dline_size = 6,
88	.iline_size = 0x40,
89	.log_iline_size = 6
90};
91EXPORT_SYMBOL_GPL(ppc64_caches);
92
93/*
94 * These are used in binfmt_elf.c to put aux entries on the stack
95 * for each elf executable being started.
96 */
97int dcache_bsize;
98int icache_bsize;
99int ucache_bsize;
100
101#ifdef CONFIG_SMP
102
103static char *smt_enabled_cmdline;
104
105/* Look for ibm,smt-enabled OF option */
106static void check_smt_enabled(void)
107{
108	struct device_node *dn;
109	const char *smt_option;
110
111	/* Default to enabling all threads */
112	smt_enabled_at_boot = threads_per_core;
113
114	/* Allow the command line to overrule the OF option */
115	if (smt_enabled_cmdline) {
116		if (!strcmp(smt_enabled_cmdline, "on"))
117			smt_enabled_at_boot = threads_per_core;
118		else if (!strcmp(smt_enabled_cmdline, "off"))
119			smt_enabled_at_boot = 0;
120		else {
121			long smt;
122			int rc;
123
124			rc = strict_strtol(smt_enabled_cmdline, 10, &smt);
125			if (!rc)
126				smt_enabled_at_boot =
127					min(threads_per_core, (int)smt);
128		}
129	} else {
130		dn = of_find_node_by_path("/options");
131		if (dn) {
132			smt_option = of_get_property(dn, "ibm,smt-enabled",
133						     NULL);
134
135			if (smt_option) {
136				if (!strcmp(smt_option, "on"))
137					smt_enabled_at_boot = threads_per_core;
138				else if (!strcmp(smt_option, "off"))
139					smt_enabled_at_boot = 0;
140			}
141
142			of_node_put(dn);
143		}
144	}
145}
146
147/* Look for smt-enabled= cmdline option */
148static int __init early_smt_enabled(char *p)
149{
150	smt_enabled_cmdline = p;
151	return 0;
152}
153early_param("smt-enabled", early_smt_enabled);
154
155#else
156#define check_smt_enabled()
157#endif /* CONFIG_SMP */
158
159/*
160 * Early initialization entry point. This is called by head.S
161 * with MMU translation disabled. We rely on the "feature" of
162 * the CPU that ignores the top 2 bits of the address in real
163 * mode so we can access kernel globals normally provided we
164 * only toy with things in the RMO region. From here, we do
165 * some early parsing of the device-tree to setup out MEMBLOCK
166 * data structures, and allocate & initialize the hash table
167 * and segment tables so we can start running with translation
168 * enabled.
169 *
170 * It is this function which will call the probe() callback of
171 * the various platform types and copy the matching one to the
172 * global ppc_md structure. Your platform can eventually do
173 * some very early initializations from the probe() routine, but
174 * this is not recommended, be very careful as, for example, the
175 * device-tree is not accessible via normal means at this point.
176 */
177
178void __init early_setup(unsigned long dt_ptr)
179{
180	/* -------- printk is _NOT_ safe to use here ! ------- */
181
182	/* Identify CPU type */
183	identify_cpu(0, mfspr(SPRN_PVR));
184
185	/* Assume we're on cpu 0 for now. Don't write to the paca yet! */
186	initialise_paca(&boot_paca, 0);
187	setup_paca(&boot_paca);
188
189	/* Initialize lockdep early or else spinlocks will blow */
190	lockdep_init();
191
192	/* -------- printk is now safe to use ------- */
193
194	/* Enable early debugging if any specified (see udbg.h) */
195	udbg_early_init();
196
197 	DBG(" -> early_setup(), dt_ptr: 0x%lx\n", dt_ptr);
198
199	/*
200	 * Do early initialization using the flattened device
201	 * tree, such as retrieving the physical memory map or
202	 * calculating/retrieving the hash table size.
203	 */
204	early_init_devtree(__va(dt_ptr));
205
206	/* Now we know the logical id of our boot cpu, setup the paca. */
207	setup_paca(&paca[boot_cpuid]);
208
209	/* Fix up paca fields required for the boot cpu */
210	get_paca()->cpu_start = 1;
211	/* Allow percpu accesses to "work" until we setup percpu data */
212	get_paca()->data_offset = 0;
213
214	/* Probe the machine type */
215	probe_machine();
216
217	setup_kdump_trampoline();
218
219	DBG("Found, Initializing memory management...\n");
220
221	/* Initialize the hash table or TLB handling */
222	early_init_mmu();
223
224	/*
225	 * Reserve any gigantic pages requested on the command line.
226	 * memblock needs to have been initialized by the time this is
227	 * called since this will reserve memory.
228	 */
229	reserve_hugetlb_gpages();
230
231	DBG(" <- early_setup()\n");
232}
233
234#ifdef CONFIG_SMP
235void early_setup_secondary(void)
236{
237	/* Mark interrupts enabled in PACA */
238	get_paca()->soft_enabled = 0;
239
240	/* Initialize the hash table or TLB handling */
241	early_init_mmu_secondary();
242}
243
244#endif /* CONFIG_SMP */
245
246#if defined(CONFIG_SMP) || defined(CONFIG_KEXEC)
247void smp_release_cpus(void)
248{
249	unsigned long *ptr;
250	int i;
251
252	DBG(" -> smp_release_cpus()\n");
253
254	/* All secondary cpus are spinning on a common spinloop, release them
255	 * all now so they can start to spin on their individual paca
256	 * spinloops. For non SMP kernels, the secondary cpus never get out
257	 * of the common spinloop.
258	 */
259
260	ptr  = (unsigned long *)((unsigned long)&__secondary_hold_spinloop
261			- PHYSICAL_START);
262	*ptr = __pa(generic_secondary_smp_init);
263
264	/* And wait a bit for them to catch up */
265	for (i = 0; i < 100000; i++) {
266		mb();
267		HMT_low();
268		if (spinning_secondaries == 0)
269			break;
270		udelay(1);
271	}
272	DBG("spinning_secondaries = %d\n", spinning_secondaries);
273
274	DBG(" <- smp_release_cpus()\n");
275}
276#endif /* CONFIG_SMP || CONFIG_KEXEC */
277
278/*
279 * Initialize some remaining members of the ppc64_caches and systemcfg
280 * structures
281 * (at least until we get rid of them completely). This is mostly some
282 * cache informations about the CPU that will be used by cache flush
283 * routines and/or provided to userland
284 */
285static void __init initialize_cache_info(void)
286{
287	struct device_node *np;
288	unsigned long num_cpus = 0;
289
290	DBG(" -> initialize_cache_info()\n");
291
292	for_each_node_by_type(np, "cpu") {
293		num_cpus += 1;
294
295		/*
296		 * We're assuming *all* of the CPUs have the same
297		 * d-cache and i-cache sizes... -Peter
298		 */
299		if (num_cpus == 1) {
300			const u32 *sizep, *lsizep;
301			u32 size, lsize;
302
303			size = 0;
304			lsize = cur_cpu_spec->dcache_bsize;
305			sizep = of_get_property(np, "d-cache-size", NULL);
306			if (sizep != NULL)
307				size = *sizep;
308			lsizep = of_get_property(np, "d-cache-block-size",
309						 NULL);
310			/* fallback if block size missing */
311			if (lsizep == NULL)
312				lsizep = of_get_property(np,
313							 "d-cache-line-size",
314							 NULL);
315			if (lsizep != NULL)
316				lsize = *lsizep;
317			if (sizep == 0 || lsizep == 0)
318				DBG("Argh, can't find dcache properties ! "
319				    "sizep: %p, lsizep: %p\n", sizep, lsizep);
320
321			ppc64_caches.dsize = size;
322			ppc64_caches.dline_size = lsize;
323			ppc64_caches.log_dline_size = __ilog2(lsize);
324			ppc64_caches.dlines_per_page = PAGE_SIZE / lsize;
325
326			size = 0;
327			lsize = cur_cpu_spec->icache_bsize;
328			sizep = of_get_property(np, "i-cache-size", NULL);
329			if (sizep != NULL)
330				size = *sizep;
331			lsizep = of_get_property(np, "i-cache-block-size",
332						 NULL);
333			if (lsizep == NULL)
334				lsizep = of_get_property(np,
335							 "i-cache-line-size",
336							 NULL);
337			if (lsizep != NULL)
338				lsize = *lsizep;
339			if (sizep == 0 || lsizep == 0)
340				DBG("Argh, can't find icache properties ! "
341				    "sizep: %p, lsizep: %p\n", sizep, lsizep);
342
343			ppc64_caches.isize = size;
344			ppc64_caches.iline_size = lsize;
345			ppc64_caches.log_iline_size = __ilog2(lsize);
346			ppc64_caches.ilines_per_page = PAGE_SIZE / lsize;
347		}
348	}
349
350	DBG(" <- initialize_cache_info()\n");
351}
352
353
354/*
355 * Do some initial setup of the system.  The parameters are those which
356 * were passed in from the bootloader.
357 */
358void __init setup_system(void)
359{
360	DBG(" -> setup_system()\n");
361
362	/* Apply the CPUs-specific and firmware specific fixups to kernel
363	 * text (nop out sections not relevant to this CPU or this firmware)
364	 */
365	do_feature_fixups(cur_cpu_spec->cpu_features,
366			  &__start___ftr_fixup, &__stop___ftr_fixup);
367	do_feature_fixups(cur_cpu_spec->mmu_features,
368			  &__start___mmu_ftr_fixup, &__stop___mmu_ftr_fixup);
369	do_feature_fixups(powerpc_firmware_features,
370			  &__start___fw_ftr_fixup, &__stop___fw_ftr_fixup);
371	do_lwsync_fixups(cur_cpu_spec->cpu_features,
372			 &__start___lwsync_fixup, &__stop___lwsync_fixup);
373	do_final_fixups();
374
375	/*
376	 * Unflatten the device-tree passed by prom_init or kexec
377	 */
378	unflatten_device_tree();
379
380	/*
381	 * Fill the ppc64_caches & systemcfg structures with informations
382 	 * retrieved from the device-tree.
383	 */
384	initialize_cache_info();
385
386#ifdef CONFIG_PPC_RTAS
387	/*
388	 * Initialize RTAS if available
389	 */
390	rtas_initialize();
391#endif /* CONFIG_PPC_RTAS */
392
393	/*
394	 * Check if we have an initrd provided via the device-tree
395	 */
396	check_for_initrd();
397
398	/*
399	 * Do some platform specific early initializations, that includes
400	 * setting up the hash table pointers. It also sets up some interrupt-mapping
401	 * related options that will be used by finish_device_tree()
402	 */
403	if (ppc_md.init_early)
404		ppc_md.init_early();
405
406 	/*
407	 * We can discover serial ports now since the above did setup the
408	 * hash table management for us, thus ioremap works. We do that early
409	 * so that further code can be debugged
410	 */
411	find_legacy_serial_ports();
412
413	/*
414	 * Register early console
415	 */
416	register_early_udbg_console();
417
418	/*
419	 * Initialize xmon
420	 */
421	xmon_setup();
422
423	smp_setup_cpu_maps();
424	check_smt_enabled();
425
426#ifdef CONFIG_SMP
427	/* Release secondary cpus out of their spinloops at 0x60 now that
428	 * we can map physical -> logical CPU ids
429	 */
430	smp_release_cpus();
431#endif
432
433	printk("Starting Linux PPC64 %s\n", init_utsname()->version);
434
435	printk("-----------------------------------------------------\n");
436	printk("ppc64_pft_size                = 0x%llx\n", ppc64_pft_size);
437	printk("physicalMemorySize            = 0x%llx\n", memblock_phys_mem_size());
438	if (ppc64_caches.dline_size != 0x80)
439		printk("ppc64_caches.dcache_line_size = 0x%x\n",
440		       ppc64_caches.dline_size);
441	if (ppc64_caches.iline_size != 0x80)
442		printk("ppc64_caches.icache_line_size = 0x%x\n",
443		       ppc64_caches.iline_size);
444#ifdef CONFIG_PPC_STD_MMU_64
445	if (htab_address)
446		printk("htab_address                  = 0x%p\n", htab_address);
447	printk("htab_hash_mask                = 0x%lx\n", htab_hash_mask);
448#endif /* CONFIG_PPC_STD_MMU_64 */
449	if (PHYSICAL_START > 0)
450		printk("physical_start                = 0x%llx\n",
451		       (unsigned long long)PHYSICAL_START);
452	printk("-----------------------------------------------------\n");
453
454	DBG(" <- setup_system()\n");
455}
456
457/* This returns the limit below which memory accesses to the linear
458 * mapping are guarnateed not to cause a TLB or SLB miss. This is
459 * used to allocate interrupt or emergency stacks for which our
460 * exception entry path doesn't deal with being interrupted.
461 */
462static u64 safe_stack_limit(void)
463{
464#ifdef CONFIG_PPC_BOOK3E
465	/* Freescale BookE bolts the entire linear mapping */
466	if (mmu_has_feature(MMU_FTR_TYPE_FSL_E))
467		return linear_map_top;
468	/* Other BookE, we assume the first GB is bolted */
469	return 1ul << 30;
470#else
471	/* BookS, the first segment is bolted */
472	if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
473		return 1UL << SID_SHIFT_1T;
474	return 1UL << SID_SHIFT;
475#endif
476}
477
478static void __init irqstack_early_init(void)
479{
480	u64 limit = safe_stack_limit();
481	unsigned int i;
482
483	/*
484	 * Interrupt stacks must be in the first segment since we
485	 * cannot afford to take SLB misses on them.
486	 */
487	for_each_possible_cpu(i) {
488		softirq_ctx[i] = (struct thread_info *)
489			__va(memblock_alloc_base(THREAD_SIZE,
490					    THREAD_SIZE, limit));
491		hardirq_ctx[i] = (struct thread_info *)
492			__va(memblock_alloc_base(THREAD_SIZE,
493					    THREAD_SIZE, limit));
494	}
495}
496
497#ifdef CONFIG_PPC_BOOK3E
498static void __init exc_lvl_early_init(void)
499{
500	extern unsigned int interrupt_base_book3e;
501	extern unsigned int exc_debug_debug_book3e;
502
503	unsigned int i;
504
505	for_each_possible_cpu(i) {
506		critirq_ctx[i] = (struct thread_info *)
507			__va(memblock_alloc(THREAD_SIZE, THREAD_SIZE));
508		dbgirq_ctx[i] = (struct thread_info *)
509			__va(memblock_alloc(THREAD_SIZE, THREAD_SIZE));
510		mcheckirq_ctx[i] = (struct thread_info *)
511			__va(memblock_alloc(THREAD_SIZE, THREAD_SIZE));
512	}
513
514	if (cpu_has_feature(CPU_FTR_DEBUG_LVL_EXC))
515		patch_branch(&interrupt_base_book3e + (0x040 / 4) + 1,
516			     (unsigned long)&exc_debug_debug_book3e, 0);
517}
518#else
519#define exc_lvl_early_init()
520#endif
521
522/*
523 * Stack space used when we detect a bad kernel stack pointer, and
524 * early in SMP boots before relocation is enabled.
525 */
526static void __init emergency_stack_init(void)
527{
528	u64 limit;
529	unsigned int i;
530
531	/*
532	 * Emergency stacks must be under 256MB, we cannot afford to take
533	 * SLB misses on them. The ABI also requires them to be 128-byte
534	 * aligned.
535	 *
536	 * Since we use these as temporary stacks during secondary CPU
537	 * bringup, we need to get at them in real mode. This means they
538	 * must also be within the RMO region.
539	 */
540	limit = min(safe_stack_limit(), ppc64_rma_size);
541
542	for_each_possible_cpu(i) {
543		unsigned long sp;
544		sp  = memblock_alloc_base(THREAD_SIZE, THREAD_SIZE, limit);
545		sp += THREAD_SIZE;
546		paca[i].emergency_sp = __va(sp);
547	}
548}
549
550/*
551 * Called into from start_kernel this initializes bootmem, which is used
552 * to manage page allocation until mem_init is called.
553 */
554void __init setup_arch(char **cmdline_p)
555{
556	ppc64_boot_msg(0x12, "Setup Arch");
557
558	*cmdline_p = cmd_line;
559
560	/*
561	 * Set cache line size based on type of cpu as a default.
562	 * Systems with OF can look in the properties on the cpu node(s)
563	 * for a possibly more accurate value.
564	 */
565	dcache_bsize = ppc64_caches.dline_size;
566	icache_bsize = ppc64_caches.iline_size;
567
568	/* reboot on panic */
569	panic_timeout = 180;
570
571	if (ppc_md.panic)
572		setup_panic();
573
574	init_mm.start_code = (unsigned long)_stext;
575	init_mm.end_code = (unsigned long) _etext;
576	init_mm.end_data = (unsigned long) _edata;
577	init_mm.brk = klimit;
578
579	irqstack_early_init();
580	exc_lvl_early_init();
581	emergency_stack_init();
582
583#ifdef CONFIG_PPC_STD_MMU_64
584	stabs_alloc();
585#endif
586	/* set up the bootmem stuff with available memory */
587	do_init_bootmem();
588	sparse_init();
589
590#ifdef CONFIG_DUMMY_CONSOLE
591	conswitchp = &dummy_con;
592#endif
593
594	if (ppc_md.setup_arch)
595		ppc_md.setup_arch();
596
597	paging_init();
598
599	/* Initialize the MMU context management stuff */
600	mmu_context_init();
601
602	kvm_linear_init();
603
604	/* Interrupt code needs to be 64K-aligned */
605	if ((unsigned long)_stext & 0xffff)
606		panic("Kernelbase not 64K-aligned (0x%lx)!\n",
607		      (unsigned long)_stext);
608
609	ppc64_boot_msg(0x15, "Setup Done");
610}
611
612
613/* ToDo: do something useful if ppc_md is not yet setup. */
614#define PPC64_LINUX_FUNCTION 0x0f000000
615#define PPC64_IPL_MESSAGE 0xc0000000
616#define PPC64_TERM_MESSAGE 0xb0000000
617
618static void ppc64_do_msg(unsigned int src, const char *msg)
619{
620	if (ppc_md.progress) {
621		char buf[128];
622
623		sprintf(buf, "%08X\n", src);
624		ppc_md.progress(buf, 0);
625		snprintf(buf, 128, "%s", msg);
626		ppc_md.progress(buf, 0);
627	}
628}
629
630/* Print a boot progress message. */
631void ppc64_boot_msg(unsigned int src, const char *msg)
632{
633	ppc64_do_msg(PPC64_LINUX_FUNCTION|PPC64_IPL_MESSAGE|src, msg);
634	printk("[boot]%04x %s\n", src, msg);
635}
636
637#ifdef CONFIG_SMP
638#define PCPU_DYN_SIZE		()
639
640static void * __init pcpu_fc_alloc(unsigned int cpu, size_t size, size_t align)
641{
642	return __alloc_bootmem_node(NODE_DATA(cpu_to_node(cpu)), size, align,
643				    __pa(MAX_DMA_ADDRESS));
644}
645
646static void __init pcpu_fc_free(void *ptr, size_t size)
647{
648	free_bootmem(__pa(ptr), size);
649}
650
651static int pcpu_cpu_distance(unsigned int from, unsigned int to)
652{
653	if (cpu_to_node(from) == cpu_to_node(to))
654		return LOCAL_DISTANCE;
655	else
656		return REMOTE_DISTANCE;
657}
658
659unsigned long __per_cpu_offset[NR_CPUS] __read_mostly;
660EXPORT_SYMBOL(__per_cpu_offset);
661
662void __init setup_per_cpu_areas(void)
663{
664	const size_t dyn_size = PERCPU_MODULE_RESERVE + PERCPU_DYNAMIC_RESERVE;
665	size_t atom_size;
666	unsigned long delta;
667	unsigned int cpu;
668	int rc;
669
670	/*
671	 * Linear mapping is one of 4K, 1M and 16M.  For 4K, no need
672	 * to group units.  For larger mappings, use 1M atom which
673	 * should be large enough to contain a number of units.
674	 */
675	if (mmu_linear_psize == MMU_PAGE_4K)
676		atom_size = PAGE_SIZE;
677	else
678		atom_size = 1 << 20;
679
680	rc = pcpu_embed_first_chunk(0, dyn_size, atom_size, pcpu_cpu_distance,
681				    pcpu_fc_alloc, pcpu_fc_free);
682	if (rc < 0)
683		panic("cannot initialize percpu area (err=%d)", rc);
684
685	delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start;
686	for_each_possible_cpu(cpu) {
687                __per_cpu_offset[cpu] = delta + pcpu_unit_offsets[cpu];
688		paca[cpu].data_offset = __per_cpu_offset[cpu];
689	}
690}
691#endif
692
693
694#ifdef CONFIG_PPC_INDIRECT_IO
695struct ppc_pci_io ppc_pci_io;
696EXPORT_SYMBOL(ppc_pci_io);
697#endif /* CONFIG_PPC_INDIRECT_IO */
698
699