setup_64.c revision 95f72d1ed41a66f1c1c29c24d479de81a0bea36f
1/*
2 *
3 * Common boot and setup code.
4 *
5 * Copyright (C) 2001 PPC64 Team, IBM Corp
6 *
7 *      This program is free software; you can redistribute it and/or
8 *      modify it under the terms of the GNU General Public License
9 *      as published by the Free Software Foundation; either version
10 *      2 of the License, or (at your option) any later version.
11 */
12
13#undef DEBUG
14
15#include <linux/module.h>
16#include <linux/string.h>
17#include <linux/sched.h>
18#include <linux/init.h>
19#include <linux/kernel.h>
20#include <linux/reboot.h>
21#include <linux/delay.h>
22#include <linux/initrd.h>
23#include <linux/seq_file.h>
24#include <linux/ioport.h>
25#include <linux/console.h>
26#include <linux/utsname.h>
27#include <linux/tty.h>
28#include <linux/root_dev.h>
29#include <linux/notifier.h>
30#include <linux/cpu.h>
31#include <linux/unistd.h>
32#include <linux/serial.h>
33#include <linux/serial_8250.h>
34#include <linux/bootmem.h>
35#include <linux/pci.h>
36#include <linux/lockdep.h>
37#include <linux/memblock.h>
38#include <asm/io.h>
39#include <asm/kdump.h>
40#include <asm/prom.h>
41#include <asm/processor.h>
42#include <asm/pgtable.h>
43#include <asm/smp.h>
44#include <asm/elf.h>
45#include <asm/machdep.h>
46#include <asm/paca.h>
47#include <asm/time.h>
48#include <asm/cputable.h>
49#include <asm/sections.h>
50#include <asm/btext.h>
51#include <asm/nvram.h>
52#include <asm/setup.h>
53#include <asm/system.h>
54#include <asm/rtas.h>
55#include <asm/iommu.h>
56#include <asm/serial.h>
57#include <asm/cache.h>
58#include <asm/page.h>
59#include <asm/mmu.h>
60#include <asm/firmware.h>
61#include <asm/xmon.h>
62#include <asm/udbg.h>
63#include <asm/kexec.h>
64#include <asm/mmu_context.h>
65
66#include "setup.h"
67
68#ifdef DEBUG
69#define DBG(fmt...) udbg_printf(fmt)
70#else
71#define DBG(fmt...)
72#endif
73
74int boot_cpuid = 0;
75u64 ppc64_pft_size;
76
77/* Pick defaults since we might want to patch instructions
78 * before we've read this from the device tree.
79 */
80struct ppc64_caches ppc64_caches = {
81	.dline_size = 0x40,
82	.log_dline_size = 6,
83	.iline_size = 0x40,
84	.log_iline_size = 6
85};
86EXPORT_SYMBOL_GPL(ppc64_caches);
87
88/*
89 * These are used in binfmt_elf.c to put aux entries on the stack
90 * for each elf executable being started.
91 */
92int dcache_bsize;
93int icache_bsize;
94int ucache_bsize;
95
96#ifdef CONFIG_SMP
97
98static int smt_enabled_cmdline;
99
100/* Look for ibm,smt-enabled OF option */
101static void check_smt_enabled(void)
102{
103	struct device_node *dn;
104	const char *smt_option;
105
106	/* Allow the command line to overrule the OF option */
107	if (smt_enabled_cmdline)
108		return;
109
110	dn = of_find_node_by_path("/options");
111
112	if (dn) {
113		smt_option = of_get_property(dn, "ibm,smt-enabled", NULL);
114
115                if (smt_option) {
116			if (!strcmp(smt_option, "on"))
117				smt_enabled_at_boot = 1;
118			else if (!strcmp(smt_option, "off"))
119				smt_enabled_at_boot = 0;
120                }
121        }
122}
123
124/* Look for smt-enabled= cmdline option */
125static int __init early_smt_enabled(char *p)
126{
127	smt_enabled_cmdline = 1;
128
129	if (!p)
130		return 0;
131
132	if (!strcmp(p, "on") || !strcmp(p, "1"))
133		smt_enabled_at_boot = 1;
134	else if (!strcmp(p, "off") || !strcmp(p, "0"))
135		smt_enabled_at_boot = 0;
136
137	return 0;
138}
139early_param("smt-enabled", early_smt_enabled);
140
141#else
142#define check_smt_enabled()
143#endif /* CONFIG_SMP */
144
145/* Put the paca pointer into r13 and SPRG_PACA */
146static void __init setup_paca(struct paca_struct *new_paca)
147{
148	local_paca = new_paca;
149	mtspr(SPRN_SPRG_PACA, local_paca);
150#ifdef CONFIG_PPC_BOOK3E
151	mtspr(SPRN_SPRG_TLB_EXFRAME, local_paca->extlb);
152#endif
153}
154
155/*
156 * Early initialization entry point. This is called by head.S
157 * with MMU translation disabled. We rely on the "feature" of
158 * the CPU that ignores the top 2 bits of the address in real
159 * mode so we can access kernel globals normally provided we
160 * only toy with things in the RMO region. From here, we do
161 * some early parsing of the device-tree to setup out MEMBLOCK
162 * data structures, and allocate & initialize the hash table
163 * and segment tables so we can start running with translation
164 * enabled.
165 *
166 * It is this function which will call the probe() callback of
167 * the various platform types and copy the matching one to the
168 * global ppc_md structure. Your platform can eventually do
169 * some very early initializations from the probe() routine, but
170 * this is not recommended, be very careful as, for example, the
171 * device-tree is not accessible via normal means at this point.
172 */
173
174void __init early_setup(unsigned long dt_ptr)
175{
176	/* -------- printk is _NOT_ safe to use here ! ------- */
177
178	/* Identify CPU type */
179	identify_cpu(0, mfspr(SPRN_PVR));
180
181	/* Assume we're on cpu 0 for now. Don't write to the paca yet! */
182	initialise_paca(&boot_paca, 0);
183	setup_paca(&boot_paca);
184
185	/* Initialize lockdep early or else spinlocks will blow */
186	lockdep_init();
187
188	/* -------- printk is now safe to use ------- */
189
190	/* Enable early debugging if any specified (see udbg.h) */
191	udbg_early_init();
192
193 	DBG(" -> early_setup(), dt_ptr: 0x%lx\n", dt_ptr);
194
195	/*
196	 * Do early initialization using the flattened device
197	 * tree, such as retrieving the physical memory map or
198	 * calculating/retrieving the hash table size.
199	 */
200	early_init_devtree(__va(dt_ptr));
201
202	/* Now we know the logical id of our boot cpu, setup the paca. */
203	setup_paca(&paca[boot_cpuid]);
204
205	/* Fix up paca fields required for the boot cpu */
206	get_paca()->cpu_start = 1;
207
208	/* Probe the machine type */
209	probe_machine();
210
211	setup_kdump_trampoline();
212
213	DBG("Found, Initializing memory management...\n");
214
215	/* Initialize the hash table or TLB handling */
216	early_init_mmu();
217
218	DBG(" <- early_setup()\n");
219}
220
221#ifdef CONFIG_SMP
222void early_setup_secondary(void)
223{
224	/* Mark interrupts enabled in PACA */
225	get_paca()->soft_enabled = 0;
226
227	/* Initialize the hash table or TLB handling */
228	early_init_mmu_secondary();
229}
230
231#endif /* CONFIG_SMP */
232
233#if defined(CONFIG_SMP) || defined(CONFIG_KEXEC)
234void smp_release_cpus(void)
235{
236	unsigned long *ptr;
237
238	DBG(" -> smp_release_cpus()\n");
239
240	/* All secondary cpus are spinning on a common spinloop, release them
241	 * all now so they can start to spin on their individual paca
242	 * spinloops. For non SMP kernels, the secondary cpus never get out
243	 * of the common spinloop.
244	 */
245
246	ptr  = (unsigned long *)((unsigned long)&__secondary_hold_spinloop
247			- PHYSICAL_START);
248	*ptr = __pa(generic_secondary_smp_init);
249	mb();
250
251	DBG(" <- smp_release_cpus()\n");
252}
253#endif /* CONFIG_SMP || CONFIG_KEXEC */
254
255/*
256 * Initialize some remaining members of the ppc64_caches and systemcfg
257 * structures
258 * (at least until we get rid of them completely). This is mostly some
259 * cache informations about the CPU that will be used by cache flush
260 * routines and/or provided to userland
261 */
262static void __init initialize_cache_info(void)
263{
264	struct device_node *np;
265	unsigned long num_cpus = 0;
266
267	DBG(" -> initialize_cache_info()\n");
268
269	for (np = NULL; (np = of_find_node_by_type(np, "cpu"));) {
270		num_cpus += 1;
271
272		/* We're assuming *all* of the CPUs have the same
273		 * d-cache and i-cache sizes... -Peter
274		 */
275
276		if ( num_cpus == 1 ) {
277			const u32 *sizep, *lsizep;
278			u32 size, lsize;
279
280			size = 0;
281			lsize = cur_cpu_spec->dcache_bsize;
282			sizep = of_get_property(np, "d-cache-size", NULL);
283			if (sizep != NULL)
284				size = *sizep;
285			lsizep = of_get_property(np, "d-cache-block-size", NULL);
286			/* fallback if block size missing */
287			if (lsizep == NULL)
288				lsizep = of_get_property(np, "d-cache-line-size", NULL);
289			if (lsizep != NULL)
290				lsize = *lsizep;
291			if (sizep == 0 || lsizep == 0)
292				DBG("Argh, can't find dcache properties ! "
293				    "sizep: %p, lsizep: %p\n", sizep, lsizep);
294
295			ppc64_caches.dsize = size;
296			ppc64_caches.dline_size = lsize;
297			ppc64_caches.log_dline_size = __ilog2(lsize);
298			ppc64_caches.dlines_per_page = PAGE_SIZE / lsize;
299
300			size = 0;
301			lsize = cur_cpu_spec->icache_bsize;
302			sizep = of_get_property(np, "i-cache-size", NULL);
303			if (sizep != NULL)
304				size = *sizep;
305			lsizep = of_get_property(np, "i-cache-block-size", NULL);
306			if (lsizep == NULL)
307				lsizep = of_get_property(np, "i-cache-line-size", NULL);
308			if (lsizep != NULL)
309				lsize = *lsizep;
310			if (sizep == 0 || lsizep == 0)
311				DBG("Argh, can't find icache properties ! "
312				    "sizep: %p, lsizep: %p\n", sizep, lsizep);
313
314			ppc64_caches.isize = size;
315			ppc64_caches.iline_size = lsize;
316			ppc64_caches.log_iline_size = __ilog2(lsize);
317			ppc64_caches.ilines_per_page = PAGE_SIZE / lsize;
318		}
319	}
320
321	DBG(" <- initialize_cache_info()\n");
322}
323
324
325/*
326 * Do some initial setup of the system.  The parameters are those which
327 * were passed in from the bootloader.
328 */
329void __init setup_system(void)
330{
331	DBG(" -> setup_system()\n");
332
333	/* Apply the CPUs-specific and firmware specific fixups to kernel
334	 * text (nop out sections not relevant to this CPU or this firmware)
335	 */
336	do_feature_fixups(cur_cpu_spec->cpu_features,
337			  &__start___ftr_fixup, &__stop___ftr_fixup);
338	do_feature_fixups(cur_cpu_spec->mmu_features,
339			  &__start___mmu_ftr_fixup, &__stop___mmu_ftr_fixup);
340	do_feature_fixups(powerpc_firmware_features,
341			  &__start___fw_ftr_fixup, &__stop___fw_ftr_fixup);
342	do_lwsync_fixups(cur_cpu_spec->cpu_features,
343			 &__start___lwsync_fixup, &__stop___lwsync_fixup);
344
345	/*
346	 * Unflatten the device-tree passed by prom_init or kexec
347	 */
348	unflatten_device_tree();
349
350	/*
351	 * Fill the ppc64_caches & systemcfg structures with informations
352 	 * retrieved from the device-tree.
353	 */
354	initialize_cache_info();
355
356#ifdef CONFIG_PPC_RTAS
357	/*
358	 * Initialize RTAS if available
359	 */
360	rtas_initialize();
361#endif /* CONFIG_PPC_RTAS */
362
363	/*
364	 * Check if we have an initrd provided via the device-tree
365	 */
366	check_for_initrd();
367
368	/*
369	 * Do some platform specific early initializations, that includes
370	 * setting up the hash table pointers. It also sets up some interrupt-mapping
371	 * related options that will be used by finish_device_tree()
372	 */
373	if (ppc_md.init_early)
374		ppc_md.init_early();
375
376 	/*
377	 * We can discover serial ports now since the above did setup the
378	 * hash table management for us, thus ioremap works. We do that early
379	 * so that further code can be debugged
380	 */
381	find_legacy_serial_ports();
382
383	/*
384	 * Register early console
385	 */
386	register_early_udbg_console();
387
388	/*
389	 * Initialize xmon
390	 */
391	xmon_setup();
392
393	check_smt_enabled();
394	smp_setup_cpu_maps();
395
396#ifdef CONFIG_SMP
397	/* Release secondary cpus out of their spinloops at 0x60 now that
398	 * we can map physical -> logical CPU ids
399	 */
400	smp_release_cpus();
401#endif
402
403	printk("Starting Linux PPC64 %s\n", init_utsname()->version);
404
405	printk("-----------------------------------------------------\n");
406	printk("ppc64_pft_size                = 0x%llx\n", ppc64_pft_size);
407	printk("physicalMemorySize            = 0x%llx\n", memblock_phys_mem_size());
408	if (ppc64_caches.dline_size != 0x80)
409		printk("ppc64_caches.dcache_line_size = 0x%x\n",
410		       ppc64_caches.dline_size);
411	if (ppc64_caches.iline_size != 0x80)
412		printk("ppc64_caches.icache_line_size = 0x%x\n",
413		       ppc64_caches.iline_size);
414#ifdef CONFIG_PPC_STD_MMU_64
415	if (htab_address)
416		printk("htab_address                  = 0x%p\n", htab_address);
417	printk("htab_hash_mask                = 0x%lx\n", htab_hash_mask);
418#endif /* CONFIG_PPC_STD_MMU_64 */
419	if (PHYSICAL_START > 0)
420		printk("physical_start                = 0x%llx\n",
421		       (unsigned long long)PHYSICAL_START);
422	printk("-----------------------------------------------------\n");
423
424	DBG(" <- setup_system()\n");
425}
426
427static u64 slb0_limit(void)
428{
429	if (cpu_has_feature(CPU_FTR_1T_SEGMENT)) {
430		return 1UL << SID_SHIFT_1T;
431	}
432	return 1UL << SID_SHIFT;
433}
434
435static void __init irqstack_early_init(void)
436{
437	u64 limit = slb0_limit();
438	unsigned int i;
439
440	/*
441	 * interrupt stacks must be under 256MB, we cannot afford to take
442	 * SLB misses on them.
443	 */
444	for_each_possible_cpu(i) {
445		softirq_ctx[i] = (struct thread_info *)
446			__va(memblock_alloc_base(THREAD_SIZE,
447					    THREAD_SIZE, limit));
448		hardirq_ctx[i] = (struct thread_info *)
449			__va(memblock_alloc_base(THREAD_SIZE,
450					    THREAD_SIZE, limit));
451	}
452}
453
454#ifdef CONFIG_PPC_BOOK3E
455static void __init exc_lvl_early_init(void)
456{
457	unsigned int i;
458
459	for_each_possible_cpu(i) {
460		critirq_ctx[i] = (struct thread_info *)
461			__va(memblock_alloc(THREAD_SIZE, THREAD_SIZE));
462		dbgirq_ctx[i] = (struct thread_info *)
463			__va(memblock_alloc(THREAD_SIZE, THREAD_SIZE));
464		mcheckirq_ctx[i] = (struct thread_info *)
465			__va(memblock_alloc(THREAD_SIZE, THREAD_SIZE));
466	}
467}
468#else
469#define exc_lvl_early_init()
470#endif
471
472/*
473 * Stack space used when we detect a bad kernel stack pointer, and
474 * early in SMP boots before relocation is enabled.
475 */
476static void __init emergency_stack_init(void)
477{
478	u64 limit;
479	unsigned int i;
480
481	/*
482	 * Emergency stacks must be under 256MB, we cannot afford to take
483	 * SLB misses on them. The ABI also requires them to be 128-byte
484	 * aligned.
485	 *
486	 * Since we use these as temporary stacks during secondary CPU
487	 * bringup, we need to get at them in real mode. This means they
488	 * must also be within the RMO region.
489	 */
490	limit = min(slb0_limit(), memblock.rmo_size);
491
492	for_each_possible_cpu(i) {
493		unsigned long sp;
494		sp  = memblock_alloc_base(THREAD_SIZE, THREAD_SIZE, limit);
495		sp += THREAD_SIZE;
496		paca[i].emergency_sp = __va(sp);
497	}
498}
499
500/*
501 * Called into from start_kernel, after lock_kernel has been called.
502 * Initializes bootmem, which is unsed to manage page allocation until
503 * mem_init is called.
504 */
505void __init setup_arch(char **cmdline_p)
506{
507	ppc64_boot_msg(0x12, "Setup Arch");
508
509	*cmdline_p = cmd_line;
510
511	/*
512	 * Set cache line size based on type of cpu as a default.
513	 * Systems with OF can look in the properties on the cpu node(s)
514	 * for a possibly more accurate value.
515	 */
516	dcache_bsize = ppc64_caches.dline_size;
517	icache_bsize = ppc64_caches.iline_size;
518
519	/* reboot on panic */
520	panic_timeout = 180;
521
522	if (ppc_md.panic)
523		setup_panic();
524
525	init_mm.start_code = (unsigned long)_stext;
526	init_mm.end_code = (unsigned long) _etext;
527	init_mm.end_data = (unsigned long) _edata;
528	init_mm.brk = klimit;
529
530	irqstack_early_init();
531	exc_lvl_early_init();
532	emergency_stack_init();
533
534#ifdef CONFIG_PPC_STD_MMU_64
535	stabs_alloc();
536#endif
537	/* set up the bootmem stuff with available memory */
538	do_init_bootmem();
539	sparse_init();
540
541#ifdef CONFIG_DUMMY_CONSOLE
542	conswitchp = &dummy_con;
543#endif
544
545	if (ppc_md.setup_arch)
546		ppc_md.setup_arch();
547
548	paging_init();
549
550	/* Initialize the MMU context management stuff */
551	mmu_context_init();
552
553	ppc64_boot_msg(0x15, "Setup Done");
554}
555
556
557/* ToDo: do something useful if ppc_md is not yet setup. */
558#define PPC64_LINUX_FUNCTION 0x0f000000
559#define PPC64_IPL_MESSAGE 0xc0000000
560#define PPC64_TERM_MESSAGE 0xb0000000
561
562static void ppc64_do_msg(unsigned int src, const char *msg)
563{
564	if (ppc_md.progress) {
565		char buf[128];
566
567		sprintf(buf, "%08X\n", src);
568		ppc_md.progress(buf, 0);
569		snprintf(buf, 128, "%s", msg);
570		ppc_md.progress(buf, 0);
571	}
572}
573
574/* Print a boot progress message. */
575void ppc64_boot_msg(unsigned int src, const char *msg)
576{
577	ppc64_do_msg(PPC64_LINUX_FUNCTION|PPC64_IPL_MESSAGE|src, msg);
578	printk("[boot]%04x %s\n", src, msg);
579}
580
581#ifdef CONFIG_SMP
582#define PCPU_DYN_SIZE		()
583
584static void * __init pcpu_fc_alloc(unsigned int cpu, size_t size, size_t align)
585{
586	return __alloc_bootmem_node(NODE_DATA(cpu_to_node(cpu)), size, align,
587				    __pa(MAX_DMA_ADDRESS));
588}
589
590static void __init pcpu_fc_free(void *ptr, size_t size)
591{
592	free_bootmem(__pa(ptr), size);
593}
594
595static int pcpu_cpu_distance(unsigned int from, unsigned int to)
596{
597	if (cpu_to_node(from) == cpu_to_node(to))
598		return LOCAL_DISTANCE;
599	else
600		return REMOTE_DISTANCE;
601}
602
603void __init setup_per_cpu_areas(void)
604{
605	const size_t dyn_size = PERCPU_MODULE_RESERVE + PERCPU_DYNAMIC_RESERVE;
606	size_t atom_size;
607	unsigned long delta;
608	unsigned int cpu;
609	int rc;
610
611	/*
612	 * Linear mapping is one of 4K, 1M and 16M.  For 4K, no need
613	 * to group units.  For larger mappings, use 1M atom which
614	 * should be large enough to contain a number of units.
615	 */
616	if (mmu_linear_psize == MMU_PAGE_4K)
617		atom_size = PAGE_SIZE;
618	else
619		atom_size = 1 << 20;
620
621	rc = pcpu_embed_first_chunk(0, dyn_size, atom_size, pcpu_cpu_distance,
622				    pcpu_fc_alloc, pcpu_fc_free);
623	if (rc < 0)
624		panic("cannot initialize percpu area (err=%d)", rc);
625
626	delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start;
627	for_each_possible_cpu(cpu)
628		paca[cpu].data_offset = delta + pcpu_unit_offsets[cpu];
629}
630#endif
631
632
633#ifdef CONFIG_PPC_INDIRECT_IO
634struct ppc_pci_io ppc_pci_io;
635EXPORT_SYMBOL(ppc_pci_io);
636#endif /* CONFIG_PPC_INDIRECT_IO */
637
638