signal_32.c revision de79f7b9f6f92ec1bd6f61fa1f20de60728a5b5e
1/*
2 * Signal handling for 32bit PPC and 32bit tasks on 64bit PPC
3 *
4 *  PowerPC version
5 *    Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
6 * Copyright (C) 2001 IBM
7 * Copyright (C) 1997,1998 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
8 * Copyright (C) 1997 David S. Miller (davem@caip.rutgers.edu)
9 *
10 *  Derived from "arch/i386/kernel/signal.c"
11 *    Copyright (C) 1991, 1992 Linus Torvalds
12 *    1997-11-28  Modified for POSIX.1b signals by Richard Henderson
13 *
14 *  This program is free software; you can redistribute it and/or
15 *  modify it under the terms of the GNU General Public License
16 *  as published by the Free Software Foundation; either version
17 *  2 of the License, or (at your option) any later version.
18 */
19
20#include <linux/sched.h>
21#include <linux/mm.h>
22#include <linux/smp.h>
23#include <linux/kernel.h>
24#include <linux/signal.h>
25#include <linux/errno.h>
26#include <linux/elf.h>
27#include <linux/ptrace.h>
28#include <linux/ratelimit.h>
29#ifdef CONFIG_PPC64
30#include <linux/syscalls.h>
31#include <linux/compat.h>
32#else
33#include <linux/wait.h>
34#include <linux/unistd.h>
35#include <linux/stddef.h>
36#include <linux/tty.h>
37#include <linux/binfmts.h>
38#endif
39
40#include <asm/uaccess.h>
41#include <asm/cacheflush.h>
42#include <asm/syscalls.h>
43#include <asm/sigcontext.h>
44#include <asm/vdso.h>
45#include <asm/switch_to.h>
46#include <asm/tm.h>
47#ifdef CONFIG_PPC64
48#include "ppc32.h"
49#include <asm/unistd.h>
50#else
51#include <asm/ucontext.h>
52#include <asm/pgtable.h>
53#endif
54
55#include "signal.h"
56
57#undef DEBUG_SIG
58
59#ifdef CONFIG_PPC64
60#define sys_rt_sigreturn	compat_sys_rt_sigreturn
61#define sys_swapcontext	compat_sys_swapcontext
62#define sys_sigreturn	compat_sys_sigreturn
63
64#define old_sigaction	old_sigaction32
65#define sigcontext	sigcontext32
66#define mcontext	mcontext32
67#define ucontext	ucontext32
68
69#define __save_altstack __compat_save_altstack
70
71/*
72 * Userspace code may pass a ucontext which doesn't include VSX added
73 * at the end.  We need to check for this case.
74 */
75#define UCONTEXTSIZEWITHOUTVSX \
76		(sizeof(struct ucontext) - sizeof(elf_vsrreghalf_t32))
77
78/*
79 * Returning 0 means we return to userspace via
80 * ret_from_except and thus restore all user
81 * registers from *regs.  This is what we need
82 * to do when a signal has been delivered.
83 */
84
85#define GP_REGS_SIZE	min(sizeof(elf_gregset_t32), sizeof(struct pt_regs32))
86#undef __SIGNAL_FRAMESIZE
87#define __SIGNAL_FRAMESIZE	__SIGNAL_FRAMESIZE32
88#undef ELF_NVRREG
89#define ELF_NVRREG	ELF_NVRREG32
90
91/*
92 * Functions for flipping sigsets (thanks to brain dead generic
93 * implementation that makes things simple for little endian only)
94 */
95static inline int put_sigset_t(compat_sigset_t __user *uset, sigset_t *set)
96{
97	compat_sigset_t	cset;
98
99	switch (_NSIG_WORDS) {
100	case 4: cset.sig[6] = set->sig[3] & 0xffffffffull;
101		cset.sig[7] = set->sig[3] >> 32;
102	case 3: cset.sig[4] = set->sig[2] & 0xffffffffull;
103		cset.sig[5] = set->sig[2] >> 32;
104	case 2: cset.sig[2] = set->sig[1] & 0xffffffffull;
105		cset.sig[3] = set->sig[1] >> 32;
106	case 1: cset.sig[0] = set->sig[0] & 0xffffffffull;
107		cset.sig[1] = set->sig[0] >> 32;
108	}
109	return copy_to_user(uset, &cset, sizeof(*uset));
110}
111
112static inline int get_sigset_t(sigset_t *set,
113			       const compat_sigset_t __user *uset)
114{
115	compat_sigset_t s32;
116
117	if (copy_from_user(&s32, uset, sizeof(*uset)))
118		return -EFAULT;
119
120	/*
121	 * Swap the 2 words of the 64-bit sigset_t (they are stored
122	 * in the "wrong" endian in 32-bit user storage).
123	 */
124	switch (_NSIG_WORDS) {
125	case 4: set->sig[3] = s32.sig[6] | (((long)s32.sig[7]) << 32);
126	case 3: set->sig[2] = s32.sig[4] | (((long)s32.sig[5]) << 32);
127	case 2: set->sig[1] = s32.sig[2] | (((long)s32.sig[3]) << 32);
128	case 1: set->sig[0] = s32.sig[0] | (((long)s32.sig[1]) << 32);
129	}
130	return 0;
131}
132
133#define to_user_ptr(p)		ptr_to_compat(p)
134#define from_user_ptr(p)	compat_ptr(p)
135
136static inline int save_general_regs(struct pt_regs *regs,
137		struct mcontext __user *frame)
138{
139	elf_greg_t64 *gregs = (elf_greg_t64 *)regs;
140	int i;
141
142	WARN_ON(!FULL_REGS(regs));
143
144	for (i = 0; i <= PT_RESULT; i ++) {
145		if (i == 14 && !FULL_REGS(regs))
146			i = 32;
147		if (__put_user((unsigned int)gregs[i], &frame->mc_gregs[i]))
148			return -EFAULT;
149	}
150	return 0;
151}
152
153static inline int restore_general_regs(struct pt_regs *regs,
154		struct mcontext __user *sr)
155{
156	elf_greg_t64 *gregs = (elf_greg_t64 *)regs;
157	int i;
158
159	for (i = 0; i <= PT_RESULT; i++) {
160		if ((i == PT_MSR) || (i == PT_SOFTE))
161			continue;
162		if (__get_user(gregs[i], &sr->mc_gregs[i]))
163			return -EFAULT;
164	}
165	return 0;
166}
167
168#else /* CONFIG_PPC64 */
169
170#define GP_REGS_SIZE	min(sizeof(elf_gregset_t), sizeof(struct pt_regs))
171
172static inline int put_sigset_t(sigset_t __user *uset, sigset_t *set)
173{
174	return copy_to_user(uset, set, sizeof(*uset));
175}
176
177static inline int get_sigset_t(sigset_t *set, const sigset_t __user *uset)
178{
179	return copy_from_user(set, uset, sizeof(*uset));
180}
181
182#define to_user_ptr(p)		((unsigned long)(p))
183#define from_user_ptr(p)	((void __user *)(p))
184
185static inline int save_general_regs(struct pt_regs *regs,
186		struct mcontext __user *frame)
187{
188	WARN_ON(!FULL_REGS(regs));
189	return __copy_to_user(&frame->mc_gregs, regs, GP_REGS_SIZE);
190}
191
192static inline int restore_general_regs(struct pt_regs *regs,
193		struct mcontext __user *sr)
194{
195	/* copy up to but not including MSR */
196	if (__copy_from_user(regs, &sr->mc_gregs,
197				PT_MSR * sizeof(elf_greg_t)))
198		return -EFAULT;
199	/* copy from orig_r3 (the word after the MSR) up to the end */
200	if (__copy_from_user(&regs->orig_gpr3, &sr->mc_gregs[PT_ORIG_R3],
201				GP_REGS_SIZE - PT_ORIG_R3 * sizeof(elf_greg_t)))
202		return -EFAULT;
203	return 0;
204}
205#endif
206
207/*
208 * When we have signals to deliver, we set up on the
209 * user stack, going down from the original stack pointer:
210 *	an ABI gap of 56 words
211 *	an mcontext struct
212 *	a sigcontext struct
213 *	a gap of __SIGNAL_FRAMESIZE bytes
214 *
215 * Each of these things must be a multiple of 16 bytes in size. The following
216 * structure represent all of this except the __SIGNAL_FRAMESIZE gap
217 *
218 */
219struct sigframe {
220	struct sigcontext sctx;		/* the sigcontext */
221	struct mcontext	mctx;		/* all the register values */
222#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
223	struct sigcontext sctx_transact;
224	struct mcontext	mctx_transact;
225#endif
226	/*
227	 * Programs using the rs6000/xcoff abi can save up to 19 gp
228	 * regs and 18 fp regs below sp before decrementing it.
229	 */
230	int			abigap[56];
231};
232
233/* We use the mc_pad field for the signal return trampoline. */
234#define tramp	mc_pad
235
236/*
237 *  When we have rt signals to deliver, we set up on the
238 *  user stack, going down from the original stack pointer:
239 *	one rt_sigframe struct (siginfo + ucontext + ABI gap)
240 *	a gap of __SIGNAL_FRAMESIZE+16 bytes
241 *  (the +16 is to get the siginfo and ucontext in the same
242 *  positions as in older kernels).
243 *
244 *  Each of these things must be a multiple of 16 bytes in size.
245 *
246 */
247struct rt_sigframe {
248#ifdef CONFIG_PPC64
249	compat_siginfo_t info;
250#else
251	struct siginfo info;
252#endif
253	struct ucontext	uc;
254#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
255	struct ucontext	uc_transact;
256#endif
257	/*
258	 * Programs using the rs6000/xcoff abi can save up to 19 gp
259	 * regs and 18 fp regs below sp before decrementing it.
260	 */
261	int			abigap[56];
262};
263
264#ifdef CONFIG_VSX
265unsigned long copy_fpr_to_user(void __user *to,
266			       struct task_struct *task)
267{
268	u64 buf[ELF_NFPREG];
269	int i;
270
271	/* save FPR copy to local buffer then write to the thread_struct */
272	for (i = 0; i < (ELF_NFPREG - 1) ; i++)
273		buf[i] = task->thread.TS_FPR(i);
274	buf[i] = task->thread.fp_state.fpscr;
275	return __copy_to_user(to, buf, ELF_NFPREG * sizeof(double));
276}
277
278unsigned long copy_fpr_from_user(struct task_struct *task,
279				 void __user *from)
280{
281	u64 buf[ELF_NFPREG];
282	int i;
283
284	if (__copy_from_user(buf, from, ELF_NFPREG * sizeof(double)))
285		return 1;
286	for (i = 0; i < (ELF_NFPREG - 1) ; i++)
287		task->thread.TS_FPR(i) = buf[i];
288	task->thread.fp_state.fpscr = buf[i];
289
290	return 0;
291}
292
293unsigned long copy_vsx_to_user(void __user *to,
294			       struct task_struct *task)
295{
296	u64 buf[ELF_NVSRHALFREG];
297	int i;
298
299	/* save FPR copy to local buffer then write to the thread_struct */
300	for (i = 0; i < ELF_NVSRHALFREG; i++)
301		buf[i] = task->thread.fp_state.fpr[i][TS_VSRLOWOFFSET];
302	return __copy_to_user(to, buf, ELF_NVSRHALFREG * sizeof(double));
303}
304
305unsigned long copy_vsx_from_user(struct task_struct *task,
306				 void __user *from)
307{
308	u64 buf[ELF_NVSRHALFREG];
309	int i;
310
311	if (__copy_from_user(buf, from, ELF_NVSRHALFREG * sizeof(double)))
312		return 1;
313	for (i = 0; i < ELF_NVSRHALFREG ; i++)
314		task->thread.fp_state.fpr[i][TS_VSRLOWOFFSET] = buf[i];
315	return 0;
316}
317
318#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
319unsigned long copy_transact_fpr_to_user(void __user *to,
320				  struct task_struct *task)
321{
322	u64 buf[ELF_NFPREG];
323	int i;
324
325	/* save FPR copy to local buffer then write to the thread_struct */
326	for (i = 0; i < (ELF_NFPREG - 1) ; i++)
327		buf[i] = task->thread.TS_TRANS_FPR(i);
328	buf[i] = task->thread.transact_fp.fpscr;
329	return __copy_to_user(to, buf, ELF_NFPREG * sizeof(double));
330}
331
332unsigned long copy_transact_fpr_from_user(struct task_struct *task,
333					  void __user *from)
334{
335	u64 buf[ELF_NFPREG];
336	int i;
337
338	if (__copy_from_user(buf, from, ELF_NFPREG * sizeof(double)))
339		return 1;
340	for (i = 0; i < (ELF_NFPREG - 1) ; i++)
341		task->thread.TS_TRANS_FPR(i) = buf[i];
342	task->thread.transact_fp.fpscr = buf[i];
343
344	return 0;
345}
346
347unsigned long copy_transact_vsx_to_user(void __user *to,
348				  struct task_struct *task)
349{
350	u64 buf[ELF_NVSRHALFREG];
351	int i;
352
353	/* save FPR copy to local buffer then write to the thread_struct */
354	for (i = 0; i < ELF_NVSRHALFREG; i++)
355		buf[i] = task->thread.transact_fp.fpr[i][TS_VSRLOWOFFSET];
356	return __copy_to_user(to, buf, ELF_NVSRHALFREG * sizeof(double));
357}
358
359unsigned long copy_transact_vsx_from_user(struct task_struct *task,
360					  void __user *from)
361{
362	u64 buf[ELF_NVSRHALFREG];
363	int i;
364
365	if (__copy_from_user(buf, from, ELF_NVSRHALFREG * sizeof(double)))
366		return 1;
367	for (i = 0; i < ELF_NVSRHALFREG ; i++)
368		task->thread.transact_fp.fpr[i][TS_VSRLOWOFFSET] = buf[i];
369	return 0;
370}
371#endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
372#else
373inline unsigned long copy_fpr_to_user(void __user *to,
374				      struct task_struct *task)
375{
376	return __copy_to_user(to, task->thread.fp_state.fpr,
377			      ELF_NFPREG * sizeof(double));
378}
379
380inline unsigned long copy_fpr_from_user(struct task_struct *task,
381					void __user *from)
382{
383	return __copy_from_user(task->thread.fp_state.fpr, from,
384			      ELF_NFPREG * sizeof(double));
385}
386
387#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
388inline unsigned long copy_transact_fpr_to_user(void __user *to,
389					 struct task_struct *task)
390{
391	return __copy_to_user(to, task->thread.transact_fp.fpr,
392			      ELF_NFPREG * sizeof(double));
393}
394
395inline unsigned long copy_transact_fpr_from_user(struct task_struct *task,
396						 void __user *from)
397{
398	return __copy_from_user(task->thread.transact_fp.fpr, from,
399				ELF_NFPREG * sizeof(double));
400}
401#endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
402#endif
403
404/*
405 * Save the current user registers on the user stack.
406 * We only save the altivec/spe registers if the process has used
407 * altivec/spe instructions at some point.
408 */
409static int save_user_regs(struct pt_regs *regs, struct mcontext __user *frame,
410			  struct mcontext __user *tm_frame, int sigret,
411			  int ctx_has_vsx_region)
412{
413	unsigned long msr = regs->msr;
414
415	/* Make sure floating point registers are stored in regs */
416	flush_fp_to_thread(current);
417
418	/* save general registers */
419	if (save_general_regs(regs, frame))
420		return 1;
421
422#ifdef CONFIG_ALTIVEC
423	/* save altivec registers */
424	if (current->thread.used_vr) {
425		flush_altivec_to_thread(current);
426		if (__copy_to_user(&frame->mc_vregs, &current->thread.vr_state,
427				   ELF_NVRREG * sizeof(vector128)))
428			return 1;
429		/* set MSR_VEC in the saved MSR value to indicate that
430		   frame->mc_vregs contains valid data */
431		msr |= MSR_VEC;
432	}
433	/* else assert((regs->msr & MSR_VEC) == 0) */
434
435	/* We always copy to/from vrsave, it's 0 if we don't have or don't
436	 * use altivec. Since VSCR only contains 32 bits saved in the least
437	 * significant bits of a vector, we "cheat" and stuff VRSAVE in the
438	 * most significant bits of that same vector. --BenH
439	 * Note that the current VRSAVE value is in the SPR at this point.
440	 */
441	if (cpu_has_feature(CPU_FTR_ALTIVEC))
442		current->thread.vrsave = mfspr(SPRN_VRSAVE);
443	if (__put_user(current->thread.vrsave, (u32 __user *)&frame->mc_vregs[32]))
444		return 1;
445#endif /* CONFIG_ALTIVEC */
446	if (copy_fpr_to_user(&frame->mc_fregs, current))
447		return 1;
448#ifdef CONFIG_VSX
449	/*
450	 * Copy VSR 0-31 upper half from thread_struct to local
451	 * buffer, then write that to userspace.  Also set MSR_VSX in
452	 * the saved MSR value to indicate that frame->mc_vregs
453	 * contains valid data
454	 */
455	if (current->thread.used_vsr && ctx_has_vsx_region) {
456		__giveup_vsx(current);
457		if (copy_vsx_to_user(&frame->mc_vsregs, current))
458			return 1;
459		msr |= MSR_VSX;
460	}
461#endif /* CONFIG_VSX */
462#ifdef CONFIG_SPE
463	/* save spe registers */
464	if (current->thread.used_spe) {
465		flush_spe_to_thread(current);
466		if (__copy_to_user(&frame->mc_vregs, current->thread.evr,
467				   ELF_NEVRREG * sizeof(u32)))
468			return 1;
469		/* set MSR_SPE in the saved MSR value to indicate that
470		   frame->mc_vregs contains valid data */
471		msr |= MSR_SPE;
472	}
473	/* else assert((regs->msr & MSR_SPE) == 0) */
474
475	/* We always copy to/from spefscr */
476	if (__put_user(current->thread.spefscr, (u32 __user *)&frame->mc_vregs + ELF_NEVRREG))
477		return 1;
478#endif /* CONFIG_SPE */
479
480	if (__put_user(msr, &frame->mc_gregs[PT_MSR]))
481		return 1;
482	/* We need to write 0 the MSR top 32 bits in the tm frame so that we
483	 * can check it on the restore to see if TM is active
484	 */
485	if (tm_frame && __put_user(0, &tm_frame->mc_gregs[PT_MSR]))
486		return 1;
487
488	if (sigret) {
489		/* Set up the sigreturn trampoline: li r0,sigret; sc */
490		if (__put_user(0x38000000UL + sigret, &frame->tramp[0])
491		    || __put_user(0x44000002UL, &frame->tramp[1]))
492			return 1;
493		flush_icache_range((unsigned long) &frame->tramp[0],
494				   (unsigned long) &frame->tramp[2]);
495	}
496
497	return 0;
498}
499
500#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
501/*
502 * Save the current user registers on the user stack.
503 * We only save the altivec/spe registers if the process has used
504 * altivec/spe instructions at some point.
505 * We also save the transactional registers to a second ucontext in the
506 * frame.
507 *
508 * See save_user_regs() and signal_64.c:setup_tm_sigcontexts().
509 */
510static int save_tm_user_regs(struct pt_regs *regs,
511			     struct mcontext __user *frame,
512			     struct mcontext __user *tm_frame, int sigret)
513{
514	unsigned long msr = regs->msr;
515
516	/* Make sure floating point registers are stored in regs */
517	flush_fp_to_thread(current);
518
519	/* Save both sets of general registers */
520	if (save_general_regs(&current->thread.ckpt_regs, frame)
521	    || save_general_regs(regs, tm_frame))
522		return 1;
523
524	/* Stash the top half of the 64bit MSR into the 32bit MSR word
525	 * of the transactional mcontext.  This way we have a backward-compatible
526	 * MSR in the 'normal' (checkpointed) mcontext and additionally one can
527	 * also look at what type of transaction (T or S) was active at the
528	 * time of the signal.
529	 */
530	if (__put_user((msr >> 32), &tm_frame->mc_gregs[PT_MSR]))
531		return 1;
532
533#ifdef CONFIG_ALTIVEC
534	/* save altivec registers */
535	if (current->thread.used_vr) {
536		flush_altivec_to_thread(current);
537		if (__copy_to_user(&frame->mc_vregs, &current->thread.vr_state,
538				   ELF_NVRREG * sizeof(vector128)))
539			return 1;
540		if (msr & MSR_VEC) {
541			if (__copy_to_user(&tm_frame->mc_vregs,
542					   &current->thread.transact_vr,
543					   ELF_NVRREG * sizeof(vector128)))
544				return 1;
545		} else {
546			if (__copy_to_user(&tm_frame->mc_vregs,
547					   &current->thread.vr_state,
548					   ELF_NVRREG * sizeof(vector128)))
549				return 1;
550		}
551
552		/* set MSR_VEC in the saved MSR value to indicate that
553		 * frame->mc_vregs contains valid data
554		 */
555		msr |= MSR_VEC;
556	}
557
558	/* We always copy to/from vrsave, it's 0 if we don't have or don't
559	 * use altivec. Since VSCR only contains 32 bits saved in the least
560	 * significant bits of a vector, we "cheat" and stuff VRSAVE in the
561	 * most significant bits of that same vector. --BenH
562	 */
563	if (cpu_has_feature(CPU_FTR_ALTIVEC))
564		current->thread.vrsave = mfspr(SPRN_VRSAVE);
565	if (__put_user(current->thread.vrsave,
566		       (u32 __user *)&frame->mc_vregs[32]))
567		return 1;
568	if (msr & MSR_VEC) {
569		if (__put_user(current->thread.transact_vrsave,
570			       (u32 __user *)&tm_frame->mc_vregs[32]))
571			return 1;
572	} else {
573		if (__put_user(current->thread.vrsave,
574			       (u32 __user *)&tm_frame->mc_vregs[32]))
575			return 1;
576	}
577#endif /* CONFIG_ALTIVEC */
578
579	if (copy_fpr_to_user(&frame->mc_fregs, current))
580		return 1;
581	if (msr & MSR_FP) {
582		if (copy_transact_fpr_to_user(&tm_frame->mc_fregs, current))
583			return 1;
584	} else {
585		if (copy_fpr_to_user(&tm_frame->mc_fregs, current))
586			return 1;
587	}
588
589#ifdef CONFIG_VSX
590	/*
591	 * Copy VSR 0-31 upper half from thread_struct to local
592	 * buffer, then write that to userspace.  Also set MSR_VSX in
593	 * the saved MSR value to indicate that frame->mc_vregs
594	 * contains valid data
595	 */
596	if (current->thread.used_vsr) {
597		__giveup_vsx(current);
598		if (copy_vsx_to_user(&frame->mc_vsregs, current))
599			return 1;
600		if (msr & MSR_VSX) {
601			if (copy_transact_vsx_to_user(&tm_frame->mc_vsregs,
602						      current))
603				return 1;
604		} else {
605			if (copy_vsx_to_user(&tm_frame->mc_vsregs, current))
606				return 1;
607		}
608
609		msr |= MSR_VSX;
610	}
611#endif /* CONFIG_VSX */
612#ifdef CONFIG_SPE
613	/* SPE regs are not checkpointed with TM, so this section is
614	 * simply the same as in save_user_regs().
615	 */
616	if (current->thread.used_spe) {
617		flush_spe_to_thread(current);
618		if (__copy_to_user(&frame->mc_vregs, current->thread.evr,
619				   ELF_NEVRREG * sizeof(u32)))
620			return 1;
621		/* set MSR_SPE in the saved MSR value to indicate that
622		 * frame->mc_vregs contains valid data */
623		msr |= MSR_SPE;
624	}
625
626	/* We always copy to/from spefscr */
627	if (__put_user(current->thread.spefscr, (u32 __user *)&frame->mc_vregs + ELF_NEVRREG))
628		return 1;
629#endif /* CONFIG_SPE */
630
631	if (__put_user(msr, &frame->mc_gregs[PT_MSR]))
632		return 1;
633	if (sigret) {
634		/* Set up the sigreturn trampoline: li r0,sigret; sc */
635		if (__put_user(0x38000000UL + sigret, &frame->tramp[0])
636		    || __put_user(0x44000002UL, &frame->tramp[1]))
637			return 1;
638		flush_icache_range((unsigned long) &frame->tramp[0],
639				   (unsigned long) &frame->tramp[2]);
640	}
641
642	return 0;
643}
644#endif
645
646/*
647 * Restore the current user register values from the user stack,
648 * (except for MSR).
649 */
650static long restore_user_regs(struct pt_regs *regs,
651			      struct mcontext __user *sr, int sig)
652{
653	long err;
654	unsigned int save_r2 = 0;
655	unsigned long msr;
656#ifdef CONFIG_VSX
657	int i;
658#endif
659
660	/*
661	 * restore general registers but not including MSR or SOFTE. Also
662	 * take care of keeping r2 (TLS) intact if not a signal
663	 */
664	if (!sig)
665		save_r2 = (unsigned int)regs->gpr[2];
666	err = restore_general_regs(regs, sr);
667	regs->trap = 0;
668	err |= __get_user(msr, &sr->mc_gregs[PT_MSR]);
669	if (!sig)
670		regs->gpr[2] = (unsigned long) save_r2;
671	if (err)
672		return 1;
673
674	/* if doing signal return, restore the previous little-endian mode */
675	if (sig)
676		regs->msr = (regs->msr & ~MSR_LE) | (msr & MSR_LE);
677
678	/*
679	 * Do this before updating the thread state in
680	 * current->thread.fpr/vr/evr.  That way, if we get preempted
681	 * and another task grabs the FPU/Altivec/SPE, it won't be
682	 * tempted to save the current CPU state into the thread_struct
683	 * and corrupt what we are writing there.
684	 */
685	discard_lazy_cpu_state();
686
687#ifdef CONFIG_ALTIVEC
688	/*
689	 * Force the process to reload the altivec registers from
690	 * current->thread when it next does altivec instructions
691	 */
692	regs->msr &= ~MSR_VEC;
693	if (msr & MSR_VEC) {
694		/* restore altivec registers from the stack */
695		if (__copy_from_user(&current->thread.vr_state, &sr->mc_vregs,
696				     sizeof(sr->mc_vregs)))
697			return 1;
698	} else if (current->thread.used_vr)
699		memset(&current->thread.vr_state, 0,
700		       ELF_NVRREG * sizeof(vector128));
701
702	/* Always get VRSAVE back */
703	if (__get_user(current->thread.vrsave, (u32 __user *)&sr->mc_vregs[32]))
704		return 1;
705	if (cpu_has_feature(CPU_FTR_ALTIVEC))
706		mtspr(SPRN_VRSAVE, current->thread.vrsave);
707#endif /* CONFIG_ALTIVEC */
708	if (copy_fpr_from_user(current, &sr->mc_fregs))
709		return 1;
710
711#ifdef CONFIG_VSX
712	/*
713	 * Force the process to reload the VSX registers from
714	 * current->thread when it next does VSX instruction.
715	 */
716	regs->msr &= ~MSR_VSX;
717	if (msr & MSR_VSX) {
718		/*
719		 * Restore altivec registers from the stack to a local
720		 * buffer, then write this out to the thread_struct
721		 */
722		if (copy_vsx_from_user(current, &sr->mc_vsregs))
723			return 1;
724	} else if (current->thread.used_vsr)
725		for (i = 0; i < 32 ; i++)
726			current->thread.fp_state.fpr[i][TS_VSRLOWOFFSET] = 0;
727#endif /* CONFIG_VSX */
728	/*
729	 * force the process to reload the FP registers from
730	 * current->thread when it next does FP instructions
731	 */
732	regs->msr &= ~(MSR_FP | MSR_FE0 | MSR_FE1);
733
734#ifdef CONFIG_SPE
735	/* force the process to reload the spe registers from
736	   current->thread when it next does spe instructions */
737	regs->msr &= ~MSR_SPE;
738	if (msr & MSR_SPE) {
739		/* restore spe registers from the stack */
740		if (__copy_from_user(current->thread.evr, &sr->mc_vregs,
741				     ELF_NEVRREG * sizeof(u32)))
742			return 1;
743	} else if (current->thread.used_spe)
744		memset(current->thread.evr, 0, ELF_NEVRREG * sizeof(u32));
745
746	/* Always get SPEFSCR back */
747	if (__get_user(current->thread.spefscr, (u32 __user *)&sr->mc_vregs + ELF_NEVRREG))
748		return 1;
749#endif /* CONFIG_SPE */
750
751	return 0;
752}
753
754#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
755/*
756 * Restore the current user register values from the user stack, except for
757 * MSR, and recheckpoint the original checkpointed register state for processes
758 * in transactions.
759 */
760static long restore_tm_user_regs(struct pt_regs *regs,
761				 struct mcontext __user *sr,
762				 struct mcontext __user *tm_sr)
763{
764	long err;
765	unsigned long msr, msr_hi;
766#ifdef CONFIG_VSX
767	int i;
768#endif
769
770	/*
771	 * restore general registers but not including MSR or SOFTE. Also
772	 * take care of keeping r2 (TLS) intact if not a signal.
773	 * See comment in signal_64.c:restore_tm_sigcontexts();
774	 * TFHAR is restored from the checkpointed NIP; TEXASR and TFIAR
775	 * were set by the signal delivery.
776	 */
777	err = restore_general_regs(regs, tm_sr);
778	err |= restore_general_regs(&current->thread.ckpt_regs, sr);
779
780	err |= __get_user(current->thread.tm_tfhar, &sr->mc_gregs[PT_NIP]);
781
782	err |= __get_user(msr, &sr->mc_gregs[PT_MSR]);
783	if (err)
784		return 1;
785
786	/* Restore the previous little-endian mode */
787	regs->msr = (regs->msr & ~MSR_LE) | (msr & MSR_LE);
788
789	/*
790	 * Do this before updating the thread state in
791	 * current->thread.fpr/vr/evr.  That way, if we get preempted
792	 * and another task grabs the FPU/Altivec/SPE, it won't be
793	 * tempted to save the current CPU state into the thread_struct
794	 * and corrupt what we are writing there.
795	 */
796	discard_lazy_cpu_state();
797
798#ifdef CONFIG_ALTIVEC
799	regs->msr &= ~MSR_VEC;
800	if (msr & MSR_VEC) {
801		/* restore altivec registers from the stack */
802		if (__copy_from_user(&current->thread.vr_state, &sr->mc_vregs,
803				     sizeof(sr->mc_vregs)) ||
804		    __copy_from_user(&current->thread.transact_vr,
805				     &tm_sr->mc_vregs,
806				     sizeof(sr->mc_vregs)))
807			return 1;
808	} else if (current->thread.used_vr) {
809		memset(&current->thread.vr_state, 0,
810		       ELF_NVRREG * sizeof(vector128));
811		memset(&current->thread.transact_vr, 0,
812		       ELF_NVRREG * sizeof(vector128));
813	}
814
815	/* Always get VRSAVE back */
816	if (__get_user(current->thread.vrsave,
817		       (u32 __user *)&sr->mc_vregs[32]) ||
818	    __get_user(current->thread.transact_vrsave,
819		       (u32 __user *)&tm_sr->mc_vregs[32]))
820		return 1;
821	if (cpu_has_feature(CPU_FTR_ALTIVEC))
822		mtspr(SPRN_VRSAVE, current->thread.vrsave);
823#endif /* CONFIG_ALTIVEC */
824
825	regs->msr &= ~(MSR_FP | MSR_FE0 | MSR_FE1);
826
827	if (copy_fpr_from_user(current, &sr->mc_fregs) ||
828	    copy_transact_fpr_from_user(current, &tm_sr->mc_fregs))
829		return 1;
830
831#ifdef CONFIG_VSX
832	regs->msr &= ~MSR_VSX;
833	if (msr & MSR_VSX) {
834		/*
835		 * Restore altivec registers from the stack to a local
836		 * buffer, then write this out to the thread_struct
837		 */
838		if (copy_vsx_from_user(current, &sr->mc_vsregs) ||
839		    copy_transact_vsx_from_user(current, &tm_sr->mc_vsregs))
840			return 1;
841	} else if (current->thread.used_vsr)
842		for (i = 0; i < 32 ; i++) {
843			current->thread.fp_state.fpr[i][TS_VSRLOWOFFSET] = 0;
844			current->thread.transact_fp.fpr[i][TS_VSRLOWOFFSET] = 0;
845		}
846#endif /* CONFIG_VSX */
847
848#ifdef CONFIG_SPE
849	/* SPE regs are not checkpointed with TM, so this section is
850	 * simply the same as in restore_user_regs().
851	 */
852	regs->msr &= ~MSR_SPE;
853	if (msr & MSR_SPE) {
854		if (__copy_from_user(current->thread.evr, &sr->mc_vregs,
855				     ELF_NEVRREG * sizeof(u32)))
856			return 1;
857	} else if (current->thread.used_spe)
858		memset(current->thread.evr, 0, ELF_NEVRREG * sizeof(u32));
859
860	/* Always get SPEFSCR back */
861	if (__get_user(current->thread.spefscr, (u32 __user *)&sr->mc_vregs
862		       + ELF_NEVRREG))
863		return 1;
864#endif /* CONFIG_SPE */
865
866	/* Now, recheckpoint.  This loads up all of the checkpointed (older)
867	 * registers, including FP and V[S]Rs.  After recheckpointing, the
868	 * transactional versions should be loaded.
869	 */
870	tm_enable();
871	/* This loads the checkpointed FP/VEC state, if used */
872	tm_recheckpoint(&current->thread, msr);
873	/* Get the top half of the MSR */
874	if (__get_user(msr_hi, &tm_sr->mc_gregs[PT_MSR]))
875		return 1;
876	/* Pull in MSR TM from user context */
877	regs->msr = (regs->msr & ~MSR_TS_MASK) | ((msr_hi<<32) & MSR_TS_MASK);
878
879	/* This loads the speculative FP/VEC state, if used */
880	if (msr & MSR_FP) {
881		do_load_up_transact_fpu(&current->thread);
882		regs->msr |= (MSR_FP | current->thread.fpexc_mode);
883	}
884#ifdef CONFIG_ALTIVEC
885	if (msr & MSR_VEC) {
886		do_load_up_transact_altivec(&current->thread);
887		regs->msr |= MSR_VEC;
888	}
889#endif
890
891	return 0;
892}
893#endif
894
895#ifdef CONFIG_PPC64
896int copy_siginfo_to_user32(struct compat_siginfo __user *d, siginfo_t *s)
897{
898	int err;
899
900	if (!access_ok (VERIFY_WRITE, d, sizeof(*d)))
901		return -EFAULT;
902
903	/* If you change siginfo_t structure, please be sure
904	 * this code is fixed accordingly.
905	 * It should never copy any pad contained in the structure
906	 * to avoid security leaks, but must copy the generic
907	 * 3 ints plus the relevant union member.
908	 * This routine must convert siginfo from 64bit to 32bit as well
909	 * at the same time.
910	 */
911	err = __put_user(s->si_signo, &d->si_signo);
912	err |= __put_user(s->si_errno, &d->si_errno);
913	err |= __put_user((short)s->si_code, &d->si_code);
914	if (s->si_code < 0)
915		err |= __copy_to_user(&d->_sifields._pad, &s->_sifields._pad,
916				      SI_PAD_SIZE32);
917	else switch(s->si_code >> 16) {
918	case __SI_CHLD >> 16:
919		err |= __put_user(s->si_pid, &d->si_pid);
920		err |= __put_user(s->si_uid, &d->si_uid);
921		err |= __put_user(s->si_utime, &d->si_utime);
922		err |= __put_user(s->si_stime, &d->si_stime);
923		err |= __put_user(s->si_status, &d->si_status);
924		break;
925	case __SI_FAULT >> 16:
926		err |= __put_user((unsigned int)(unsigned long)s->si_addr,
927				  &d->si_addr);
928		break;
929	case __SI_POLL >> 16:
930		err |= __put_user(s->si_band, &d->si_band);
931		err |= __put_user(s->si_fd, &d->si_fd);
932		break;
933	case __SI_TIMER >> 16:
934		err |= __put_user(s->si_tid, &d->si_tid);
935		err |= __put_user(s->si_overrun, &d->si_overrun);
936		err |= __put_user(s->si_int, &d->si_int);
937		break;
938	case __SI_RT >> 16: /* This is not generated by the kernel as of now.  */
939	case __SI_MESGQ >> 16:
940		err |= __put_user(s->si_int, &d->si_int);
941		/* fallthrough */
942	case __SI_KILL >> 16:
943	default:
944		err |= __put_user(s->si_pid, &d->si_pid);
945		err |= __put_user(s->si_uid, &d->si_uid);
946		break;
947	}
948	return err;
949}
950
951#define copy_siginfo_to_user	copy_siginfo_to_user32
952
953int copy_siginfo_from_user32(siginfo_t *to, struct compat_siginfo __user *from)
954{
955	memset(to, 0, sizeof *to);
956
957	if (copy_from_user(to, from, 3*sizeof(int)) ||
958	    copy_from_user(to->_sifields._pad,
959			   from->_sifields._pad, SI_PAD_SIZE32))
960		return -EFAULT;
961
962	return 0;
963}
964#endif /* CONFIG_PPC64 */
965
966/*
967 * Set up a signal frame for a "real-time" signal handler
968 * (one which gets siginfo).
969 */
970int handle_rt_signal32(unsigned long sig, struct k_sigaction *ka,
971		siginfo_t *info, sigset_t *oldset,
972		struct pt_regs *regs)
973{
974	struct rt_sigframe __user *rt_sf;
975	struct mcontext __user *frame;
976	struct mcontext __user *tm_frame = NULL;
977	void __user *addr;
978	unsigned long newsp = 0;
979	int sigret;
980	unsigned long tramp;
981
982	/* Set up Signal Frame */
983	/* Put a Real Time Context onto stack */
984	rt_sf = get_sigframe(ka, get_tm_stackpointer(regs), sizeof(*rt_sf), 1);
985	addr = rt_sf;
986	if (unlikely(rt_sf == NULL))
987		goto badframe;
988
989	/* Put the siginfo & fill in most of the ucontext */
990	if (copy_siginfo_to_user(&rt_sf->info, info)
991	    || __put_user(0, &rt_sf->uc.uc_flags)
992	    || __save_altstack(&rt_sf->uc.uc_stack, regs->gpr[1])
993	    || __put_user(to_user_ptr(&rt_sf->uc.uc_mcontext),
994		    &rt_sf->uc.uc_regs)
995	    || put_sigset_t(&rt_sf->uc.uc_sigmask, oldset))
996		goto badframe;
997
998	/* Save user registers on the stack */
999	frame = &rt_sf->uc.uc_mcontext;
1000	addr = frame;
1001	if (vdso32_rt_sigtramp && current->mm->context.vdso_base) {
1002		sigret = 0;
1003		tramp = current->mm->context.vdso_base + vdso32_rt_sigtramp;
1004	} else {
1005		sigret = __NR_rt_sigreturn;
1006		tramp = (unsigned long) frame->tramp;
1007	}
1008
1009#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1010	tm_frame = &rt_sf->uc_transact.uc_mcontext;
1011	if (MSR_TM_ACTIVE(regs->msr)) {
1012		if (save_tm_user_regs(regs, frame, tm_frame, sigret))
1013			goto badframe;
1014	}
1015	else
1016#endif
1017	{
1018		if (save_user_regs(regs, frame, tm_frame, sigret, 1))
1019			goto badframe;
1020	}
1021	regs->link = tramp;
1022
1023#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1024	if (MSR_TM_ACTIVE(regs->msr)) {
1025		if (__put_user((unsigned long)&rt_sf->uc_transact,
1026			       &rt_sf->uc.uc_link)
1027		    || __put_user((unsigned long)tm_frame, &rt_sf->uc_transact.uc_regs))
1028			goto badframe;
1029	}
1030	else
1031#endif
1032		if (__put_user(0, &rt_sf->uc.uc_link))
1033			goto badframe;
1034
1035	current->thread.fp_state.fpscr = 0;	/* turn off all fp exceptions */
1036
1037	/* create a stack frame for the caller of the handler */
1038	newsp = ((unsigned long)rt_sf) - (__SIGNAL_FRAMESIZE + 16);
1039	addr = (void __user *)regs->gpr[1];
1040	if (put_user(regs->gpr[1], (u32 __user *)newsp))
1041		goto badframe;
1042
1043	/* Fill registers for signal handler */
1044	regs->gpr[1] = newsp;
1045	regs->gpr[3] = sig;
1046	regs->gpr[4] = (unsigned long) &rt_sf->info;
1047	regs->gpr[5] = (unsigned long) &rt_sf->uc;
1048	regs->gpr[6] = (unsigned long) rt_sf;
1049	regs->nip = (unsigned long) ka->sa.sa_handler;
1050	/* enter the signal handler in big-endian mode */
1051	regs->msr &= ~MSR_LE;
1052#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1053	/* Remove TM bits from thread's MSR.  The MSR in the sigcontext
1054	 * just indicates to userland that we were doing a transaction, but we
1055	 * don't want to return in transactional state:
1056	 */
1057	regs->msr &= ~MSR_TS_MASK;
1058#endif
1059	return 1;
1060
1061badframe:
1062#ifdef DEBUG_SIG
1063	printk("badframe in handle_rt_signal, regs=%p frame=%p newsp=%lx\n",
1064	       regs, frame, newsp);
1065#endif
1066	if (show_unhandled_signals)
1067		printk_ratelimited(KERN_INFO
1068				   "%s[%d]: bad frame in handle_rt_signal32: "
1069				   "%p nip %08lx lr %08lx\n",
1070				   current->comm, current->pid,
1071				   addr, regs->nip, regs->link);
1072
1073	force_sigsegv(sig, current);
1074	return 0;
1075}
1076
1077static int do_setcontext(struct ucontext __user *ucp, struct pt_regs *regs, int sig)
1078{
1079	sigset_t set;
1080	struct mcontext __user *mcp;
1081
1082	if (get_sigset_t(&set, &ucp->uc_sigmask))
1083		return -EFAULT;
1084#ifdef CONFIG_PPC64
1085	{
1086		u32 cmcp;
1087
1088		if (__get_user(cmcp, &ucp->uc_regs))
1089			return -EFAULT;
1090		mcp = (struct mcontext __user *)(u64)cmcp;
1091		/* no need to check access_ok(mcp), since mcp < 4GB */
1092	}
1093#else
1094	if (__get_user(mcp, &ucp->uc_regs))
1095		return -EFAULT;
1096	if (!access_ok(VERIFY_READ, mcp, sizeof(*mcp)))
1097		return -EFAULT;
1098#endif
1099	set_current_blocked(&set);
1100	if (restore_user_regs(regs, mcp, sig))
1101		return -EFAULT;
1102
1103	return 0;
1104}
1105
1106#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1107static int do_setcontext_tm(struct ucontext __user *ucp,
1108			    struct ucontext __user *tm_ucp,
1109			    struct pt_regs *regs)
1110{
1111	sigset_t set;
1112	struct mcontext __user *mcp;
1113	struct mcontext __user *tm_mcp;
1114	u32 cmcp;
1115	u32 tm_cmcp;
1116
1117	if (get_sigset_t(&set, &ucp->uc_sigmask))
1118		return -EFAULT;
1119
1120	if (__get_user(cmcp, &ucp->uc_regs) ||
1121	    __get_user(tm_cmcp, &tm_ucp->uc_regs))
1122		return -EFAULT;
1123	mcp = (struct mcontext __user *)(u64)cmcp;
1124	tm_mcp = (struct mcontext __user *)(u64)tm_cmcp;
1125	/* no need to check access_ok(mcp), since mcp < 4GB */
1126
1127	set_current_blocked(&set);
1128	if (restore_tm_user_regs(regs, mcp, tm_mcp))
1129		return -EFAULT;
1130
1131	return 0;
1132}
1133#endif
1134
1135long sys_swapcontext(struct ucontext __user *old_ctx,
1136		     struct ucontext __user *new_ctx,
1137		     int ctx_size, int r6, int r7, int r8, struct pt_regs *regs)
1138{
1139	unsigned char tmp;
1140	int ctx_has_vsx_region = 0;
1141
1142#ifdef CONFIG_PPC64
1143	unsigned long new_msr = 0;
1144
1145	if (new_ctx) {
1146		struct mcontext __user *mcp;
1147		u32 cmcp;
1148
1149		/*
1150		 * Get pointer to the real mcontext.  No need for
1151		 * access_ok since we are dealing with compat
1152		 * pointers.
1153		 */
1154		if (__get_user(cmcp, &new_ctx->uc_regs))
1155			return -EFAULT;
1156		mcp = (struct mcontext __user *)(u64)cmcp;
1157		if (__get_user(new_msr, &mcp->mc_gregs[PT_MSR]))
1158			return -EFAULT;
1159	}
1160	/*
1161	 * Check that the context is not smaller than the original
1162	 * size (with VMX but without VSX)
1163	 */
1164	if (ctx_size < UCONTEXTSIZEWITHOUTVSX)
1165		return -EINVAL;
1166	/*
1167	 * If the new context state sets the MSR VSX bits but
1168	 * it doesn't provide VSX state.
1169	 */
1170	if ((ctx_size < sizeof(struct ucontext)) &&
1171	    (new_msr & MSR_VSX))
1172		return -EINVAL;
1173	/* Does the context have enough room to store VSX data? */
1174	if (ctx_size >= sizeof(struct ucontext))
1175		ctx_has_vsx_region = 1;
1176#else
1177	/* Context size is for future use. Right now, we only make sure
1178	 * we are passed something we understand
1179	 */
1180	if (ctx_size < sizeof(struct ucontext))
1181		return -EINVAL;
1182#endif
1183	if (old_ctx != NULL) {
1184		struct mcontext __user *mctx;
1185
1186		/*
1187		 * old_ctx might not be 16-byte aligned, in which
1188		 * case old_ctx->uc_mcontext won't be either.
1189		 * Because we have the old_ctx->uc_pad2 field
1190		 * before old_ctx->uc_mcontext, we need to round down
1191		 * from &old_ctx->uc_mcontext to a 16-byte boundary.
1192		 */
1193		mctx = (struct mcontext __user *)
1194			((unsigned long) &old_ctx->uc_mcontext & ~0xfUL);
1195		if (!access_ok(VERIFY_WRITE, old_ctx, ctx_size)
1196		    || save_user_regs(regs, mctx, NULL, 0, ctx_has_vsx_region)
1197		    || put_sigset_t(&old_ctx->uc_sigmask, &current->blocked)
1198		    || __put_user(to_user_ptr(mctx), &old_ctx->uc_regs))
1199			return -EFAULT;
1200	}
1201	if (new_ctx == NULL)
1202		return 0;
1203	if (!access_ok(VERIFY_READ, new_ctx, ctx_size)
1204	    || __get_user(tmp, (u8 __user *) new_ctx)
1205	    || __get_user(tmp, (u8 __user *) new_ctx + ctx_size - 1))
1206		return -EFAULT;
1207
1208	/*
1209	 * If we get a fault copying the context into the kernel's
1210	 * image of the user's registers, we can't just return -EFAULT
1211	 * because the user's registers will be corrupted.  For instance
1212	 * the NIP value may have been updated but not some of the
1213	 * other registers.  Given that we have done the access_ok
1214	 * and successfully read the first and last bytes of the region
1215	 * above, this should only happen in an out-of-memory situation
1216	 * or if another thread unmaps the region containing the context.
1217	 * We kill the task with a SIGSEGV in this situation.
1218	 */
1219	if (do_setcontext(new_ctx, regs, 0))
1220		do_exit(SIGSEGV);
1221
1222	set_thread_flag(TIF_RESTOREALL);
1223	return 0;
1224}
1225
1226long sys_rt_sigreturn(int r3, int r4, int r5, int r6, int r7, int r8,
1227		     struct pt_regs *regs)
1228{
1229	struct rt_sigframe __user *rt_sf;
1230#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1231	struct ucontext __user *uc_transact;
1232	unsigned long msr_hi;
1233	unsigned long tmp;
1234	int tm_restore = 0;
1235#endif
1236	/* Always make any pending restarted system calls return -EINTR */
1237	current_thread_info()->restart_block.fn = do_no_restart_syscall;
1238
1239	rt_sf = (struct rt_sigframe __user *)
1240		(regs->gpr[1] + __SIGNAL_FRAMESIZE + 16);
1241	if (!access_ok(VERIFY_READ, rt_sf, sizeof(*rt_sf)))
1242		goto bad;
1243#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1244	if (__get_user(tmp, &rt_sf->uc.uc_link))
1245		goto bad;
1246	uc_transact = (struct ucontext __user *)(uintptr_t)tmp;
1247	if (uc_transact) {
1248		u32 cmcp;
1249		struct mcontext __user *mcp;
1250
1251		if (__get_user(cmcp, &uc_transact->uc_regs))
1252			return -EFAULT;
1253		mcp = (struct mcontext __user *)(u64)cmcp;
1254		/* The top 32 bits of the MSR are stashed in the transactional
1255		 * ucontext. */
1256		if (__get_user(msr_hi, &mcp->mc_gregs[PT_MSR]))
1257			goto bad;
1258
1259		if (MSR_TM_ACTIVE(msr_hi<<32)) {
1260			/* We only recheckpoint on return if we're
1261			 * transaction.
1262			 */
1263			tm_restore = 1;
1264			if (do_setcontext_tm(&rt_sf->uc, uc_transact, regs))
1265				goto bad;
1266		}
1267	}
1268	if (!tm_restore)
1269		/* Fall through, for non-TM restore */
1270#endif
1271	if (do_setcontext(&rt_sf->uc, regs, 1))
1272		goto bad;
1273
1274	/*
1275	 * It's not clear whether or why it is desirable to save the
1276	 * sigaltstack setting on signal delivery and restore it on
1277	 * signal return.  But other architectures do this and we have
1278	 * always done it up until now so it is probably better not to
1279	 * change it.  -- paulus
1280	 */
1281#ifdef CONFIG_PPC64
1282	if (compat_restore_altstack(&rt_sf->uc.uc_stack))
1283		goto bad;
1284#else
1285	if (restore_altstack(&rt_sf->uc.uc_stack))
1286		goto bad;
1287#endif
1288	set_thread_flag(TIF_RESTOREALL);
1289	return 0;
1290
1291 bad:
1292	if (show_unhandled_signals)
1293		printk_ratelimited(KERN_INFO
1294				   "%s[%d]: bad frame in sys_rt_sigreturn: "
1295				   "%p nip %08lx lr %08lx\n",
1296				   current->comm, current->pid,
1297				   rt_sf, regs->nip, regs->link);
1298
1299	force_sig(SIGSEGV, current);
1300	return 0;
1301}
1302
1303#ifdef CONFIG_PPC32
1304int sys_debug_setcontext(struct ucontext __user *ctx,
1305			 int ndbg, struct sig_dbg_op __user *dbg,
1306			 int r6, int r7, int r8,
1307			 struct pt_regs *regs)
1308{
1309	struct sig_dbg_op op;
1310	int i;
1311	unsigned char tmp;
1312	unsigned long new_msr = regs->msr;
1313#ifdef CONFIG_PPC_ADV_DEBUG_REGS
1314	unsigned long new_dbcr0 = current->thread.dbcr0;
1315#endif
1316
1317	for (i=0; i<ndbg; i++) {
1318		if (copy_from_user(&op, dbg + i, sizeof(op)))
1319			return -EFAULT;
1320		switch (op.dbg_type) {
1321		case SIG_DBG_SINGLE_STEPPING:
1322#ifdef CONFIG_PPC_ADV_DEBUG_REGS
1323			if (op.dbg_value) {
1324				new_msr |= MSR_DE;
1325				new_dbcr0 |= (DBCR0_IDM | DBCR0_IC);
1326			} else {
1327				new_dbcr0 &= ~DBCR0_IC;
1328				if (!DBCR_ACTIVE_EVENTS(new_dbcr0,
1329						current->thread.dbcr1)) {
1330					new_msr &= ~MSR_DE;
1331					new_dbcr0 &= ~DBCR0_IDM;
1332				}
1333			}
1334#else
1335			if (op.dbg_value)
1336				new_msr |= MSR_SE;
1337			else
1338				new_msr &= ~MSR_SE;
1339#endif
1340			break;
1341		case SIG_DBG_BRANCH_TRACING:
1342#ifdef CONFIG_PPC_ADV_DEBUG_REGS
1343			return -EINVAL;
1344#else
1345			if (op.dbg_value)
1346				new_msr |= MSR_BE;
1347			else
1348				new_msr &= ~MSR_BE;
1349#endif
1350			break;
1351
1352		default:
1353			return -EINVAL;
1354		}
1355	}
1356
1357	/* We wait until here to actually install the values in the
1358	   registers so if we fail in the above loop, it will not
1359	   affect the contents of these registers.  After this point,
1360	   failure is a problem, anyway, and it's very unlikely unless
1361	   the user is really doing something wrong. */
1362	regs->msr = new_msr;
1363#ifdef CONFIG_PPC_ADV_DEBUG_REGS
1364	current->thread.dbcr0 = new_dbcr0;
1365#endif
1366
1367	if (!access_ok(VERIFY_READ, ctx, sizeof(*ctx))
1368	    || __get_user(tmp, (u8 __user *) ctx)
1369	    || __get_user(tmp, (u8 __user *) (ctx + 1) - 1))
1370		return -EFAULT;
1371
1372	/*
1373	 * If we get a fault copying the context into the kernel's
1374	 * image of the user's registers, we can't just return -EFAULT
1375	 * because the user's registers will be corrupted.  For instance
1376	 * the NIP value may have been updated but not some of the
1377	 * other registers.  Given that we have done the access_ok
1378	 * and successfully read the first and last bytes of the region
1379	 * above, this should only happen in an out-of-memory situation
1380	 * or if another thread unmaps the region containing the context.
1381	 * We kill the task with a SIGSEGV in this situation.
1382	 */
1383	if (do_setcontext(ctx, regs, 1)) {
1384		if (show_unhandled_signals)
1385			printk_ratelimited(KERN_INFO "%s[%d]: bad frame in "
1386					   "sys_debug_setcontext: %p nip %08lx "
1387					   "lr %08lx\n",
1388					   current->comm, current->pid,
1389					   ctx, regs->nip, regs->link);
1390
1391		force_sig(SIGSEGV, current);
1392		goto out;
1393	}
1394
1395	/*
1396	 * It's not clear whether or why it is desirable to save the
1397	 * sigaltstack setting on signal delivery and restore it on
1398	 * signal return.  But other architectures do this and we have
1399	 * always done it up until now so it is probably better not to
1400	 * change it.  -- paulus
1401	 */
1402	restore_altstack(&ctx->uc_stack);
1403
1404	set_thread_flag(TIF_RESTOREALL);
1405 out:
1406	return 0;
1407}
1408#endif
1409
1410/*
1411 * OK, we're invoking a handler
1412 */
1413int handle_signal32(unsigned long sig, struct k_sigaction *ka,
1414		    siginfo_t *info, sigset_t *oldset, struct pt_regs *regs)
1415{
1416	struct sigcontext __user *sc;
1417	struct sigframe __user *frame;
1418	struct mcontext __user *tm_mctx = NULL;
1419	unsigned long newsp = 0;
1420	int sigret;
1421	unsigned long tramp;
1422
1423	/* Set up Signal Frame */
1424	frame = get_sigframe(ka, get_tm_stackpointer(regs), sizeof(*frame), 1);
1425	if (unlikely(frame == NULL))
1426		goto badframe;
1427	sc = (struct sigcontext __user *) &frame->sctx;
1428
1429#if _NSIG != 64
1430#error "Please adjust handle_signal()"
1431#endif
1432	if (__put_user(to_user_ptr(ka->sa.sa_handler), &sc->handler)
1433	    || __put_user(oldset->sig[0], &sc->oldmask)
1434#ifdef CONFIG_PPC64
1435	    || __put_user((oldset->sig[0] >> 32), &sc->_unused[3])
1436#else
1437	    || __put_user(oldset->sig[1], &sc->_unused[3])
1438#endif
1439	    || __put_user(to_user_ptr(&frame->mctx), &sc->regs)
1440	    || __put_user(sig, &sc->signal))
1441		goto badframe;
1442
1443	if (vdso32_sigtramp && current->mm->context.vdso_base) {
1444		sigret = 0;
1445		tramp = current->mm->context.vdso_base + vdso32_sigtramp;
1446	} else {
1447		sigret = __NR_sigreturn;
1448		tramp = (unsigned long) frame->mctx.tramp;
1449	}
1450
1451#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1452	tm_mctx = &frame->mctx_transact;
1453	if (MSR_TM_ACTIVE(regs->msr)) {
1454		if (save_tm_user_regs(regs, &frame->mctx, &frame->mctx_transact,
1455				      sigret))
1456			goto badframe;
1457	}
1458	else
1459#endif
1460	{
1461		if (save_user_regs(regs, &frame->mctx, tm_mctx, sigret, 1))
1462			goto badframe;
1463	}
1464
1465	regs->link = tramp;
1466
1467	current->thread.fp_state.fpscr = 0;	/* turn off all fp exceptions */
1468
1469	/* create a stack frame for the caller of the handler */
1470	newsp = ((unsigned long)frame) - __SIGNAL_FRAMESIZE;
1471	if (put_user(regs->gpr[1], (u32 __user *)newsp))
1472		goto badframe;
1473
1474	regs->gpr[1] = newsp;
1475	regs->gpr[3] = sig;
1476	regs->gpr[4] = (unsigned long) sc;
1477	regs->nip = (unsigned long) ka->sa.sa_handler;
1478	/* enter the signal handler in big-endian mode */
1479	regs->msr &= ~MSR_LE;
1480#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1481	/* Remove TM bits from thread's MSR.  The MSR in the sigcontext
1482	 * just indicates to userland that we were doing a transaction, but we
1483	 * don't want to return in transactional state:
1484	 */
1485	regs->msr &= ~MSR_TS_MASK;
1486#endif
1487	return 1;
1488
1489badframe:
1490#ifdef DEBUG_SIG
1491	printk("badframe in handle_signal, regs=%p frame=%p newsp=%lx\n",
1492	       regs, frame, newsp);
1493#endif
1494	if (show_unhandled_signals)
1495		printk_ratelimited(KERN_INFO
1496				   "%s[%d]: bad frame in handle_signal32: "
1497				   "%p nip %08lx lr %08lx\n",
1498				   current->comm, current->pid,
1499				   frame, regs->nip, regs->link);
1500
1501	force_sigsegv(sig, current);
1502	return 0;
1503}
1504
1505/*
1506 * Do a signal return; undo the signal stack.
1507 */
1508long sys_sigreturn(int r3, int r4, int r5, int r6, int r7, int r8,
1509		       struct pt_regs *regs)
1510{
1511	struct sigframe __user *sf;
1512	struct sigcontext __user *sc;
1513	struct sigcontext sigctx;
1514	struct mcontext __user *sr;
1515	void __user *addr;
1516	sigset_t set;
1517#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1518	struct mcontext __user *mcp, *tm_mcp;
1519	unsigned long msr_hi;
1520#endif
1521
1522	/* Always make any pending restarted system calls return -EINTR */
1523	current_thread_info()->restart_block.fn = do_no_restart_syscall;
1524
1525	sf = (struct sigframe __user *)(regs->gpr[1] + __SIGNAL_FRAMESIZE);
1526	sc = &sf->sctx;
1527	addr = sc;
1528	if (copy_from_user(&sigctx, sc, sizeof(sigctx)))
1529		goto badframe;
1530
1531#ifdef CONFIG_PPC64
1532	/*
1533	 * Note that PPC32 puts the upper 32 bits of the sigmask in the
1534	 * unused part of the signal stackframe
1535	 */
1536	set.sig[0] = sigctx.oldmask + ((long)(sigctx._unused[3]) << 32);
1537#else
1538	set.sig[0] = sigctx.oldmask;
1539	set.sig[1] = sigctx._unused[3];
1540#endif
1541	set_current_blocked(&set);
1542
1543#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1544	mcp = (struct mcontext __user *)&sf->mctx;
1545	tm_mcp = (struct mcontext __user *)&sf->mctx_transact;
1546	if (__get_user(msr_hi, &tm_mcp->mc_gregs[PT_MSR]))
1547		goto badframe;
1548	if (MSR_TM_ACTIVE(msr_hi<<32)) {
1549		if (!cpu_has_feature(CPU_FTR_TM))
1550			goto badframe;
1551		if (restore_tm_user_regs(regs, mcp, tm_mcp))
1552			goto badframe;
1553	} else
1554#endif
1555	{
1556		sr = (struct mcontext __user *)from_user_ptr(sigctx.regs);
1557		addr = sr;
1558		if (!access_ok(VERIFY_READ, sr, sizeof(*sr))
1559		    || restore_user_regs(regs, sr, 1))
1560			goto badframe;
1561	}
1562
1563	set_thread_flag(TIF_RESTOREALL);
1564	return 0;
1565
1566badframe:
1567	if (show_unhandled_signals)
1568		printk_ratelimited(KERN_INFO
1569				   "%s[%d]: bad frame in sys_sigreturn: "
1570				   "%p nip %08lx lr %08lx\n",
1571				   current->comm, current->pid,
1572				   addr, regs->nip, regs->link);
1573
1574	force_sig(SIGSEGV, current);
1575	return 0;
1576}
1577