setup_64.c revision ae3a197e3d0bfe3f4bf1693723e82dc018c096f3
1/*
2 *
3 * Common boot and setup code.
4 *
5 * Copyright (C) 2001 PPC64 Team, IBM Corp
6 *
7 *      This program is free software; you can redistribute it and/or
8 *      modify it under the terms of the GNU General Public License
9 *      as published by the Free Software Foundation; either version
10 *      2 of the License, or (at your option) any later version.
11 */
12
13#undef DEBUG
14
15#include <linux/export.h>
16#include <linux/string.h>
17#include <linux/sched.h>
18#include <linux/init.h>
19#include <linux/kernel.h>
20#include <linux/reboot.h>
21#include <linux/delay.h>
22#include <linux/initrd.h>
23#include <linux/seq_file.h>
24#include <linux/ioport.h>
25#include <linux/console.h>
26#include <linux/utsname.h>
27#include <linux/tty.h>
28#include <linux/root_dev.h>
29#include <linux/notifier.h>
30#include <linux/cpu.h>
31#include <linux/unistd.h>
32#include <linux/serial.h>
33#include <linux/serial_8250.h>
34#include <linux/bootmem.h>
35#include <linux/pci.h>
36#include <linux/lockdep.h>
37#include <linux/memblock.h>
38#include <linux/hugetlb.h>
39
40#include <asm/io.h>
41#include <asm/kdump.h>
42#include <asm/prom.h>
43#include <asm/processor.h>
44#include <asm/pgtable.h>
45#include <asm/smp.h>
46#include <asm/elf.h>
47#include <asm/machdep.h>
48#include <asm/paca.h>
49#include <asm/time.h>
50#include <asm/cputable.h>
51#include <asm/sections.h>
52#include <asm/btext.h>
53#include <asm/nvram.h>
54#include <asm/setup.h>
55#include <asm/rtas.h>
56#include <asm/iommu.h>
57#include <asm/serial.h>
58#include <asm/cache.h>
59#include <asm/page.h>
60#include <asm/mmu.h>
61#include <asm/firmware.h>
62#include <asm/xmon.h>
63#include <asm/udbg.h>
64#include <asm/kexec.h>
65#include <asm/mmu_context.h>
66#include <asm/code-patching.h>
67#include <asm/kvm_ppc.h>
68#include <asm/hugetlb.h>
69
70#include "setup.h"
71
72#ifdef DEBUG
73#define DBG(fmt...) udbg_printf(fmt)
74#else
75#define DBG(fmt...)
76#endif
77
78int boot_cpuid = 0;
79int __initdata spinning_secondaries;
80u64 ppc64_pft_size;
81
82/* Pick defaults since we might want to patch instructions
83 * before we've read this from the device tree.
84 */
85struct ppc64_caches ppc64_caches = {
86	.dline_size = 0x40,
87	.log_dline_size = 6,
88	.iline_size = 0x40,
89	.log_iline_size = 6
90};
91EXPORT_SYMBOL_GPL(ppc64_caches);
92
93/*
94 * These are used in binfmt_elf.c to put aux entries on the stack
95 * for each elf executable being started.
96 */
97int dcache_bsize;
98int icache_bsize;
99int ucache_bsize;
100
101#ifdef CONFIG_SMP
102
103static char *smt_enabled_cmdline;
104
105/* Look for ibm,smt-enabled OF option */
106static void check_smt_enabled(void)
107{
108	struct device_node *dn;
109	const char *smt_option;
110
111	/* Default to enabling all threads */
112	smt_enabled_at_boot = threads_per_core;
113
114	/* Allow the command line to overrule the OF option */
115	if (smt_enabled_cmdline) {
116		if (!strcmp(smt_enabled_cmdline, "on"))
117			smt_enabled_at_boot = threads_per_core;
118		else if (!strcmp(smt_enabled_cmdline, "off"))
119			smt_enabled_at_boot = 0;
120		else {
121			long smt;
122			int rc;
123
124			rc = strict_strtol(smt_enabled_cmdline, 10, &smt);
125			if (!rc)
126				smt_enabled_at_boot =
127					min(threads_per_core, (int)smt);
128		}
129	} else {
130		dn = of_find_node_by_path("/options");
131		if (dn) {
132			smt_option = of_get_property(dn, "ibm,smt-enabled",
133						     NULL);
134
135			if (smt_option) {
136				if (!strcmp(smt_option, "on"))
137					smt_enabled_at_boot = threads_per_core;
138				else if (!strcmp(smt_option, "off"))
139					smt_enabled_at_boot = 0;
140			}
141
142			of_node_put(dn);
143		}
144	}
145}
146
147/* Look for smt-enabled= cmdline option */
148static int __init early_smt_enabled(char *p)
149{
150	smt_enabled_cmdline = p;
151	return 0;
152}
153early_param("smt-enabled", early_smt_enabled);
154
155#else
156#define check_smt_enabled()
157#endif /* CONFIG_SMP */
158
159/*
160 * Early initialization entry point. This is called by head.S
161 * with MMU translation disabled. We rely on the "feature" of
162 * the CPU that ignores the top 2 bits of the address in real
163 * mode so we can access kernel globals normally provided we
164 * only toy with things in the RMO region. From here, we do
165 * some early parsing of the device-tree to setup out MEMBLOCK
166 * data structures, and allocate & initialize the hash table
167 * and segment tables so we can start running with translation
168 * enabled.
169 *
170 * It is this function which will call the probe() callback of
171 * the various platform types and copy the matching one to the
172 * global ppc_md structure. Your platform can eventually do
173 * some very early initializations from the probe() routine, but
174 * this is not recommended, be very careful as, for example, the
175 * device-tree is not accessible via normal means at this point.
176 */
177
178void __init early_setup(unsigned long dt_ptr)
179{
180	/* -------- printk is _NOT_ safe to use here ! ------- */
181
182	/* Identify CPU type */
183	identify_cpu(0, mfspr(SPRN_PVR));
184
185	/* Assume we're on cpu 0 for now. Don't write to the paca yet! */
186	initialise_paca(&boot_paca, 0);
187	setup_paca(&boot_paca);
188
189	/* Initialize lockdep early or else spinlocks will blow */
190	lockdep_init();
191
192	/* -------- printk is now safe to use ------- */
193
194	/* Enable early debugging if any specified (see udbg.h) */
195	udbg_early_init();
196
197 	DBG(" -> early_setup(), dt_ptr: 0x%lx\n", dt_ptr);
198
199	/*
200	 * Do early initialization using the flattened device
201	 * tree, such as retrieving the physical memory map or
202	 * calculating/retrieving the hash table size.
203	 */
204	early_init_devtree(__va(dt_ptr));
205
206	/* Now we know the logical id of our boot cpu, setup the paca. */
207	setup_paca(&paca[boot_cpuid]);
208
209	/* Fix up paca fields required for the boot cpu */
210	get_paca()->cpu_start = 1;
211
212	/* Probe the machine type */
213	probe_machine();
214
215	setup_kdump_trampoline();
216
217	DBG("Found, Initializing memory management...\n");
218
219	/* Initialize the hash table or TLB handling */
220	early_init_mmu();
221
222	/*
223	 * Reserve any gigantic pages requested on the command line.
224	 * memblock needs to have been initialized by the time this is
225	 * called since this will reserve memory.
226	 */
227	reserve_hugetlb_gpages();
228
229	DBG(" <- early_setup()\n");
230}
231
232#ifdef CONFIG_SMP
233void early_setup_secondary(void)
234{
235	/* Mark interrupts enabled in PACA */
236	get_paca()->soft_enabled = 0;
237
238	/* Initialize the hash table or TLB handling */
239	early_init_mmu_secondary();
240}
241
242#endif /* CONFIG_SMP */
243
244#if defined(CONFIG_SMP) || defined(CONFIG_KEXEC)
245void smp_release_cpus(void)
246{
247	unsigned long *ptr;
248	int i;
249
250	DBG(" -> smp_release_cpus()\n");
251
252	/* All secondary cpus are spinning on a common spinloop, release them
253	 * all now so they can start to spin on their individual paca
254	 * spinloops. For non SMP kernels, the secondary cpus never get out
255	 * of the common spinloop.
256	 */
257
258	ptr  = (unsigned long *)((unsigned long)&__secondary_hold_spinloop
259			- PHYSICAL_START);
260	*ptr = __pa(generic_secondary_smp_init);
261
262	/* And wait a bit for them to catch up */
263	for (i = 0; i < 100000; i++) {
264		mb();
265		HMT_low();
266		if (spinning_secondaries == 0)
267			break;
268		udelay(1);
269	}
270	DBG("spinning_secondaries = %d\n", spinning_secondaries);
271
272	DBG(" <- smp_release_cpus()\n");
273}
274#endif /* CONFIG_SMP || CONFIG_KEXEC */
275
276/*
277 * Initialize some remaining members of the ppc64_caches and systemcfg
278 * structures
279 * (at least until we get rid of them completely). This is mostly some
280 * cache informations about the CPU that will be used by cache flush
281 * routines and/or provided to userland
282 */
283static void __init initialize_cache_info(void)
284{
285	struct device_node *np;
286	unsigned long num_cpus = 0;
287
288	DBG(" -> initialize_cache_info()\n");
289
290	for_each_node_by_type(np, "cpu") {
291		num_cpus += 1;
292
293		/*
294		 * We're assuming *all* of the CPUs have the same
295		 * d-cache and i-cache sizes... -Peter
296		 */
297		if (num_cpus == 1) {
298			const u32 *sizep, *lsizep;
299			u32 size, lsize;
300
301			size = 0;
302			lsize = cur_cpu_spec->dcache_bsize;
303			sizep = of_get_property(np, "d-cache-size", NULL);
304			if (sizep != NULL)
305				size = *sizep;
306			lsizep = of_get_property(np, "d-cache-block-size",
307						 NULL);
308			/* fallback if block size missing */
309			if (lsizep == NULL)
310				lsizep = of_get_property(np,
311							 "d-cache-line-size",
312							 NULL);
313			if (lsizep != NULL)
314				lsize = *lsizep;
315			if (sizep == 0 || lsizep == 0)
316				DBG("Argh, can't find dcache properties ! "
317				    "sizep: %p, lsizep: %p\n", sizep, lsizep);
318
319			ppc64_caches.dsize = size;
320			ppc64_caches.dline_size = lsize;
321			ppc64_caches.log_dline_size = __ilog2(lsize);
322			ppc64_caches.dlines_per_page = PAGE_SIZE / lsize;
323
324			size = 0;
325			lsize = cur_cpu_spec->icache_bsize;
326			sizep = of_get_property(np, "i-cache-size", NULL);
327			if (sizep != NULL)
328				size = *sizep;
329			lsizep = of_get_property(np, "i-cache-block-size",
330						 NULL);
331			if (lsizep == NULL)
332				lsizep = of_get_property(np,
333							 "i-cache-line-size",
334							 NULL);
335			if (lsizep != NULL)
336				lsize = *lsizep;
337			if (sizep == 0 || lsizep == 0)
338				DBG("Argh, can't find icache properties ! "
339				    "sizep: %p, lsizep: %p\n", sizep, lsizep);
340
341			ppc64_caches.isize = size;
342			ppc64_caches.iline_size = lsize;
343			ppc64_caches.log_iline_size = __ilog2(lsize);
344			ppc64_caches.ilines_per_page = PAGE_SIZE / lsize;
345		}
346	}
347
348	DBG(" <- initialize_cache_info()\n");
349}
350
351
352/*
353 * Do some initial setup of the system.  The parameters are those which
354 * were passed in from the bootloader.
355 */
356void __init setup_system(void)
357{
358	DBG(" -> setup_system()\n");
359
360	/* Apply the CPUs-specific and firmware specific fixups to kernel
361	 * text (nop out sections not relevant to this CPU or this firmware)
362	 */
363	do_feature_fixups(cur_cpu_spec->cpu_features,
364			  &__start___ftr_fixup, &__stop___ftr_fixup);
365	do_feature_fixups(cur_cpu_spec->mmu_features,
366			  &__start___mmu_ftr_fixup, &__stop___mmu_ftr_fixup);
367	do_feature_fixups(powerpc_firmware_features,
368			  &__start___fw_ftr_fixup, &__stop___fw_ftr_fixup);
369	do_lwsync_fixups(cur_cpu_spec->cpu_features,
370			 &__start___lwsync_fixup, &__stop___lwsync_fixup);
371	do_final_fixups();
372
373	/*
374	 * Unflatten the device-tree passed by prom_init or kexec
375	 */
376	unflatten_device_tree();
377
378	/*
379	 * Fill the ppc64_caches & systemcfg structures with informations
380 	 * retrieved from the device-tree.
381	 */
382	initialize_cache_info();
383
384#ifdef CONFIG_PPC_RTAS
385	/*
386	 * Initialize RTAS if available
387	 */
388	rtas_initialize();
389#endif /* CONFIG_PPC_RTAS */
390
391	/*
392	 * Check if we have an initrd provided via the device-tree
393	 */
394	check_for_initrd();
395
396	/*
397	 * Do some platform specific early initializations, that includes
398	 * setting up the hash table pointers. It also sets up some interrupt-mapping
399	 * related options that will be used by finish_device_tree()
400	 */
401	if (ppc_md.init_early)
402		ppc_md.init_early();
403
404 	/*
405	 * We can discover serial ports now since the above did setup the
406	 * hash table management for us, thus ioremap works. We do that early
407	 * so that further code can be debugged
408	 */
409	find_legacy_serial_ports();
410
411	/*
412	 * Register early console
413	 */
414	register_early_udbg_console();
415
416	/*
417	 * Initialize xmon
418	 */
419	xmon_setup();
420
421	smp_setup_cpu_maps();
422	check_smt_enabled();
423
424#ifdef CONFIG_SMP
425	/* Release secondary cpus out of their spinloops at 0x60 now that
426	 * we can map physical -> logical CPU ids
427	 */
428	smp_release_cpus();
429#endif
430
431	printk("Starting Linux PPC64 %s\n", init_utsname()->version);
432
433	printk("-----------------------------------------------------\n");
434	printk("ppc64_pft_size                = 0x%llx\n", ppc64_pft_size);
435	printk("physicalMemorySize            = 0x%llx\n", memblock_phys_mem_size());
436	if (ppc64_caches.dline_size != 0x80)
437		printk("ppc64_caches.dcache_line_size = 0x%x\n",
438		       ppc64_caches.dline_size);
439	if (ppc64_caches.iline_size != 0x80)
440		printk("ppc64_caches.icache_line_size = 0x%x\n",
441		       ppc64_caches.iline_size);
442#ifdef CONFIG_PPC_STD_MMU_64
443	if (htab_address)
444		printk("htab_address                  = 0x%p\n", htab_address);
445	printk("htab_hash_mask                = 0x%lx\n", htab_hash_mask);
446#endif /* CONFIG_PPC_STD_MMU_64 */
447	if (PHYSICAL_START > 0)
448		printk("physical_start                = 0x%llx\n",
449		       (unsigned long long)PHYSICAL_START);
450	printk("-----------------------------------------------------\n");
451
452	DBG(" <- setup_system()\n");
453}
454
455/* This returns the limit below which memory accesses to the linear
456 * mapping are guarnateed not to cause a TLB or SLB miss. This is
457 * used to allocate interrupt or emergency stacks for which our
458 * exception entry path doesn't deal with being interrupted.
459 */
460static u64 safe_stack_limit(void)
461{
462#ifdef CONFIG_PPC_BOOK3E
463	/* Freescale BookE bolts the entire linear mapping */
464	if (mmu_has_feature(MMU_FTR_TYPE_FSL_E))
465		return linear_map_top;
466	/* Other BookE, we assume the first GB is bolted */
467	return 1ul << 30;
468#else
469	/* BookS, the first segment is bolted */
470	if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
471		return 1UL << SID_SHIFT_1T;
472	return 1UL << SID_SHIFT;
473#endif
474}
475
476static void __init irqstack_early_init(void)
477{
478	u64 limit = safe_stack_limit();
479	unsigned int i;
480
481	/*
482	 * Interrupt stacks must be in the first segment since we
483	 * cannot afford to take SLB misses on them.
484	 */
485	for_each_possible_cpu(i) {
486		softirq_ctx[i] = (struct thread_info *)
487			__va(memblock_alloc_base(THREAD_SIZE,
488					    THREAD_SIZE, limit));
489		hardirq_ctx[i] = (struct thread_info *)
490			__va(memblock_alloc_base(THREAD_SIZE,
491					    THREAD_SIZE, limit));
492	}
493}
494
495#ifdef CONFIG_PPC_BOOK3E
496static void __init exc_lvl_early_init(void)
497{
498	extern unsigned int interrupt_base_book3e;
499	extern unsigned int exc_debug_debug_book3e;
500
501	unsigned int i;
502
503	for_each_possible_cpu(i) {
504		critirq_ctx[i] = (struct thread_info *)
505			__va(memblock_alloc(THREAD_SIZE, THREAD_SIZE));
506		dbgirq_ctx[i] = (struct thread_info *)
507			__va(memblock_alloc(THREAD_SIZE, THREAD_SIZE));
508		mcheckirq_ctx[i] = (struct thread_info *)
509			__va(memblock_alloc(THREAD_SIZE, THREAD_SIZE));
510	}
511
512	if (cpu_has_feature(CPU_FTR_DEBUG_LVL_EXC))
513		patch_branch(&interrupt_base_book3e + (0x040 / 4) + 1,
514			     (unsigned long)&exc_debug_debug_book3e, 0);
515}
516#else
517#define exc_lvl_early_init()
518#endif
519
520/*
521 * Stack space used when we detect a bad kernel stack pointer, and
522 * early in SMP boots before relocation is enabled.
523 */
524static void __init emergency_stack_init(void)
525{
526	u64 limit;
527	unsigned int i;
528
529	/*
530	 * Emergency stacks must be under 256MB, we cannot afford to take
531	 * SLB misses on them. The ABI also requires them to be 128-byte
532	 * aligned.
533	 *
534	 * Since we use these as temporary stacks during secondary CPU
535	 * bringup, we need to get at them in real mode. This means they
536	 * must also be within the RMO region.
537	 */
538	limit = min(safe_stack_limit(), ppc64_rma_size);
539
540	for_each_possible_cpu(i) {
541		unsigned long sp;
542		sp  = memblock_alloc_base(THREAD_SIZE, THREAD_SIZE, limit);
543		sp += THREAD_SIZE;
544		paca[i].emergency_sp = __va(sp);
545	}
546}
547
548/*
549 * Called into from start_kernel this initializes bootmem, which is used
550 * to manage page allocation until mem_init is called.
551 */
552void __init setup_arch(char **cmdline_p)
553{
554	ppc64_boot_msg(0x12, "Setup Arch");
555
556	*cmdline_p = cmd_line;
557
558	/*
559	 * Set cache line size based on type of cpu as a default.
560	 * Systems with OF can look in the properties on the cpu node(s)
561	 * for a possibly more accurate value.
562	 */
563	dcache_bsize = ppc64_caches.dline_size;
564	icache_bsize = ppc64_caches.iline_size;
565
566	/* reboot on panic */
567	panic_timeout = 180;
568
569	if (ppc_md.panic)
570		setup_panic();
571
572	init_mm.start_code = (unsigned long)_stext;
573	init_mm.end_code = (unsigned long) _etext;
574	init_mm.end_data = (unsigned long) _edata;
575	init_mm.brk = klimit;
576
577	irqstack_early_init();
578	exc_lvl_early_init();
579	emergency_stack_init();
580
581#ifdef CONFIG_PPC_STD_MMU_64
582	stabs_alloc();
583#endif
584	/* set up the bootmem stuff with available memory */
585	do_init_bootmem();
586	sparse_init();
587
588#ifdef CONFIG_DUMMY_CONSOLE
589	conswitchp = &dummy_con;
590#endif
591
592	if (ppc_md.setup_arch)
593		ppc_md.setup_arch();
594
595	paging_init();
596
597	/* Initialize the MMU context management stuff */
598	mmu_context_init();
599
600	kvm_rma_init();
601
602	ppc64_boot_msg(0x15, "Setup Done");
603}
604
605
606/* ToDo: do something useful if ppc_md is not yet setup. */
607#define PPC64_LINUX_FUNCTION 0x0f000000
608#define PPC64_IPL_MESSAGE 0xc0000000
609#define PPC64_TERM_MESSAGE 0xb0000000
610
611static void ppc64_do_msg(unsigned int src, const char *msg)
612{
613	if (ppc_md.progress) {
614		char buf[128];
615
616		sprintf(buf, "%08X\n", src);
617		ppc_md.progress(buf, 0);
618		snprintf(buf, 128, "%s", msg);
619		ppc_md.progress(buf, 0);
620	}
621}
622
623/* Print a boot progress message. */
624void ppc64_boot_msg(unsigned int src, const char *msg)
625{
626	ppc64_do_msg(PPC64_LINUX_FUNCTION|PPC64_IPL_MESSAGE|src, msg);
627	printk("[boot]%04x %s\n", src, msg);
628}
629
630#ifdef CONFIG_SMP
631#define PCPU_DYN_SIZE		()
632
633static void * __init pcpu_fc_alloc(unsigned int cpu, size_t size, size_t align)
634{
635	return __alloc_bootmem_node(NODE_DATA(cpu_to_node(cpu)), size, align,
636				    __pa(MAX_DMA_ADDRESS));
637}
638
639static void __init pcpu_fc_free(void *ptr, size_t size)
640{
641	free_bootmem(__pa(ptr), size);
642}
643
644static int pcpu_cpu_distance(unsigned int from, unsigned int to)
645{
646	if (cpu_to_node(from) == cpu_to_node(to))
647		return LOCAL_DISTANCE;
648	else
649		return REMOTE_DISTANCE;
650}
651
652unsigned long __per_cpu_offset[NR_CPUS] __read_mostly;
653EXPORT_SYMBOL(__per_cpu_offset);
654
655void __init setup_per_cpu_areas(void)
656{
657	const size_t dyn_size = PERCPU_MODULE_RESERVE + PERCPU_DYNAMIC_RESERVE;
658	size_t atom_size;
659	unsigned long delta;
660	unsigned int cpu;
661	int rc;
662
663	/*
664	 * Linear mapping is one of 4K, 1M and 16M.  For 4K, no need
665	 * to group units.  For larger mappings, use 1M atom which
666	 * should be large enough to contain a number of units.
667	 */
668	if (mmu_linear_psize == MMU_PAGE_4K)
669		atom_size = PAGE_SIZE;
670	else
671		atom_size = 1 << 20;
672
673	rc = pcpu_embed_first_chunk(0, dyn_size, atom_size, pcpu_cpu_distance,
674				    pcpu_fc_alloc, pcpu_fc_free);
675	if (rc < 0)
676		panic("cannot initialize percpu area (err=%d)", rc);
677
678	delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start;
679	for_each_possible_cpu(cpu) {
680                __per_cpu_offset[cpu] = delta + pcpu_unit_offsets[cpu];
681		paca[cpu].data_offset = __per_cpu_offset[cpu];
682	}
683}
684#endif
685
686
687#ifdef CONFIG_PPC_INDIRECT_IO
688struct ppc_pci_io ppc_pci_io;
689EXPORT_SYMBOL(ppc_pci_io);
690#endif /* CONFIG_PPC_INDIRECT_IO */
691
692