signal_32.c revision 95791988fec645d196e746fcc0e329e19f7b1347
1/*
2 * Signal handling for 32bit PPC and 32bit tasks on 64bit PPC
3 *
4 *  PowerPC version
5 *    Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
6 * Copyright (C) 2001 IBM
7 * Copyright (C) 1997,1998 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
8 * Copyright (C) 1997 David S. Miller (davem@caip.rutgers.edu)
9 *
10 *  Derived from "arch/i386/kernel/signal.c"
11 *    Copyright (C) 1991, 1992 Linus Torvalds
12 *    1997-11-28  Modified for POSIX.1b signals by Richard Henderson
13 *
14 *  This program is free software; you can redistribute it and/or
15 *  modify it under the terms of the GNU General Public License
16 *  as published by the Free Software Foundation; either version
17 *  2 of the License, or (at your option) any later version.
18 */
19
20#include <linux/sched.h>
21#include <linux/mm.h>
22#include <linux/smp.h>
23#include <linux/kernel.h>
24#include <linux/signal.h>
25#include <linux/errno.h>
26#include <linux/elf.h>
27#include <linux/ptrace.h>
28#include <linux/ratelimit.h>
29#ifdef CONFIG_PPC64
30#include <linux/syscalls.h>
31#include <linux/compat.h>
32#else
33#include <linux/wait.h>
34#include <linux/unistd.h>
35#include <linux/stddef.h>
36#include <linux/tty.h>
37#include <linux/binfmts.h>
38#endif
39
40#include <asm/uaccess.h>
41#include <asm/cacheflush.h>
42#include <asm/syscalls.h>
43#include <asm/sigcontext.h>
44#include <asm/vdso.h>
45#include <asm/switch_to.h>
46#include <asm/tm.h>
47#ifdef CONFIG_PPC64
48#include "ppc32.h"
49#include <asm/unistd.h>
50#else
51#include <asm/ucontext.h>
52#include <asm/pgtable.h>
53#endif
54
55#include "signal.h"
56
57#undef DEBUG_SIG
58
59#ifdef CONFIG_PPC64
60#define sys_rt_sigreturn	compat_sys_rt_sigreturn
61#define sys_swapcontext	compat_sys_swapcontext
62#define sys_sigreturn	compat_sys_sigreturn
63
64#define old_sigaction	old_sigaction32
65#define sigcontext	sigcontext32
66#define mcontext	mcontext32
67#define ucontext	ucontext32
68
69#define __save_altstack __compat_save_altstack
70
71/*
72 * Userspace code may pass a ucontext which doesn't include VSX added
73 * at the end.  We need to check for this case.
74 */
75#define UCONTEXTSIZEWITHOUTVSX \
76		(sizeof(struct ucontext) - sizeof(elf_vsrreghalf_t32))
77
78/*
79 * Returning 0 means we return to userspace via
80 * ret_from_except and thus restore all user
81 * registers from *regs.  This is what we need
82 * to do when a signal has been delivered.
83 */
84
85#define GP_REGS_SIZE	min(sizeof(elf_gregset_t32), sizeof(struct pt_regs32))
86#undef __SIGNAL_FRAMESIZE
87#define __SIGNAL_FRAMESIZE	__SIGNAL_FRAMESIZE32
88#undef ELF_NVRREG
89#define ELF_NVRREG	ELF_NVRREG32
90
91/*
92 * Functions for flipping sigsets (thanks to brain dead generic
93 * implementation that makes things simple for little endian only)
94 */
95static inline int put_sigset_t(compat_sigset_t __user *uset, sigset_t *set)
96{
97	compat_sigset_t	cset;
98
99	switch (_NSIG_WORDS) {
100	case 4: cset.sig[6] = set->sig[3] & 0xffffffffull;
101		cset.sig[7] = set->sig[3] >> 32;
102	case 3: cset.sig[4] = set->sig[2] & 0xffffffffull;
103		cset.sig[5] = set->sig[2] >> 32;
104	case 2: cset.sig[2] = set->sig[1] & 0xffffffffull;
105		cset.sig[3] = set->sig[1] >> 32;
106	case 1: cset.sig[0] = set->sig[0] & 0xffffffffull;
107		cset.sig[1] = set->sig[0] >> 32;
108	}
109	return copy_to_user(uset, &cset, sizeof(*uset));
110}
111
112static inline int get_sigset_t(sigset_t *set,
113			       const compat_sigset_t __user *uset)
114{
115	compat_sigset_t s32;
116
117	if (copy_from_user(&s32, uset, sizeof(*uset)))
118		return -EFAULT;
119
120	/*
121	 * Swap the 2 words of the 64-bit sigset_t (they are stored
122	 * in the "wrong" endian in 32-bit user storage).
123	 */
124	switch (_NSIG_WORDS) {
125	case 4: set->sig[3] = s32.sig[6] | (((long)s32.sig[7]) << 32);
126	case 3: set->sig[2] = s32.sig[4] | (((long)s32.sig[5]) << 32);
127	case 2: set->sig[1] = s32.sig[2] | (((long)s32.sig[3]) << 32);
128	case 1: set->sig[0] = s32.sig[0] | (((long)s32.sig[1]) << 32);
129	}
130	return 0;
131}
132
133#define to_user_ptr(p)		ptr_to_compat(p)
134#define from_user_ptr(p)	compat_ptr(p)
135
136static inline int save_general_regs(struct pt_regs *regs,
137		struct mcontext __user *frame)
138{
139	elf_greg_t64 *gregs = (elf_greg_t64 *)regs;
140	int i;
141
142	WARN_ON(!FULL_REGS(regs));
143
144	for (i = 0; i <= PT_RESULT; i ++) {
145		if (i == 14 && !FULL_REGS(regs))
146			i = 32;
147		if (__put_user((unsigned int)gregs[i], &frame->mc_gregs[i]))
148			return -EFAULT;
149	}
150	return 0;
151}
152
153static inline int restore_general_regs(struct pt_regs *regs,
154		struct mcontext __user *sr)
155{
156	elf_greg_t64 *gregs = (elf_greg_t64 *)regs;
157	int i;
158
159	for (i = 0; i <= PT_RESULT; i++) {
160		if ((i == PT_MSR) || (i == PT_SOFTE))
161			continue;
162		if (__get_user(gregs[i], &sr->mc_gregs[i]))
163			return -EFAULT;
164	}
165	return 0;
166}
167
168#else /* CONFIG_PPC64 */
169
170#define GP_REGS_SIZE	min(sizeof(elf_gregset_t), sizeof(struct pt_regs))
171
172static inline int put_sigset_t(sigset_t __user *uset, sigset_t *set)
173{
174	return copy_to_user(uset, set, sizeof(*uset));
175}
176
177static inline int get_sigset_t(sigset_t *set, const sigset_t __user *uset)
178{
179	return copy_from_user(set, uset, sizeof(*uset));
180}
181
182#define to_user_ptr(p)		((unsigned long)(p))
183#define from_user_ptr(p)	((void __user *)(p))
184
185static inline int save_general_regs(struct pt_regs *regs,
186		struct mcontext __user *frame)
187{
188	WARN_ON(!FULL_REGS(regs));
189	return __copy_to_user(&frame->mc_gregs, regs, GP_REGS_SIZE);
190}
191
192static inline int restore_general_regs(struct pt_regs *regs,
193		struct mcontext __user *sr)
194{
195	/* copy up to but not including MSR */
196	if (__copy_from_user(regs, &sr->mc_gregs,
197				PT_MSR * sizeof(elf_greg_t)))
198		return -EFAULT;
199	/* copy from orig_r3 (the word after the MSR) up to the end */
200	if (__copy_from_user(&regs->orig_gpr3, &sr->mc_gregs[PT_ORIG_R3],
201				GP_REGS_SIZE - PT_ORIG_R3 * sizeof(elf_greg_t)))
202		return -EFAULT;
203	return 0;
204}
205#endif
206
207/*
208 * When we have signals to deliver, we set up on the
209 * user stack, going down from the original stack pointer:
210 *	an ABI gap of 56 words
211 *	an mcontext struct
212 *	a sigcontext struct
213 *	a gap of __SIGNAL_FRAMESIZE bytes
214 *
215 * Each of these things must be a multiple of 16 bytes in size. The following
216 * structure represent all of this except the __SIGNAL_FRAMESIZE gap
217 *
218 */
219struct sigframe {
220	struct sigcontext sctx;		/* the sigcontext */
221	struct mcontext	mctx;		/* all the register values */
222#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
223	struct sigcontext sctx_transact;
224	struct mcontext	mctx_transact;
225#endif
226	/*
227	 * Programs using the rs6000/xcoff abi can save up to 19 gp
228	 * regs and 18 fp regs below sp before decrementing it.
229	 */
230	int			abigap[56];
231};
232
233/* We use the mc_pad field for the signal return trampoline. */
234#define tramp	mc_pad
235
236/*
237 *  When we have rt signals to deliver, we set up on the
238 *  user stack, going down from the original stack pointer:
239 *	one rt_sigframe struct (siginfo + ucontext + ABI gap)
240 *	a gap of __SIGNAL_FRAMESIZE+16 bytes
241 *  (the +16 is to get the siginfo and ucontext in the same
242 *  positions as in older kernels).
243 *
244 *  Each of these things must be a multiple of 16 bytes in size.
245 *
246 */
247struct rt_sigframe {
248#ifdef CONFIG_PPC64
249	compat_siginfo_t info;
250#else
251	struct siginfo info;
252#endif
253	struct ucontext	uc;
254#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
255	struct ucontext	uc_transact;
256#endif
257	/*
258	 * Programs using the rs6000/xcoff abi can save up to 19 gp
259	 * regs and 18 fp regs below sp before decrementing it.
260	 */
261	int			abigap[56];
262};
263
264#ifdef CONFIG_VSX
265unsigned long copy_fpr_to_user(void __user *to,
266			       struct task_struct *task)
267{
268	double buf[ELF_NFPREG];
269	int i;
270
271	/* save FPR copy to local buffer then write to the thread_struct */
272	for (i = 0; i < (ELF_NFPREG - 1) ; i++)
273		buf[i] = task->thread.TS_FPR(i);
274	memcpy(&buf[i], &task->thread.fpscr, sizeof(double));
275	return __copy_to_user(to, buf, ELF_NFPREG * sizeof(double));
276}
277
278unsigned long copy_fpr_from_user(struct task_struct *task,
279				 void __user *from)
280{
281	double buf[ELF_NFPREG];
282	int i;
283
284	if (__copy_from_user(buf, from, ELF_NFPREG * sizeof(double)))
285		return 1;
286	for (i = 0; i < (ELF_NFPREG - 1) ; i++)
287		task->thread.TS_FPR(i) = buf[i];
288	memcpy(&task->thread.fpscr, &buf[i], sizeof(double));
289
290	return 0;
291}
292
293unsigned long copy_vsx_to_user(void __user *to,
294			       struct task_struct *task)
295{
296	double buf[ELF_NVSRHALFREG];
297	int i;
298
299	/* save FPR copy to local buffer then write to the thread_struct */
300	for (i = 0; i < ELF_NVSRHALFREG; i++)
301		buf[i] = task->thread.fpr[i][TS_VSRLOWOFFSET];
302	return __copy_to_user(to, buf, ELF_NVSRHALFREG * sizeof(double));
303}
304
305unsigned long copy_vsx_from_user(struct task_struct *task,
306				 void __user *from)
307{
308	double buf[ELF_NVSRHALFREG];
309	int i;
310
311	if (__copy_from_user(buf, from, ELF_NVSRHALFREG * sizeof(double)))
312		return 1;
313	for (i = 0; i < ELF_NVSRHALFREG ; i++)
314		task->thread.fpr[i][TS_VSRLOWOFFSET] = buf[i];
315	return 0;
316}
317
318#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
319unsigned long copy_transact_fpr_to_user(void __user *to,
320				  struct task_struct *task)
321{
322	double buf[ELF_NFPREG];
323	int i;
324
325	/* save FPR copy to local buffer then write to the thread_struct */
326	for (i = 0; i < (ELF_NFPREG - 1) ; i++)
327		buf[i] = task->thread.TS_TRANS_FPR(i);
328	memcpy(&buf[i], &task->thread.transact_fpscr, sizeof(double));
329	return __copy_to_user(to, buf, ELF_NFPREG * sizeof(double));
330}
331
332unsigned long copy_transact_fpr_from_user(struct task_struct *task,
333					  void __user *from)
334{
335	double buf[ELF_NFPREG];
336	int i;
337
338	if (__copy_from_user(buf, from, ELF_NFPREG * sizeof(double)))
339		return 1;
340	for (i = 0; i < (ELF_NFPREG - 1) ; i++)
341		task->thread.TS_TRANS_FPR(i) = buf[i];
342	memcpy(&task->thread.transact_fpscr, &buf[i], sizeof(double));
343
344	return 0;
345}
346
347unsigned long copy_transact_vsx_to_user(void __user *to,
348				  struct task_struct *task)
349{
350	double buf[ELF_NVSRHALFREG];
351	int i;
352
353	/* save FPR copy to local buffer then write to the thread_struct */
354	for (i = 0; i < ELF_NVSRHALFREG; i++)
355		buf[i] = task->thread.transact_fpr[i][TS_VSRLOWOFFSET];
356	return __copy_to_user(to, buf, ELF_NVSRHALFREG * sizeof(double));
357}
358
359unsigned long copy_transact_vsx_from_user(struct task_struct *task,
360					  void __user *from)
361{
362	double buf[ELF_NVSRHALFREG];
363	int i;
364
365	if (__copy_from_user(buf, from, ELF_NVSRHALFREG * sizeof(double)))
366		return 1;
367	for (i = 0; i < ELF_NVSRHALFREG ; i++)
368		task->thread.transact_fpr[i][TS_VSRLOWOFFSET] = buf[i];
369	return 0;
370}
371#endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
372#else
373inline unsigned long copy_fpr_to_user(void __user *to,
374				      struct task_struct *task)
375{
376	return __copy_to_user(to, task->thread.fpr,
377			      ELF_NFPREG * sizeof(double));
378}
379
380inline unsigned long copy_fpr_from_user(struct task_struct *task,
381					void __user *from)
382{
383	return __copy_from_user(task->thread.fpr, from,
384			      ELF_NFPREG * sizeof(double));
385}
386
387#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
388inline unsigned long copy_transact_fpr_to_user(void __user *to,
389					 struct task_struct *task)
390{
391	return __copy_to_user(to, task->thread.transact_fpr,
392			      ELF_NFPREG * sizeof(double));
393}
394
395inline unsigned long copy_transact_fpr_from_user(struct task_struct *task,
396						 void __user *from)
397{
398	return __copy_from_user(task->thread.transact_fpr, from,
399				ELF_NFPREG * sizeof(double));
400}
401#endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
402#endif
403
404/*
405 * Save the current user registers on the user stack.
406 * We only save the altivec/spe registers if the process has used
407 * altivec/spe instructions at some point.
408 */
409static int save_user_regs(struct pt_regs *regs, struct mcontext __user *frame,
410			  struct mcontext __user *tm_frame, int sigret,
411			  int ctx_has_vsx_region)
412{
413	unsigned long msr = regs->msr;
414
415	/* Make sure floating point registers are stored in regs */
416	flush_fp_to_thread(current);
417
418	/* save general registers */
419	if (save_general_regs(regs, frame))
420		return 1;
421
422#ifdef CONFIG_ALTIVEC
423	/* save altivec registers */
424	if (current->thread.used_vr) {
425		flush_altivec_to_thread(current);
426		if (__copy_to_user(&frame->mc_vregs, current->thread.vr,
427				   ELF_NVRREG * sizeof(vector128)))
428			return 1;
429		/* set MSR_VEC in the saved MSR value to indicate that
430		   frame->mc_vregs contains valid data */
431		msr |= MSR_VEC;
432	}
433	/* else assert((regs->msr & MSR_VEC) == 0) */
434
435	/* We always copy to/from vrsave, it's 0 if we don't have or don't
436	 * use altivec. Since VSCR only contains 32 bits saved in the least
437	 * significant bits of a vector, we "cheat" and stuff VRSAVE in the
438	 * most significant bits of that same vector. --BenH
439	 * Note that the current VRSAVE value is in the SPR at this point.
440	 */
441	if (cpu_has_feature(CPU_FTR_ALTIVEC))
442		current->thread.vrsave = mfspr(SPRN_VRSAVE);
443	if (__put_user(current->thread.vrsave, (u32 __user *)&frame->mc_vregs[32]))
444		return 1;
445#endif /* CONFIG_ALTIVEC */
446	if (copy_fpr_to_user(&frame->mc_fregs, current))
447		return 1;
448#ifdef CONFIG_VSX
449	/*
450	 * Copy VSR 0-31 upper half from thread_struct to local
451	 * buffer, then write that to userspace.  Also set MSR_VSX in
452	 * the saved MSR value to indicate that frame->mc_vregs
453	 * contains valid data
454	 */
455	if (current->thread.used_vsr && ctx_has_vsx_region) {
456		__giveup_vsx(current);
457		if (copy_vsx_to_user(&frame->mc_vsregs, current))
458			return 1;
459		msr |= MSR_VSX;
460	}
461#endif /* CONFIG_VSX */
462#ifdef CONFIG_SPE
463	/* save spe registers */
464	if (current->thread.used_spe) {
465		flush_spe_to_thread(current);
466		if (__copy_to_user(&frame->mc_vregs, current->thread.evr,
467				   ELF_NEVRREG * sizeof(u32)))
468			return 1;
469		/* set MSR_SPE in the saved MSR value to indicate that
470		   frame->mc_vregs contains valid data */
471		msr |= MSR_SPE;
472	}
473	/* else assert((regs->msr & MSR_SPE) == 0) */
474
475	/* We always copy to/from spefscr */
476	if (__put_user(current->thread.spefscr, (u32 __user *)&frame->mc_vregs + ELF_NEVRREG))
477		return 1;
478#endif /* CONFIG_SPE */
479
480	if (__put_user(msr, &frame->mc_gregs[PT_MSR]))
481		return 1;
482	/* We need to write 0 the MSR top 32 bits in the tm frame so that we
483	 * can check it on the restore to see if TM is active
484	 */
485	if (tm_frame && __put_user(0, &tm_frame->mc_gregs[PT_MSR]))
486		return 1;
487
488	if (sigret) {
489		/* Set up the sigreturn trampoline: li r0,sigret; sc */
490		if (__put_user(0x38000000UL + sigret, &frame->tramp[0])
491		    || __put_user(0x44000002UL, &frame->tramp[1]))
492			return 1;
493		flush_icache_range((unsigned long) &frame->tramp[0],
494				   (unsigned long) &frame->tramp[2]);
495	}
496
497	return 0;
498}
499
500#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
501/*
502 * Save the current user registers on the user stack.
503 * We only save the altivec/spe registers if the process has used
504 * altivec/spe instructions at some point.
505 * We also save the transactional registers to a second ucontext in the
506 * frame.
507 *
508 * See save_user_regs() and signal_64.c:setup_tm_sigcontexts().
509 */
510static int save_tm_user_regs(struct pt_regs *regs,
511			     struct mcontext __user *frame,
512			     struct mcontext __user *tm_frame, int sigret)
513{
514	unsigned long msr = regs->msr;
515
516	/* Make sure floating point registers are stored in regs */
517	flush_fp_to_thread(current);
518
519	/* Save both sets of general registers */
520	if (save_general_regs(&current->thread.ckpt_regs, frame)
521	    || save_general_regs(regs, tm_frame))
522		return 1;
523
524	/* Stash the top half of the 64bit MSR into the 32bit MSR word
525	 * of the transactional mcontext.  This way we have a backward-compatible
526	 * MSR in the 'normal' (checkpointed) mcontext and additionally one can
527	 * also look at what type of transaction (T or S) was active at the
528	 * time of the signal.
529	 */
530	if (__put_user((msr >> 32), &tm_frame->mc_gregs[PT_MSR]))
531		return 1;
532
533#ifdef CONFIG_ALTIVEC
534	/* save altivec registers */
535	if (current->thread.used_vr) {
536		flush_altivec_to_thread(current);
537		if (__copy_to_user(&frame->mc_vregs, current->thread.vr,
538				   ELF_NVRREG * sizeof(vector128)))
539			return 1;
540		if (msr & MSR_VEC) {
541			if (__copy_to_user(&tm_frame->mc_vregs,
542					   current->thread.transact_vr,
543					   ELF_NVRREG * sizeof(vector128)))
544				return 1;
545		} else {
546			if (__copy_to_user(&tm_frame->mc_vregs,
547					   current->thread.vr,
548					   ELF_NVRREG * sizeof(vector128)))
549				return 1;
550		}
551
552		/* set MSR_VEC in the saved MSR value to indicate that
553		 * frame->mc_vregs contains valid data
554		 */
555		msr |= MSR_VEC;
556	}
557
558	/* We always copy to/from vrsave, it's 0 if we don't have or don't
559	 * use altivec. Since VSCR only contains 32 bits saved in the least
560	 * significant bits of a vector, we "cheat" and stuff VRSAVE in the
561	 * most significant bits of that same vector. --BenH
562	 */
563	if (cpu_has_feature(CPU_FTR_ALTIVEC))
564		current->thread.vrsave = mfspr(SPRN_VRSAVE);
565	if (__put_user(current->thread.vrsave,
566		       (u32 __user *)&frame->mc_vregs[32]))
567		return 1;
568	if (msr & MSR_VEC) {
569		if (__put_user(current->thread.transact_vrsave,
570			       (u32 __user *)&tm_frame->mc_vregs[32]))
571			return 1;
572	} else {
573		if (__put_user(current->thread.vrsave,
574			       (u32 __user *)&tm_frame->mc_vregs[32]))
575			return 1;
576	}
577#endif /* CONFIG_ALTIVEC */
578
579	if (copy_fpr_to_user(&frame->mc_fregs, current))
580		return 1;
581	if (msr & MSR_FP) {
582		if (copy_transact_fpr_to_user(&tm_frame->mc_fregs, current))
583			return 1;
584	} else {
585		if (copy_fpr_to_user(&tm_frame->mc_fregs, current))
586			return 1;
587	}
588
589#ifdef CONFIG_VSX
590	/*
591	 * Copy VSR 0-31 upper half from thread_struct to local
592	 * buffer, then write that to userspace.  Also set MSR_VSX in
593	 * the saved MSR value to indicate that frame->mc_vregs
594	 * contains valid data
595	 */
596	if (current->thread.used_vsr) {
597		__giveup_vsx(current);
598		if (copy_vsx_to_user(&frame->mc_vsregs, current))
599			return 1;
600		if (msr & MSR_VSX) {
601			if (copy_transact_vsx_to_user(&tm_frame->mc_vsregs,
602						      current))
603				return 1;
604		} else {
605			if (copy_vsx_to_user(&tm_frame->mc_vsregs, current))
606				return 1;
607		}
608
609		msr |= MSR_VSX;
610	}
611#endif /* CONFIG_VSX */
612#ifdef CONFIG_SPE
613	/* SPE regs are not checkpointed with TM, so this section is
614	 * simply the same as in save_user_regs().
615	 */
616	if (current->thread.used_spe) {
617		flush_spe_to_thread(current);
618		if (__copy_to_user(&frame->mc_vregs, current->thread.evr,
619				   ELF_NEVRREG * sizeof(u32)))
620			return 1;
621		/* set MSR_SPE in the saved MSR value to indicate that
622		 * frame->mc_vregs contains valid data */
623		msr |= MSR_SPE;
624	}
625
626	/* We always copy to/from spefscr */
627	if (__put_user(current->thread.spefscr, (u32 __user *)&frame->mc_vregs + ELF_NEVRREG))
628		return 1;
629#endif /* CONFIG_SPE */
630
631	if (__put_user(msr, &frame->mc_gregs[PT_MSR]))
632		return 1;
633	if (sigret) {
634		/* Set up the sigreturn trampoline: li r0,sigret; sc */
635		if (__put_user(0x38000000UL + sigret, &frame->tramp[0])
636		    || __put_user(0x44000002UL, &frame->tramp[1]))
637			return 1;
638		flush_icache_range((unsigned long) &frame->tramp[0],
639				   (unsigned long) &frame->tramp[2]);
640	}
641
642	return 0;
643}
644#endif
645
646/*
647 * Restore the current user register values from the user stack,
648 * (except for MSR).
649 */
650static long restore_user_regs(struct pt_regs *regs,
651			      struct mcontext __user *sr, int sig)
652{
653	long err;
654	unsigned int save_r2 = 0;
655	unsigned long msr;
656#ifdef CONFIG_VSX
657	int i;
658#endif
659
660	/*
661	 * restore general registers but not including MSR or SOFTE. Also
662	 * take care of keeping r2 (TLS) intact if not a signal
663	 */
664	if (!sig)
665		save_r2 = (unsigned int)regs->gpr[2];
666	err = restore_general_regs(regs, sr);
667	regs->trap = 0;
668	err |= __get_user(msr, &sr->mc_gregs[PT_MSR]);
669	if (!sig)
670		regs->gpr[2] = (unsigned long) save_r2;
671	if (err)
672		return 1;
673
674	/* if doing signal return, restore the previous little-endian mode */
675	if (sig)
676		regs->msr = (regs->msr & ~MSR_LE) | (msr & MSR_LE);
677
678	/*
679	 * Do this before updating the thread state in
680	 * current->thread.fpr/vr/evr.  That way, if we get preempted
681	 * and another task grabs the FPU/Altivec/SPE, it won't be
682	 * tempted to save the current CPU state into the thread_struct
683	 * and corrupt what we are writing there.
684	 */
685	discard_lazy_cpu_state();
686
687#ifdef CONFIG_ALTIVEC
688	/*
689	 * Force the process to reload the altivec registers from
690	 * current->thread when it next does altivec instructions
691	 */
692	regs->msr &= ~MSR_VEC;
693	if (msr & MSR_VEC) {
694		/* restore altivec registers from the stack */
695		if (__copy_from_user(current->thread.vr, &sr->mc_vregs,
696				     sizeof(sr->mc_vregs)))
697			return 1;
698	} else if (current->thread.used_vr)
699		memset(current->thread.vr, 0, ELF_NVRREG * sizeof(vector128));
700
701	/* Always get VRSAVE back */
702	if (__get_user(current->thread.vrsave, (u32 __user *)&sr->mc_vregs[32]))
703		return 1;
704	if (cpu_has_feature(CPU_FTR_ALTIVEC))
705		mtspr(SPRN_VRSAVE, current->thread.vrsave);
706#endif /* CONFIG_ALTIVEC */
707	if (copy_fpr_from_user(current, &sr->mc_fregs))
708		return 1;
709
710#ifdef CONFIG_VSX
711	/*
712	 * Force the process to reload the VSX registers from
713	 * current->thread when it next does VSX instruction.
714	 */
715	regs->msr &= ~MSR_VSX;
716	if (msr & MSR_VSX) {
717		/*
718		 * Restore altivec registers from the stack to a local
719		 * buffer, then write this out to the thread_struct
720		 */
721		if (copy_vsx_from_user(current, &sr->mc_vsregs))
722			return 1;
723	} else if (current->thread.used_vsr)
724		for (i = 0; i < 32 ; i++)
725			current->thread.fpr[i][TS_VSRLOWOFFSET] = 0;
726#endif /* CONFIG_VSX */
727	/*
728	 * force the process to reload the FP registers from
729	 * current->thread when it next does FP instructions
730	 */
731	regs->msr &= ~(MSR_FP | MSR_FE0 | MSR_FE1);
732
733#ifdef CONFIG_SPE
734	/* force the process to reload the spe registers from
735	   current->thread when it next does spe instructions */
736	regs->msr &= ~MSR_SPE;
737	if (msr & MSR_SPE) {
738		/* restore spe registers from the stack */
739		if (__copy_from_user(current->thread.evr, &sr->mc_vregs,
740				     ELF_NEVRREG * sizeof(u32)))
741			return 1;
742	} else if (current->thread.used_spe)
743		memset(current->thread.evr, 0, ELF_NEVRREG * sizeof(u32));
744
745	/* Always get SPEFSCR back */
746	if (__get_user(current->thread.spefscr, (u32 __user *)&sr->mc_vregs + ELF_NEVRREG))
747		return 1;
748#endif /* CONFIG_SPE */
749
750	return 0;
751}
752
753#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
754/*
755 * Restore the current user register values from the user stack, except for
756 * MSR, and recheckpoint the original checkpointed register state for processes
757 * in transactions.
758 */
759static long restore_tm_user_regs(struct pt_regs *regs,
760				 struct mcontext __user *sr,
761				 struct mcontext __user *tm_sr)
762{
763	long err;
764	unsigned long msr, msr_hi;
765#ifdef CONFIG_VSX
766	int i;
767#endif
768
769	/*
770	 * restore general registers but not including MSR or SOFTE. Also
771	 * take care of keeping r2 (TLS) intact if not a signal.
772	 * See comment in signal_64.c:restore_tm_sigcontexts();
773	 * TFHAR is restored from the checkpointed NIP; TEXASR and TFIAR
774	 * were set by the signal delivery.
775	 */
776	err = restore_general_regs(regs, tm_sr);
777	err |= restore_general_regs(&current->thread.ckpt_regs, sr);
778
779	err |= __get_user(current->thread.tm_tfhar, &sr->mc_gregs[PT_NIP]);
780
781	err |= __get_user(msr, &sr->mc_gregs[PT_MSR]);
782	if (err)
783		return 1;
784
785	/* Restore the previous little-endian mode */
786	regs->msr = (regs->msr & ~MSR_LE) | (msr & MSR_LE);
787
788	/*
789	 * Do this before updating the thread state in
790	 * current->thread.fpr/vr/evr.  That way, if we get preempted
791	 * and another task grabs the FPU/Altivec/SPE, it won't be
792	 * tempted to save the current CPU state into the thread_struct
793	 * and corrupt what we are writing there.
794	 */
795	discard_lazy_cpu_state();
796
797#ifdef CONFIG_ALTIVEC
798	regs->msr &= ~MSR_VEC;
799	if (msr & MSR_VEC) {
800		/* restore altivec registers from the stack */
801		if (__copy_from_user(current->thread.vr, &sr->mc_vregs,
802				     sizeof(sr->mc_vregs)) ||
803		    __copy_from_user(current->thread.transact_vr,
804				     &tm_sr->mc_vregs,
805				     sizeof(sr->mc_vregs)))
806			return 1;
807	} else if (current->thread.used_vr) {
808		memset(current->thread.vr, 0, ELF_NVRREG * sizeof(vector128));
809		memset(current->thread.transact_vr, 0,
810		       ELF_NVRREG * sizeof(vector128));
811	}
812
813	/* Always get VRSAVE back */
814	if (__get_user(current->thread.vrsave,
815		       (u32 __user *)&sr->mc_vregs[32]) ||
816	    __get_user(current->thread.transact_vrsave,
817		       (u32 __user *)&tm_sr->mc_vregs[32]))
818		return 1;
819	if (cpu_has_feature(CPU_FTR_ALTIVEC))
820		mtspr(SPRN_VRSAVE, current->thread.vrsave);
821#endif /* CONFIG_ALTIVEC */
822
823	regs->msr &= ~(MSR_FP | MSR_FE0 | MSR_FE1);
824
825	if (copy_fpr_from_user(current, &sr->mc_fregs) ||
826	    copy_transact_fpr_from_user(current, &tm_sr->mc_fregs))
827		return 1;
828
829#ifdef CONFIG_VSX
830	regs->msr &= ~MSR_VSX;
831	if (msr & MSR_VSX) {
832		/*
833		 * Restore altivec registers from the stack to a local
834		 * buffer, then write this out to the thread_struct
835		 */
836		if (copy_vsx_from_user(current, &sr->mc_vsregs) ||
837		    copy_transact_vsx_from_user(current, &tm_sr->mc_vsregs))
838			return 1;
839	} else if (current->thread.used_vsr)
840		for (i = 0; i < 32 ; i++) {
841			current->thread.fpr[i][TS_VSRLOWOFFSET] = 0;
842			current->thread.transact_fpr[i][TS_VSRLOWOFFSET] = 0;
843		}
844#endif /* CONFIG_VSX */
845
846#ifdef CONFIG_SPE
847	/* SPE regs are not checkpointed with TM, so this section is
848	 * simply the same as in restore_user_regs().
849	 */
850	regs->msr &= ~MSR_SPE;
851	if (msr & MSR_SPE) {
852		if (__copy_from_user(current->thread.evr, &sr->mc_vregs,
853				     ELF_NEVRREG * sizeof(u32)))
854			return 1;
855	} else if (current->thread.used_spe)
856		memset(current->thread.evr, 0, ELF_NEVRREG * sizeof(u32));
857
858	/* Always get SPEFSCR back */
859	if (__get_user(current->thread.spefscr, (u32 __user *)&sr->mc_vregs
860		       + ELF_NEVRREG))
861		return 1;
862#endif /* CONFIG_SPE */
863
864	/* Now, recheckpoint.  This loads up all of the checkpointed (older)
865	 * registers, including FP and V[S]Rs.  After recheckpointing, the
866	 * transactional versions should be loaded.
867	 */
868	tm_enable();
869	/* This loads the checkpointed FP/VEC state, if used */
870	tm_recheckpoint(&current->thread, msr);
871	/* Get the top half of the MSR */
872	if (__get_user(msr_hi, &tm_sr->mc_gregs[PT_MSR]))
873		return 1;
874	/* Pull in MSR TM from user context */
875	regs->msr = (regs->msr & ~MSR_TS_MASK) | ((msr_hi<<32) & MSR_TS_MASK);
876
877	/* This loads the speculative FP/VEC state, if used */
878	if (msr & MSR_FP) {
879		do_load_up_transact_fpu(&current->thread);
880		regs->msr |= (MSR_FP | current->thread.fpexc_mode);
881	}
882#ifdef CONFIG_ALTIVEC
883	if (msr & MSR_VEC) {
884		do_load_up_transact_altivec(&current->thread);
885		regs->msr |= MSR_VEC;
886	}
887#endif
888
889	return 0;
890}
891#endif
892
893#ifdef CONFIG_PPC64
894int copy_siginfo_to_user32(struct compat_siginfo __user *d, siginfo_t *s)
895{
896	int err;
897
898	if (!access_ok (VERIFY_WRITE, d, sizeof(*d)))
899		return -EFAULT;
900
901	/* If you change siginfo_t structure, please be sure
902	 * this code is fixed accordingly.
903	 * It should never copy any pad contained in the structure
904	 * to avoid security leaks, but must copy the generic
905	 * 3 ints plus the relevant union member.
906	 * This routine must convert siginfo from 64bit to 32bit as well
907	 * at the same time.
908	 */
909	err = __put_user(s->si_signo, &d->si_signo);
910	err |= __put_user(s->si_errno, &d->si_errno);
911	err |= __put_user((short)s->si_code, &d->si_code);
912	if (s->si_code < 0)
913		err |= __copy_to_user(&d->_sifields._pad, &s->_sifields._pad,
914				      SI_PAD_SIZE32);
915	else switch(s->si_code >> 16) {
916	case __SI_CHLD >> 16:
917		err |= __put_user(s->si_pid, &d->si_pid);
918		err |= __put_user(s->si_uid, &d->si_uid);
919		err |= __put_user(s->si_utime, &d->si_utime);
920		err |= __put_user(s->si_stime, &d->si_stime);
921		err |= __put_user(s->si_status, &d->si_status);
922		break;
923	case __SI_FAULT >> 16:
924		err |= __put_user((unsigned int)(unsigned long)s->si_addr,
925				  &d->si_addr);
926		break;
927	case __SI_POLL >> 16:
928		err |= __put_user(s->si_band, &d->si_band);
929		err |= __put_user(s->si_fd, &d->si_fd);
930		break;
931	case __SI_TIMER >> 16:
932		err |= __put_user(s->si_tid, &d->si_tid);
933		err |= __put_user(s->si_overrun, &d->si_overrun);
934		err |= __put_user(s->si_int, &d->si_int);
935		break;
936	case __SI_RT >> 16: /* This is not generated by the kernel as of now.  */
937	case __SI_MESGQ >> 16:
938		err |= __put_user(s->si_int, &d->si_int);
939		/* fallthrough */
940	case __SI_KILL >> 16:
941	default:
942		err |= __put_user(s->si_pid, &d->si_pid);
943		err |= __put_user(s->si_uid, &d->si_uid);
944		break;
945	}
946	return err;
947}
948
949#define copy_siginfo_to_user	copy_siginfo_to_user32
950
951int copy_siginfo_from_user32(siginfo_t *to, struct compat_siginfo __user *from)
952{
953	memset(to, 0, sizeof *to);
954
955	if (copy_from_user(to, from, 3*sizeof(int)) ||
956	    copy_from_user(to->_sifields._pad,
957			   from->_sifields._pad, SI_PAD_SIZE32))
958		return -EFAULT;
959
960	return 0;
961}
962#endif /* CONFIG_PPC64 */
963
964/*
965 * Set up a signal frame for a "real-time" signal handler
966 * (one which gets siginfo).
967 */
968int handle_rt_signal32(unsigned long sig, struct k_sigaction *ka,
969		siginfo_t *info, sigset_t *oldset,
970		struct pt_regs *regs)
971{
972	struct rt_sigframe __user *rt_sf;
973	struct mcontext __user *frame;
974	struct mcontext __user *tm_frame = NULL;
975	void __user *addr;
976	unsigned long newsp = 0;
977	int sigret;
978	unsigned long tramp;
979
980	/* Set up Signal Frame */
981	/* Put a Real Time Context onto stack */
982	rt_sf = get_sigframe(ka, get_tm_stackpointer(regs), sizeof(*rt_sf), 1);
983	addr = rt_sf;
984	if (unlikely(rt_sf == NULL))
985		goto badframe;
986
987	/* Put the siginfo & fill in most of the ucontext */
988	if (copy_siginfo_to_user(&rt_sf->info, info)
989	    || __put_user(0, &rt_sf->uc.uc_flags)
990	    || __save_altstack(&rt_sf->uc.uc_stack, regs->gpr[1])
991	    || __put_user(to_user_ptr(&rt_sf->uc.uc_mcontext),
992		    &rt_sf->uc.uc_regs)
993	    || put_sigset_t(&rt_sf->uc.uc_sigmask, oldset))
994		goto badframe;
995
996	/* Save user registers on the stack */
997	frame = &rt_sf->uc.uc_mcontext;
998	addr = frame;
999	if (vdso32_rt_sigtramp && current->mm->context.vdso_base) {
1000		sigret = 0;
1001		tramp = current->mm->context.vdso_base + vdso32_rt_sigtramp;
1002	} else {
1003		sigret = __NR_rt_sigreturn;
1004		tramp = (unsigned long) frame->tramp;
1005	}
1006
1007#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1008	tm_frame = &rt_sf->uc_transact.uc_mcontext;
1009	if (MSR_TM_ACTIVE(regs->msr)) {
1010		if (save_tm_user_regs(regs, frame, tm_frame, sigret))
1011			goto badframe;
1012	}
1013	else
1014#endif
1015	{
1016		if (save_user_regs(regs, frame, tm_frame, sigret, 1))
1017			goto badframe;
1018	}
1019	regs->link = tramp;
1020
1021#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1022	if (MSR_TM_ACTIVE(regs->msr)) {
1023		if (__put_user((unsigned long)&rt_sf->uc_transact,
1024			       &rt_sf->uc.uc_link)
1025		    || __put_user((unsigned long)tm_frame, &rt_sf->uc_transact.uc_regs))
1026			goto badframe;
1027	}
1028	else
1029#endif
1030		if (__put_user(0, &rt_sf->uc.uc_link))
1031			goto badframe;
1032
1033	current->thread.fpscr.val = 0;	/* turn off all fp exceptions */
1034
1035	/* create a stack frame for the caller of the handler */
1036	newsp = ((unsigned long)rt_sf) - (__SIGNAL_FRAMESIZE + 16);
1037	addr = (void __user *)regs->gpr[1];
1038	if (put_user(regs->gpr[1], (u32 __user *)newsp))
1039		goto badframe;
1040
1041	/* Fill registers for signal handler */
1042	regs->gpr[1] = newsp;
1043	regs->gpr[3] = sig;
1044	regs->gpr[4] = (unsigned long) &rt_sf->info;
1045	regs->gpr[5] = (unsigned long) &rt_sf->uc;
1046	regs->gpr[6] = (unsigned long) rt_sf;
1047	regs->nip = (unsigned long) ka->sa.sa_handler;
1048	/* enter the signal handler in big-endian mode */
1049	regs->msr &= ~MSR_LE;
1050#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1051	/* Remove TM bits from thread's MSR.  The MSR in the sigcontext
1052	 * just indicates to userland that we were doing a transaction, but we
1053	 * don't want to return in transactional state:
1054	 */
1055	regs->msr &= ~MSR_TS_MASK;
1056#endif
1057	return 1;
1058
1059badframe:
1060#ifdef DEBUG_SIG
1061	printk("badframe in handle_rt_signal, regs=%p frame=%p newsp=%lx\n",
1062	       regs, frame, newsp);
1063#endif
1064	if (show_unhandled_signals)
1065		printk_ratelimited(KERN_INFO
1066				   "%s[%d]: bad frame in handle_rt_signal32: "
1067				   "%p nip %08lx lr %08lx\n",
1068				   current->comm, current->pid,
1069				   addr, regs->nip, regs->link);
1070
1071	force_sigsegv(sig, current);
1072	return 0;
1073}
1074
1075static int do_setcontext(struct ucontext __user *ucp, struct pt_regs *regs, int sig)
1076{
1077	sigset_t set;
1078	struct mcontext __user *mcp;
1079
1080	if (get_sigset_t(&set, &ucp->uc_sigmask))
1081		return -EFAULT;
1082#ifdef CONFIG_PPC64
1083	{
1084		u32 cmcp;
1085
1086		if (__get_user(cmcp, &ucp->uc_regs))
1087			return -EFAULT;
1088		mcp = (struct mcontext __user *)(u64)cmcp;
1089		/* no need to check access_ok(mcp), since mcp < 4GB */
1090	}
1091#else
1092	if (__get_user(mcp, &ucp->uc_regs))
1093		return -EFAULT;
1094	if (!access_ok(VERIFY_READ, mcp, sizeof(*mcp)))
1095		return -EFAULT;
1096#endif
1097	set_current_blocked(&set);
1098	if (restore_user_regs(regs, mcp, sig))
1099		return -EFAULT;
1100
1101	return 0;
1102}
1103
1104#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1105static int do_setcontext_tm(struct ucontext __user *ucp,
1106			    struct ucontext __user *tm_ucp,
1107			    struct pt_regs *regs)
1108{
1109	sigset_t set;
1110	struct mcontext __user *mcp;
1111	struct mcontext __user *tm_mcp;
1112	u32 cmcp;
1113	u32 tm_cmcp;
1114
1115	if (get_sigset_t(&set, &ucp->uc_sigmask))
1116		return -EFAULT;
1117
1118	if (__get_user(cmcp, &ucp->uc_regs) ||
1119	    __get_user(tm_cmcp, &tm_ucp->uc_regs))
1120		return -EFAULT;
1121	mcp = (struct mcontext __user *)(u64)cmcp;
1122	tm_mcp = (struct mcontext __user *)(u64)tm_cmcp;
1123	/* no need to check access_ok(mcp), since mcp < 4GB */
1124
1125	set_current_blocked(&set);
1126	if (restore_tm_user_regs(regs, mcp, tm_mcp))
1127		return -EFAULT;
1128
1129	return 0;
1130}
1131#endif
1132
1133long sys_swapcontext(struct ucontext __user *old_ctx,
1134		     struct ucontext __user *new_ctx,
1135		     int ctx_size, int r6, int r7, int r8, struct pt_regs *regs)
1136{
1137	unsigned char tmp;
1138	int ctx_has_vsx_region = 0;
1139
1140#ifdef CONFIG_PPC64
1141	unsigned long new_msr = 0;
1142
1143	if (new_ctx) {
1144		struct mcontext __user *mcp;
1145		u32 cmcp;
1146
1147		/*
1148		 * Get pointer to the real mcontext.  No need for
1149		 * access_ok since we are dealing with compat
1150		 * pointers.
1151		 */
1152		if (__get_user(cmcp, &new_ctx->uc_regs))
1153			return -EFAULT;
1154		mcp = (struct mcontext __user *)(u64)cmcp;
1155		if (__get_user(new_msr, &mcp->mc_gregs[PT_MSR]))
1156			return -EFAULT;
1157	}
1158	/*
1159	 * Check that the context is not smaller than the original
1160	 * size (with VMX but without VSX)
1161	 */
1162	if (ctx_size < UCONTEXTSIZEWITHOUTVSX)
1163		return -EINVAL;
1164	/*
1165	 * If the new context state sets the MSR VSX bits but
1166	 * it doesn't provide VSX state.
1167	 */
1168	if ((ctx_size < sizeof(struct ucontext)) &&
1169	    (new_msr & MSR_VSX))
1170		return -EINVAL;
1171	/* Does the context have enough room to store VSX data? */
1172	if (ctx_size >= sizeof(struct ucontext))
1173		ctx_has_vsx_region = 1;
1174#else
1175	/* Context size is for future use. Right now, we only make sure
1176	 * we are passed something we understand
1177	 */
1178	if (ctx_size < sizeof(struct ucontext))
1179		return -EINVAL;
1180#endif
1181	if (old_ctx != NULL) {
1182		struct mcontext __user *mctx;
1183
1184		/*
1185		 * old_ctx might not be 16-byte aligned, in which
1186		 * case old_ctx->uc_mcontext won't be either.
1187		 * Because we have the old_ctx->uc_pad2 field
1188		 * before old_ctx->uc_mcontext, we need to round down
1189		 * from &old_ctx->uc_mcontext to a 16-byte boundary.
1190		 */
1191		mctx = (struct mcontext __user *)
1192			((unsigned long) &old_ctx->uc_mcontext & ~0xfUL);
1193		if (!access_ok(VERIFY_WRITE, old_ctx, ctx_size)
1194		    || save_user_regs(regs, mctx, NULL, 0, ctx_has_vsx_region)
1195		    || put_sigset_t(&old_ctx->uc_sigmask, &current->blocked)
1196		    || __put_user(to_user_ptr(mctx), &old_ctx->uc_regs))
1197			return -EFAULT;
1198	}
1199	if (new_ctx == NULL)
1200		return 0;
1201	if (!access_ok(VERIFY_READ, new_ctx, ctx_size)
1202	    || __get_user(tmp, (u8 __user *) new_ctx)
1203	    || __get_user(tmp, (u8 __user *) new_ctx + ctx_size - 1))
1204		return -EFAULT;
1205
1206	/*
1207	 * If we get a fault copying the context into the kernel's
1208	 * image of the user's registers, we can't just return -EFAULT
1209	 * because the user's registers will be corrupted.  For instance
1210	 * the NIP value may have been updated but not some of the
1211	 * other registers.  Given that we have done the access_ok
1212	 * and successfully read the first and last bytes of the region
1213	 * above, this should only happen in an out-of-memory situation
1214	 * or if another thread unmaps the region containing the context.
1215	 * We kill the task with a SIGSEGV in this situation.
1216	 */
1217	if (do_setcontext(new_ctx, regs, 0))
1218		do_exit(SIGSEGV);
1219
1220	set_thread_flag(TIF_RESTOREALL);
1221	return 0;
1222}
1223
1224long sys_rt_sigreturn(int r3, int r4, int r5, int r6, int r7, int r8,
1225		     struct pt_regs *regs)
1226{
1227	struct rt_sigframe __user *rt_sf;
1228#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1229	struct ucontext __user *uc_transact;
1230	unsigned long msr_hi;
1231	unsigned long tmp;
1232	int tm_restore = 0;
1233#endif
1234	/* Always make any pending restarted system calls return -EINTR */
1235	current_thread_info()->restart_block.fn = do_no_restart_syscall;
1236
1237	rt_sf = (struct rt_sigframe __user *)
1238		(regs->gpr[1] + __SIGNAL_FRAMESIZE + 16);
1239	if (!access_ok(VERIFY_READ, rt_sf, sizeof(*rt_sf)))
1240		goto bad;
1241#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1242	if (__get_user(tmp, &rt_sf->uc.uc_link))
1243		goto bad;
1244	uc_transact = (struct ucontext __user *)(uintptr_t)tmp;
1245	if (uc_transact) {
1246		u32 cmcp;
1247		struct mcontext __user *mcp;
1248
1249		if (__get_user(cmcp, &uc_transact->uc_regs))
1250			return -EFAULT;
1251		mcp = (struct mcontext __user *)(u64)cmcp;
1252		/* The top 32 bits of the MSR are stashed in the transactional
1253		 * ucontext. */
1254		if (__get_user(msr_hi, &mcp->mc_gregs[PT_MSR]))
1255			goto bad;
1256
1257		if (MSR_TM_ACTIVE(msr_hi<<32)) {
1258			/* We only recheckpoint on return if we're
1259			 * transaction.
1260			 */
1261			tm_restore = 1;
1262			if (do_setcontext_tm(&rt_sf->uc, uc_transact, regs))
1263				goto bad;
1264		}
1265	}
1266	if (!tm_restore)
1267		/* Fall through, for non-TM restore */
1268#endif
1269	if (do_setcontext(&rt_sf->uc, regs, 1))
1270		goto bad;
1271
1272	/*
1273	 * It's not clear whether or why it is desirable to save the
1274	 * sigaltstack setting on signal delivery and restore it on
1275	 * signal return.  But other architectures do this and we have
1276	 * always done it up until now so it is probably better not to
1277	 * change it.  -- paulus
1278	 */
1279#ifdef CONFIG_PPC64
1280	if (compat_restore_altstack(&rt_sf->uc.uc_stack))
1281		goto bad;
1282#else
1283	if (restore_altstack(&rt_sf->uc.uc_stack))
1284		goto bad;
1285#endif
1286	set_thread_flag(TIF_RESTOREALL);
1287	return 0;
1288
1289 bad:
1290	if (show_unhandled_signals)
1291		printk_ratelimited(KERN_INFO
1292				   "%s[%d]: bad frame in sys_rt_sigreturn: "
1293				   "%p nip %08lx lr %08lx\n",
1294				   current->comm, current->pid,
1295				   rt_sf, regs->nip, regs->link);
1296
1297	force_sig(SIGSEGV, current);
1298	return 0;
1299}
1300
1301#ifdef CONFIG_PPC32
1302int sys_debug_setcontext(struct ucontext __user *ctx,
1303			 int ndbg, struct sig_dbg_op __user *dbg,
1304			 int r6, int r7, int r8,
1305			 struct pt_regs *regs)
1306{
1307	struct sig_dbg_op op;
1308	int i;
1309	unsigned char tmp;
1310	unsigned long new_msr = regs->msr;
1311#ifdef CONFIG_PPC_ADV_DEBUG_REGS
1312	unsigned long new_dbcr0 = current->thread.debug.dbcr0;
1313#endif
1314
1315	for (i=0; i<ndbg; i++) {
1316		if (copy_from_user(&op, dbg + i, sizeof(op)))
1317			return -EFAULT;
1318		switch (op.dbg_type) {
1319		case SIG_DBG_SINGLE_STEPPING:
1320#ifdef CONFIG_PPC_ADV_DEBUG_REGS
1321			if (op.dbg_value) {
1322				new_msr |= MSR_DE;
1323				new_dbcr0 |= (DBCR0_IDM | DBCR0_IC);
1324			} else {
1325				new_dbcr0 &= ~DBCR0_IC;
1326				if (!DBCR_ACTIVE_EVENTS(new_dbcr0,
1327						current->thread.debug.dbcr1)) {
1328					new_msr &= ~MSR_DE;
1329					new_dbcr0 &= ~DBCR0_IDM;
1330				}
1331			}
1332#else
1333			if (op.dbg_value)
1334				new_msr |= MSR_SE;
1335			else
1336				new_msr &= ~MSR_SE;
1337#endif
1338			break;
1339		case SIG_DBG_BRANCH_TRACING:
1340#ifdef CONFIG_PPC_ADV_DEBUG_REGS
1341			return -EINVAL;
1342#else
1343			if (op.dbg_value)
1344				new_msr |= MSR_BE;
1345			else
1346				new_msr &= ~MSR_BE;
1347#endif
1348			break;
1349
1350		default:
1351			return -EINVAL;
1352		}
1353	}
1354
1355	/* We wait until here to actually install the values in the
1356	   registers so if we fail in the above loop, it will not
1357	   affect the contents of these registers.  After this point,
1358	   failure is a problem, anyway, and it's very unlikely unless
1359	   the user is really doing something wrong. */
1360	regs->msr = new_msr;
1361#ifdef CONFIG_PPC_ADV_DEBUG_REGS
1362	current->thread.debug.dbcr0 = new_dbcr0;
1363#endif
1364
1365	if (!access_ok(VERIFY_READ, ctx, sizeof(*ctx))
1366	    || __get_user(tmp, (u8 __user *) ctx)
1367	    || __get_user(tmp, (u8 __user *) (ctx + 1) - 1))
1368		return -EFAULT;
1369
1370	/*
1371	 * If we get a fault copying the context into the kernel's
1372	 * image of the user's registers, we can't just return -EFAULT
1373	 * because the user's registers will be corrupted.  For instance
1374	 * the NIP value may have been updated but not some of the
1375	 * other registers.  Given that we have done the access_ok
1376	 * and successfully read the first and last bytes of the region
1377	 * above, this should only happen in an out-of-memory situation
1378	 * or if another thread unmaps the region containing the context.
1379	 * We kill the task with a SIGSEGV in this situation.
1380	 */
1381	if (do_setcontext(ctx, regs, 1)) {
1382		if (show_unhandled_signals)
1383			printk_ratelimited(KERN_INFO "%s[%d]: bad frame in "
1384					   "sys_debug_setcontext: %p nip %08lx "
1385					   "lr %08lx\n",
1386					   current->comm, current->pid,
1387					   ctx, regs->nip, regs->link);
1388
1389		force_sig(SIGSEGV, current);
1390		goto out;
1391	}
1392
1393	/*
1394	 * It's not clear whether or why it is desirable to save the
1395	 * sigaltstack setting on signal delivery and restore it on
1396	 * signal return.  But other architectures do this and we have
1397	 * always done it up until now so it is probably better not to
1398	 * change it.  -- paulus
1399	 */
1400	restore_altstack(&ctx->uc_stack);
1401
1402	set_thread_flag(TIF_RESTOREALL);
1403 out:
1404	return 0;
1405}
1406#endif
1407
1408/*
1409 * OK, we're invoking a handler
1410 */
1411int handle_signal32(unsigned long sig, struct k_sigaction *ka,
1412		    siginfo_t *info, sigset_t *oldset, struct pt_regs *regs)
1413{
1414	struct sigcontext __user *sc;
1415	struct sigframe __user *frame;
1416	struct mcontext __user *tm_mctx = NULL;
1417	unsigned long newsp = 0;
1418	int sigret;
1419	unsigned long tramp;
1420
1421	/* Set up Signal Frame */
1422	frame = get_sigframe(ka, get_tm_stackpointer(regs), sizeof(*frame), 1);
1423	if (unlikely(frame == NULL))
1424		goto badframe;
1425	sc = (struct sigcontext __user *) &frame->sctx;
1426
1427#if _NSIG != 64
1428#error "Please adjust handle_signal()"
1429#endif
1430	if (__put_user(to_user_ptr(ka->sa.sa_handler), &sc->handler)
1431	    || __put_user(oldset->sig[0], &sc->oldmask)
1432#ifdef CONFIG_PPC64
1433	    || __put_user((oldset->sig[0] >> 32), &sc->_unused[3])
1434#else
1435	    || __put_user(oldset->sig[1], &sc->_unused[3])
1436#endif
1437	    || __put_user(to_user_ptr(&frame->mctx), &sc->regs)
1438	    || __put_user(sig, &sc->signal))
1439		goto badframe;
1440
1441	if (vdso32_sigtramp && current->mm->context.vdso_base) {
1442		sigret = 0;
1443		tramp = current->mm->context.vdso_base + vdso32_sigtramp;
1444	} else {
1445		sigret = __NR_sigreturn;
1446		tramp = (unsigned long) frame->mctx.tramp;
1447	}
1448
1449#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1450	tm_mctx = &frame->mctx_transact;
1451	if (MSR_TM_ACTIVE(regs->msr)) {
1452		if (save_tm_user_regs(regs, &frame->mctx, &frame->mctx_transact,
1453				      sigret))
1454			goto badframe;
1455	}
1456	else
1457#endif
1458	{
1459		if (save_user_regs(regs, &frame->mctx, tm_mctx, sigret, 1))
1460			goto badframe;
1461	}
1462
1463	regs->link = tramp;
1464
1465	current->thread.fpscr.val = 0;	/* turn off all fp exceptions */
1466
1467	/* create a stack frame for the caller of the handler */
1468	newsp = ((unsigned long)frame) - __SIGNAL_FRAMESIZE;
1469	if (put_user(regs->gpr[1], (u32 __user *)newsp))
1470		goto badframe;
1471
1472	regs->gpr[1] = newsp;
1473	regs->gpr[3] = sig;
1474	regs->gpr[4] = (unsigned long) sc;
1475	regs->nip = (unsigned long) ka->sa.sa_handler;
1476	/* enter the signal handler in big-endian mode */
1477	regs->msr &= ~MSR_LE;
1478#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1479	/* Remove TM bits from thread's MSR.  The MSR in the sigcontext
1480	 * just indicates to userland that we were doing a transaction, but we
1481	 * don't want to return in transactional state:
1482	 */
1483	regs->msr &= ~MSR_TS_MASK;
1484#endif
1485	return 1;
1486
1487badframe:
1488#ifdef DEBUG_SIG
1489	printk("badframe in handle_signal, regs=%p frame=%p newsp=%lx\n",
1490	       regs, frame, newsp);
1491#endif
1492	if (show_unhandled_signals)
1493		printk_ratelimited(KERN_INFO
1494				   "%s[%d]: bad frame in handle_signal32: "
1495				   "%p nip %08lx lr %08lx\n",
1496				   current->comm, current->pid,
1497				   frame, regs->nip, regs->link);
1498
1499	force_sigsegv(sig, current);
1500	return 0;
1501}
1502
1503/*
1504 * Do a signal return; undo the signal stack.
1505 */
1506long sys_sigreturn(int r3, int r4, int r5, int r6, int r7, int r8,
1507		       struct pt_regs *regs)
1508{
1509	struct sigframe __user *sf;
1510	struct sigcontext __user *sc;
1511	struct sigcontext sigctx;
1512	struct mcontext __user *sr;
1513	void __user *addr;
1514	sigset_t set;
1515#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1516	struct mcontext __user *mcp, *tm_mcp;
1517	unsigned long msr_hi;
1518#endif
1519
1520	/* Always make any pending restarted system calls return -EINTR */
1521	current_thread_info()->restart_block.fn = do_no_restart_syscall;
1522
1523	sf = (struct sigframe __user *)(regs->gpr[1] + __SIGNAL_FRAMESIZE);
1524	sc = &sf->sctx;
1525	addr = sc;
1526	if (copy_from_user(&sigctx, sc, sizeof(sigctx)))
1527		goto badframe;
1528
1529#ifdef CONFIG_PPC64
1530	/*
1531	 * Note that PPC32 puts the upper 32 bits of the sigmask in the
1532	 * unused part of the signal stackframe
1533	 */
1534	set.sig[0] = sigctx.oldmask + ((long)(sigctx._unused[3]) << 32);
1535#else
1536	set.sig[0] = sigctx.oldmask;
1537	set.sig[1] = sigctx._unused[3];
1538#endif
1539	set_current_blocked(&set);
1540
1541#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1542	mcp = (struct mcontext __user *)&sf->mctx;
1543	tm_mcp = (struct mcontext __user *)&sf->mctx_transact;
1544	if (__get_user(msr_hi, &tm_mcp->mc_gregs[PT_MSR]))
1545		goto badframe;
1546	if (MSR_TM_ACTIVE(msr_hi<<32)) {
1547		if (!cpu_has_feature(CPU_FTR_TM))
1548			goto badframe;
1549		if (restore_tm_user_regs(regs, mcp, tm_mcp))
1550			goto badframe;
1551	} else
1552#endif
1553	{
1554		sr = (struct mcontext __user *)from_user_ptr(sigctx.regs);
1555		addr = sr;
1556		if (!access_ok(VERIFY_READ, sr, sizeof(*sr))
1557		    || restore_user_regs(regs, sr, 1))
1558			goto badframe;
1559	}
1560
1561	set_thread_flag(TIF_RESTOREALL);
1562	return 0;
1563
1564badframe:
1565	if (show_unhandled_signals)
1566		printk_ratelimited(KERN_INFO
1567				   "%s[%d]: bad frame in sys_sigreturn: "
1568				   "%p nip %08lx lr %08lx\n",
1569				   current->comm, current->pid,
1570				   addr, regs->nip, regs->link);
1571
1572	force_sig(SIGSEGV, current);
1573	return 0;
1574}
1575