setup_64.c revision a944a9c40b81a71609692c4909bb57e1d01f4bb7
1/*
2 *
3 * Common boot and setup code.
4 *
5 * Copyright (C) 2001 PPC64 Team, IBM Corp
6 *
7 *      This program is free software; you can redistribute it and/or
8 *      modify it under the terms of the GNU General Public License
9 *      as published by the Free Software Foundation; either version
10 *      2 of the License, or (at your option) any later version.
11 */
12
13#define DEBUG
14
15#include <linux/export.h>
16#include <linux/string.h>
17#include <linux/sched.h>
18#include <linux/init.h>
19#include <linux/kernel.h>
20#include <linux/reboot.h>
21#include <linux/delay.h>
22#include <linux/initrd.h>
23#include <linux/seq_file.h>
24#include <linux/ioport.h>
25#include <linux/console.h>
26#include <linux/utsname.h>
27#include <linux/tty.h>
28#include <linux/root_dev.h>
29#include <linux/notifier.h>
30#include <linux/cpu.h>
31#include <linux/unistd.h>
32#include <linux/serial.h>
33#include <linux/serial_8250.h>
34#include <linux/bootmem.h>
35#include <linux/pci.h>
36#include <linux/lockdep.h>
37#include <linux/memblock.h>
38#include <linux/hugetlb.h>
39
40#include <asm/io.h>
41#include <asm/kdump.h>
42#include <asm/prom.h>
43#include <asm/processor.h>
44#include <asm/pgtable.h>
45#include <asm/smp.h>
46#include <asm/elf.h>
47#include <asm/machdep.h>
48#include <asm/paca.h>
49#include <asm/time.h>
50#include <asm/cputable.h>
51#include <asm/sections.h>
52#include <asm/btext.h>
53#include <asm/nvram.h>
54#include <asm/setup.h>
55#include <asm/rtas.h>
56#include <asm/iommu.h>
57#include <asm/serial.h>
58#include <asm/cache.h>
59#include <asm/page.h>
60#include <asm/mmu.h>
61#include <asm/firmware.h>
62#include <asm/xmon.h>
63#include <asm/udbg.h>
64#include <asm/kexec.h>
65#include <asm/mmu_context.h>
66#include <asm/code-patching.h>
67#include <asm/kvm_ppc.h>
68#include <asm/hugetlb.h>
69#include <asm/epapr_hcalls.h>
70
71#ifdef DEBUG
72#define DBG(fmt...) udbg_printf(fmt)
73#else
74#define DBG(fmt...)
75#endif
76
77int spinning_secondaries;
78u64 ppc64_pft_size;
79
80/* Pick defaults since we might want to patch instructions
81 * before we've read this from the device tree.
82 */
83struct ppc64_caches ppc64_caches = {
84	.dline_size = 0x40,
85	.log_dline_size = 6,
86	.iline_size = 0x40,
87	.log_iline_size = 6
88};
89EXPORT_SYMBOL_GPL(ppc64_caches);
90
91/*
92 * These are used in binfmt_elf.c to put aux entries on the stack
93 * for each elf executable being started.
94 */
95int dcache_bsize;
96int icache_bsize;
97int ucache_bsize;
98
99#if defined(CONFIG_PPC_BOOK3E) && defined(CONFIG_SMP)
100static void setup_tlb_core_data(void)
101{
102	int cpu;
103
104	BUILD_BUG_ON(offsetof(struct tlb_core_data, lock) != 0);
105
106	for_each_possible_cpu(cpu) {
107		int first = cpu_first_thread_sibling(cpu);
108
109		paca[cpu].tcd_ptr = &paca[first].tcd;
110
111		/*
112		 * If we have threads, we need either tlbsrx.
113		 * or e6500 tablewalk mode, or else TLB handlers
114		 * will be racy and could produce duplicate entries.
115		 */
116		if (smt_enabled_at_boot >= 2 &&
117		    !mmu_has_feature(MMU_FTR_USE_TLBRSRV) &&
118		    book3e_htw_mode != PPC_HTW_E6500) {
119			/* Should we panic instead? */
120			WARN_ONCE("%s: unsupported MMU configuration -- expect problems\n",
121				  __func__);
122		}
123	}
124}
125#else
126static void setup_tlb_core_data(void)
127{
128}
129#endif
130
131#ifdef CONFIG_SMP
132
133static char *smt_enabled_cmdline;
134
135/* Look for ibm,smt-enabled OF option */
136static void check_smt_enabled(void)
137{
138	struct device_node *dn;
139	const char *smt_option;
140
141	/* Default to enabling all threads */
142	smt_enabled_at_boot = threads_per_core;
143
144	/* Allow the command line to overrule the OF option */
145	if (smt_enabled_cmdline) {
146		if (!strcmp(smt_enabled_cmdline, "on"))
147			smt_enabled_at_boot = threads_per_core;
148		else if (!strcmp(smt_enabled_cmdline, "off"))
149			smt_enabled_at_boot = 0;
150		else {
151			long smt;
152			int rc;
153
154			rc = strict_strtol(smt_enabled_cmdline, 10, &smt);
155			if (!rc)
156				smt_enabled_at_boot =
157					min(threads_per_core, (int)smt);
158		}
159	} else {
160		dn = of_find_node_by_path("/options");
161		if (dn) {
162			smt_option = of_get_property(dn, "ibm,smt-enabled",
163						     NULL);
164
165			if (smt_option) {
166				if (!strcmp(smt_option, "on"))
167					smt_enabled_at_boot = threads_per_core;
168				else if (!strcmp(smt_option, "off"))
169					smt_enabled_at_boot = 0;
170			}
171
172			of_node_put(dn);
173		}
174	}
175}
176
177/* Look for smt-enabled= cmdline option */
178static int __init early_smt_enabled(char *p)
179{
180	smt_enabled_cmdline = p;
181	return 0;
182}
183early_param("smt-enabled", early_smt_enabled);
184
185#else
186#define check_smt_enabled()
187#endif /* CONFIG_SMP */
188
189/** Fix up paca fields required for the boot cpu */
190static void fixup_boot_paca(void)
191{
192	/* The boot cpu is started */
193	get_paca()->cpu_start = 1;
194	/* Allow percpu accesses to work until we setup percpu data */
195	get_paca()->data_offset = 0;
196}
197
198/*
199 * Early initialization entry point. This is called by head.S
200 * with MMU translation disabled. We rely on the "feature" of
201 * the CPU that ignores the top 2 bits of the address in real
202 * mode so we can access kernel globals normally provided we
203 * only toy with things in the RMO region. From here, we do
204 * some early parsing of the device-tree to setup out MEMBLOCK
205 * data structures, and allocate & initialize the hash table
206 * and segment tables so we can start running with translation
207 * enabled.
208 *
209 * It is this function which will call the probe() callback of
210 * the various platform types and copy the matching one to the
211 * global ppc_md structure. Your platform can eventually do
212 * some very early initializations from the probe() routine, but
213 * this is not recommended, be very careful as, for example, the
214 * device-tree is not accessible via normal means at this point.
215 */
216
217void __init early_setup(unsigned long dt_ptr)
218{
219	static __initdata struct paca_struct boot_paca;
220
221	/* -------- printk is _NOT_ safe to use here ! ------- */
222
223	/* Identify CPU type */
224	identify_cpu(0, mfspr(SPRN_PVR));
225
226	/* Assume we're on cpu 0 for now. Don't write to the paca yet! */
227	initialise_paca(&boot_paca, 0);
228	setup_paca(&boot_paca);
229	fixup_boot_paca();
230
231	/* Initialize lockdep early or else spinlocks will blow */
232	lockdep_init();
233
234	/* -------- printk is now safe to use ------- */
235
236	/* Enable early debugging if any specified (see udbg.h) */
237	udbg_early_init();
238
239 	DBG(" -> early_setup(), dt_ptr: 0x%lx\n", dt_ptr);
240
241	/*
242	 * Do early initialization using the flattened device
243	 * tree, such as retrieving the physical memory map or
244	 * calculating/retrieving the hash table size.
245	 */
246	early_init_devtree(__va(dt_ptr));
247
248	epapr_paravirt_early_init();
249
250	/* Now we know the logical id of our boot cpu, setup the paca. */
251	setup_paca(&paca[boot_cpuid]);
252	fixup_boot_paca();
253
254	/* Probe the machine type */
255	probe_machine();
256
257	setup_kdump_trampoline();
258
259	DBG("Found, Initializing memory management...\n");
260
261	/* Initialize the hash table or TLB handling */
262	early_init_mmu();
263
264	/*
265	 * At this point, we can let interrupts switch to virtual mode
266	 * (the MMU has been setup), so adjust the MSR in the PACA to
267	 * have IR and DR set.
268	 */
269	get_paca()->kernel_msr = MSR_KERNEL;
270
271	/* Reserve large chunks of memory for use by CMA for KVM */
272	kvm_cma_reserve();
273
274	/*
275	 * Reserve any gigantic pages requested on the command line.
276	 * memblock needs to have been initialized by the time this is
277	 * called since this will reserve memory.
278	 */
279	reserve_hugetlb_gpages();
280
281	DBG(" <- early_setup()\n");
282
283#ifdef CONFIG_PPC_EARLY_DEBUG_BOOTX
284	/*
285	 * This needs to be done *last* (after the above DBG() even)
286	 *
287	 * Right after we return from this function, we turn on the MMU
288	 * which means the real-mode access trick that btext does will
289	 * no longer work, it needs to switch to using a real MMU
290	 * mapping. This call will ensure that it does
291	 */
292	btext_map();
293#endif /* CONFIG_PPC_EARLY_DEBUG_BOOTX */
294}
295
296#ifdef CONFIG_SMP
297void early_setup_secondary(void)
298{
299	/* Mark interrupts enabled in PACA */
300	get_paca()->soft_enabled = 0;
301
302	/* Initialize the hash table or TLB handling */
303	early_init_mmu_secondary();
304
305	/*
306	 * At this point, we can let interrupts switch to virtual mode
307	 * (the MMU has been setup), so adjust the MSR in the PACA to
308	 * have IR and DR set.
309	 */
310	get_paca()->kernel_msr = MSR_KERNEL;
311}
312
313#endif /* CONFIG_SMP */
314
315#if defined(CONFIG_SMP) || defined(CONFIG_KEXEC)
316void smp_release_cpus(void)
317{
318	unsigned long *ptr;
319	int i;
320
321	DBG(" -> smp_release_cpus()\n");
322
323	/* All secondary cpus are spinning on a common spinloop, release them
324	 * all now so they can start to spin on their individual paca
325	 * spinloops. For non SMP kernels, the secondary cpus never get out
326	 * of the common spinloop.
327	 */
328
329	ptr  = (unsigned long *)((unsigned long)&__secondary_hold_spinloop
330			- PHYSICAL_START);
331	*ptr = __pa(generic_secondary_smp_init);
332
333	/* And wait a bit for them to catch up */
334	for (i = 0; i < 100000; i++) {
335		mb();
336		HMT_low();
337		if (spinning_secondaries == 0)
338			break;
339		udelay(1);
340	}
341	DBG("spinning_secondaries = %d\n", spinning_secondaries);
342
343	DBG(" <- smp_release_cpus()\n");
344}
345#endif /* CONFIG_SMP || CONFIG_KEXEC */
346
347/*
348 * Initialize some remaining members of the ppc64_caches and systemcfg
349 * structures
350 * (at least until we get rid of them completely). This is mostly some
351 * cache informations about the CPU that will be used by cache flush
352 * routines and/or provided to userland
353 */
354static void __init initialize_cache_info(void)
355{
356	struct device_node *np;
357	unsigned long num_cpus = 0;
358
359	DBG(" -> initialize_cache_info()\n");
360
361	for_each_node_by_type(np, "cpu") {
362		num_cpus += 1;
363
364		/*
365		 * We're assuming *all* of the CPUs have the same
366		 * d-cache and i-cache sizes... -Peter
367		 */
368		if (num_cpus == 1) {
369			const __be32 *sizep, *lsizep;
370			u32 size, lsize;
371
372			size = 0;
373			lsize = cur_cpu_spec->dcache_bsize;
374			sizep = of_get_property(np, "d-cache-size", NULL);
375			if (sizep != NULL)
376				size = be32_to_cpu(*sizep);
377			lsizep = of_get_property(np, "d-cache-block-size",
378						 NULL);
379			/* fallback if block size missing */
380			if (lsizep == NULL)
381				lsizep = of_get_property(np,
382							 "d-cache-line-size",
383							 NULL);
384			if (lsizep != NULL)
385				lsize = be32_to_cpu(*lsizep);
386			if (sizep == NULL || lsizep == NULL)
387				DBG("Argh, can't find dcache properties ! "
388				    "sizep: %p, lsizep: %p\n", sizep, lsizep);
389
390			ppc64_caches.dsize = size;
391			ppc64_caches.dline_size = lsize;
392			ppc64_caches.log_dline_size = __ilog2(lsize);
393			ppc64_caches.dlines_per_page = PAGE_SIZE / lsize;
394
395			size = 0;
396			lsize = cur_cpu_spec->icache_bsize;
397			sizep = of_get_property(np, "i-cache-size", NULL);
398			if (sizep != NULL)
399				size = be32_to_cpu(*sizep);
400			lsizep = of_get_property(np, "i-cache-block-size",
401						 NULL);
402			if (lsizep == NULL)
403				lsizep = of_get_property(np,
404							 "i-cache-line-size",
405							 NULL);
406			if (lsizep != NULL)
407				lsize = be32_to_cpu(*lsizep);
408			if (sizep == NULL || lsizep == NULL)
409				DBG("Argh, can't find icache properties ! "
410				    "sizep: %p, lsizep: %p\n", sizep, lsizep);
411
412			ppc64_caches.isize = size;
413			ppc64_caches.iline_size = lsize;
414			ppc64_caches.log_iline_size = __ilog2(lsize);
415			ppc64_caches.ilines_per_page = PAGE_SIZE / lsize;
416		}
417	}
418
419	DBG(" <- initialize_cache_info()\n");
420}
421
422
423/*
424 * Do some initial setup of the system.  The parameters are those which
425 * were passed in from the bootloader.
426 */
427void __init setup_system(void)
428{
429	DBG(" -> setup_system()\n");
430
431	/* Apply the CPUs-specific and firmware specific fixups to kernel
432	 * text (nop out sections not relevant to this CPU or this firmware)
433	 */
434	do_feature_fixups(cur_cpu_spec->cpu_features,
435			  &__start___ftr_fixup, &__stop___ftr_fixup);
436	do_feature_fixups(cur_cpu_spec->mmu_features,
437			  &__start___mmu_ftr_fixup, &__stop___mmu_ftr_fixup);
438	do_feature_fixups(powerpc_firmware_features,
439			  &__start___fw_ftr_fixup, &__stop___fw_ftr_fixup);
440	do_lwsync_fixups(cur_cpu_spec->cpu_features,
441			 &__start___lwsync_fixup, &__stop___lwsync_fixup);
442	do_final_fixups();
443
444	/*
445	 * Unflatten the device-tree passed by prom_init or kexec
446	 */
447	unflatten_device_tree();
448
449	/*
450	 * Fill the ppc64_caches & systemcfg structures with informations
451 	 * retrieved from the device-tree.
452	 */
453	initialize_cache_info();
454
455#ifdef CONFIG_PPC_RTAS
456	/*
457	 * Initialize RTAS if available
458	 */
459	rtas_initialize();
460#endif /* CONFIG_PPC_RTAS */
461
462	/*
463	 * Check if we have an initrd provided via the device-tree
464	 */
465	check_for_initrd();
466
467	/*
468	 * Do some platform specific early initializations, that includes
469	 * setting up the hash table pointers. It also sets up some interrupt-mapping
470	 * related options that will be used by finish_device_tree()
471	 */
472	if (ppc_md.init_early)
473		ppc_md.init_early();
474
475 	/*
476	 * We can discover serial ports now since the above did setup the
477	 * hash table management for us, thus ioremap works. We do that early
478	 * so that further code can be debugged
479	 */
480	find_legacy_serial_ports();
481
482	/*
483	 * Register early console
484	 */
485	register_early_udbg_console();
486
487	/*
488	 * Initialize xmon
489	 */
490	xmon_setup();
491
492	smp_setup_cpu_maps();
493	check_smt_enabled();
494	setup_tlb_core_data();
495
496#ifdef CONFIG_SMP
497	/* Release secondary cpus out of their spinloops at 0x60 now that
498	 * we can map physical -> logical CPU ids
499	 */
500	smp_release_cpus();
501#endif
502
503	printk("Starting Linux PPC64 %s\n", init_utsname()->version);
504
505	printk("-----------------------------------------------------\n");
506	printk("ppc64_pft_size                = 0x%llx\n", ppc64_pft_size);
507	printk("physicalMemorySize            = 0x%llx\n", memblock_phys_mem_size());
508	if (ppc64_caches.dline_size != 0x80)
509		printk("ppc64_caches.dcache_line_size = 0x%x\n",
510		       ppc64_caches.dline_size);
511	if (ppc64_caches.iline_size != 0x80)
512		printk("ppc64_caches.icache_line_size = 0x%x\n",
513		       ppc64_caches.iline_size);
514#ifdef CONFIG_PPC_STD_MMU_64
515	if (htab_address)
516		printk("htab_address                  = 0x%p\n", htab_address);
517	printk("htab_hash_mask                = 0x%lx\n", htab_hash_mask);
518#endif /* CONFIG_PPC_STD_MMU_64 */
519	if (PHYSICAL_START > 0)
520		printk("physical_start                = 0x%llx\n",
521		       (unsigned long long)PHYSICAL_START);
522	printk("-----------------------------------------------------\n");
523
524	DBG(" <- setup_system()\n");
525}
526
527/* This returns the limit below which memory accesses to the linear
528 * mapping are guarnateed not to cause a TLB or SLB miss. This is
529 * used to allocate interrupt or emergency stacks for which our
530 * exception entry path doesn't deal with being interrupted.
531 */
532static u64 safe_stack_limit(void)
533{
534#ifdef CONFIG_PPC_BOOK3E
535	/* Freescale BookE bolts the entire linear mapping */
536	if (mmu_has_feature(MMU_FTR_TYPE_FSL_E))
537		return linear_map_top;
538	/* Other BookE, we assume the first GB is bolted */
539	return 1ul << 30;
540#else
541	/* BookS, the first segment is bolted */
542	if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
543		return 1UL << SID_SHIFT_1T;
544	return 1UL << SID_SHIFT;
545#endif
546}
547
548static void __init irqstack_early_init(void)
549{
550	u64 limit = safe_stack_limit();
551	unsigned int i;
552
553	/*
554	 * Interrupt stacks must be in the first segment since we
555	 * cannot afford to take SLB misses on them.
556	 */
557	for_each_possible_cpu(i) {
558		softirq_ctx[i] = (struct thread_info *)
559			__va(memblock_alloc_base(THREAD_SIZE,
560					    THREAD_SIZE, limit));
561		hardirq_ctx[i] = (struct thread_info *)
562			__va(memblock_alloc_base(THREAD_SIZE,
563					    THREAD_SIZE, limit));
564	}
565}
566
567#ifdef CONFIG_PPC_BOOK3E
568static void __init exc_lvl_early_init(void)
569{
570	unsigned int i;
571	unsigned long sp;
572
573	for_each_possible_cpu(i) {
574		sp = memblock_alloc(THREAD_SIZE, THREAD_SIZE);
575		critirq_ctx[i] = (struct thread_info *)__va(sp);
576		paca[i].crit_kstack = __va(sp + THREAD_SIZE);
577
578		sp = memblock_alloc(THREAD_SIZE, THREAD_SIZE);
579		dbgirq_ctx[i] = (struct thread_info *)__va(sp);
580		paca[i].dbg_kstack = __va(sp + THREAD_SIZE);
581
582		sp = memblock_alloc(THREAD_SIZE, THREAD_SIZE);
583		mcheckirq_ctx[i] = (struct thread_info *)__va(sp);
584		paca[i].mc_kstack = __va(sp + THREAD_SIZE);
585	}
586
587	if (cpu_has_feature(CPU_FTR_DEBUG_LVL_EXC))
588		patch_exception(0x040, exc_debug_debug_book3e);
589}
590#else
591#define exc_lvl_early_init()
592#endif
593
594/*
595 * Stack space used when we detect a bad kernel stack pointer, and
596 * early in SMP boots before relocation is enabled. Exclusive emergency
597 * stack for machine checks.
598 */
599static void __init emergency_stack_init(void)
600{
601	u64 limit;
602	unsigned int i;
603
604	/*
605	 * Emergency stacks must be under 256MB, we cannot afford to take
606	 * SLB misses on them. The ABI also requires them to be 128-byte
607	 * aligned.
608	 *
609	 * Since we use these as temporary stacks during secondary CPU
610	 * bringup, we need to get at them in real mode. This means they
611	 * must also be within the RMO region.
612	 */
613	limit = min(safe_stack_limit(), ppc64_rma_size);
614
615	for_each_possible_cpu(i) {
616		unsigned long sp;
617		sp  = memblock_alloc_base(THREAD_SIZE, THREAD_SIZE, limit);
618		sp += THREAD_SIZE;
619		paca[i].emergency_sp = __va(sp);
620
621#ifdef CONFIG_PPC_BOOK3S_64
622		/* emergency stack for machine check exception handling. */
623		sp  = memblock_alloc_base(THREAD_SIZE, THREAD_SIZE, limit);
624		sp += THREAD_SIZE;
625		paca[i].mc_emergency_sp = __va(sp);
626#endif
627	}
628}
629
630/*
631 * Called into from start_kernel this initializes bootmem, which is used
632 * to manage page allocation until mem_init is called.
633 */
634void __init setup_arch(char **cmdline_p)
635{
636	ppc64_boot_msg(0x12, "Setup Arch");
637
638	*cmdline_p = cmd_line;
639
640	/*
641	 * Set cache line size based on type of cpu as a default.
642	 * Systems with OF can look in the properties on the cpu node(s)
643	 * for a possibly more accurate value.
644	 */
645	dcache_bsize = ppc64_caches.dline_size;
646	icache_bsize = ppc64_caches.iline_size;
647
648	if (ppc_md.panic)
649		setup_panic();
650
651	init_mm.start_code = (unsigned long)_stext;
652	init_mm.end_code = (unsigned long) _etext;
653	init_mm.end_data = (unsigned long) _edata;
654	init_mm.brk = klimit;
655#ifdef CONFIG_PPC_64K_PAGES
656	init_mm.context.pte_frag = NULL;
657#endif
658	irqstack_early_init();
659	exc_lvl_early_init();
660	emergency_stack_init();
661
662#ifdef CONFIG_PPC_STD_MMU_64
663	stabs_alloc();
664#endif
665	/* set up the bootmem stuff with available memory */
666	do_init_bootmem();
667	sparse_init();
668
669#ifdef CONFIG_DUMMY_CONSOLE
670	conswitchp = &dummy_con;
671#endif
672
673	if (ppc_md.setup_arch)
674		ppc_md.setup_arch();
675
676	paging_init();
677
678	/* Initialize the MMU context management stuff */
679	mmu_context_init();
680
681	/* Interrupt code needs to be 64K-aligned */
682	if ((unsigned long)_stext & 0xffff)
683		panic("Kernelbase not 64K-aligned (0x%lx)!\n",
684		      (unsigned long)_stext);
685
686	ppc64_boot_msg(0x15, "Setup Done");
687}
688
689
690/* ToDo: do something useful if ppc_md is not yet setup. */
691#define PPC64_LINUX_FUNCTION 0x0f000000
692#define PPC64_IPL_MESSAGE 0xc0000000
693#define PPC64_TERM_MESSAGE 0xb0000000
694
695static void ppc64_do_msg(unsigned int src, const char *msg)
696{
697	if (ppc_md.progress) {
698		char buf[128];
699
700		sprintf(buf, "%08X\n", src);
701		ppc_md.progress(buf, 0);
702		snprintf(buf, 128, "%s", msg);
703		ppc_md.progress(buf, 0);
704	}
705}
706
707/* Print a boot progress message. */
708void ppc64_boot_msg(unsigned int src, const char *msg)
709{
710	ppc64_do_msg(PPC64_LINUX_FUNCTION|PPC64_IPL_MESSAGE|src, msg);
711	printk("[boot]%04x %s\n", src, msg);
712}
713
714#ifdef CONFIG_SMP
715#define PCPU_DYN_SIZE		()
716
717static void * __init pcpu_fc_alloc(unsigned int cpu, size_t size, size_t align)
718{
719	return __alloc_bootmem_node(NODE_DATA(cpu_to_node(cpu)), size, align,
720				    __pa(MAX_DMA_ADDRESS));
721}
722
723static void __init pcpu_fc_free(void *ptr, size_t size)
724{
725	free_bootmem(__pa(ptr), size);
726}
727
728static int pcpu_cpu_distance(unsigned int from, unsigned int to)
729{
730	if (cpu_to_node(from) == cpu_to_node(to))
731		return LOCAL_DISTANCE;
732	else
733		return REMOTE_DISTANCE;
734}
735
736unsigned long __per_cpu_offset[NR_CPUS] __read_mostly;
737EXPORT_SYMBOL(__per_cpu_offset);
738
739void __init setup_per_cpu_areas(void)
740{
741	const size_t dyn_size = PERCPU_MODULE_RESERVE + PERCPU_DYNAMIC_RESERVE;
742	size_t atom_size;
743	unsigned long delta;
744	unsigned int cpu;
745	int rc;
746
747	/*
748	 * Linear mapping is one of 4K, 1M and 16M.  For 4K, no need
749	 * to group units.  For larger mappings, use 1M atom which
750	 * should be large enough to contain a number of units.
751	 */
752	if (mmu_linear_psize == MMU_PAGE_4K)
753		atom_size = PAGE_SIZE;
754	else
755		atom_size = 1 << 20;
756
757	rc = pcpu_embed_first_chunk(0, dyn_size, atom_size, pcpu_cpu_distance,
758				    pcpu_fc_alloc, pcpu_fc_free);
759	if (rc < 0)
760		panic("cannot initialize percpu area (err=%d)", rc);
761
762	delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start;
763	for_each_possible_cpu(cpu) {
764                __per_cpu_offset[cpu] = delta + pcpu_unit_offsets[cpu];
765		paca[cpu].data_offset = __per_cpu_offset[cpu];
766	}
767}
768#endif
769
770
771#if defined(CONFIG_PPC_INDIRECT_PIO) || defined(CONFIG_PPC_INDIRECT_MMIO)
772struct ppc_pci_io ppc_pci_io;
773EXPORT_SYMBOL(ppc_pci_io);
774#endif
775