signal_32.c revision e871c6bbf66c1b44af0fb925427e957301e2e1ff
1/*
2 * Signal handling for 32bit PPC and 32bit tasks on 64bit PPC
3 *
4 *  PowerPC version
5 *    Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
6 * Copyright (C) 2001 IBM
7 * Copyright (C) 1997,1998 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
8 * Copyright (C) 1997 David S. Miller (davem@caip.rutgers.edu)
9 *
10 *  Derived from "arch/i386/kernel/signal.c"
11 *    Copyright (C) 1991, 1992 Linus Torvalds
12 *    1997-11-28  Modified for POSIX.1b signals by Richard Henderson
13 *
14 *  This program is free software; you can redistribute it and/or
15 *  modify it under the terms of the GNU General Public License
16 *  as published by the Free Software Foundation; either version
17 *  2 of the License, or (at your option) any later version.
18 */
19
20#include <linux/sched.h>
21#include <linux/mm.h>
22#include <linux/smp.h>
23#include <linux/kernel.h>
24#include <linux/signal.h>
25#include <linux/errno.h>
26#include <linux/elf.h>
27#include <linux/ptrace.h>
28#include <linux/ratelimit.h>
29#ifdef CONFIG_PPC64
30#include <linux/syscalls.h>
31#include <linux/compat.h>
32#else
33#include <linux/wait.h>
34#include <linux/unistd.h>
35#include <linux/stddef.h>
36#include <linux/tty.h>
37#include <linux/binfmts.h>
38#endif
39
40#include <asm/uaccess.h>
41#include <asm/cacheflush.h>
42#include <asm/syscalls.h>
43#include <asm/sigcontext.h>
44#include <asm/vdso.h>
45#include <asm/switch_to.h>
46#include <asm/tm.h>
47#ifdef CONFIG_PPC64
48#include "ppc32.h"
49#include <asm/unistd.h>
50#else
51#include <asm/ucontext.h>
52#include <asm/pgtable.h>
53#endif
54
55#include "signal.h"
56
57#undef DEBUG_SIG
58
59#ifdef CONFIG_PPC64
60#define sys_rt_sigreturn	compat_sys_rt_sigreturn
61#define sys_swapcontext	compat_sys_swapcontext
62#define sys_sigreturn	compat_sys_sigreturn
63
64#define old_sigaction	old_sigaction32
65#define sigcontext	sigcontext32
66#define mcontext	mcontext32
67#define ucontext	ucontext32
68
69#define __save_altstack __compat_save_altstack
70
71/*
72 * Userspace code may pass a ucontext which doesn't include VSX added
73 * at the end.  We need to check for this case.
74 */
75#define UCONTEXTSIZEWITHOUTVSX \
76		(sizeof(struct ucontext) - sizeof(elf_vsrreghalf_t32))
77
78/*
79 * Returning 0 means we return to userspace via
80 * ret_from_except and thus restore all user
81 * registers from *regs.  This is what we need
82 * to do when a signal has been delivered.
83 */
84
85#define GP_REGS_SIZE	min(sizeof(elf_gregset_t32), sizeof(struct pt_regs32))
86#undef __SIGNAL_FRAMESIZE
87#define __SIGNAL_FRAMESIZE	__SIGNAL_FRAMESIZE32
88#undef ELF_NVRREG
89#define ELF_NVRREG	ELF_NVRREG32
90
91/*
92 * Functions for flipping sigsets (thanks to brain dead generic
93 * implementation that makes things simple for little endian only)
94 */
95static inline int put_sigset_t(compat_sigset_t __user *uset, sigset_t *set)
96{
97	compat_sigset_t	cset;
98
99	switch (_NSIG_WORDS) {
100	case 4: cset.sig[6] = set->sig[3] & 0xffffffffull;
101		cset.sig[7] = set->sig[3] >> 32;
102	case 3: cset.sig[4] = set->sig[2] & 0xffffffffull;
103		cset.sig[5] = set->sig[2] >> 32;
104	case 2: cset.sig[2] = set->sig[1] & 0xffffffffull;
105		cset.sig[3] = set->sig[1] >> 32;
106	case 1: cset.sig[0] = set->sig[0] & 0xffffffffull;
107		cset.sig[1] = set->sig[0] >> 32;
108	}
109	return copy_to_user(uset, &cset, sizeof(*uset));
110}
111
112static inline int get_sigset_t(sigset_t *set,
113			       const compat_sigset_t __user *uset)
114{
115	compat_sigset_t s32;
116
117	if (copy_from_user(&s32, uset, sizeof(*uset)))
118		return -EFAULT;
119
120	/*
121	 * Swap the 2 words of the 64-bit sigset_t (they are stored
122	 * in the "wrong" endian in 32-bit user storage).
123	 */
124	switch (_NSIG_WORDS) {
125	case 4: set->sig[3] = s32.sig[6] | (((long)s32.sig[7]) << 32);
126	case 3: set->sig[2] = s32.sig[4] | (((long)s32.sig[5]) << 32);
127	case 2: set->sig[1] = s32.sig[2] | (((long)s32.sig[3]) << 32);
128	case 1: set->sig[0] = s32.sig[0] | (((long)s32.sig[1]) << 32);
129	}
130	return 0;
131}
132
133#define to_user_ptr(p)		ptr_to_compat(p)
134#define from_user_ptr(p)	compat_ptr(p)
135
136static inline int save_general_regs(struct pt_regs *regs,
137		struct mcontext __user *frame)
138{
139	elf_greg_t64 *gregs = (elf_greg_t64 *)regs;
140	int i;
141
142	WARN_ON(!FULL_REGS(regs));
143
144	for (i = 0; i <= PT_RESULT; i ++) {
145		if (i == 14 && !FULL_REGS(regs))
146			i = 32;
147		if (__put_user((unsigned int)gregs[i], &frame->mc_gregs[i]))
148			return -EFAULT;
149	}
150	return 0;
151}
152
153static inline int restore_general_regs(struct pt_regs *regs,
154		struct mcontext __user *sr)
155{
156	elf_greg_t64 *gregs = (elf_greg_t64 *)regs;
157	int i;
158
159	for (i = 0; i <= PT_RESULT; i++) {
160		if ((i == PT_MSR) || (i == PT_SOFTE))
161			continue;
162		if (__get_user(gregs[i], &sr->mc_gregs[i]))
163			return -EFAULT;
164	}
165	return 0;
166}
167
168#else /* CONFIG_PPC64 */
169
170#define GP_REGS_SIZE	min(sizeof(elf_gregset_t), sizeof(struct pt_regs))
171
172static inline int put_sigset_t(sigset_t __user *uset, sigset_t *set)
173{
174	return copy_to_user(uset, set, sizeof(*uset));
175}
176
177static inline int get_sigset_t(sigset_t *set, const sigset_t __user *uset)
178{
179	return copy_from_user(set, uset, sizeof(*uset));
180}
181
182#define to_user_ptr(p)		((unsigned long)(p))
183#define from_user_ptr(p)	((void __user *)(p))
184
185static inline int save_general_regs(struct pt_regs *regs,
186		struct mcontext __user *frame)
187{
188	WARN_ON(!FULL_REGS(regs));
189	return __copy_to_user(&frame->mc_gregs, regs, GP_REGS_SIZE);
190}
191
192static inline int restore_general_regs(struct pt_regs *regs,
193		struct mcontext __user *sr)
194{
195	/* copy up to but not including MSR */
196	if (__copy_from_user(regs, &sr->mc_gregs,
197				PT_MSR * sizeof(elf_greg_t)))
198		return -EFAULT;
199	/* copy from orig_r3 (the word after the MSR) up to the end */
200	if (__copy_from_user(&regs->orig_gpr3, &sr->mc_gregs[PT_ORIG_R3],
201				GP_REGS_SIZE - PT_ORIG_R3 * sizeof(elf_greg_t)))
202		return -EFAULT;
203	return 0;
204}
205#endif
206
207/*
208 * When we have signals to deliver, we set up on the
209 * user stack, going down from the original stack pointer:
210 *	an ABI gap of 56 words
211 *	an mcontext struct
212 *	a sigcontext struct
213 *	a gap of __SIGNAL_FRAMESIZE bytes
214 *
215 * Each of these things must be a multiple of 16 bytes in size. The following
216 * structure represent all of this except the __SIGNAL_FRAMESIZE gap
217 *
218 */
219struct sigframe {
220	struct sigcontext sctx;		/* the sigcontext */
221	struct mcontext	mctx;		/* all the register values */
222#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
223	struct sigcontext sctx_transact;
224	struct mcontext	mctx_transact;
225#endif
226	/*
227	 * Programs using the rs6000/xcoff abi can save up to 19 gp
228	 * regs and 18 fp regs below sp before decrementing it.
229	 */
230	int			abigap[56];
231};
232
233/* We use the mc_pad field for the signal return trampoline. */
234#define tramp	mc_pad
235
236/*
237 *  When we have rt signals to deliver, we set up on the
238 *  user stack, going down from the original stack pointer:
239 *	one rt_sigframe struct (siginfo + ucontext + ABI gap)
240 *	a gap of __SIGNAL_FRAMESIZE+16 bytes
241 *  (the +16 is to get the siginfo and ucontext in the same
242 *  positions as in older kernels).
243 *
244 *  Each of these things must be a multiple of 16 bytes in size.
245 *
246 */
247struct rt_sigframe {
248#ifdef CONFIG_PPC64
249	compat_siginfo_t info;
250#else
251	struct siginfo info;
252#endif
253	struct ucontext	uc;
254#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
255	struct ucontext	uc_transact;
256#endif
257	/*
258	 * Programs using the rs6000/xcoff abi can save up to 19 gp
259	 * regs and 18 fp regs below sp before decrementing it.
260	 */
261	int			abigap[56];
262};
263
264#ifdef CONFIG_VSX
265unsigned long copy_fpr_to_user(void __user *to,
266			       struct task_struct *task)
267{
268	double buf[ELF_NFPREG];
269	int i;
270
271	/* save FPR copy to local buffer then write to the thread_struct */
272	for (i = 0; i < (ELF_NFPREG - 1) ; i++)
273		buf[i] = task->thread.TS_FPR(i);
274	memcpy(&buf[i], &task->thread.fpscr, sizeof(double));
275	return __copy_to_user(to, buf, ELF_NFPREG * sizeof(double));
276}
277
278unsigned long copy_fpr_from_user(struct task_struct *task,
279				 void __user *from)
280{
281	double buf[ELF_NFPREG];
282	int i;
283
284	if (__copy_from_user(buf, from, ELF_NFPREG * sizeof(double)))
285		return 1;
286	for (i = 0; i < (ELF_NFPREG - 1) ; i++)
287		task->thread.TS_FPR(i) = buf[i];
288	memcpy(&task->thread.fpscr, &buf[i], sizeof(double));
289
290	return 0;
291}
292
293unsigned long copy_vsx_to_user(void __user *to,
294			       struct task_struct *task)
295{
296	double buf[ELF_NVSRHALFREG];
297	int i;
298
299	/* save FPR copy to local buffer then write to the thread_struct */
300	for (i = 0; i < ELF_NVSRHALFREG; i++)
301		buf[i] = task->thread.fpr[i][TS_VSRLOWOFFSET];
302	return __copy_to_user(to, buf, ELF_NVSRHALFREG * sizeof(double));
303}
304
305unsigned long copy_vsx_from_user(struct task_struct *task,
306				 void __user *from)
307{
308	double buf[ELF_NVSRHALFREG];
309	int i;
310
311	if (__copy_from_user(buf, from, ELF_NVSRHALFREG * sizeof(double)))
312		return 1;
313	for (i = 0; i < ELF_NVSRHALFREG ; i++)
314		task->thread.fpr[i][TS_VSRLOWOFFSET] = buf[i];
315	return 0;
316}
317
318#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
319unsigned long copy_transact_fpr_to_user(void __user *to,
320				  struct task_struct *task)
321{
322	double buf[ELF_NFPREG];
323	int i;
324
325	/* save FPR copy to local buffer then write to the thread_struct */
326	for (i = 0; i < (ELF_NFPREG - 1) ; i++)
327		buf[i] = task->thread.TS_TRANS_FPR(i);
328	memcpy(&buf[i], &task->thread.transact_fpscr, sizeof(double));
329	return __copy_to_user(to, buf, ELF_NFPREG * sizeof(double));
330}
331
332unsigned long copy_transact_fpr_from_user(struct task_struct *task,
333					  void __user *from)
334{
335	double buf[ELF_NFPREG];
336	int i;
337
338	if (__copy_from_user(buf, from, ELF_NFPREG * sizeof(double)))
339		return 1;
340	for (i = 0; i < (ELF_NFPREG - 1) ; i++)
341		task->thread.TS_TRANS_FPR(i) = buf[i];
342	memcpy(&task->thread.transact_fpscr, &buf[i], sizeof(double));
343
344	return 0;
345}
346
347unsigned long copy_transact_vsx_to_user(void __user *to,
348				  struct task_struct *task)
349{
350	double buf[ELF_NVSRHALFREG];
351	int i;
352
353	/* save FPR copy to local buffer then write to the thread_struct */
354	for (i = 0; i < ELF_NVSRHALFREG; i++)
355		buf[i] = task->thread.transact_fpr[i][TS_VSRLOWOFFSET];
356	return __copy_to_user(to, buf, ELF_NVSRHALFREG * sizeof(double));
357}
358
359unsigned long copy_transact_vsx_from_user(struct task_struct *task,
360					  void __user *from)
361{
362	double buf[ELF_NVSRHALFREG];
363	int i;
364
365	if (__copy_from_user(buf, from, ELF_NVSRHALFREG * sizeof(double)))
366		return 1;
367	for (i = 0; i < ELF_NVSRHALFREG ; i++)
368		task->thread.transact_fpr[i][TS_VSRLOWOFFSET] = buf[i];
369	return 0;
370}
371#endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
372#else
373inline unsigned long copy_fpr_to_user(void __user *to,
374				      struct task_struct *task)
375{
376	return __copy_to_user(to, task->thread.fpr,
377			      ELF_NFPREG * sizeof(double));
378}
379
380inline unsigned long copy_fpr_from_user(struct task_struct *task,
381					void __user *from)
382{
383	return __copy_from_user(task->thread.fpr, from,
384			      ELF_NFPREG * sizeof(double));
385}
386
387#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
388inline unsigned long copy_transact_fpr_to_user(void __user *to,
389					 struct task_struct *task)
390{
391	return __copy_to_user(to, task->thread.transact_fpr,
392			      ELF_NFPREG * sizeof(double));
393}
394
395inline unsigned long copy_transact_fpr_from_user(struct task_struct *task,
396						 void __user *from)
397{
398	return __copy_from_user(task->thread.transact_fpr, from,
399				ELF_NFPREG * sizeof(double));
400}
401#endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
402#endif
403
404/*
405 * Save the current user registers on the user stack.
406 * We only save the altivec/spe registers if the process has used
407 * altivec/spe instructions at some point.
408 */
409static int save_user_regs(struct pt_regs *regs, struct mcontext __user *frame,
410			  struct mcontext __user *tm_frame, int sigret,
411			  int ctx_has_vsx_region)
412{
413	unsigned long msr = regs->msr;
414
415	/* Make sure floating point registers are stored in regs */
416	flush_fp_to_thread(current);
417
418	/* save general registers */
419	if (save_general_regs(regs, frame))
420		return 1;
421
422#ifdef CONFIG_ALTIVEC
423	/* save altivec registers */
424	if (current->thread.used_vr) {
425		flush_altivec_to_thread(current);
426		if (__copy_to_user(&frame->mc_vregs, current->thread.vr,
427				   ELF_NVRREG * sizeof(vector128)))
428			return 1;
429		/* set MSR_VEC in the saved MSR value to indicate that
430		   frame->mc_vregs contains valid data */
431		msr |= MSR_VEC;
432	}
433	/* else assert((regs->msr & MSR_VEC) == 0) */
434
435	/* We always copy to/from vrsave, it's 0 if we don't have or don't
436	 * use altivec. Since VSCR only contains 32 bits saved in the least
437	 * significant bits of a vector, we "cheat" and stuff VRSAVE in the
438	 * most significant bits of that same vector. --BenH
439	 * Note that the current VRSAVE value is in the SPR at this point.
440	 */
441	if (cpu_has_feature(CPU_FTR_ALTIVEC))
442		current->thread.vrsave = mfspr(SPRN_VRSAVE);
443	if (__put_user(current->thread.vrsave, (u32 __user *)&frame->mc_vregs[32]))
444		return 1;
445#endif /* CONFIG_ALTIVEC */
446	if (copy_fpr_to_user(&frame->mc_fregs, current))
447		return 1;
448#ifdef CONFIG_VSX
449	/*
450	 * Copy VSR 0-31 upper half from thread_struct to local
451	 * buffer, then write that to userspace.  Also set MSR_VSX in
452	 * the saved MSR value to indicate that frame->mc_vregs
453	 * contains valid data
454	 */
455	if (current->thread.used_vsr && ctx_has_vsx_region) {
456		__giveup_vsx(current);
457		if (copy_vsx_to_user(&frame->mc_vsregs, current))
458			return 1;
459		msr |= MSR_VSX;
460	}
461#endif /* CONFIG_VSX */
462#ifdef CONFIG_SPE
463	/* save spe registers */
464	if (current->thread.used_spe) {
465		flush_spe_to_thread(current);
466		if (__copy_to_user(&frame->mc_vregs, current->thread.evr,
467				   ELF_NEVRREG * sizeof(u32)))
468			return 1;
469		/* set MSR_SPE in the saved MSR value to indicate that
470		   frame->mc_vregs contains valid data */
471		msr |= MSR_SPE;
472	}
473	/* else assert((regs->msr & MSR_SPE) == 0) */
474
475	/* We always copy to/from spefscr */
476	if (__put_user(current->thread.spefscr, (u32 __user *)&frame->mc_vregs + ELF_NEVRREG))
477		return 1;
478#endif /* CONFIG_SPE */
479
480	if (__put_user(msr, &frame->mc_gregs[PT_MSR]))
481		return 1;
482	/* We need to write 0 the MSR top 32 bits in the tm frame so that we
483	 * can check it on the restore to see if TM is active
484	 */
485	if (tm_frame && __put_user(0, &tm_frame->mc_gregs[PT_MSR]))
486		return 1;
487
488	if (sigret) {
489		/* Set up the sigreturn trampoline: li r0,sigret; sc */
490		if (__put_user(0x38000000UL + sigret, &frame->tramp[0])
491		    || __put_user(0x44000002UL, &frame->tramp[1]))
492			return 1;
493		flush_icache_range((unsigned long) &frame->tramp[0],
494				   (unsigned long) &frame->tramp[2]);
495	}
496
497	return 0;
498}
499
500#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
501/*
502 * Save the current user registers on the user stack.
503 * We only save the altivec/spe registers if the process has used
504 * altivec/spe instructions at some point.
505 * We also save the transactional registers to a second ucontext in the
506 * frame.
507 *
508 * See save_user_regs() and signal_64.c:setup_tm_sigcontexts().
509 */
510static int save_tm_user_regs(struct pt_regs *regs,
511			     struct mcontext __user *frame,
512			     struct mcontext __user *tm_frame, int sigret)
513{
514	unsigned long msr = regs->msr;
515
516	/* Make sure floating point registers are stored in regs */
517	flush_fp_to_thread(current);
518
519	/* Save both sets of general registers */
520	if (save_general_regs(&current->thread.ckpt_regs, frame)
521	    || save_general_regs(regs, tm_frame))
522		return 1;
523
524	/* Stash the top half of the 64bit MSR into the 32bit MSR word
525	 * of the transactional mcontext.  This way we have a backward-compatible
526	 * MSR in the 'normal' (checkpointed) mcontext and additionally one can
527	 * also look at what type of transaction (T or S) was active at the
528	 * time of the signal.
529	 */
530	if (__put_user((msr >> 32), &tm_frame->mc_gregs[PT_MSR]))
531		return 1;
532
533#ifdef CONFIG_ALTIVEC
534	/* save altivec registers */
535	if (current->thread.used_vr) {
536		flush_altivec_to_thread(current);
537		if (__copy_to_user(&frame->mc_vregs, current->thread.vr,
538				   ELF_NVRREG * sizeof(vector128)))
539			return 1;
540		if (msr & MSR_VEC) {
541			if (__copy_to_user(&tm_frame->mc_vregs,
542					   current->thread.transact_vr,
543					   ELF_NVRREG * sizeof(vector128)))
544				return 1;
545		} else {
546			if (__copy_to_user(&tm_frame->mc_vregs,
547					   current->thread.vr,
548					   ELF_NVRREG * sizeof(vector128)))
549				return 1;
550		}
551
552		/* set MSR_VEC in the saved MSR value to indicate that
553		 * frame->mc_vregs contains valid data
554		 */
555		msr |= MSR_VEC;
556	}
557
558	/* We always copy to/from vrsave, it's 0 if we don't have or don't
559	 * use altivec. Since VSCR only contains 32 bits saved in the least
560	 * significant bits of a vector, we "cheat" and stuff VRSAVE in the
561	 * most significant bits of that same vector. --BenH
562	 */
563	if (cpu_has_feature(CPU_FTR_ALTIVEC))
564		current->thread.vrsave = mfspr(SPRN_VRSAVE);
565	if (__put_user(current->thread.vrsave,
566		       (u32 __user *)&frame->mc_vregs[32]))
567		return 1;
568	if (msr & MSR_VEC) {
569		if (__put_user(current->thread.transact_vrsave,
570			       (u32 __user *)&tm_frame->mc_vregs[32]))
571			return 1;
572	} else {
573		if (__put_user(current->thread.vrsave,
574			       (u32 __user *)&tm_frame->mc_vregs[32]))
575			return 1;
576	}
577#endif /* CONFIG_ALTIVEC */
578
579	if (copy_fpr_to_user(&frame->mc_fregs, current))
580		return 1;
581	if (msr & MSR_FP) {
582		if (copy_transact_fpr_to_user(&tm_frame->mc_fregs, current))
583			return 1;
584	} else {
585		if (copy_fpr_to_user(&tm_frame->mc_fregs, current))
586			return 1;
587	}
588
589#ifdef CONFIG_VSX
590	/*
591	 * Copy VSR 0-31 upper half from thread_struct to local
592	 * buffer, then write that to userspace.  Also set MSR_VSX in
593	 * the saved MSR value to indicate that frame->mc_vregs
594	 * contains valid data
595	 */
596	if (current->thread.used_vsr) {
597		__giveup_vsx(current);
598		if (copy_vsx_to_user(&frame->mc_vsregs, current))
599			return 1;
600		if (msr & MSR_VSX) {
601			if (copy_transact_vsx_to_user(&tm_frame->mc_vsregs,
602						      current))
603				return 1;
604		} else {
605			if (copy_vsx_to_user(&tm_frame->mc_vsregs, current))
606				return 1;
607		}
608
609		msr |= MSR_VSX;
610	}
611#endif /* CONFIG_VSX */
612#ifdef CONFIG_SPE
613	/* SPE regs are not checkpointed with TM, so this section is
614	 * simply the same as in save_user_regs().
615	 */
616	if (current->thread.used_spe) {
617		flush_spe_to_thread(current);
618		if (__copy_to_user(&frame->mc_vregs, current->thread.evr,
619				   ELF_NEVRREG * sizeof(u32)))
620			return 1;
621		/* set MSR_SPE in the saved MSR value to indicate that
622		 * frame->mc_vregs contains valid data */
623		msr |= MSR_SPE;
624	}
625
626	/* We always copy to/from spefscr */
627	if (__put_user(current->thread.spefscr, (u32 __user *)&frame->mc_vregs + ELF_NEVRREG))
628		return 1;
629#endif /* CONFIG_SPE */
630
631	if (__put_user(msr, &frame->mc_gregs[PT_MSR]))
632		return 1;
633	if (sigret) {
634		/* Set up the sigreturn trampoline: li r0,sigret; sc */
635		if (__put_user(0x38000000UL + sigret, &frame->tramp[0])
636		    || __put_user(0x44000002UL, &frame->tramp[1]))
637			return 1;
638		flush_icache_range((unsigned long) &frame->tramp[0],
639				   (unsigned long) &frame->tramp[2]);
640	}
641
642	return 0;
643}
644#endif
645
646/*
647 * Restore the current user register values from the user stack,
648 * (except for MSR).
649 */
650static long restore_user_regs(struct pt_regs *regs,
651			      struct mcontext __user *sr, int sig)
652{
653	long err;
654	unsigned int save_r2 = 0;
655	unsigned long msr;
656#ifdef CONFIG_VSX
657	int i;
658#endif
659
660	/*
661	 * restore general registers but not including MSR or SOFTE. Also
662	 * take care of keeping r2 (TLS) intact if not a signal
663	 */
664	if (!sig)
665		save_r2 = (unsigned int)regs->gpr[2];
666	err = restore_general_regs(regs, sr);
667	regs->trap = 0;
668	err |= __get_user(msr, &sr->mc_gregs[PT_MSR]);
669	if (!sig)
670		regs->gpr[2] = (unsigned long) save_r2;
671	if (err)
672		return 1;
673
674	/* if doing signal return, restore the previous little-endian mode */
675	if (sig)
676		regs->msr = (regs->msr & ~MSR_LE) | (msr & MSR_LE);
677
678	/*
679	 * Do this before updating the thread state in
680	 * current->thread.fpr/vr/evr.  That way, if we get preempted
681	 * and another task grabs the FPU/Altivec/SPE, it won't be
682	 * tempted to save the current CPU state into the thread_struct
683	 * and corrupt what we are writing there.
684	 */
685	discard_lazy_cpu_state();
686
687#ifdef CONFIG_ALTIVEC
688	/*
689	 * Force the process to reload the altivec registers from
690	 * current->thread when it next does altivec instructions
691	 */
692	regs->msr &= ~MSR_VEC;
693	if (msr & MSR_VEC) {
694		/* restore altivec registers from the stack */
695		if (__copy_from_user(current->thread.vr, &sr->mc_vregs,
696				     sizeof(sr->mc_vregs)))
697			return 1;
698	} else if (current->thread.used_vr)
699		memset(current->thread.vr, 0, ELF_NVRREG * sizeof(vector128));
700
701	/* Always get VRSAVE back */
702	if (__get_user(current->thread.vrsave, (u32 __user *)&sr->mc_vregs[32]))
703		return 1;
704	if (cpu_has_feature(CPU_FTR_ALTIVEC))
705		mtspr(SPRN_VRSAVE, current->thread.vrsave);
706#endif /* CONFIG_ALTIVEC */
707	if (copy_fpr_from_user(current, &sr->mc_fregs))
708		return 1;
709
710#ifdef CONFIG_VSX
711	/*
712	 * Force the process to reload the VSX registers from
713	 * current->thread when it next does VSX instruction.
714	 */
715	regs->msr &= ~MSR_VSX;
716	if (msr & MSR_VSX) {
717		/*
718		 * Restore altivec registers from the stack to a local
719		 * buffer, then write this out to the thread_struct
720		 */
721		if (copy_vsx_from_user(current, &sr->mc_vsregs))
722			return 1;
723	} else if (current->thread.used_vsr)
724		for (i = 0; i < 32 ; i++)
725			current->thread.fpr[i][TS_VSRLOWOFFSET] = 0;
726#endif /* CONFIG_VSX */
727	/*
728	 * force the process to reload the FP registers from
729	 * current->thread when it next does FP instructions
730	 */
731	regs->msr &= ~(MSR_FP | MSR_FE0 | MSR_FE1);
732
733#ifdef CONFIG_SPE
734	/* force the process to reload the spe registers from
735	   current->thread when it next does spe instructions */
736	regs->msr &= ~MSR_SPE;
737	if (msr & MSR_SPE) {
738		/* restore spe registers from the stack */
739		if (__copy_from_user(current->thread.evr, &sr->mc_vregs,
740				     ELF_NEVRREG * sizeof(u32)))
741			return 1;
742	} else if (current->thread.used_spe)
743		memset(current->thread.evr, 0, ELF_NEVRREG * sizeof(u32));
744
745	/* Always get SPEFSCR back */
746	if (__get_user(current->thread.spefscr, (u32 __user *)&sr->mc_vregs + ELF_NEVRREG))
747		return 1;
748#endif /* CONFIG_SPE */
749
750	return 0;
751}
752
753#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
754/*
755 * Restore the current user register values from the user stack, except for
756 * MSR, and recheckpoint the original checkpointed register state for processes
757 * in transactions.
758 */
759static long restore_tm_user_regs(struct pt_regs *regs,
760				 struct mcontext __user *sr,
761				 struct mcontext __user *tm_sr)
762{
763	long err;
764	unsigned long msr, msr_hi;
765#ifdef CONFIG_VSX
766	int i;
767#endif
768
769	/*
770	 * restore general registers but not including MSR or SOFTE. Also
771	 * take care of keeping r2 (TLS) intact if not a signal.
772	 * See comment in signal_64.c:restore_tm_sigcontexts();
773	 * TFHAR is restored from the checkpointed NIP; TEXASR and TFIAR
774	 * were set by the signal delivery.
775	 */
776	err = restore_general_regs(regs, tm_sr);
777	err |= restore_general_regs(&current->thread.ckpt_regs, sr);
778
779	err |= __get_user(current->thread.tm_tfhar, &sr->mc_gregs[PT_NIP]);
780
781	err |= __get_user(msr, &sr->mc_gregs[PT_MSR]);
782	if (err)
783		return 1;
784
785	/* Restore the previous little-endian mode */
786	regs->msr = (regs->msr & ~MSR_LE) | (msr & MSR_LE);
787
788	/*
789	 * Do this before updating the thread state in
790	 * current->thread.fpr/vr/evr.  That way, if we get preempted
791	 * and another task grabs the FPU/Altivec/SPE, it won't be
792	 * tempted to save the current CPU state into the thread_struct
793	 * and corrupt what we are writing there.
794	 */
795	discard_lazy_cpu_state();
796
797#ifdef CONFIG_ALTIVEC
798	regs->msr &= ~MSR_VEC;
799	if (msr & MSR_VEC) {
800		/* restore altivec registers from the stack */
801		if (__copy_from_user(current->thread.vr, &sr->mc_vregs,
802				     sizeof(sr->mc_vregs)) ||
803		    __copy_from_user(current->thread.transact_vr,
804				     &tm_sr->mc_vregs,
805				     sizeof(sr->mc_vregs)))
806			return 1;
807	} else if (current->thread.used_vr) {
808		memset(current->thread.vr, 0, ELF_NVRREG * sizeof(vector128));
809		memset(current->thread.transact_vr, 0,
810		       ELF_NVRREG * sizeof(vector128));
811	}
812
813	/* Always get VRSAVE back */
814	if (__get_user(current->thread.vrsave,
815		       (u32 __user *)&sr->mc_vregs[32]) ||
816	    __get_user(current->thread.transact_vrsave,
817		       (u32 __user *)&tm_sr->mc_vregs[32]))
818		return 1;
819	if (cpu_has_feature(CPU_FTR_ALTIVEC))
820		mtspr(SPRN_VRSAVE, current->thread.vrsave);
821#endif /* CONFIG_ALTIVEC */
822
823	regs->msr &= ~(MSR_FP | MSR_FE0 | MSR_FE1);
824
825	if (copy_fpr_from_user(current, &sr->mc_fregs) ||
826	    copy_transact_fpr_from_user(current, &tm_sr->mc_fregs))
827		return 1;
828
829#ifdef CONFIG_VSX
830	regs->msr &= ~MSR_VSX;
831	if (msr & MSR_VSX) {
832		/*
833		 * Restore altivec registers from the stack to a local
834		 * buffer, then write this out to the thread_struct
835		 */
836		if (copy_vsx_from_user(current, &sr->mc_vsregs) ||
837		    copy_transact_vsx_from_user(current, &tm_sr->mc_vsregs))
838			return 1;
839	} else if (current->thread.used_vsr)
840		for (i = 0; i < 32 ; i++) {
841			current->thread.fpr[i][TS_VSRLOWOFFSET] = 0;
842			current->thread.transact_fpr[i][TS_VSRLOWOFFSET] = 0;
843		}
844#endif /* CONFIG_VSX */
845
846#ifdef CONFIG_SPE
847	/* SPE regs are not checkpointed with TM, so this section is
848	 * simply the same as in restore_user_regs().
849	 */
850	regs->msr &= ~MSR_SPE;
851	if (msr & MSR_SPE) {
852		if (__copy_from_user(current->thread.evr, &sr->mc_vregs,
853				     ELF_NEVRREG * sizeof(u32)))
854			return 1;
855	} else if (current->thread.used_spe)
856		memset(current->thread.evr, 0, ELF_NEVRREG * sizeof(u32));
857
858	/* Always get SPEFSCR back */
859	if (__get_user(current->thread.spefscr, (u32 __user *)&sr->mc_vregs
860		       + ELF_NEVRREG))
861		return 1;
862#endif /* CONFIG_SPE */
863
864	/* Now, recheckpoint.  This loads up all of the checkpointed (older)
865	 * registers, including FP and V[S]Rs.  After recheckpointing, the
866	 * transactional versions should be loaded.
867	 */
868	tm_enable();
869	/* This loads the checkpointed FP/VEC state, if used */
870	tm_recheckpoint(&current->thread, msr);
871	/* Get the top half of the MSR */
872	if (__get_user(msr_hi, &tm_sr->mc_gregs[PT_MSR]))
873		return 1;
874	/* Pull in MSR TM from user context */
875	regs->msr = (regs->msr & ~MSR_TS_MASK) | ((msr_hi<<32) & MSR_TS_MASK);
876
877	/* This loads the speculative FP/VEC state, if used */
878	if (msr & MSR_FP) {
879		do_load_up_transact_fpu(&current->thread);
880		regs->msr |= (MSR_FP | current->thread.fpexc_mode);
881	}
882#ifdef CONFIG_ALTIVEC
883	if (msr & MSR_VEC) {
884		do_load_up_transact_altivec(&current->thread);
885		regs->msr |= MSR_VEC;
886	}
887#endif
888
889	return 0;
890}
891#endif
892
893#ifdef CONFIG_PPC64
894int copy_siginfo_to_user32(struct compat_siginfo __user *d, siginfo_t *s)
895{
896	int err;
897
898	if (!access_ok (VERIFY_WRITE, d, sizeof(*d)))
899		return -EFAULT;
900
901	/* If you change siginfo_t structure, please be sure
902	 * this code is fixed accordingly.
903	 * It should never copy any pad contained in the structure
904	 * to avoid security leaks, but must copy the generic
905	 * 3 ints plus the relevant union member.
906	 * This routine must convert siginfo from 64bit to 32bit as well
907	 * at the same time.
908	 */
909	err = __put_user(s->si_signo, &d->si_signo);
910	err |= __put_user(s->si_errno, &d->si_errno);
911	err |= __put_user((short)s->si_code, &d->si_code);
912	if (s->si_code < 0)
913		err |= __copy_to_user(&d->_sifields._pad, &s->_sifields._pad,
914				      SI_PAD_SIZE32);
915	else switch(s->si_code >> 16) {
916	case __SI_CHLD >> 16:
917		err |= __put_user(s->si_pid, &d->si_pid);
918		err |= __put_user(s->si_uid, &d->si_uid);
919		err |= __put_user(s->si_utime, &d->si_utime);
920		err |= __put_user(s->si_stime, &d->si_stime);
921		err |= __put_user(s->si_status, &d->si_status);
922		break;
923	case __SI_FAULT >> 16:
924		err |= __put_user((unsigned int)(unsigned long)s->si_addr,
925				  &d->si_addr);
926		break;
927	case __SI_POLL >> 16:
928		err |= __put_user(s->si_band, &d->si_band);
929		err |= __put_user(s->si_fd, &d->si_fd);
930		break;
931	case __SI_TIMER >> 16:
932		err |= __put_user(s->si_tid, &d->si_tid);
933		err |= __put_user(s->si_overrun, &d->si_overrun);
934		err |= __put_user(s->si_int, &d->si_int);
935		break;
936	case __SI_RT >> 16: /* This is not generated by the kernel as of now.  */
937	case __SI_MESGQ >> 16:
938		err |= __put_user(s->si_int, &d->si_int);
939		/* fallthrough */
940	case __SI_KILL >> 16:
941	default:
942		err |= __put_user(s->si_pid, &d->si_pid);
943		err |= __put_user(s->si_uid, &d->si_uid);
944		break;
945	}
946	return err;
947}
948
949#define copy_siginfo_to_user	copy_siginfo_to_user32
950
951int copy_siginfo_from_user32(siginfo_t *to, struct compat_siginfo __user *from)
952{
953	memset(to, 0, sizeof *to);
954
955	if (copy_from_user(to, from, 3*sizeof(int)) ||
956	    copy_from_user(to->_sifields._pad,
957			   from->_sifields._pad, SI_PAD_SIZE32))
958		return -EFAULT;
959
960	return 0;
961}
962#endif /* CONFIG_PPC64 */
963
964/*
965 * Set up a signal frame for a "real-time" signal handler
966 * (one which gets siginfo).
967 */
968int handle_rt_signal32(unsigned long sig, struct k_sigaction *ka,
969		siginfo_t *info, sigset_t *oldset,
970		struct pt_regs *regs)
971{
972	struct rt_sigframe __user *rt_sf;
973	struct mcontext __user *frame;
974	struct mcontext __user *tm_frame = NULL;
975	void __user *addr;
976	unsigned long newsp = 0;
977	int sigret;
978	unsigned long tramp;
979
980	/* Set up Signal Frame */
981	/* Put a Real Time Context onto stack */
982	rt_sf = get_sigframe(ka, get_tm_stackpointer(regs), sizeof(*rt_sf), 1);
983	addr = rt_sf;
984	if (unlikely(rt_sf == NULL))
985		goto badframe;
986
987	/* Put the siginfo & fill in most of the ucontext */
988	if (copy_siginfo_to_user(&rt_sf->info, info)
989	    || __put_user(0, &rt_sf->uc.uc_flags)
990	    || __save_altstack(&rt_sf->uc.uc_stack, regs->gpr[1])
991	    || __put_user(to_user_ptr(&rt_sf->uc.uc_mcontext),
992		    &rt_sf->uc.uc_regs)
993	    || put_sigset_t(&rt_sf->uc.uc_sigmask, oldset))
994		goto badframe;
995
996	/* Save user registers on the stack */
997	frame = &rt_sf->uc.uc_mcontext;
998	addr = frame;
999	if (vdso32_rt_sigtramp && current->mm->context.vdso_base) {
1000		sigret = 0;
1001		tramp = current->mm->context.vdso_base + vdso32_rt_sigtramp;
1002	} else {
1003		sigret = __NR_rt_sigreturn;
1004		tramp = (unsigned long) frame->tramp;
1005	}
1006
1007#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1008	tm_frame = &rt_sf->uc_transact.uc_mcontext;
1009	if (MSR_TM_ACTIVE(regs->msr)) {
1010		if (save_tm_user_regs(regs, frame, tm_frame, sigret))
1011			goto badframe;
1012	}
1013	else
1014#endif
1015	{
1016		if (save_user_regs(regs, frame, tm_frame, sigret, 1))
1017			goto badframe;
1018	}
1019	regs->link = tramp;
1020
1021#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1022	if (MSR_TM_ACTIVE(regs->msr)) {
1023		if (__put_user((unsigned long)&rt_sf->uc_transact,
1024			       &rt_sf->uc.uc_link)
1025		    || __put_user((unsigned long)tm_frame, &rt_sf->uc_transact.uc_regs))
1026			goto badframe;
1027	}
1028	else
1029#endif
1030		if (__put_user(0, &rt_sf->uc.uc_link))
1031			goto badframe;
1032
1033	current->thread.fpscr.val = 0;	/* turn off all fp exceptions */
1034
1035	/* create a stack frame for the caller of the handler */
1036	newsp = ((unsigned long)rt_sf) - (__SIGNAL_FRAMESIZE + 16);
1037	addr = (void __user *)regs->gpr[1];
1038	if (put_user(regs->gpr[1], (u32 __user *)newsp))
1039		goto badframe;
1040
1041	/* Fill registers for signal handler */
1042	regs->gpr[1] = newsp;
1043	regs->gpr[3] = sig;
1044	regs->gpr[4] = (unsigned long) &rt_sf->info;
1045	regs->gpr[5] = (unsigned long) &rt_sf->uc;
1046	regs->gpr[6] = (unsigned long) rt_sf;
1047	regs->nip = (unsigned long) ka->sa.sa_handler;
1048	/* enter the signal handler in native-endian mode */
1049	regs->msr &= ~MSR_LE;
1050	regs->msr |= (MSR_KERNEL & MSR_LE);
1051#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1052	/* Remove TM bits from thread's MSR.  The MSR in the sigcontext
1053	 * just indicates to userland that we were doing a transaction, but we
1054	 * don't want to return in transactional state:
1055	 */
1056	regs->msr &= ~MSR_TS_MASK;
1057#endif
1058	return 1;
1059
1060badframe:
1061#ifdef DEBUG_SIG
1062	printk("badframe in handle_rt_signal, regs=%p frame=%p newsp=%lx\n",
1063	       regs, frame, newsp);
1064#endif
1065	if (show_unhandled_signals)
1066		printk_ratelimited(KERN_INFO
1067				   "%s[%d]: bad frame in handle_rt_signal32: "
1068				   "%p nip %08lx lr %08lx\n",
1069				   current->comm, current->pid,
1070				   addr, regs->nip, regs->link);
1071
1072	force_sigsegv(sig, current);
1073	return 0;
1074}
1075
1076static int do_setcontext(struct ucontext __user *ucp, struct pt_regs *regs, int sig)
1077{
1078	sigset_t set;
1079	struct mcontext __user *mcp;
1080
1081	if (get_sigset_t(&set, &ucp->uc_sigmask))
1082		return -EFAULT;
1083#ifdef CONFIG_PPC64
1084	{
1085		u32 cmcp;
1086
1087		if (__get_user(cmcp, &ucp->uc_regs))
1088			return -EFAULT;
1089		mcp = (struct mcontext __user *)(u64)cmcp;
1090		/* no need to check access_ok(mcp), since mcp < 4GB */
1091	}
1092#else
1093	if (__get_user(mcp, &ucp->uc_regs))
1094		return -EFAULT;
1095	if (!access_ok(VERIFY_READ, mcp, sizeof(*mcp)))
1096		return -EFAULT;
1097#endif
1098	set_current_blocked(&set);
1099	if (restore_user_regs(regs, mcp, sig))
1100		return -EFAULT;
1101
1102	return 0;
1103}
1104
1105#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1106static int do_setcontext_tm(struct ucontext __user *ucp,
1107			    struct ucontext __user *tm_ucp,
1108			    struct pt_regs *regs)
1109{
1110	sigset_t set;
1111	struct mcontext __user *mcp;
1112	struct mcontext __user *tm_mcp;
1113	u32 cmcp;
1114	u32 tm_cmcp;
1115
1116	if (get_sigset_t(&set, &ucp->uc_sigmask))
1117		return -EFAULT;
1118
1119	if (__get_user(cmcp, &ucp->uc_regs) ||
1120	    __get_user(tm_cmcp, &tm_ucp->uc_regs))
1121		return -EFAULT;
1122	mcp = (struct mcontext __user *)(u64)cmcp;
1123	tm_mcp = (struct mcontext __user *)(u64)tm_cmcp;
1124	/* no need to check access_ok(mcp), since mcp < 4GB */
1125
1126	set_current_blocked(&set);
1127	if (restore_tm_user_regs(regs, mcp, tm_mcp))
1128		return -EFAULT;
1129
1130	return 0;
1131}
1132#endif
1133
1134long sys_swapcontext(struct ucontext __user *old_ctx,
1135		     struct ucontext __user *new_ctx,
1136		     int ctx_size, int r6, int r7, int r8, struct pt_regs *regs)
1137{
1138	unsigned char tmp;
1139	int ctx_has_vsx_region = 0;
1140
1141#ifdef CONFIG_PPC64
1142	unsigned long new_msr = 0;
1143
1144	if (new_ctx) {
1145		struct mcontext __user *mcp;
1146		u32 cmcp;
1147
1148		/*
1149		 * Get pointer to the real mcontext.  No need for
1150		 * access_ok since we are dealing with compat
1151		 * pointers.
1152		 */
1153		if (__get_user(cmcp, &new_ctx->uc_regs))
1154			return -EFAULT;
1155		mcp = (struct mcontext __user *)(u64)cmcp;
1156		if (__get_user(new_msr, &mcp->mc_gregs[PT_MSR]))
1157			return -EFAULT;
1158	}
1159	/*
1160	 * Check that the context is not smaller than the original
1161	 * size (with VMX but without VSX)
1162	 */
1163	if (ctx_size < UCONTEXTSIZEWITHOUTVSX)
1164		return -EINVAL;
1165	/*
1166	 * If the new context state sets the MSR VSX bits but
1167	 * it doesn't provide VSX state.
1168	 */
1169	if ((ctx_size < sizeof(struct ucontext)) &&
1170	    (new_msr & MSR_VSX))
1171		return -EINVAL;
1172	/* Does the context have enough room to store VSX data? */
1173	if (ctx_size >= sizeof(struct ucontext))
1174		ctx_has_vsx_region = 1;
1175#else
1176	/* Context size is for future use. Right now, we only make sure
1177	 * we are passed something we understand
1178	 */
1179	if (ctx_size < sizeof(struct ucontext))
1180		return -EINVAL;
1181#endif
1182	if (old_ctx != NULL) {
1183		struct mcontext __user *mctx;
1184
1185		/*
1186		 * old_ctx might not be 16-byte aligned, in which
1187		 * case old_ctx->uc_mcontext won't be either.
1188		 * Because we have the old_ctx->uc_pad2 field
1189		 * before old_ctx->uc_mcontext, we need to round down
1190		 * from &old_ctx->uc_mcontext to a 16-byte boundary.
1191		 */
1192		mctx = (struct mcontext __user *)
1193			((unsigned long) &old_ctx->uc_mcontext & ~0xfUL);
1194		if (!access_ok(VERIFY_WRITE, old_ctx, ctx_size)
1195		    || save_user_regs(regs, mctx, NULL, 0, ctx_has_vsx_region)
1196		    || put_sigset_t(&old_ctx->uc_sigmask, &current->blocked)
1197		    || __put_user(to_user_ptr(mctx), &old_ctx->uc_regs))
1198			return -EFAULT;
1199	}
1200	if (new_ctx == NULL)
1201		return 0;
1202	if (!access_ok(VERIFY_READ, new_ctx, ctx_size)
1203	    || __get_user(tmp, (u8 __user *) new_ctx)
1204	    || __get_user(tmp, (u8 __user *) new_ctx + ctx_size - 1))
1205		return -EFAULT;
1206
1207	/*
1208	 * If we get a fault copying the context into the kernel's
1209	 * image of the user's registers, we can't just return -EFAULT
1210	 * because the user's registers will be corrupted.  For instance
1211	 * the NIP value may have been updated but not some of the
1212	 * other registers.  Given that we have done the access_ok
1213	 * and successfully read the first and last bytes of the region
1214	 * above, this should only happen in an out-of-memory situation
1215	 * or if another thread unmaps the region containing the context.
1216	 * We kill the task with a SIGSEGV in this situation.
1217	 */
1218	if (do_setcontext(new_ctx, regs, 0))
1219		do_exit(SIGSEGV);
1220
1221	set_thread_flag(TIF_RESTOREALL);
1222	return 0;
1223}
1224
1225long sys_rt_sigreturn(int r3, int r4, int r5, int r6, int r7, int r8,
1226		     struct pt_regs *regs)
1227{
1228	struct rt_sigframe __user *rt_sf;
1229#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1230	struct ucontext __user *uc_transact;
1231	unsigned long msr_hi;
1232	unsigned long tmp;
1233	int tm_restore = 0;
1234#endif
1235	/* Always make any pending restarted system calls return -EINTR */
1236	current_thread_info()->restart_block.fn = do_no_restart_syscall;
1237
1238	rt_sf = (struct rt_sigframe __user *)
1239		(regs->gpr[1] + __SIGNAL_FRAMESIZE + 16);
1240	if (!access_ok(VERIFY_READ, rt_sf, sizeof(*rt_sf)))
1241		goto bad;
1242#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1243	if (__get_user(tmp, &rt_sf->uc.uc_link))
1244		goto bad;
1245	uc_transact = (struct ucontext __user *)(uintptr_t)tmp;
1246	if (uc_transact) {
1247		u32 cmcp;
1248		struct mcontext __user *mcp;
1249
1250		if (__get_user(cmcp, &uc_transact->uc_regs))
1251			return -EFAULT;
1252		mcp = (struct mcontext __user *)(u64)cmcp;
1253		/* The top 32 bits of the MSR are stashed in the transactional
1254		 * ucontext. */
1255		if (__get_user(msr_hi, &mcp->mc_gregs[PT_MSR]))
1256			goto bad;
1257
1258		if (MSR_TM_ACTIVE(msr_hi<<32)) {
1259			/* We only recheckpoint on return if we're
1260			 * transaction.
1261			 */
1262			tm_restore = 1;
1263			if (do_setcontext_tm(&rt_sf->uc, uc_transact, regs))
1264				goto bad;
1265		}
1266	}
1267	if (!tm_restore)
1268		/* Fall through, for non-TM restore */
1269#endif
1270	if (do_setcontext(&rt_sf->uc, regs, 1))
1271		goto bad;
1272
1273	/*
1274	 * It's not clear whether or why it is desirable to save the
1275	 * sigaltstack setting on signal delivery and restore it on
1276	 * signal return.  But other architectures do this and we have
1277	 * always done it up until now so it is probably better not to
1278	 * change it.  -- paulus
1279	 */
1280#ifdef CONFIG_PPC64
1281	if (compat_restore_altstack(&rt_sf->uc.uc_stack))
1282		goto bad;
1283#else
1284	if (restore_altstack(&rt_sf->uc.uc_stack))
1285		goto bad;
1286#endif
1287	set_thread_flag(TIF_RESTOREALL);
1288	return 0;
1289
1290 bad:
1291	if (show_unhandled_signals)
1292		printk_ratelimited(KERN_INFO
1293				   "%s[%d]: bad frame in sys_rt_sigreturn: "
1294				   "%p nip %08lx lr %08lx\n",
1295				   current->comm, current->pid,
1296				   rt_sf, regs->nip, regs->link);
1297
1298	force_sig(SIGSEGV, current);
1299	return 0;
1300}
1301
1302#ifdef CONFIG_PPC32
1303int sys_debug_setcontext(struct ucontext __user *ctx,
1304			 int ndbg, struct sig_dbg_op __user *dbg,
1305			 int r6, int r7, int r8,
1306			 struct pt_regs *regs)
1307{
1308	struct sig_dbg_op op;
1309	int i;
1310	unsigned char tmp;
1311	unsigned long new_msr = regs->msr;
1312#ifdef CONFIG_PPC_ADV_DEBUG_REGS
1313	unsigned long new_dbcr0 = current->thread.dbcr0;
1314#endif
1315
1316	for (i=0; i<ndbg; i++) {
1317		if (copy_from_user(&op, dbg + i, sizeof(op)))
1318			return -EFAULT;
1319		switch (op.dbg_type) {
1320		case SIG_DBG_SINGLE_STEPPING:
1321#ifdef CONFIG_PPC_ADV_DEBUG_REGS
1322			if (op.dbg_value) {
1323				new_msr |= MSR_DE;
1324				new_dbcr0 |= (DBCR0_IDM | DBCR0_IC);
1325			} else {
1326				new_dbcr0 &= ~DBCR0_IC;
1327				if (!DBCR_ACTIVE_EVENTS(new_dbcr0,
1328						current->thread.dbcr1)) {
1329					new_msr &= ~MSR_DE;
1330					new_dbcr0 &= ~DBCR0_IDM;
1331				}
1332			}
1333#else
1334			if (op.dbg_value)
1335				new_msr |= MSR_SE;
1336			else
1337				new_msr &= ~MSR_SE;
1338#endif
1339			break;
1340		case SIG_DBG_BRANCH_TRACING:
1341#ifdef CONFIG_PPC_ADV_DEBUG_REGS
1342			return -EINVAL;
1343#else
1344			if (op.dbg_value)
1345				new_msr |= MSR_BE;
1346			else
1347				new_msr &= ~MSR_BE;
1348#endif
1349			break;
1350
1351		default:
1352			return -EINVAL;
1353		}
1354	}
1355
1356	/* We wait until here to actually install the values in the
1357	   registers so if we fail in the above loop, it will not
1358	   affect the contents of these registers.  After this point,
1359	   failure is a problem, anyway, and it's very unlikely unless
1360	   the user is really doing something wrong. */
1361	regs->msr = new_msr;
1362#ifdef CONFIG_PPC_ADV_DEBUG_REGS
1363	current->thread.dbcr0 = new_dbcr0;
1364#endif
1365
1366	if (!access_ok(VERIFY_READ, ctx, sizeof(*ctx))
1367	    || __get_user(tmp, (u8 __user *) ctx)
1368	    || __get_user(tmp, (u8 __user *) (ctx + 1) - 1))
1369		return -EFAULT;
1370
1371	/*
1372	 * If we get a fault copying the context into the kernel's
1373	 * image of the user's registers, we can't just return -EFAULT
1374	 * because the user's registers will be corrupted.  For instance
1375	 * the NIP value may have been updated but not some of the
1376	 * other registers.  Given that we have done the access_ok
1377	 * and successfully read the first and last bytes of the region
1378	 * above, this should only happen in an out-of-memory situation
1379	 * or if another thread unmaps the region containing the context.
1380	 * We kill the task with a SIGSEGV in this situation.
1381	 */
1382	if (do_setcontext(ctx, regs, 1)) {
1383		if (show_unhandled_signals)
1384			printk_ratelimited(KERN_INFO "%s[%d]: bad frame in "
1385					   "sys_debug_setcontext: %p nip %08lx "
1386					   "lr %08lx\n",
1387					   current->comm, current->pid,
1388					   ctx, regs->nip, regs->link);
1389
1390		force_sig(SIGSEGV, current);
1391		goto out;
1392	}
1393
1394	/*
1395	 * It's not clear whether or why it is desirable to save the
1396	 * sigaltstack setting on signal delivery and restore it on
1397	 * signal return.  But other architectures do this and we have
1398	 * always done it up until now so it is probably better not to
1399	 * change it.  -- paulus
1400	 */
1401	restore_altstack(&ctx->uc_stack);
1402
1403	set_thread_flag(TIF_RESTOREALL);
1404 out:
1405	return 0;
1406}
1407#endif
1408
1409/*
1410 * OK, we're invoking a handler
1411 */
1412int handle_signal32(unsigned long sig, struct k_sigaction *ka,
1413		    siginfo_t *info, sigset_t *oldset, struct pt_regs *regs)
1414{
1415	struct sigcontext __user *sc;
1416	struct sigframe __user *frame;
1417	struct mcontext __user *tm_mctx = NULL;
1418	unsigned long newsp = 0;
1419	int sigret;
1420	unsigned long tramp;
1421
1422	/* Set up Signal Frame */
1423	frame = get_sigframe(ka, get_tm_stackpointer(regs), sizeof(*frame), 1);
1424	if (unlikely(frame == NULL))
1425		goto badframe;
1426	sc = (struct sigcontext __user *) &frame->sctx;
1427
1428#if _NSIG != 64
1429#error "Please adjust handle_signal()"
1430#endif
1431	if (__put_user(to_user_ptr(ka->sa.sa_handler), &sc->handler)
1432	    || __put_user(oldset->sig[0], &sc->oldmask)
1433#ifdef CONFIG_PPC64
1434	    || __put_user((oldset->sig[0] >> 32), &sc->_unused[3])
1435#else
1436	    || __put_user(oldset->sig[1], &sc->_unused[3])
1437#endif
1438	    || __put_user(to_user_ptr(&frame->mctx), &sc->regs)
1439	    || __put_user(sig, &sc->signal))
1440		goto badframe;
1441
1442	if (vdso32_sigtramp && current->mm->context.vdso_base) {
1443		sigret = 0;
1444		tramp = current->mm->context.vdso_base + vdso32_sigtramp;
1445	} else {
1446		sigret = __NR_sigreturn;
1447		tramp = (unsigned long) frame->mctx.tramp;
1448	}
1449
1450#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1451	tm_mctx = &frame->mctx_transact;
1452	if (MSR_TM_ACTIVE(regs->msr)) {
1453		if (save_tm_user_regs(regs, &frame->mctx, &frame->mctx_transact,
1454				      sigret))
1455			goto badframe;
1456	}
1457	else
1458#endif
1459	{
1460		if (save_user_regs(regs, &frame->mctx, tm_mctx, sigret, 1))
1461			goto badframe;
1462	}
1463
1464	regs->link = tramp;
1465
1466	current->thread.fpscr.val = 0;	/* turn off all fp exceptions */
1467
1468	/* create a stack frame for the caller of the handler */
1469	newsp = ((unsigned long)frame) - __SIGNAL_FRAMESIZE;
1470	if (put_user(regs->gpr[1], (u32 __user *)newsp))
1471		goto badframe;
1472
1473	regs->gpr[1] = newsp;
1474	regs->gpr[3] = sig;
1475	regs->gpr[4] = (unsigned long) sc;
1476	regs->nip = (unsigned long) ka->sa.sa_handler;
1477	/* enter the signal handler in big-endian mode */
1478	regs->msr &= ~MSR_LE;
1479#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1480	/* Remove TM bits from thread's MSR.  The MSR in the sigcontext
1481	 * just indicates to userland that we were doing a transaction, but we
1482	 * don't want to return in transactional state:
1483	 */
1484	regs->msr &= ~MSR_TS_MASK;
1485#endif
1486	return 1;
1487
1488badframe:
1489#ifdef DEBUG_SIG
1490	printk("badframe in handle_signal, regs=%p frame=%p newsp=%lx\n",
1491	       regs, frame, newsp);
1492#endif
1493	if (show_unhandled_signals)
1494		printk_ratelimited(KERN_INFO
1495				   "%s[%d]: bad frame in handle_signal32: "
1496				   "%p nip %08lx lr %08lx\n",
1497				   current->comm, current->pid,
1498				   frame, regs->nip, regs->link);
1499
1500	force_sigsegv(sig, current);
1501	return 0;
1502}
1503
1504/*
1505 * Do a signal return; undo the signal stack.
1506 */
1507long sys_sigreturn(int r3, int r4, int r5, int r6, int r7, int r8,
1508		       struct pt_regs *regs)
1509{
1510	struct sigframe __user *sf;
1511	struct sigcontext __user *sc;
1512	struct sigcontext sigctx;
1513	struct mcontext __user *sr;
1514	void __user *addr;
1515	sigset_t set;
1516#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1517	struct mcontext __user *mcp, *tm_mcp;
1518	unsigned long msr_hi;
1519#endif
1520
1521	/* Always make any pending restarted system calls return -EINTR */
1522	current_thread_info()->restart_block.fn = do_no_restart_syscall;
1523
1524	sf = (struct sigframe __user *)(regs->gpr[1] + __SIGNAL_FRAMESIZE);
1525	sc = &sf->sctx;
1526	addr = sc;
1527	if (copy_from_user(&sigctx, sc, sizeof(sigctx)))
1528		goto badframe;
1529
1530#ifdef CONFIG_PPC64
1531	/*
1532	 * Note that PPC32 puts the upper 32 bits of the sigmask in the
1533	 * unused part of the signal stackframe
1534	 */
1535	set.sig[0] = sigctx.oldmask + ((long)(sigctx._unused[3]) << 32);
1536#else
1537	set.sig[0] = sigctx.oldmask;
1538	set.sig[1] = sigctx._unused[3];
1539#endif
1540	set_current_blocked(&set);
1541
1542#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1543	mcp = (struct mcontext __user *)&sf->mctx;
1544	tm_mcp = (struct mcontext __user *)&sf->mctx_transact;
1545	if (__get_user(msr_hi, &tm_mcp->mc_gregs[PT_MSR]))
1546		goto badframe;
1547	if (MSR_TM_ACTIVE(msr_hi<<32)) {
1548		if (!cpu_has_feature(CPU_FTR_TM))
1549			goto badframe;
1550		if (restore_tm_user_regs(regs, mcp, tm_mcp))
1551			goto badframe;
1552	} else
1553#endif
1554	{
1555		sr = (struct mcontext __user *)from_user_ptr(sigctx.regs);
1556		addr = sr;
1557		if (!access_ok(VERIFY_READ, sr, sizeof(*sr))
1558		    || restore_user_regs(regs, sr, 1))
1559			goto badframe;
1560	}
1561
1562	set_thread_flag(TIF_RESTOREALL);
1563	return 0;
1564
1565badframe:
1566	if (show_unhandled_signals)
1567		printk_ratelimited(KERN_INFO
1568				   "%s[%d]: bad frame in sys_sigreturn: "
1569				   "%p nip %08lx lr %08lx\n",
1570				   current->comm, current->pid,
1571				   addr, regs->nip, regs->link);
1572
1573	force_sig(SIGSEGV, current);
1574	return 0;
1575}
1576