setup_64.c revision d36b4c4f3cc6caae6d4a12d9f995513e4c3acdd5
1/*
2 *
3 * Common boot and setup code.
4 *
5 * Copyright (C) 2001 PPC64 Team, IBM Corp
6 *
7 *      This program is free software; you can redistribute it and/or
8 *      modify it under the terms of the GNU General Public License
9 *      as published by the Free Software Foundation; either version
10 *      2 of the License, or (at your option) any later version.
11 */
12
13#undef DEBUG
14
15#include <linux/module.h>
16#include <linux/string.h>
17#include <linux/sched.h>
18#include <linux/init.h>
19#include <linux/kernel.h>
20#include <linux/reboot.h>
21#include <linux/delay.h>
22#include <linux/initrd.h>
23#include <linux/seq_file.h>
24#include <linux/ioport.h>
25#include <linux/console.h>
26#include <linux/utsname.h>
27#include <linux/tty.h>
28#include <linux/root_dev.h>
29#include <linux/notifier.h>
30#include <linux/cpu.h>
31#include <linux/unistd.h>
32#include <linux/serial.h>
33#include <linux/serial_8250.h>
34#include <linux/bootmem.h>
35#include <linux/pci.h>
36#include <linux/lockdep.h>
37#include <linux/memblock.h>
38#include <asm/io.h>
39#include <asm/kdump.h>
40#include <asm/prom.h>
41#include <asm/processor.h>
42#include <asm/pgtable.h>
43#include <asm/smp.h>
44#include <asm/elf.h>
45#include <asm/machdep.h>
46#include <asm/paca.h>
47#include <asm/time.h>
48#include <asm/cputable.h>
49#include <asm/sections.h>
50#include <asm/btext.h>
51#include <asm/nvram.h>
52#include <asm/setup.h>
53#include <asm/system.h>
54#include <asm/rtas.h>
55#include <asm/iommu.h>
56#include <asm/serial.h>
57#include <asm/cache.h>
58#include <asm/page.h>
59#include <asm/mmu.h>
60#include <asm/firmware.h>
61#include <asm/xmon.h>
62#include <asm/udbg.h>
63#include <asm/kexec.h>
64#include <asm/mmu_context.h>
65#include <asm/code-patching.h>
66
67#include "setup.h"
68
69#ifdef DEBUG
70#define DBG(fmt...) udbg_printf(fmt)
71#else
72#define DBG(fmt...)
73#endif
74
75int boot_cpuid = 0;
76int __initdata boot_cpu_count;
77u64 ppc64_pft_size;
78
79/* Pick defaults since we might want to patch instructions
80 * before we've read this from the device tree.
81 */
82struct ppc64_caches ppc64_caches = {
83	.dline_size = 0x40,
84	.log_dline_size = 6,
85	.iline_size = 0x40,
86	.log_iline_size = 6
87};
88EXPORT_SYMBOL_GPL(ppc64_caches);
89
90/*
91 * These are used in binfmt_elf.c to put aux entries on the stack
92 * for each elf executable being started.
93 */
94int dcache_bsize;
95int icache_bsize;
96int ucache_bsize;
97
98#ifdef CONFIG_SMP
99
100static char *smt_enabled_cmdline;
101
102/* Look for ibm,smt-enabled OF option */
103static void check_smt_enabled(void)
104{
105	struct device_node *dn;
106	const char *smt_option;
107
108	/* Default to enabling all threads */
109	smt_enabled_at_boot = threads_per_core;
110
111	/* Allow the command line to overrule the OF option */
112	if (smt_enabled_cmdline) {
113		if (!strcmp(smt_enabled_cmdline, "on"))
114			smt_enabled_at_boot = threads_per_core;
115		else if (!strcmp(smt_enabled_cmdline, "off"))
116			smt_enabled_at_boot = 0;
117		else {
118			long smt;
119			int rc;
120
121			rc = strict_strtol(smt_enabled_cmdline, 10, &smt);
122			if (!rc)
123				smt_enabled_at_boot =
124					min(threads_per_core, (int)smt);
125		}
126	} else {
127		dn = of_find_node_by_path("/options");
128		if (dn) {
129			smt_option = of_get_property(dn, "ibm,smt-enabled",
130						     NULL);
131
132			if (smt_option) {
133				if (!strcmp(smt_option, "on"))
134					smt_enabled_at_boot = threads_per_core;
135				else if (!strcmp(smt_option, "off"))
136					smt_enabled_at_boot = 0;
137			}
138
139			of_node_put(dn);
140		}
141	}
142}
143
144/* Look for smt-enabled= cmdline option */
145static int __init early_smt_enabled(char *p)
146{
147	smt_enabled_cmdline = p;
148	return 0;
149}
150early_param("smt-enabled", early_smt_enabled);
151
152#else
153#define check_smt_enabled()
154#endif /* CONFIG_SMP */
155
156/*
157 * Early initialization entry point. This is called by head.S
158 * with MMU translation disabled. We rely on the "feature" of
159 * the CPU that ignores the top 2 bits of the address in real
160 * mode so we can access kernel globals normally provided we
161 * only toy with things in the RMO region. From here, we do
162 * some early parsing of the device-tree to setup out MEMBLOCK
163 * data structures, and allocate & initialize the hash table
164 * and segment tables so we can start running with translation
165 * enabled.
166 *
167 * It is this function which will call the probe() callback of
168 * the various platform types and copy the matching one to the
169 * global ppc_md structure. Your platform can eventually do
170 * some very early initializations from the probe() routine, but
171 * this is not recommended, be very careful as, for example, the
172 * device-tree is not accessible via normal means at this point.
173 */
174
175void __init early_setup(unsigned long dt_ptr)
176{
177	/* -------- printk is _NOT_ safe to use here ! ------- */
178
179	/* Identify CPU type */
180	identify_cpu(0, mfspr(SPRN_PVR));
181
182	/* Assume we're on cpu 0 for now. Don't write to the paca yet! */
183	initialise_paca(&boot_paca, 0);
184	setup_paca(&boot_paca);
185
186	/* Initialize lockdep early or else spinlocks will blow */
187	lockdep_init();
188
189	/* -------- printk is now safe to use ------- */
190
191	/* Enable early debugging if any specified (see udbg.h) */
192	udbg_early_init();
193
194 	DBG(" -> early_setup(), dt_ptr: 0x%lx\n", dt_ptr);
195
196	/*
197	 * Do early initialization using the flattened device
198	 * tree, such as retrieving the physical memory map or
199	 * calculating/retrieving the hash table size.
200	 */
201	early_init_devtree(__va(dt_ptr));
202
203	/* Now we know the logical id of our boot cpu, setup the paca. */
204	setup_paca(&paca[boot_cpuid]);
205
206	/* Fix up paca fields required for the boot cpu */
207	get_paca()->cpu_start = 1;
208
209	/* Probe the machine type */
210	probe_machine();
211
212	setup_kdump_trampoline();
213
214	DBG("Found, Initializing memory management...\n");
215
216	/* Initialize the hash table or TLB handling */
217	early_init_mmu();
218
219	DBG(" <- early_setup()\n");
220}
221
222#ifdef CONFIG_SMP
223void early_setup_secondary(void)
224{
225	/* Mark interrupts enabled in PACA */
226	get_paca()->soft_enabled = 0;
227
228	/* Initialize the hash table or TLB handling */
229	early_init_mmu_secondary();
230}
231
232#endif /* CONFIG_SMP */
233
234#if defined(CONFIG_SMP) || defined(CONFIG_KEXEC)
235void smp_release_cpus(void)
236{
237	unsigned long *ptr;
238	int i;
239
240	DBG(" -> smp_release_cpus()\n");
241
242	/* All secondary cpus are spinning on a common spinloop, release them
243	 * all now so they can start to spin on their individual paca
244	 * spinloops. For non SMP kernels, the secondary cpus never get out
245	 * of the common spinloop.
246	 */
247
248	ptr  = (unsigned long *)((unsigned long)&__secondary_hold_spinloop
249			- PHYSICAL_START);
250	*ptr = __pa(generic_secondary_smp_init);
251
252	/* And wait a bit for them to catch up */
253	for (i = 0; i < 100000; i++) {
254		mb();
255		HMT_low();
256		if (boot_cpu_count == 0)
257			break;
258		udelay(1);
259	}
260	DBG("boot_cpu_count = %d\n", boot_cpu_count);
261
262	DBG(" <- smp_release_cpus()\n");
263}
264#endif /* CONFIG_SMP || CONFIG_KEXEC */
265
266/*
267 * Initialize some remaining members of the ppc64_caches and systemcfg
268 * structures
269 * (at least until we get rid of them completely). This is mostly some
270 * cache informations about the CPU that will be used by cache flush
271 * routines and/or provided to userland
272 */
273static void __init initialize_cache_info(void)
274{
275	struct device_node *np;
276	unsigned long num_cpus = 0;
277
278	DBG(" -> initialize_cache_info()\n");
279
280	for (np = NULL; (np = of_find_node_by_type(np, "cpu"));) {
281		num_cpus += 1;
282
283		/* We're assuming *all* of the CPUs have the same
284		 * d-cache and i-cache sizes... -Peter
285		 */
286
287		if ( num_cpus == 1 ) {
288			const u32 *sizep, *lsizep;
289			u32 size, lsize;
290
291			size = 0;
292			lsize = cur_cpu_spec->dcache_bsize;
293			sizep = of_get_property(np, "d-cache-size", NULL);
294			if (sizep != NULL)
295				size = *sizep;
296			lsizep = of_get_property(np, "d-cache-block-size", NULL);
297			/* fallback if block size missing */
298			if (lsizep == NULL)
299				lsizep = of_get_property(np, "d-cache-line-size", NULL);
300			if (lsizep != NULL)
301				lsize = *lsizep;
302			if (sizep == 0 || lsizep == 0)
303				DBG("Argh, can't find dcache properties ! "
304				    "sizep: %p, lsizep: %p\n", sizep, lsizep);
305
306			ppc64_caches.dsize = size;
307			ppc64_caches.dline_size = lsize;
308			ppc64_caches.log_dline_size = __ilog2(lsize);
309			ppc64_caches.dlines_per_page = PAGE_SIZE / lsize;
310
311			size = 0;
312			lsize = cur_cpu_spec->icache_bsize;
313			sizep = of_get_property(np, "i-cache-size", NULL);
314			if (sizep != NULL)
315				size = *sizep;
316			lsizep = of_get_property(np, "i-cache-block-size", NULL);
317			if (lsizep == NULL)
318				lsizep = of_get_property(np, "i-cache-line-size", NULL);
319			if (lsizep != NULL)
320				lsize = *lsizep;
321			if (sizep == 0 || lsizep == 0)
322				DBG("Argh, can't find icache properties ! "
323				    "sizep: %p, lsizep: %p\n", sizep, lsizep);
324
325			ppc64_caches.isize = size;
326			ppc64_caches.iline_size = lsize;
327			ppc64_caches.log_iline_size = __ilog2(lsize);
328			ppc64_caches.ilines_per_page = PAGE_SIZE / lsize;
329		}
330	}
331
332	DBG(" <- initialize_cache_info()\n");
333}
334
335
336/*
337 * Do some initial setup of the system.  The parameters are those which
338 * were passed in from the bootloader.
339 */
340void __init setup_system(void)
341{
342	DBG(" -> setup_system()\n");
343
344	/* Apply the CPUs-specific and firmware specific fixups to kernel
345	 * text (nop out sections not relevant to this CPU or this firmware)
346	 */
347	do_feature_fixups(cur_cpu_spec->cpu_features,
348			  &__start___ftr_fixup, &__stop___ftr_fixup);
349	do_feature_fixups(cur_cpu_spec->mmu_features,
350			  &__start___mmu_ftr_fixup, &__stop___mmu_ftr_fixup);
351	do_feature_fixups(powerpc_firmware_features,
352			  &__start___fw_ftr_fixup, &__stop___fw_ftr_fixup);
353	do_lwsync_fixups(cur_cpu_spec->cpu_features,
354			 &__start___lwsync_fixup, &__stop___lwsync_fixup);
355
356	/*
357	 * Unflatten the device-tree passed by prom_init or kexec
358	 */
359	unflatten_device_tree();
360
361	/*
362	 * Fill the ppc64_caches & systemcfg structures with informations
363 	 * retrieved from the device-tree.
364	 */
365	initialize_cache_info();
366
367#ifdef CONFIG_PPC_RTAS
368	/*
369	 * Initialize RTAS if available
370	 */
371	rtas_initialize();
372#endif /* CONFIG_PPC_RTAS */
373
374	/*
375	 * Check if we have an initrd provided via the device-tree
376	 */
377	check_for_initrd();
378
379	/*
380	 * Do some platform specific early initializations, that includes
381	 * setting up the hash table pointers. It also sets up some interrupt-mapping
382	 * related options that will be used by finish_device_tree()
383	 */
384	if (ppc_md.init_early)
385		ppc_md.init_early();
386
387 	/*
388	 * We can discover serial ports now since the above did setup the
389	 * hash table management for us, thus ioremap works. We do that early
390	 * so that further code can be debugged
391	 */
392	find_legacy_serial_ports();
393
394	/*
395	 * Register early console
396	 */
397	register_early_udbg_console();
398
399	/*
400	 * Initialize xmon
401	 */
402	xmon_setup();
403
404	smp_setup_cpu_maps();
405	check_smt_enabled();
406
407#ifdef CONFIG_SMP
408	/* Release secondary cpus out of their spinloops at 0x60 now that
409	 * we can map physical -> logical CPU ids
410	 */
411	smp_release_cpus();
412#endif
413
414	printk("Starting Linux PPC64 %s\n", init_utsname()->version);
415
416	printk("-----------------------------------------------------\n");
417	printk("ppc64_pft_size                = 0x%llx\n", ppc64_pft_size);
418	printk("physicalMemorySize            = 0x%llx\n", memblock_phys_mem_size());
419	if (ppc64_caches.dline_size != 0x80)
420		printk("ppc64_caches.dcache_line_size = 0x%x\n",
421		       ppc64_caches.dline_size);
422	if (ppc64_caches.iline_size != 0x80)
423		printk("ppc64_caches.icache_line_size = 0x%x\n",
424		       ppc64_caches.iline_size);
425#ifdef CONFIG_PPC_STD_MMU_64
426	if (htab_address)
427		printk("htab_address                  = 0x%p\n", htab_address);
428	printk("htab_hash_mask                = 0x%lx\n", htab_hash_mask);
429#endif /* CONFIG_PPC_STD_MMU_64 */
430	if (PHYSICAL_START > 0)
431		printk("physical_start                = 0x%llx\n",
432		       (unsigned long long)PHYSICAL_START);
433	printk("-----------------------------------------------------\n");
434
435	DBG(" <- setup_system()\n");
436}
437
438/* This returns the limit below which memory accesses to the linear
439 * mapping are guarnateed not to cause a TLB or SLB miss. This is
440 * used to allocate interrupt or emergency stacks for which our
441 * exception entry path doesn't deal with being interrupted.
442 */
443static u64 safe_stack_limit(void)
444{
445#ifdef CONFIG_PPC_BOOK3E
446	/* Freescale BookE bolts the entire linear mapping */
447	if (mmu_has_feature(MMU_FTR_TYPE_FSL_E))
448		return linear_map_top;
449	/* Other BookE, we assume the first GB is bolted */
450	return 1ul << 30;
451#else
452	/* BookS, the first segment is bolted */
453	if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
454		return 1UL << SID_SHIFT_1T;
455	return 1UL << SID_SHIFT;
456#endif
457}
458
459static void __init irqstack_early_init(void)
460{
461	u64 limit = safe_stack_limit();
462	unsigned int i;
463
464	/*
465	 * Interrupt stacks must be in the first segment since we
466	 * cannot afford to take SLB misses on them.
467	 */
468	for_each_possible_cpu(i) {
469		softirq_ctx[i] = (struct thread_info *)
470			__va(memblock_alloc_base(THREAD_SIZE,
471					    THREAD_SIZE, limit));
472		hardirq_ctx[i] = (struct thread_info *)
473			__va(memblock_alloc_base(THREAD_SIZE,
474					    THREAD_SIZE, limit));
475	}
476}
477
478#ifdef CONFIG_PPC_BOOK3E
479static void __init exc_lvl_early_init(void)
480{
481	extern unsigned int interrupt_base_book3e;
482	extern unsigned int exc_debug_debug_book3e;
483
484	unsigned int i;
485
486	for_each_possible_cpu(i) {
487		critirq_ctx[i] = (struct thread_info *)
488			__va(memblock_alloc(THREAD_SIZE, THREAD_SIZE));
489		dbgirq_ctx[i] = (struct thread_info *)
490			__va(memblock_alloc(THREAD_SIZE, THREAD_SIZE));
491		mcheckirq_ctx[i] = (struct thread_info *)
492			__va(memblock_alloc(THREAD_SIZE, THREAD_SIZE));
493	}
494
495	if (cpu_has_feature(CPU_FTR_DEBUG_LVL_EXC))
496		patch_branch(&interrupt_base_book3e + (0x040 / 4) + 1,
497			     (unsigned long)&exc_debug_debug_book3e, 0);
498}
499#else
500#define exc_lvl_early_init()
501#endif
502
503/*
504 * Stack space used when we detect a bad kernel stack pointer, and
505 * early in SMP boots before relocation is enabled.
506 */
507static void __init emergency_stack_init(void)
508{
509	u64 limit;
510	unsigned int i;
511
512	/*
513	 * Emergency stacks must be under 256MB, we cannot afford to take
514	 * SLB misses on them. The ABI also requires them to be 128-byte
515	 * aligned.
516	 *
517	 * Since we use these as temporary stacks during secondary CPU
518	 * bringup, we need to get at them in real mode. This means they
519	 * must also be within the RMO region.
520	 */
521	limit = min(safe_stack_limit(), ppc64_rma_size);
522
523	for_each_possible_cpu(i) {
524		unsigned long sp;
525		sp  = memblock_alloc_base(THREAD_SIZE, THREAD_SIZE, limit);
526		sp += THREAD_SIZE;
527		paca[i].emergency_sp = __va(sp);
528	}
529}
530
531/*
532 * Called into from start_kernel this initializes bootmem, which is used
533 * to manage page allocation until mem_init is called.
534 */
535void __init setup_arch(char **cmdline_p)
536{
537	ppc64_boot_msg(0x12, "Setup Arch");
538
539	*cmdline_p = cmd_line;
540
541	/*
542	 * Set cache line size based on type of cpu as a default.
543	 * Systems with OF can look in the properties on the cpu node(s)
544	 * for a possibly more accurate value.
545	 */
546	dcache_bsize = ppc64_caches.dline_size;
547	icache_bsize = ppc64_caches.iline_size;
548
549	/* reboot on panic */
550	panic_timeout = 180;
551
552	if (ppc_md.panic)
553		setup_panic();
554
555	init_mm.start_code = (unsigned long)_stext;
556	init_mm.end_code = (unsigned long) _etext;
557	init_mm.end_data = (unsigned long) _edata;
558	init_mm.brk = klimit;
559
560	irqstack_early_init();
561	exc_lvl_early_init();
562	emergency_stack_init();
563
564#ifdef CONFIG_PPC_STD_MMU_64
565	stabs_alloc();
566#endif
567	/* set up the bootmem stuff with available memory */
568	do_init_bootmem();
569	sparse_init();
570
571#ifdef CONFIG_DUMMY_CONSOLE
572	conswitchp = &dummy_con;
573#endif
574
575	if (ppc_md.setup_arch)
576		ppc_md.setup_arch();
577
578	paging_init();
579
580	/* Initialize the MMU context management stuff */
581	mmu_context_init();
582
583	ppc64_boot_msg(0x15, "Setup Done");
584}
585
586
587/* ToDo: do something useful if ppc_md is not yet setup. */
588#define PPC64_LINUX_FUNCTION 0x0f000000
589#define PPC64_IPL_MESSAGE 0xc0000000
590#define PPC64_TERM_MESSAGE 0xb0000000
591
592static void ppc64_do_msg(unsigned int src, const char *msg)
593{
594	if (ppc_md.progress) {
595		char buf[128];
596
597		sprintf(buf, "%08X\n", src);
598		ppc_md.progress(buf, 0);
599		snprintf(buf, 128, "%s", msg);
600		ppc_md.progress(buf, 0);
601	}
602}
603
604/* Print a boot progress message. */
605void ppc64_boot_msg(unsigned int src, const char *msg)
606{
607	ppc64_do_msg(PPC64_LINUX_FUNCTION|PPC64_IPL_MESSAGE|src, msg);
608	printk("[boot]%04x %s\n", src, msg);
609}
610
611#ifdef CONFIG_SMP
612#define PCPU_DYN_SIZE		()
613
614static void * __init pcpu_fc_alloc(unsigned int cpu, size_t size, size_t align)
615{
616	return __alloc_bootmem_node(NODE_DATA(cpu_to_node(cpu)), size, align,
617				    __pa(MAX_DMA_ADDRESS));
618}
619
620static void __init pcpu_fc_free(void *ptr, size_t size)
621{
622	free_bootmem(__pa(ptr), size);
623}
624
625static int pcpu_cpu_distance(unsigned int from, unsigned int to)
626{
627	if (cpu_to_node(from) == cpu_to_node(to))
628		return LOCAL_DISTANCE;
629	else
630		return REMOTE_DISTANCE;
631}
632
633unsigned long __per_cpu_offset[NR_CPUS] __read_mostly;
634EXPORT_SYMBOL(__per_cpu_offset);
635
636void __init setup_per_cpu_areas(void)
637{
638	const size_t dyn_size = PERCPU_MODULE_RESERVE + PERCPU_DYNAMIC_RESERVE;
639	size_t atom_size;
640	unsigned long delta;
641	unsigned int cpu;
642	int rc;
643
644	/*
645	 * Linear mapping is one of 4K, 1M and 16M.  For 4K, no need
646	 * to group units.  For larger mappings, use 1M atom which
647	 * should be large enough to contain a number of units.
648	 */
649	if (mmu_linear_psize == MMU_PAGE_4K)
650		atom_size = PAGE_SIZE;
651	else
652		atom_size = 1 << 20;
653
654	rc = pcpu_embed_first_chunk(0, dyn_size, atom_size, pcpu_cpu_distance,
655				    pcpu_fc_alloc, pcpu_fc_free);
656	if (rc < 0)
657		panic("cannot initialize percpu area (err=%d)", rc);
658
659	delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start;
660	for_each_possible_cpu(cpu) {
661                __per_cpu_offset[cpu] = delta + pcpu_unit_offsets[cpu];
662		paca[cpu].data_offset = __per_cpu_offset[cpu];
663	}
664}
665#endif
666
667
668#ifdef CONFIG_PPC_INDIRECT_IO
669struct ppc_pci_io ppc_pci_io;
670EXPORT_SYMBOL(ppc_pci_io);
671#endif /* CONFIG_PPC_INDIRECT_IO */
672
673