setup_64.c revision e8222502ee6157e2713da9e0792c21f4ad458d50
1/*
2 *
3 * Common boot and setup code.
4 *
5 * Copyright (C) 2001 PPC64 Team, IBM Corp
6 *
7 *      This program is free software; you can redistribute it and/or
8 *      modify it under the terms of the GNU General Public License
9 *      as published by the Free Software Foundation; either version
10 *      2 of the License, or (at your option) any later version.
11 */
12
13#undef DEBUG
14
15#include <linux/config.h>
16#include <linux/module.h>
17#include <linux/string.h>
18#include <linux/sched.h>
19#include <linux/init.h>
20#include <linux/kernel.h>
21#include <linux/reboot.h>
22#include <linux/delay.h>
23#include <linux/initrd.h>
24#include <linux/ide.h>
25#include <linux/seq_file.h>
26#include <linux/ioport.h>
27#include <linux/console.h>
28#include <linux/utsname.h>
29#include <linux/tty.h>
30#include <linux/root_dev.h>
31#include <linux/notifier.h>
32#include <linux/cpu.h>
33#include <linux/unistd.h>
34#include <linux/serial.h>
35#include <linux/serial_8250.h>
36#include <linux/bootmem.h>
37#include <asm/io.h>
38#include <asm/kdump.h>
39#include <asm/prom.h>
40#include <asm/processor.h>
41#include <asm/pgtable.h>
42#include <asm/smp.h>
43#include <asm/elf.h>
44#include <asm/machdep.h>
45#include <asm/paca.h>
46#include <asm/time.h>
47#include <asm/cputable.h>
48#include <asm/sections.h>
49#include <asm/btext.h>
50#include <asm/nvram.h>
51#include <asm/setup.h>
52#include <asm/system.h>
53#include <asm/rtas.h>
54#include <asm/iommu.h>
55#include <asm/serial.h>
56#include <asm/cache.h>
57#include <asm/page.h>
58#include <asm/mmu.h>
59#include <asm/lmb.h>
60#include <asm/iseries/it_lp_naca.h>
61#include <asm/firmware.h>
62#include <asm/xmon.h>
63#include <asm/udbg.h>
64#include <asm/kexec.h>
65
66#include "setup.h"
67
68#ifdef DEBUG
69#define DBG(fmt...) udbg_printf(fmt)
70#else
71#define DBG(fmt...)
72#endif
73
74int have_of = 1;
75int boot_cpuid = 0;
76dev_t boot_dev;
77u64 ppc64_pft_size;
78
79/* Pick defaults since we might want to patch instructions
80 * before we've read this from the device tree.
81 */
82struct ppc64_caches ppc64_caches = {
83	.dline_size = 0x80,
84	.log_dline_size = 7,
85	.iline_size = 0x80,
86	.log_iline_size = 7
87};
88EXPORT_SYMBOL_GPL(ppc64_caches);
89
90/*
91 * These are used in binfmt_elf.c to put aux entries on the stack
92 * for each elf executable being started.
93 */
94int dcache_bsize;
95int icache_bsize;
96int ucache_bsize;
97
98#ifdef CONFIG_MAGIC_SYSRQ
99unsigned long SYSRQ_KEY;
100#endif /* CONFIG_MAGIC_SYSRQ */
101
102
103static int ppc64_panic_event(struct notifier_block *, unsigned long, void *);
104static struct notifier_block ppc64_panic_block = {
105	.notifier_call = ppc64_panic_event,
106	.priority = INT_MIN /* may not return; must be done last */
107};
108
109#ifdef CONFIG_SMP
110
111static int smt_enabled_cmdline;
112
113/* Look for ibm,smt-enabled OF option */
114static void check_smt_enabled(void)
115{
116	struct device_node *dn;
117	char *smt_option;
118
119	/* Allow the command line to overrule the OF option */
120	if (smt_enabled_cmdline)
121		return;
122
123	dn = of_find_node_by_path("/options");
124
125	if (dn) {
126		smt_option = (char *)get_property(dn, "ibm,smt-enabled", NULL);
127
128                if (smt_option) {
129			if (!strcmp(smt_option, "on"))
130				smt_enabled_at_boot = 1;
131			else if (!strcmp(smt_option, "off"))
132				smt_enabled_at_boot = 0;
133                }
134        }
135}
136
137/* Look for smt-enabled= cmdline option */
138static int __init early_smt_enabled(char *p)
139{
140	smt_enabled_cmdline = 1;
141
142	if (!p)
143		return 0;
144
145	if (!strcmp(p, "on") || !strcmp(p, "1"))
146		smt_enabled_at_boot = 1;
147	else if (!strcmp(p, "off") || !strcmp(p, "0"))
148		smt_enabled_at_boot = 0;
149
150	return 0;
151}
152early_param("smt-enabled", early_smt_enabled);
153
154#else
155#define check_smt_enabled()
156#endif /* CONFIG_SMP */
157
158/*
159 * Early initialization entry point. This is called by head.S
160 * with MMU translation disabled. We rely on the "feature" of
161 * the CPU that ignores the top 2 bits of the address in real
162 * mode so we can access kernel globals normally provided we
163 * only toy with things in the RMO region. From here, we do
164 * some early parsing of the device-tree to setup out LMB
165 * data structures, and allocate & initialize the hash table
166 * and segment tables so we can start running with translation
167 * enabled.
168 *
169 * It is this function which will call the probe() callback of
170 * the various platform types and copy the matching one to the
171 * global ppc_md structure. Your platform can eventually do
172 * some very early initializations from the probe() routine, but
173 * this is not recommended, be very careful as, for example, the
174 * device-tree is not accessible via normal means at this point.
175 */
176
177void __init early_setup(unsigned long dt_ptr)
178{
179	/* Enable early debugging if any specified (see udbg.h) */
180	udbg_early_init();
181
182 	DBG(" -> early_setup(), dt_ptr: 0x%lx\n", dt_ptr);
183
184	/*
185	 * Do early initializations using the flattened device
186	 * tree, like retreiving the physical memory map or
187	 * calculating/retreiving the hash table size
188	 */
189	early_init_devtree(__va(dt_ptr));
190
191	/* Now we know the logical id of our boot cpu, setup the paca. */
192	setup_boot_paca();
193
194	/* Fix up paca fields required for the boot cpu */
195	get_paca()->cpu_start = 1;
196	get_paca()->stab_real = __pa((u64)&initial_stab);
197	get_paca()->stab_addr = (u64)&initial_stab;
198
199	/* Probe the machine type */
200	probe_machine();
201
202#ifdef CONFIG_CRASH_DUMP
203	kdump_setup();
204#endif
205
206	DBG("Found, Initializing memory management...\n");
207
208	/*
209	 * Initialize the MMU Hash table and create the linear mapping
210	 * of memory. Has to be done before stab/slb initialization as
211	 * this is currently where the page size encoding is obtained
212	 */
213	htab_initialize();
214
215	/*
216	 * Initialize stab / SLB management except on iSeries
217	 */
218	if (!firmware_has_feature(FW_FEATURE_ISERIES)) {
219		if (cpu_has_feature(CPU_FTR_SLB))
220			slb_initialize();
221		else
222			stab_initialize(get_paca()->stab_real);
223	}
224
225	DBG(" <- early_setup()\n");
226}
227
228#ifdef CONFIG_SMP
229void early_setup_secondary(void)
230{
231	struct paca_struct *lpaca = get_paca();
232
233	/* Mark enabled in PACA */
234	lpaca->proc_enabled = 0;
235
236	/* Initialize hash table for that CPU */
237	htab_initialize_secondary();
238
239	/* Initialize STAB/SLB. We use a virtual address as it works
240	 * in real mode on pSeries and we want a virutal address on
241	 * iSeries anyway
242	 */
243	if (cpu_has_feature(CPU_FTR_SLB))
244		slb_initialize();
245	else
246		stab_initialize(lpaca->stab_addr);
247}
248
249#endif /* CONFIG_SMP */
250
251#if defined(CONFIG_SMP) || defined(CONFIG_KEXEC)
252void smp_release_cpus(void)
253{
254	extern unsigned long __secondary_hold_spinloop;
255	unsigned long *ptr;
256
257	DBG(" -> smp_release_cpus()\n");
258
259	/* All secondary cpus are spinning on a common spinloop, release them
260	 * all now so they can start to spin on their individual paca
261	 * spinloops. For non SMP kernels, the secondary cpus never get out
262	 * of the common spinloop.
263	 * This is useless but harmless on iSeries, secondaries are already
264	 * waiting on their paca spinloops. */
265
266	ptr  = (unsigned long *)((unsigned long)&__secondary_hold_spinloop
267			- PHYSICAL_START);
268	*ptr = 1;
269	mb();
270
271	DBG(" <- smp_release_cpus()\n");
272}
273#endif /* CONFIG_SMP || CONFIG_KEXEC */
274
275/*
276 * Initialize some remaining members of the ppc64_caches and systemcfg
277 * structures
278 * (at least until we get rid of them completely). This is mostly some
279 * cache informations about the CPU that will be used by cache flush
280 * routines and/or provided to userland
281 */
282static void __init initialize_cache_info(void)
283{
284	struct device_node *np;
285	unsigned long num_cpus = 0;
286
287	DBG(" -> initialize_cache_info()\n");
288
289	for (np = NULL; (np = of_find_node_by_type(np, "cpu"));) {
290		num_cpus += 1;
291
292		/* We're assuming *all* of the CPUs have the same
293		 * d-cache and i-cache sizes... -Peter
294		 */
295
296		if ( num_cpus == 1 ) {
297			u32 *sizep, *lsizep;
298			u32 size, lsize;
299			const char *dc, *ic;
300
301			/* Then read cache informations */
302			if (machine_is(powermac)) {
303				dc = "d-cache-block-size";
304				ic = "i-cache-block-size";
305			} else {
306				dc = "d-cache-line-size";
307				ic = "i-cache-line-size";
308			}
309
310			size = 0;
311			lsize = cur_cpu_spec->dcache_bsize;
312			sizep = (u32 *)get_property(np, "d-cache-size", NULL);
313			if (sizep != NULL)
314				size = *sizep;
315			lsizep = (u32 *) get_property(np, dc, NULL);
316			if (lsizep != NULL)
317				lsize = *lsizep;
318			if (sizep == 0 || lsizep == 0)
319				DBG("Argh, can't find dcache properties ! "
320				    "sizep: %p, lsizep: %p\n", sizep, lsizep);
321
322			ppc64_caches.dsize = size;
323			ppc64_caches.dline_size = lsize;
324			ppc64_caches.log_dline_size = __ilog2(lsize);
325			ppc64_caches.dlines_per_page = PAGE_SIZE / lsize;
326
327			size = 0;
328			lsize = cur_cpu_spec->icache_bsize;
329			sizep = (u32 *)get_property(np, "i-cache-size", NULL);
330			if (sizep != NULL)
331				size = *sizep;
332			lsizep = (u32 *)get_property(np, ic, NULL);
333			if (lsizep != NULL)
334				lsize = *lsizep;
335			if (sizep == 0 || lsizep == 0)
336				DBG("Argh, can't find icache properties ! "
337				    "sizep: %p, lsizep: %p\n", sizep, lsizep);
338
339			ppc64_caches.isize = size;
340			ppc64_caches.iline_size = lsize;
341			ppc64_caches.log_iline_size = __ilog2(lsize);
342			ppc64_caches.ilines_per_page = PAGE_SIZE / lsize;
343		}
344	}
345
346	DBG(" <- initialize_cache_info()\n");
347}
348
349
350/*
351 * Do some initial setup of the system.  The parameters are those which
352 * were passed in from the bootloader.
353 */
354void __init setup_system(void)
355{
356	DBG(" -> setup_system()\n");
357
358#ifdef CONFIG_KEXEC
359	kdump_move_device_tree();
360#endif
361	/*
362	 * Unflatten the device-tree passed by prom_init or kexec
363	 */
364	unflatten_device_tree();
365
366#ifdef CONFIG_KEXEC
367	kexec_setup();	/* requires unflattened device tree. */
368#endif
369
370	/*
371	 * Fill the ppc64_caches & systemcfg structures with informations
372	 * retrieved from the device-tree. Need to be called before
373	 * finish_device_tree() since the later requires some of the
374	 * informations filled up here to properly parse the interrupt
375	 * tree.
376	 * It also sets up the cache line sizes which allows to call
377	 * routines like flush_icache_range (used by the hash init
378	 * later on).
379	 */
380	initialize_cache_info();
381
382#ifdef CONFIG_PPC_RTAS
383	/*
384	 * Initialize RTAS if available
385	 */
386	rtas_initialize();
387#endif /* CONFIG_PPC_RTAS */
388
389	/*
390	 * Check if we have an initrd provided via the device-tree
391	 */
392	check_for_initrd();
393
394	/*
395	 * Do some platform specific early initializations, that includes
396	 * setting up the hash table pointers. It also sets up some interrupt-mapping
397	 * related options that will be used by finish_device_tree()
398	 */
399	ppc_md.init_early();
400
401 	/*
402	 * We can discover serial ports now since the above did setup the
403	 * hash table management for us, thus ioremap works. We do that early
404	 * so that further code can be debugged
405	 */
406	find_legacy_serial_ports();
407
408	/*
409	 * "Finish" the device-tree, that is do the actual parsing of
410	 * some of the properties like the interrupt map
411	 */
412	finish_device_tree();
413
414	/*
415	 * Initialize xmon
416	 */
417#ifdef CONFIG_XMON_DEFAULT
418	xmon_init(1);
419#endif
420	/*
421	 * Register early console
422	 */
423	register_early_udbg_console();
424
425	/* Save unparsed command line copy for /proc/cmdline */
426	strlcpy(saved_command_line, cmd_line, COMMAND_LINE_SIZE);
427
428	parse_early_param();
429
430	check_smt_enabled();
431	smp_setup_cpu_maps();
432
433#ifdef CONFIG_SMP
434	/* Release secondary cpus out of their spinloops at 0x60 now that
435	 * we can map physical -> logical CPU ids
436	 */
437	smp_release_cpus();
438#endif
439
440	printk("Starting Linux PPC64 %s\n", system_utsname.version);
441
442	printk("-----------------------------------------------------\n");
443	printk("ppc64_pft_size                = 0x%lx\n", ppc64_pft_size);
444	printk("ppc64_interrupt_controller    = 0x%ld\n",
445	       ppc64_interrupt_controller);
446	printk("physicalMemorySize            = 0x%lx\n", lmb_phys_mem_size());
447	printk("ppc64_caches.dcache_line_size = 0x%x\n",
448	       ppc64_caches.dline_size);
449	printk("ppc64_caches.icache_line_size = 0x%x\n",
450	       ppc64_caches.iline_size);
451	printk("htab_address                  = 0x%p\n", htab_address);
452	printk("htab_hash_mask                = 0x%lx\n", htab_hash_mask);
453#if PHYSICAL_START > 0
454	printk("physical_start                = 0x%x\n", PHYSICAL_START);
455#endif
456	printk("-----------------------------------------------------\n");
457
458	DBG(" <- setup_system()\n");
459}
460
461static int ppc64_panic_event(struct notifier_block *this,
462                             unsigned long event, void *ptr)
463{
464	ppc_md.panic((char *)ptr);  /* May not return */
465	return NOTIFY_DONE;
466}
467
468#ifdef CONFIG_IRQSTACKS
469static void __init irqstack_early_init(void)
470{
471	unsigned int i;
472
473	/*
474	 * interrupt stacks must be under 256MB, we cannot afford to take
475	 * SLB misses on them.
476	 */
477	for_each_cpu(i) {
478		softirq_ctx[i] = (struct thread_info *)
479			__va(lmb_alloc_base(THREAD_SIZE,
480					    THREAD_SIZE, 0x10000000));
481		hardirq_ctx[i] = (struct thread_info *)
482			__va(lmb_alloc_base(THREAD_SIZE,
483					    THREAD_SIZE, 0x10000000));
484	}
485}
486#else
487#define irqstack_early_init()
488#endif
489
490/*
491 * Stack space used when we detect a bad kernel stack pointer, and
492 * early in SMP boots before relocation is enabled.
493 */
494static void __init emergency_stack_init(void)
495{
496	unsigned long limit;
497	unsigned int i;
498
499	/*
500	 * Emergency stacks must be under 256MB, we cannot afford to take
501	 * SLB misses on them. The ABI also requires them to be 128-byte
502	 * aligned.
503	 *
504	 * Since we use these as temporary stacks during secondary CPU
505	 * bringup, we need to get at them in real mode. This means they
506	 * must also be within the RMO region.
507	 */
508	limit = min(0x10000000UL, lmb.rmo_size);
509
510	for_each_cpu(i)
511		paca[i].emergency_sp =
512		__va(lmb_alloc_base(HW_PAGE_SIZE, 128, limit)) + HW_PAGE_SIZE;
513}
514
515/*
516 * Called into from start_kernel, after lock_kernel has been called.
517 * Initializes bootmem, which is unsed to manage page allocation until
518 * mem_init is called.
519 */
520void __init setup_arch(char **cmdline_p)
521{
522	extern void do_init_bootmem(void);
523
524	ppc64_boot_msg(0x12, "Setup Arch");
525
526	*cmdline_p = cmd_line;
527
528	/*
529	 * Set cache line size based on type of cpu as a default.
530	 * Systems with OF can look in the properties on the cpu node(s)
531	 * for a possibly more accurate value.
532	 */
533	dcache_bsize = ppc64_caches.dline_size;
534	icache_bsize = ppc64_caches.iline_size;
535
536	/* reboot on panic */
537	panic_timeout = 180;
538
539	if (ppc_md.panic)
540		notifier_chain_register(&panic_notifier_list, &ppc64_panic_block);
541
542	init_mm.start_code = PAGE_OFFSET;
543	init_mm.end_code = (unsigned long) _etext;
544	init_mm.end_data = (unsigned long) _edata;
545	init_mm.brk = klimit;
546
547	irqstack_early_init();
548	emergency_stack_init();
549
550	stabs_alloc();
551
552	/* set up the bootmem stuff with available memory */
553	do_init_bootmem();
554	sparse_init();
555
556#ifdef CONFIG_DUMMY_CONSOLE
557	conswitchp = &dummy_con;
558#endif
559
560	ppc_md.setup_arch();
561
562	paging_init();
563	ppc64_boot_msg(0x15, "Setup Done");
564}
565
566
567/* ToDo: do something useful if ppc_md is not yet setup. */
568#define PPC64_LINUX_FUNCTION 0x0f000000
569#define PPC64_IPL_MESSAGE 0xc0000000
570#define PPC64_TERM_MESSAGE 0xb0000000
571
572static void ppc64_do_msg(unsigned int src, const char *msg)
573{
574	if (ppc_md.progress) {
575		char buf[128];
576
577		sprintf(buf, "%08X\n", src);
578		ppc_md.progress(buf, 0);
579		snprintf(buf, 128, "%s", msg);
580		ppc_md.progress(buf, 0);
581	}
582}
583
584/* Print a boot progress message. */
585void ppc64_boot_msg(unsigned int src, const char *msg)
586{
587	ppc64_do_msg(PPC64_LINUX_FUNCTION|PPC64_IPL_MESSAGE|src, msg);
588	printk("[boot]%04x %s\n", src, msg);
589}
590
591/* Print a termination message (print only -- does not stop the kernel) */
592void ppc64_terminate_msg(unsigned int src, const char *msg)
593{
594	ppc64_do_msg(PPC64_LINUX_FUNCTION|PPC64_TERM_MESSAGE|src, msg);
595	printk("[terminate]%04x %s\n", src, msg);
596}
597
598int check_legacy_ioport(unsigned long base_port)
599{
600	if (ppc_md.check_legacy_ioport == NULL)
601		return 0;
602	return ppc_md.check_legacy_ioport(base_port);
603}
604EXPORT_SYMBOL(check_legacy_ioport);
605
606void cpu_die(void)
607{
608	if (ppc_md.cpu_die)
609		ppc_md.cpu_die();
610}
611
612#ifdef CONFIG_SMP
613void __init setup_per_cpu_areas(void)
614{
615	int i;
616	unsigned long size;
617	char *ptr;
618
619	/* Copy section for each CPU (we discard the original) */
620	size = ALIGN(__per_cpu_end - __per_cpu_start, SMP_CACHE_BYTES);
621#ifdef CONFIG_MODULES
622	if (size < PERCPU_ENOUGH_ROOM)
623		size = PERCPU_ENOUGH_ROOM;
624#endif
625
626	for_each_cpu(i) {
627		ptr = alloc_bootmem_node(NODE_DATA(cpu_to_node(i)), size);
628		if (!ptr)
629			panic("Cannot allocate cpu data for CPU %d\n", i);
630
631		paca[i].data_offset = ptr - __per_cpu_start;
632		memcpy(ptr, __per_cpu_start, __per_cpu_end - __per_cpu_start);
633	}
634}
635#endif
636