signal_32.c revision fee55450710dff32a13ae30b4129ec7b5a4b44d0
1/*
2 * Signal handling for 32bit PPC and 32bit tasks on 64bit PPC
3 *
4 *  PowerPC version
5 *    Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
6 * Copyright (C) 2001 IBM
7 * Copyright (C) 1997,1998 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
8 * Copyright (C) 1997 David S. Miller (davem@caip.rutgers.edu)
9 *
10 *  Derived from "arch/i386/kernel/signal.c"
11 *    Copyright (C) 1991, 1992 Linus Torvalds
12 *    1997-11-28  Modified for POSIX.1b signals by Richard Henderson
13 *
14 *  This program is free software; you can redistribute it and/or
15 *  modify it under the terms of the GNU General Public License
16 *  as published by the Free Software Foundation; either version
17 *  2 of the License, or (at your option) any later version.
18 */
19
20#include <linux/sched.h>
21#include <linux/mm.h>
22#include <linux/smp.h>
23#include <linux/kernel.h>
24#include <linux/signal.h>
25#include <linux/errno.h>
26#include <linux/elf.h>
27#include <linux/ptrace.h>
28#include <linux/ratelimit.h>
29#ifdef CONFIG_PPC64
30#include <linux/syscalls.h>
31#include <linux/compat.h>
32#else
33#include <linux/wait.h>
34#include <linux/unistd.h>
35#include <linux/stddef.h>
36#include <linux/tty.h>
37#include <linux/binfmts.h>
38#endif
39
40#include <asm/uaccess.h>
41#include <asm/cacheflush.h>
42#include <asm/syscalls.h>
43#include <asm/sigcontext.h>
44#include <asm/vdso.h>
45#include <asm/switch_to.h>
46#include <asm/tm.h>
47#ifdef CONFIG_PPC64
48#include "ppc32.h"
49#include <asm/unistd.h>
50#else
51#include <asm/ucontext.h>
52#include <asm/pgtable.h>
53#endif
54
55#include "signal.h"
56
57#undef DEBUG_SIG
58
59#ifdef CONFIG_PPC64
60#define sys_rt_sigreturn	compat_sys_rt_sigreturn
61#define sys_swapcontext	compat_sys_swapcontext
62#define sys_sigreturn	compat_sys_sigreturn
63
64#define old_sigaction	old_sigaction32
65#define sigcontext	sigcontext32
66#define mcontext	mcontext32
67#define ucontext	ucontext32
68
69#define __save_altstack __compat_save_altstack
70
71/*
72 * Userspace code may pass a ucontext which doesn't include VSX added
73 * at the end.  We need to check for this case.
74 */
75#define UCONTEXTSIZEWITHOUTVSX \
76		(sizeof(struct ucontext) - sizeof(elf_vsrreghalf_t32))
77
78/*
79 * Returning 0 means we return to userspace via
80 * ret_from_except and thus restore all user
81 * registers from *regs.  This is what we need
82 * to do when a signal has been delivered.
83 */
84
85#define GP_REGS_SIZE	min(sizeof(elf_gregset_t32), sizeof(struct pt_regs32))
86#undef __SIGNAL_FRAMESIZE
87#define __SIGNAL_FRAMESIZE	__SIGNAL_FRAMESIZE32
88#undef ELF_NVRREG
89#define ELF_NVRREG	ELF_NVRREG32
90
91/*
92 * Functions for flipping sigsets (thanks to brain dead generic
93 * implementation that makes things simple for little endian only)
94 */
95static inline int put_sigset_t(compat_sigset_t __user *uset, sigset_t *set)
96{
97	compat_sigset_t	cset;
98
99	switch (_NSIG_WORDS) {
100	case 4: cset.sig[6] = set->sig[3] & 0xffffffffull;
101		cset.sig[7] = set->sig[3] >> 32;
102	case 3: cset.sig[4] = set->sig[2] & 0xffffffffull;
103		cset.sig[5] = set->sig[2] >> 32;
104	case 2: cset.sig[2] = set->sig[1] & 0xffffffffull;
105		cset.sig[3] = set->sig[1] >> 32;
106	case 1: cset.sig[0] = set->sig[0] & 0xffffffffull;
107		cset.sig[1] = set->sig[0] >> 32;
108	}
109	return copy_to_user(uset, &cset, sizeof(*uset));
110}
111
112static inline int get_sigset_t(sigset_t *set,
113			       const compat_sigset_t __user *uset)
114{
115	compat_sigset_t s32;
116
117	if (copy_from_user(&s32, uset, sizeof(*uset)))
118		return -EFAULT;
119
120	/*
121	 * Swap the 2 words of the 64-bit sigset_t (they are stored
122	 * in the "wrong" endian in 32-bit user storage).
123	 */
124	switch (_NSIG_WORDS) {
125	case 4: set->sig[3] = s32.sig[6] | (((long)s32.sig[7]) << 32);
126	case 3: set->sig[2] = s32.sig[4] | (((long)s32.sig[5]) << 32);
127	case 2: set->sig[1] = s32.sig[2] | (((long)s32.sig[3]) << 32);
128	case 1: set->sig[0] = s32.sig[0] | (((long)s32.sig[1]) << 32);
129	}
130	return 0;
131}
132
133#define to_user_ptr(p)		ptr_to_compat(p)
134#define from_user_ptr(p)	compat_ptr(p)
135
136static inline int save_general_regs(struct pt_regs *regs,
137		struct mcontext __user *frame)
138{
139	elf_greg_t64 *gregs = (elf_greg_t64 *)regs;
140	int i;
141
142	WARN_ON(!FULL_REGS(regs));
143
144	for (i = 0; i <= PT_RESULT; i ++) {
145		if (i == 14 && !FULL_REGS(regs))
146			i = 32;
147		if (__put_user((unsigned int)gregs[i], &frame->mc_gregs[i]))
148			return -EFAULT;
149	}
150	return 0;
151}
152
153static inline int restore_general_regs(struct pt_regs *regs,
154		struct mcontext __user *sr)
155{
156	elf_greg_t64 *gregs = (elf_greg_t64 *)regs;
157	int i;
158
159	for (i = 0; i <= PT_RESULT; i++) {
160		if ((i == PT_MSR) || (i == PT_SOFTE))
161			continue;
162		if (__get_user(gregs[i], &sr->mc_gregs[i]))
163			return -EFAULT;
164	}
165	return 0;
166}
167
168#else /* CONFIG_PPC64 */
169
170#define GP_REGS_SIZE	min(sizeof(elf_gregset_t), sizeof(struct pt_regs))
171
172static inline int put_sigset_t(sigset_t __user *uset, sigset_t *set)
173{
174	return copy_to_user(uset, set, sizeof(*uset));
175}
176
177static inline int get_sigset_t(sigset_t *set, const sigset_t __user *uset)
178{
179	return copy_from_user(set, uset, sizeof(*uset));
180}
181
182#define to_user_ptr(p)		((unsigned long)(p))
183#define from_user_ptr(p)	((void __user *)(p))
184
185static inline int save_general_regs(struct pt_regs *regs,
186		struct mcontext __user *frame)
187{
188	WARN_ON(!FULL_REGS(regs));
189	return __copy_to_user(&frame->mc_gregs, regs, GP_REGS_SIZE);
190}
191
192static inline int restore_general_regs(struct pt_regs *regs,
193		struct mcontext __user *sr)
194{
195	/* copy up to but not including MSR */
196	if (__copy_from_user(regs, &sr->mc_gregs,
197				PT_MSR * sizeof(elf_greg_t)))
198		return -EFAULT;
199	/* copy from orig_r3 (the word after the MSR) up to the end */
200	if (__copy_from_user(&regs->orig_gpr3, &sr->mc_gregs[PT_ORIG_R3],
201				GP_REGS_SIZE - PT_ORIG_R3 * sizeof(elf_greg_t)))
202		return -EFAULT;
203	return 0;
204}
205#endif
206
207/*
208 * When we have signals to deliver, we set up on the
209 * user stack, going down from the original stack pointer:
210 *	an ABI gap of 56 words
211 *	an mcontext struct
212 *	a sigcontext struct
213 *	a gap of __SIGNAL_FRAMESIZE bytes
214 *
215 * Each of these things must be a multiple of 16 bytes in size. The following
216 * structure represent all of this except the __SIGNAL_FRAMESIZE gap
217 *
218 */
219struct sigframe {
220	struct sigcontext sctx;		/* the sigcontext */
221	struct mcontext	mctx;		/* all the register values */
222#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
223	struct sigcontext sctx_transact;
224	struct mcontext	mctx_transact;
225#endif
226	/*
227	 * Programs using the rs6000/xcoff abi can save up to 19 gp
228	 * regs and 18 fp regs below sp before decrementing it.
229	 */
230	int			abigap[56];
231};
232
233/* We use the mc_pad field for the signal return trampoline. */
234#define tramp	mc_pad
235
236/*
237 *  When we have rt signals to deliver, we set up on the
238 *  user stack, going down from the original stack pointer:
239 *	one rt_sigframe struct (siginfo + ucontext + ABI gap)
240 *	a gap of __SIGNAL_FRAMESIZE+16 bytes
241 *  (the +16 is to get the siginfo and ucontext in the same
242 *  positions as in older kernels).
243 *
244 *  Each of these things must be a multiple of 16 bytes in size.
245 *
246 */
247struct rt_sigframe {
248#ifdef CONFIG_PPC64
249	compat_siginfo_t info;
250#else
251	struct siginfo info;
252#endif
253	struct ucontext	uc;
254#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
255	struct ucontext	uc_transact;
256#endif
257	/*
258	 * Programs using the rs6000/xcoff abi can save up to 19 gp
259	 * regs and 18 fp regs below sp before decrementing it.
260	 */
261	int			abigap[56];
262};
263
264#ifdef CONFIG_VSX
265unsigned long copy_fpr_to_user(void __user *to,
266			       struct task_struct *task)
267{
268	double buf[ELF_NFPREG];
269	int i;
270
271	/* save FPR copy to local buffer then write to the thread_struct */
272	for (i = 0; i < (ELF_NFPREG - 1) ; i++)
273		buf[i] = task->thread.TS_FPR(i);
274	memcpy(&buf[i], &task->thread.fpscr, sizeof(double));
275	return __copy_to_user(to, buf, ELF_NFPREG * sizeof(double));
276}
277
278unsigned long copy_fpr_from_user(struct task_struct *task,
279				 void __user *from)
280{
281	double buf[ELF_NFPREG];
282	int i;
283
284	if (__copy_from_user(buf, from, ELF_NFPREG * sizeof(double)))
285		return 1;
286	for (i = 0; i < (ELF_NFPREG - 1) ; i++)
287		task->thread.TS_FPR(i) = buf[i];
288	memcpy(&task->thread.fpscr, &buf[i], sizeof(double));
289
290	return 0;
291}
292
293unsigned long copy_vsx_to_user(void __user *to,
294			       struct task_struct *task)
295{
296	double buf[ELF_NVSRHALFREG];
297	int i;
298
299	/* save FPR copy to local buffer then write to the thread_struct */
300	for (i = 0; i < ELF_NVSRHALFREG; i++)
301		buf[i] = task->thread.fpr[i][TS_VSRLOWOFFSET];
302	return __copy_to_user(to, buf, ELF_NVSRHALFREG * sizeof(double));
303}
304
305unsigned long copy_vsx_from_user(struct task_struct *task,
306				 void __user *from)
307{
308	double buf[ELF_NVSRHALFREG];
309	int i;
310
311	if (__copy_from_user(buf, from, ELF_NVSRHALFREG * sizeof(double)))
312		return 1;
313	for (i = 0; i < ELF_NVSRHALFREG ; i++)
314		task->thread.fpr[i][TS_VSRLOWOFFSET] = buf[i];
315	return 0;
316}
317
318#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
319unsigned long copy_transact_fpr_to_user(void __user *to,
320				  struct task_struct *task)
321{
322	double buf[ELF_NFPREG];
323	int i;
324
325	/* save FPR copy to local buffer then write to the thread_struct */
326	for (i = 0; i < (ELF_NFPREG - 1) ; i++)
327		buf[i] = task->thread.TS_TRANS_FPR(i);
328	memcpy(&buf[i], &task->thread.transact_fpscr, sizeof(double));
329	return __copy_to_user(to, buf, ELF_NFPREG * sizeof(double));
330}
331
332unsigned long copy_transact_fpr_from_user(struct task_struct *task,
333					  void __user *from)
334{
335	double buf[ELF_NFPREG];
336	int i;
337
338	if (__copy_from_user(buf, from, ELF_NFPREG * sizeof(double)))
339		return 1;
340	for (i = 0; i < (ELF_NFPREG - 1) ; i++)
341		task->thread.TS_TRANS_FPR(i) = buf[i];
342	memcpy(&task->thread.transact_fpscr, &buf[i], sizeof(double));
343
344	return 0;
345}
346
347unsigned long copy_transact_vsx_to_user(void __user *to,
348				  struct task_struct *task)
349{
350	double buf[ELF_NVSRHALFREG];
351	int i;
352
353	/* save FPR copy to local buffer then write to the thread_struct */
354	for (i = 0; i < ELF_NVSRHALFREG; i++)
355		buf[i] = task->thread.transact_fpr[i][TS_VSRLOWOFFSET];
356	return __copy_to_user(to, buf, ELF_NVSRHALFREG * sizeof(double));
357}
358
359unsigned long copy_transact_vsx_from_user(struct task_struct *task,
360					  void __user *from)
361{
362	double buf[ELF_NVSRHALFREG];
363	int i;
364
365	if (__copy_from_user(buf, from, ELF_NVSRHALFREG * sizeof(double)))
366		return 1;
367	for (i = 0; i < ELF_NVSRHALFREG ; i++)
368		task->thread.transact_fpr[i][TS_VSRLOWOFFSET] = buf[i];
369	return 0;
370}
371#endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
372#else
373inline unsigned long copy_fpr_to_user(void __user *to,
374				      struct task_struct *task)
375{
376	return __copy_to_user(to, task->thread.fpr,
377			      ELF_NFPREG * sizeof(double));
378}
379
380inline unsigned long copy_fpr_from_user(struct task_struct *task,
381					void __user *from)
382{
383	return __copy_from_user(task->thread.fpr, from,
384			      ELF_NFPREG * sizeof(double));
385}
386
387#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
388inline unsigned long copy_transact_fpr_to_user(void __user *to,
389					 struct task_struct *task)
390{
391	return __copy_to_user(to, task->thread.transact_fpr,
392			      ELF_NFPREG * sizeof(double));
393}
394
395inline unsigned long copy_transact_fpr_from_user(struct task_struct *task,
396						 void __user *from)
397{
398	return __copy_from_user(task->thread.transact_fpr, from,
399				ELF_NFPREG * sizeof(double));
400}
401#endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
402#endif
403
404/*
405 * Save the current user registers on the user stack.
406 * We only save the altivec/spe registers if the process has used
407 * altivec/spe instructions at some point.
408 */
409static int save_user_regs(struct pt_regs *regs, struct mcontext __user *frame,
410			  struct mcontext __user *tm_frame, int sigret,
411			  int ctx_has_vsx_region)
412{
413	unsigned long msr = regs->msr;
414
415	/* Make sure floating point registers are stored in regs */
416	flush_fp_to_thread(current);
417
418	/* save general registers */
419	if (save_general_regs(regs, frame))
420		return 1;
421
422#ifdef CONFIG_ALTIVEC
423	/* save altivec registers */
424	if (current->thread.used_vr) {
425		flush_altivec_to_thread(current);
426		if (__copy_to_user(&frame->mc_vregs, current->thread.vr,
427				   ELF_NVRREG * sizeof(vector128)))
428			return 1;
429		/* set MSR_VEC in the saved MSR value to indicate that
430		   frame->mc_vregs contains valid data */
431		msr |= MSR_VEC;
432	}
433	/* else assert((regs->msr & MSR_VEC) == 0) */
434
435	/* We always copy to/from vrsave, it's 0 if we don't have or don't
436	 * use altivec. Since VSCR only contains 32 bits saved in the least
437	 * significant bits of a vector, we "cheat" and stuff VRSAVE in the
438	 * most significant bits of that same vector. --BenH
439	 */
440	if (__put_user(current->thread.vrsave, (u32 __user *)&frame->mc_vregs[32]))
441		return 1;
442#endif /* CONFIG_ALTIVEC */
443	if (copy_fpr_to_user(&frame->mc_fregs, current))
444		return 1;
445#ifdef CONFIG_VSX
446	/*
447	 * Copy VSR 0-31 upper half from thread_struct to local
448	 * buffer, then write that to userspace.  Also set MSR_VSX in
449	 * the saved MSR value to indicate that frame->mc_vregs
450	 * contains valid data
451	 */
452	if (current->thread.used_vsr && ctx_has_vsx_region) {
453		__giveup_vsx(current);
454		if (copy_vsx_to_user(&frame->mc_vsregs, current))
455			return 1;
456		msr |= MSR_VSX;
457	}
458#endif /* CONFIG_VSX */
459#ifdef CONFIG_SPE
460	/* save spe registers */
461	if (current->thread.used_spe) {
462		flush_spe_to_thread(current);
463		if (__copy_to_user(&frame->mc_vregs, current->thread.evr,
464				   ELF_NEVRREG * sizeof(u32)))
465			return 1;
466		/* set MSR_SPE in the saved MSR value to indicate that
467		   frame->mc_vregs contains valid data */
468		msr |= MSR_SPE;
469	}
470	/* else assert((regs->msr & MSR_SPE) == 0) */
471
472	/* We always copy to/from spefscr */
473	if (__put_user(current->thread.spefscr, (u32 __user *)&frame->mc_vregs + ELF_NEVRREG))
474		return 1;
475#endif /* CONFIG_SPE */
476
477	if (__put_user(msr, &frame->mc_gregs[PT_MSR]))
478		return 1;
479	/* We need to write 0 the MSR top 32 bits in the tm frame so that we
480	 * can check it on the restore to see if TM is active
481	 */
482	if (tm_frame && __put_user(0, &tm_frame->mc_gregs[PT_MSR]))
483		return 1;
484
485	if (sigret) {
486		/* Set up the sigreturn trampoline: li r0,sigret; sc */
487		if (__put_user(0x38000000UL + sigret, &frame->tramp[0])
488		    || __put_user(0x44000002UL, &frame->tramp[1]))
489			return 1;
490		flush_icache_range((unsigned long) &frame->tramp[0],
491				   (unsigned long) &frame->tramp[2]);
492	}
493
494	return 0;
495}
496
497#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
498/*
499 * Save the current user registers on the user stack.
500 * We only save the altivec/spe registers if the process has used
501 * altivec/spe instructions at some point.
502 * We also save the transactional registers to a second ucontext in the
503 * frame.
504 *
505 * See save_user_regs() and signal_64.c:setup_tm_sigcontexts().
506 */
507static int save_tm_user_regs(struct pt_regs *regs,
508			     struct mcontext __user *frame,
509			     struct mcontext __user *tm_frame, int sigret)
510{
511	unsigned long msr = regs->msr;
512
513	/* Make sure floating point registers are stored in regs */
514	flush_fp_to_thread(current);
515
516	/* Save both sets of general registers */
517	if (save_general_regs(&current->thread.ckpt_regs, frame)
518	    || save_general_regs(regs, tm_frame))
519		return 1;
520
521	/* Stash the top half of the 64bit MSR into the 32bit MSR word
522	 * of the transactional mcontext.  This way we have a backward-compatible
523	 * MSR in the 'normal' (checkpointed) mcontext and additionally one can
524	 * also look at what type of transaction (T or S) was active at the
525	 * time of the signal.
526	 */
527	if (__put_user((msr >> 32), &tm_frame->mc_gregs[PT_MSR]))
528		return 1;
529
530#ifdef CONFIG_ALTIVEC
531	/* save altivec registers */
532	if (current->thread.used_vr) {
533		flush_altivec_to_thread(current);
534		if (__copy_to_user(&frame->mc_vregs, current->thread.vr,
535				   ELF_NVRREG * sizeof(vector128)))
536			return 1;
537		if (msr & MSR_VEC) {
538			if (__copy_to_user(&tm_frame->mc_vregs,
539					   current->thread.transact_vr,
540					   ELF_NVRREG * sizeof(vector128)))
541				return 1;
542		} else {
543			if (__copy_to_user(&tm_frame->mc_vregs,
544					   current->thread.vr,
545					   ELF_NVRREG * sizeof(vector128)))
546				return 1;
547		}
548
549		/* set MSR_VEC in the saved MSR value to indicate that
550		 * frame->mc_vregs contains valid data
551		 */
552		msr |= MSR_VEC;
553	}
554
555	/* We always copy to/from vrsave, it's 0 if we don't have or don't
556	 * use altivec. Since VSCR only contains 32 bits saved in the least
557	 * significant bits of a vector, we "cheat" and stuff VRSAVE in the
558	 * most significant bits of that same vector. --BenH
559	 */
560	if (__put_user(current->thread.vrsave,
561		       (u32 __user *)&frame->mc_vregs[32]))
562		return 1;
563	if (msr & MSR_VEC) {
564		if (__put_user(current->thread.transact_vrsave,
565			       (u32 __user *)&tm_frame->mc_vregs[32]))
566			return 1;
567	} else {
568		if (__put_user(current->thread.vrsave,
569			       (u32 __user *)&tm_frame->mc_vregs[32]))
570			return 1;
571	}
572#endif /* CONFIG_ALTIVEC */
573
574	if (copy_fpr_to_user(&frame->mc_fregs, current))
575		return 1;
576	if (msr & MSR_FP) {
577		if (copy_transact_fpr_to_user(&tm_frame->mc_fregs, current))
578			return 1;
579	} else {
580		if (copy_fpr_to_user(&tm_frame->mc_fregs, current))
581			return 1;
582	}
583
584#ifdef CONFIG_VSX
585	/*
586	 * Copy VSR 0-31 upper half from thread_struct to local
587	 * buffer, then write that to userspace.  Also set MSR_VSX in
588	 * the saved MSR value to indicate that frame->mc_vregs
589	 * contains valid data
590	 */
591	if (current->thread.used_vsr) {
592		__giveup_vsx(current);
593		if (copy_vsx_to_user(&frame->mc_vsregs, current))
594			return 1;
595		if (msr & MSR_VSX) {
596			if (copy_transact_vsx_to_user(&tm_frame->mc_vsregs,
597						      current))
598				return 1;
599		} else {
600			if (copy_vsx_to_user(&tm_frame->mc_vsregs, current))
601				return 1;
602		}
603
604		msr |= MSR_VSX;
605	}
606#endif /* CONFIG_VSX */
607#ifdef CONFIG_SPE
608	/* SPE regs are not checkpointed with TM, so this section is
609	 * simply the same as in save_user_regs().
610	 */
611	if (current->thread.used_spe) {
612		flush_spe_to_thread(current);
613		if (__copy_to_user(&frame->mc_vregs, current->thread.evr,
614				   ELF_NEVRREG * sizeof(u32)))
615			return 1;
616		/* set MSR_SPE in the saved MSR value to indicate that
617		 * frame->mc_vregs contains valid data */
618		msr |= MSR_SPE;
619	}
620
621	/* We always copy to/from spefscr */
622	if (__put_user(current->thread.spefscr, (u32 __user *)&frame->mc_vregs + ELF_NEVRREG))
623		return 1;
624#endif /* CONFIG_SPE */
625
626	if (__put_user(msr, &frame->mc_gregs[PT_MSR]))
627		return 1;
628	if (sigret) {
629		/* Set up the sigreturn trampoline: li r0,sigret; sc */
630		if (__put_user(0x38000000UL + sigret, &frame->tramp[0])
631		    || __put_user(0x44000002UL, &frame->tramp[1]))
632			return 1;
633		flush_icache_range((unsigned long) &frame->tramp[0],
634				   (unsigned long) &frame->tramp[2]);
635	}
636
637	return 0;
638}
639#endif
640
641/*
642 * Restore the current user register values from the user stack,
643 * (except for MSR).
644 */
645static long restore_user_regs(struct pt_regs *regs,
646			      struct mcontext __user *sr, int sig)
647{
648	long err;
649	unsigned int save_r2 = 0;
650	unsigned long msr;
651#ifdef CONFIG_VSX
652	int i;
653#endif
654
655	/*
656	 * restore general registers but not including MSR or SOFTE. Also
657	 * take care of keeping r2 (TLS) intact if not a signal
658	 */
659	if (!sig)
660		save_r2 = (unsigned int)regs->gpr[2];
661	err = restore_general_regs(regs, sr);
662	regs->trap = 0;
663	err |= __get_user(msr, &sr->mc_gregs[PT_MSR]);
664	if (!sig)
665		regs->gpr[2] = (unsigned long) save_r2;
666	if (err)
667		return 1;
668
669	/* if doing signal return, restore the previous little-endian mode */
670	if (sig)
671		regs->msr = (regs->msr & ~MSR_LE) | (msr & MSR_LE);
672
673	/*
674	 * Do this before updating the thread state in
675	 * current->thread.fpr/vr/evr.  That way, if we get preempted
676	 * and another task grabs the FPU/Altivec/SPE, it won't be
677	 * tempted to save the current CPU state into the thread_struct
678	 * and corrupt what we are writing there.
679	 */
680	discard_lazy_cpu_state();
681
682#ifdef CONFIG_ALTIVEC
683	/*
684	 * Force the process to reload the altivec registers from
685	 * current->thread when it next does altivec instructions
686	 */
687	regs->msr &= ~MSR_VEC;
688	if (msr & MSR_VEC) {
689		/* restore altivec registers from the stack */
690		if (__copy_from_user(current->thread.vr, &sr->mc_vregs,
691				     sizeof(sr->mc_vregs)))
692			return 1;
693	} else if (current->thread.used_vr)
694		memset(current->thread.vr, 0, ELF_NVRREG * sizeof(vector128));
695
696	/* Always get VRSAVE back */
697	if (__get_user(current->thread.vrsave, (u32 __user *)&sr->mc_vregs[32]))
698		return 1;
699#endif /* CONFIG_ALTIVEC */
700	if (copy_fpr_from_user(current, &sr->mc_fregs))
701		return 1;
702
703#ifdef CONFIG_VSX
704	/*
705	 * Force the process to reload the VSX registers from
706	 * current->thread when it next does VSX instruction.
707	 */
708	regs->msr &= ~MSR_VSX;
709	if (msr & MSR_VSX) {
710		/*
711		 * Restore altivec registers from the stack to a local
712		 * buffer, then write this out to the thread_struct
713		 */
714		if (copy_vsx_from_user(current, &sr->mc_vsregs))
715			return 1;
716	} else if (current->thread.used_vsr)
717		for (i = 0; i < 32 ; i++)
718			current->thread.fpr[i][TS_VSRLOWOFFSET] = 0;
719#endif /* CONFIG_VSX */
720	/*
721	 * force the process to reload the FP registers from
722	 * current->thread when it next does FP instructions
723	 */
724	regs->msr &= ~(MSR_FP | MSR_FE0 | MSR_FE1);
725
726#ifdef CONFIG_SPE
727	/* force the process to reload the spe registers from
728	   current->thread when it next does spe instructions */
729	regs->msr &= ~MSR_SPE;
730	if (msr & MSR_SPE) {
731		/* restore spe registers from the stack */
732		if (__copy_from_user(current->thread.evr, &sr->mc_vregs,
733				     ELF_NEVRREG * sizeof(u32)))
734			return 1;
735	} else if (current->thread.used_spe)
736		memset(current->thread.evr, 0, ELF_NEVRREG * sizeof(u32));
737
738	/* Always get SPEFSCR back */
739	if (__get_user(current->thread.spefscr, (u32 __user *)&sr->mc_vregs + ELF_NEVRREG))
740		return 1;
741#endif /* CONFIG_SPE */
742
743	return 0;
744}
745
746#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
747/*
748 * Restore the current user register values from the user stack, except for
749 * MSR, and recheckpoint the original checkpointed register state for processes
750 * in transactions.
751 */
752static long restore_tm_user_regs(struct pt_regs *regs,
753				 struct mcontext __user *sr,
754				 struct mcontext __user *tm_sr)
755{
756	long err;
757	unsigned long msr;
758#ifdef CONFIG_VSX
759	int i;
760#endif
761
762	/*
763	 * restore general registers but not including MSR or SOFTE. Also
764	 * take care of keeping r2 (TLS) intact if not a signal.
765	 * See comment in signal_64.c:restore_tm_sigcontexts();
766	 * TFHAR is restored from the checkpointed NIP; TEXASR and TFIAR
767	 * were set by the signal delivery.
768	 */
769	err = restore_general_regs(regs, tm_sr);
770	err |= restore_general_regs(&current->thread.ckpt_regs, sr);
771
772	err |= __get_user(current->thread.tm_tfhar, &sr->mc_gregs[PT_NIP]);
773
774	err |= __get_user(msr, &sr->mc_gregs[PT_MSR]);
775	if (err)
776		return 1;
777
778	/* Restore the previous little-endian mode */
779	regs->msr = (regs->msr & ~MSR_LE) | (msr & MSR_LE);
780
781	/*
782	 * Do this before updating the thread state in
783	 * current->thread.fpr/vr/evr.  That way, if we get preempted
784	 * and another task grabs the FPU/Altivec/SPE, it won't be
785	 * tempted to save the current CPU state into the thread_struct
786	 * and corrupt what we are writing there.
787	 */
788	discard_lazy_cpu_state();
789
790#ifdef CONFIG_ALTIVEC
791	regs->msr &= ~MSR_VEC;
792	if (msr & MSR_VEC) {
793		/* restore altivec registers from the stack */
794		if (__copy_from_user(current->thread.vr, &sr->mc_vregs,
795				     sizeof(sr->mc_vregs)) ||
796		    __copy_from_user(current->thread.transact_vr,
797				     &tm_sr->mc_vregs,
798				     sizeof(sr->mc_vregs)))
799			return 1;
800	} else if (current->thread.used_vr) {
801		memset(current->thread.vr, 0, ELF_NVRREG * sizeof(vector128));
802		memset(current->thread.transact_vr, 0,
803		       ELF_NVRREG * sizeof(vector128));
804	}
805
806	/* Always get VRSAVE back */
807	if (__get_user(current->thread.vrsave,
808		       (u32 __user *)&sr->mc_vregs[32]) ||
809	    __get_user(current->thread.transact_vrsave,
810		       (u32 __user *)&tm_sr->mc_vregs[32]))
811		return 1;
812#endif /* CONFIG_ALTIVEC */
813
814	regs->msr &= ~(MSR_FP | MSR_FE0 | MSR_FE1);
815
816	if (copy_fpr_from_user(current, &sr->mc_fregs) ||
817	    copy_transact_fpr_from_user(current, &tm_sr->mc_fregs))
818		return 1;
819
820#ifdef CONFIG_VSX
821	regs->msr &= ~MSR_VSX;
822	if (msr & MSR_VSX) {
823		/*
824		 * Restore altivec registers from the stack to a local
825		 * buffer, then write this out to the thread_struct
826		 */
827		if (copy_vsx_from_user(current, &sr->mc_vsregs) ||
828		    copy_transact_vsx_from_user(current, &tm_sr->mc_vsregs))
829			return 1;
830	} else if (current->thread.used_vsr)
831		for (i = 0; i < 32 ; i++) {
832			current->thread.fpr[i][TS_VSRLOWOFFSET] = 0;
833			current->thread.transact_fpr[i][TS_VSRLOWOFFSET] = 0;
834		}
835#endif /* CONFIG_VSX */
836
837#ifdef CONFIG_SPE
838	/* SPE regs are not checkpointed with TM, so this section is
839	 * simply the same as in restore_user_regs().
840	 */
841	regs->msr &= ~MSR_SPE;
842	if (msr & MSR_SPE) {
843		if (__copy_from_user(current->thread.evr, &sr->mc_vregs,
844				     ELF_NEVRREG * sizeof(u32)))
845			return 1;
846	} else if (current->thread.used_spe)
847		memset(current->thread.evr, 0, ELF_NEVRREG * sizeof(u32));
848
849	/* Always get SPEFSCR back */
850	if (__get_user(current->thread.spefscr, (u32 __user *)&sr->mc_vregs
851		       + ELF_NEVRREG))
852		return 1;
853#endif /* CONFIG_SPE */
854
855	/* Now, recheckpoint.  This loads up all of the checkpointed (older)
856	 * registers, including FP and V[S]Rs.  After recheckpointing, the
857	 * transactional versions should be loaded.
858	 */
859	tm_enable();
860	/* This loads the checkpointed FP/VEC state, if used */
861	tm_recheckpoint(&current->thread, msr);
862	/* The task has moved into TM state S, so ensure MSR reflects this */
863	regs->msr = (regs->msr & ~MSR_TS_MASK) | MSR_TS_S;
864
865	/* This loads the speculative FP/VEC state, if used */
866	if (msr & MSR_FP) {
867		do_load_up_transact_fpu(&current->thread);
868		regs->msr |= (MSR_FP | current->thread.fpexc_mode);
869	}
870#ifdef CONFIG_ALTIVEC
871	if (msr & MSR_VEC) {
872		do_load_up_transact_altivec(&current->thread);
873		regs->msr |= MSR_VEC;
874	}
875#endif
876
877	return 0;
878}
879#endif
880
881#ifdef CONFIG_PPC64
882int copy_siginfo_to_user32(struct compat_siginfo __user *d, siginfo_t *s)
883{
884	int err;
885
886	if (!access_ok (VERIFY_WRITE, d, sizeof(*d)))
887		return -EFAULT;
888
889	/* If you change siginfo_t structure, please be sure
890	 * this code is fixed accordingly.
891	 * It should never copy any pad contained in the structure
892	 * to avoid security leaks, but must copy the generic
893	 * 3 ints plus the relevant union member.
894	 * This routine must convert siginfo from 64bit to 32bit as well
895	 * at the same time.
896	 */
897	err = __put_user(s->si_signo, &d->si_signo);
898	err |= __put_user(s->si_errno, &d->si_errno);
899	err |= __put_user((short)s->si_code, &d->si_code);
900	if (s->si_code < 0)
901		err |= __copy_to_user(&d->_sifields._pad, &s->_sifields._pad,
902				      SI_PAD_SIZE32);
903	else switch(s->si_code >> 16) {
904	case __SI_CHLD >> 16:
905		err |= __put_user(s->si_pid, &d->si_pid);
906		err |= __put_user(s->si_uid, &d->si_uid);
907		err |= __put_user(s->si_utime, &d->si_utime);
908		err |= __put_user(s->si_stime, &d->si_stime);
909		err |= __put_user(s->si_status, &d->si_status);
910		break;
911	case __SI_FAULT >> 16:
912		err |= __put_user((unsigned int)(unsigned long)s->si_addr,
913				  &d->si_addr);
914		break;
915	case __SI_POLL >> 16:
916		err |= __put_user(s->si_band, &d->si_band);
917		err |= __put_user(s->si_fd, &d->si_fd);
918		break;
919	case __SI_TIMER >> 16:
920		err |= __put_user(s->si_tid, &d->si_tid);
921		err |= __put_user(s->si_overrun, &d->si_overrun);
922		err |= __put_user(s->si_int, &d->si_int);
923		break;
924	case __SI_RT >> 16: /* This is not generated by the kernel as of now.  */
925	case __SI_MESGQ >> 16:
926		err |= __put_user(s->si_int, &d->si_int);
927		/* fallthrough */
928	case __SI_KILL >> 16:
929	default:
930		err |= __put_user(s->si_pid, &d->si_pid);
931		err |= __put_user(s->si_uid, &d->si_uid);
932		break;
933	}
934	return err;
935}
936
937#define copy_siginfo_to_user	copy_siginfo_to_user32
938
939int copy_siginfo_from_user32(siginfo_t *to, struct compat_siginfo __user *from)
940{
941	memset(to, 0, sizeof *to);
942
943	if (copy_from_user(to, from, 3*sizeof(int)) ||
944	    copy_from_user(to->_sifields._pad,
945			   from->_sifields._pad, SI_PAD_SIZE32))
946		return -EFAULT;
947
948	return 0;
949}
950#endif /* CONFIG_PPC64 */
951
952/*
953 * Set up a signal frame for a "real-time" signal handler
954 * (one which gets siginfo).
955 */
956int handle_rt_signal32(unsigned long sig, struct k_sigaction *ka,
957		siginfo_t *info, sigset_t *oldset,
958		struct pt_regs *regs)
959{
960	struct rt_sigframe __user *rt_sf;
961	struct mcontext __user *frame;
962	struct mcontext __user *tm_frame = NULL;
963	void __user *addr;
964	unsigned long newsp = 0;
965	int sigret;
966	unsigned long tramp;
967
968	/* Set up Signal Frame */
969	/* Put a Real Time Context onto stack */
970	rt_sf = get_sigframe(ka, get_tm_stackpointer(regs), sizeof(*rt_sf), 1);
971	addr = rt_sf;
972	if (unlikely(rt_sf == NULL))
973		goto badframe;
974
975	/* Put the siginfo & fill in most of the ucontext */
976	if (copy_siginfo_to_user(&rt_sf->info, info)
977	    || __put_user(0, &rt_sf->uc.uc_flags)
978	    || __save_altstack(&rt_sf->uc.uc_stack, regs->gpr[1])
979	    || __put_user(to_user_ptr(&rt_sf->uc.uc_mcontext),
980		    &rt_sf->uc.uc_regs)
981	    || put_sigset_t(&rt_sf->uc.uc_sigmask, oldset))
982		goto badframe;
983
984	/* Save user registers on the stack */
985	frame = &rt_sf->uc.uc_mcontext;
986	addr = frame;
987	if (vdso32_rt_sigtramp && current->mm->context.vdso_base) {
988		sigret = 0;
989		tramp = current->mm->context.vdso_base + vdso32_rt_sigtramp;
990	} else {
991		sigret = __NR_rt_sigreturn;
992		tramp = (unsigned long) frame->tramp;
993	}
994
995#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
996	tm_frame = &rt_sf->uc_transact.uc_mcontext;
997	if (MSR_TM_ACTIVE(regs->msr)) {
998		if (save_tm_user_regs(regs, frame, tm_frame, sigret))
999			goto badframe;
1000	}
1001	else
1002#endif
1003	{
1004		if (save_user_regs(regs, frame, tm_frame, sigret, 1))
1005			goto badframe;
1006	}
1007	regs->link = tramp;
1008
1009#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1010	if (MSR_TM_ACTIVE(regs->msr)) {
1011		if (__put_user((unsigned long)&rt_sf->uc_transact,
1012			       &rt_sf->uc.uc_link)
1013		    || __put_user((unsigned long)tm_frame, &rt_sf->uc_transact.uc_regs))
1014			goto badframe;
1015	}
1016	else
1017#endif
1018		if (__put_user(0, &rt_sf->uc.uc_link))
1019			goto badframe;
1020
1021	current->thread.fpscr.val = 0;	/* turn off all fp exceptions */
1022
1023	/* create a stack frame for the caller of the handler */
1024	newsp = ((unsigned long)rt_sf) - (__SIGNAL_FRAMESIZE + 16);
1025	addr = (void __user *)regs->gpr[1];
1026	if (put_user(regs->gpr[1], (u32 __user *)newsp))
1027		goto badframe;
1028
1029	/* Fill registers for signal handler */
1030	regs->gpr[1] = newsp;
1031	regs->gpr[3] = sig;
1032	regs->gpr[4] = (unsigned long) &rt_sf->info;
1033	regs->gpr[5] = (unsigned long) &rt_sf->uc;
1034	regs->gpr[6] = (unsigned long) rt_sf;
1035	regs->nip = (unsigned long) ka->sa.sa_handler;
1036	/* enter the signal handler in big-endian mode */
1037	regs->msr &= ~MSR_LE;
1038#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1039	/* Remove TM bits from thread's MSR.  The MSR in the sigcontext
1040	 * just indicates to userland that we were doing a transaction, but we
1041	 * don't want to return in transactional state:
1042	 */
1043	regs->msr &= ~MSR_TS_MASK;
1044#endif
1045	return 1;
1046
1047badframe:
1048#ifdef DEBUG_SIG
1049	printk("badframe in handle_rt_signal, regs=%p frame=%p newsp=%lx\n",
1050	       regs, frame, newsp);
1051#endif
1052	if (show_unhandled_signals)
1053		printk_ratelimited(KERN_INFO
1054				   "%s[%d]: bad frame in handle_rt_signal32: "
1055				   "%p nip %08lx lr %08lx\n",
1056				   current->comm, current->pid,
1057				   addr, regs->nip, regs->link);
1058
1059	force_sigsegv(sig, current);
1060	return 0;
1061}
1062
1063static int do_setcontext(struct ucontext __user *ucp, struct pt_regs *regs, int sig)
1064{
1065	sigset_t set;
1066	struct mcontext __user *mcp;
1067
1068	if (get_sigset_t(&set, &ucp->uc_sigmask))
1069		return -EFAULT;
1070#ifdef CONFIG_PPC64
1071	{
1072		u32 cmcp;
1073
1074		if (__get_user(cmcp, &ucp->uc_regs))
1075			return -EFAULT;
1076		mcp = (struct mcontext __user *)(u64)cmcp;
1077		/* no need to check access_ok(mcp), since mcp < 4GB */
1078	}
1079#else
1080	if (__get_user(mcp, &ucp->uc_regs))
1081		return -EFAULT;
1082	if (!access_ok(VERIFY_READ, mcp, sizeof(*mcp)))
1083		return -EFAULT;
1084#endif
1085	set_current_blocked(&set);
1086	if (restore_user_regs(regs, mcp, sig))
1087		return -EFAULT;
1088
1089	return 0;
1090}
1091
1092#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1093static int do_setcontext_tm(struct ucontext __user *ucp,
1094			    struct ucontext __user *tm_ucp,
1095			    struct pt_regs *regs)
1096{
1097	sigset_t set;
1098	struct mcontext __user *mcp;
1099	struct mcontext __user *tm_mcp;
1100	u32 cmcp;
1101	u32 tm_cmcp;
1102
1103	if (get_sigset_t(&set, &ucp->uc_sigmask))
1104		return -EFAULT;
1105
1106	if (__get_user(cmcp, &ucp->uc_regs) ||
1107	    __get_user(tm_cmcp, &tm_ucp->uc_regs))
1108		return -EFAULT;
1109	mcp = (struct mcontext __user *)(u64)cmcp;
1110	tm_mcp = (struct mcontext __user *)(u64)tm_cmcp;
1111	/* no need to check access_ok(mcp), since mcp < 4GB */
1112
1113	set_current_blocked(&set);
1114	if (restore_tm_user_regs(regs, mcp, tm_mcp))
1115		return -EFAULT;
1116
1117	return 0;
1118}
1119#endif
1120
1121long sys_swapcontext(struct ucontext __user *old_ctx,
1122		     struct ucontext __user *new_ctx,
1123		     int ctx_size, int r6, int r7, int r8, struct pt_regs *regs)
1124{
1125	unsigned char tmp;
1126	int ctx_has_vsx_region = 0;
1127
1128#ifdef CONFIG_PPC64
1129	unsigned long new_msr = 0;
1130
1131	if (new_ctx) {
1132		struct mcontext __user *mcp;
1133		u32 cmcp;
1134
1135		/*
1136		 * Get pointer to the real mcontext.  No need for
1137		 * access_ok since we are dealing with compat
1138		 * pointers.
1139		 */
1140		if (__get_user(cmcp, &new_ctx->uc_regs))
1141			return -EFAULT;
1142		mcp = (struct mcontext __user *)(u64)cmcp;
1143		if (__get_user(new_msr, &mcp->mc_gregs[PT_MSR]))
1144			return -EFAULT;
1145	}
1146	/*
1147	 * Check that the context is not smaller than the original
1148	 * size (with VMX but without VSX)
1149	 */
1150	if (ctx_size < UCONTEXTSIZEWITHOUTVSX)
1151		return -EINVAL;
1152	/*
1153	 * If the new context state sets the MSR VSX bits but
1154	 * it doesn't provide VSX state.
1155	 */
1156	if ((ctx_size < sizeof(struct ucontext)) &&
1157	    (new_msr & MSR_VSX))
1158		return -EINVAL;
1159	/* Does the context have enough room to store VSX data? */
1160	if (ctx_size >= sizeof(struct ucontext))
1161		ctx_has_vsx_region = 1;
1162#else
1163	/* Context size is for future use. Right now, we only make sure
1164	 * we are passed something we understand
1165	 */
1166	if (ctx_size < sizeof(struct ucontext))
1167		return -EINVAL;
1168#endif
1169	if (old_ctx != NULL) {
1170		struct mcontext __user *mctx;
1171
1172		/*
1173		 * old_ctx might not be 16-byte aligned, in which
1174		 * case old_ctx->uc_mcontext won't be either.
1175		 * Because we have the old_ctx->uc_pad2 field
1176		 * before old_ctx->uc_mcontext, we need to round down
1177		 * from &old_ctx->uc_mcontext to a 16-byte boundary.
1178		 */
1179		mctx = (struct mcontext __user *)
1180			((unsigned long) &old_ctx->uc_mcontext & ~0xfUL);
1181		if (!access_ok(VERIFY_WRITE, old_ctx, ctx_size)
1182		    || save_user_regs(regs, mctx, NULL, 0, ctx_has_vsx_region)
1183		    || put_sigset_t(&old_ctx->uc_sigmask, &current->blocked)
1184		    || __put_user(to_user_ptr(mctx), &old_ctx->uc_regs))
1185			return -EFAULT;
1186	}
1187	if (new_ctx == NULL)
1188		return 0;
1189	if (!access_ok(VERIFY_READ, new_ctx, ctx_size)
1190	    || __get_user(tmp, (u8 __user *) new_ctx)
1191	    || __get_user(tmp, (u8 __user *) new_ctx + ctx_size - 1))
1192		return -EFAULT;
1193
1194	/*
1195	 * If we get a fault copying the context into the kernel's
1196	 * image of the user's registers, we can't just return -EFAULT
1197	 * because the user's registers will be corrupted.  For instance
1198	 * the NIP value may have been updated but not some of the
1199	 * other registers.  Given that we have done the access_ok
1200	 * and successfully read the first and last bytes of the region
1201	 * above, this should only happen in an out-of-memory situation
1202	 * or if another thread unmaps the region containing the context.
1203	 * We kill the task with a SIGSEGV in this situation.
1204	 */
1205	if (do_setcontext(new_ctx, regs, 0))
1206		do_exit(SIGSEGV);
1207
1208	set_thread_flag(TIF_RESTOREALL);
1209	return 0;
1210}
1211
1212long sys_rt_sigreturn(int r3, int r4, int r5, int r6, int r7, int r8,
1213		     struct pt_regs *regs)
1214{
1215	struct rt_sigframe __user *rt_sf;
1216#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1217	struct ucontext __user *uc_transact;
1218	unsigned long msr_hi;
1219	unsigned long tmp;
1220	int tm_restore = 0;
1221#endif
1222	/* Always make any pending restarted system calls return -EINTR */
1223	current_thread_info()->restart_block.fn = do_no_restart_syscall;
1224
1225	rt_sf = (struct rt_sigframe __user *)
1226		(regs->gpr[1] + __SIGNAL_FRAMESIZE + 16);
1227	if (!access_ok(VERIFY_READ, rt_sf, sizeof(*rt_sf)))
1228		goto bad;
1229#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1230	if (__get_user(tmp, &rt_sf->uc.uc_link))
1231		goto bad;
1232	uc_transact = (struct ucontext __user *)(uintptr_t)tmp;
1233	if (uc_transact) {
1234		u32 cmcp;
1235		struct mcontext __user *mcp;
1236
1237		if (__get_user(cmcp, &uc_transact->uc_regs))
1238			return -EFAULT;
1239		mcp = (struct mcontext __user *)(u64)cmcp;
1240		/* The top 32 bits of the MSR are stashed in the transactional
1241		 * ucontext. */
1242		if (__get_user(msr_hi, &mcp->mc_gregs[PT_MSR]))
1243			goto bad;
1244
1245		if (MSR_TM_SUSPENDED(msr_hi<<32)) {
1246			/* We only recheckpoint on return if we're
1247			 * transaction.
1248			 */
1249			tm_restore = 1;
1250			if (do_setcontext_tm(&rt_sf->uc, uc_transact, regs))
1251				goto bad;
1252		}
1253	}
1254	if (!tm_restore)
1255		/* Fall through, for non-TM restore */
1256#endif
1257	if (do_setcontext(&rt_sf->uc, regs, 1))
1258		goto bad;
1259
1260	/*
1261	 * It's not clear whether or why it is desirable to save the
1262	 * sigaltstack setting on signal delivery and restore it on
1263	 * signal return.  But other architectures do this and we have
1264	 * always done it up until now so it is probably better not to
1265	 * change it.  -- paulus
1266	 */
1267#ifdef CONFIG_PPC64
1268	if (compat_restore_altstack(&rt_sf->uc.uc_stack))
1269		goto bad;
1270#else
1271	if (restore_altstack(&rt_sf->uc.uc_stack))
1272		goto bad;
1273#endif
1274	set_thread_flag(TIF_RESTOREALL);
1275	return 0;
1276
1277 bad:
1278	if (show_unhandled_signals)
1279		printk_ratelimited(KERN_INFO
1280				   "%s[%d]: bad frame in sys_rt_sigreturn: "
1281				   "%p nip %08lx lr %08lx\n",
1282				   current->comm, current->pid,
1283				   rt_sf, regs->nip, regs->link);
1284
1285	force_sig(SIGSEGV, current);
1286	return 0;
1287}
1288
1289#ifdef CONFIG_PPC32
1290int sys_debug_setcontext(struct ucontext __user *ctx,
1291			 int ndbg, struct sig_dbg_op __user *dbg,
1292			 int r6, int r7, int r8,
1293			 struct pt_regs *regs)
1294{
1295	struct sig_dbg_op op;
1296	int i;
1297	unsigned char tmp;
1298	unsigned long new_msr = regs->msr;
1299#ifdef CONFIG_PPC_ADV_DEBUG_REGS
1300	unsigned long new_dbcr0 = current->thread.dbcr0;
1301#endif
1302
1303	for (i=0; i<ndbg; i++) {
1304		if (copy_from_user(&op, dbg + i, sizeof(op)))
1305			return -EFAULT;
1306		switch (op.dbg_type) {
1307		case SIG_DBG_SINGLE_STEPPING:
1308#ifdef CONFIG_PPC_ADV_DEBUG_REGS
1309			if (op.dbg_value) {
1310				new_msr |= MSR_DE;
1311				new_dbcr0 |= (DBCR0_IDM | DBCR0_IC);
1312			} else {
1313				new_dbcr0 &= ~DBCR0_IC;
1314				if (!DBCR_ACTIVE_EVENTS(new_dbcr0,
1315						current->thread.dbcr1)) {
1316					new_msr &= ~MSR_DE;
1317					new_dbcr0 &= ~DBCR0_IDM;
1318				}
1319			}
1320#else
1321			if (op.dbg_value)
1322				new_msr |= MSR_SE;
1323			else
1324				new_msr &= ~MSR_SE;
1325#endif
1326			break;
1327		case SIG_DBG_BRANCH_TRACING:
1328#ifdef CONFIG_PPC_ADV_DEBUG_REGS
1329			return -EINVAL;
1330#else
1331			if (op.dbg_value)
1332				new_msr |= MSR_BE;
1333			else
1334				new_msr &= ~MSR_BE;
1335#endif
1336			break;
1337
1338		default:
1339			return -EINVAL;
1340		}
1341	}
1342
1343	/* We wait until here to actually install the values in the
1344	   registers so if we fail in the above loop, it will not
1345	   affect the contents of these registers.  After this point,
1346	   failure is a problem, anyway, and it's very unlikely unless
1347	   the user is really doing something wrong. */
1348	regs->msr = new_msr;
1349#ifdef CONFIG_PPC_ADV_DEBUG_REGS
1350	current->thread.dbcr0 = new_dbcr0;
1351#endif
1352
1353	if (!access_ok(VERIFY_READ, ctx, sizeof(*ctx))
1354	    || __get_user(tmp, (u8 __user *) ctx)
1355	    || __get_user(tmp, (u8 __user *) (ctx + 1) - 1))
1356		return -EFAULT;
1357
1358	/*
1359	 * If we get a fault copying the context into the kernel's
1360	 * image of the user's registers, we can't just return -EFAULT
1361	 * because the user's registers will be corrupted.  For instance
1362	 * the NIP value may have been updated but not some of the
1363	 * other registers.  Given that we have done the access_ok
1364	 * and successfully read the first and last bytes of the region
1365	 * above, this should only happen in an out-of-memory situation
1366	 * or if another thread unmaps the region containing the context.
1367	 * We kill the task with a SIGSEGV in this situation.
1368	 */
1369	if (do_setcontext(ctx, regs, 1)) {
1370		if (show_unhandled_signals)
1371			printk_ratelimited(KERN_INFO "%s[%d]: bad frame in "
1372					   "sys_debug_setcontext: %p nip %08lx "
1373					   "lr %08lx\n",
1374					   current->comm, current->pid,
1375					   ctx, regs->nip, regs->link);
1376
1377		force_sig(SIGSEGV, current);
1378		goto out;
1379	}
1380
1381	/*
1382	 * It's not clear whether or why it is desirable to save the
1383	 * sigaltstack setting on signal delivery and restore it on
1384	 * signal return.  But other architectures do this and we have
1385	 * always done it up until now so it is probably better not to
1386	 * change it.  -- paulus
1387	 */
1388	restore_altstack(&ctx->uc_stack);
1389
1390	set_thread_flag(TIF_RESTOREALL);
1391 out:
1392	return 0;
1393}
1394#endif
1395
1396/*
1397 * OK, we're invoking a handler
1398 */
1399int handle_signal32(unsigned long sig, struct k_sigaction *ka,
1400		    siginfo_t *info, sigset_t *oldset, struct pt_regs *regs)
1401{
1402	struct sigcontext __user *sc;
1403	struct sigframe __user *frame;
1404	struct mcontext __user *tm_mctx = NULL;
1405	unsigned long newsp = 0;
1406	int sigret;
1407	unsigned long tramp;
1408
1409	/* Set up Signal Frame */
1410	frame = get_sigframe(ka, get_tm_stackpointer(regs), sizeof(*frame), 1);
1411	if (unlikely(frame == NULL))
1412		goto badframe;
1413	sc = (struct sigcontext __user *) &frame->sctx;
1414
1415#if _NSIG != 64
1416#error "Please adjust handle_signal()"
1417#endif
1418	if (__put_user(to_user_ptr(ka->sa.sa_handler), &sc->handler)
1419	    || __put_user(oldset->sig[0], &sc->oldmask)
1420#ifdef CONFIG_PPC64
1421	    || __put_user((oldset->sig[0] >> 32), &sc->_unused[3])
1422#else
1423	    || __put_user(oldset->sig[1], &sc->_unused[3])
1424#endif
1425	    || __put_user(to_user_ptr(&frame->mctx), &sc->regs)
1426	    || __put_user(sig, &sc->signal))
1427		goto badframe;
1428
1429	if (vdso32_sigtramp && current->mm->context.vdso_base) {
1430		sigret = 0;
1431		tramp = current->mm->context.vdso_base + vdso32_sigtramp;
1432	} else {
1433		sigret = __NR_sigreturn;
1434		tramp = (unsigned long) frame->mctx.tramp;
1435	}
1436
1437#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1438	tm_mctx = &frame->mctx_transact;
1439	if (MSR_TM_ACTIVE(regs->msr)) {
1440		if (save_tm_user_regs(regs, &frame->mctx, &frame->mctx_transact,
1441				      sigret))
1442			goto badframe;
1443	}
1444	else
1445#endif
1446	{
1447		if (save_user_regs(regs, &frame->mctx, tm_mctx, sigret, 1))
1448			goto badframe;
1449	}
1450
1451	regs->link = tramp;
1452
1453	current->thread.fpscr.val = 0;	/* turn off all fp exceptions */
1454
1455	/* create a stack frame for the caller of the handler */
1456	newsp = ((unsigned long)frame) - __SIGNAL_FRAMESIZE;
1457	if (put_user(regs->gpr[1], (u32 __user *)newsp))
1458		goto badframe;
1459
1460	regs->gpr[1] = newsp;
1461	regs->gpr[3] = sig;
1462	regs->gpr[4] = (unsigned long) sc;
1463	regs->nip = (unsigned long) ka->sa.sa_handler;
1464	/* enter the signal handler in big-endian mode */
1465	regs->msr &= ~MSR_LE;
1466#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1467	/* Remove TM bits from thread's MSR.  The MSR in the sigcontext
1468	 * just indicates to userland that we were doing a transaction, but we
1469	 * don't want to return in transactional state:
1470	 */
1471	regs->msr &= ~MSR_TS_MASK;
1472#endif
1473	return 1;
1474
1475badframe:
1476#ifdef DEBUG_SIG
1477	printk("badframe in handle_signal, regs=%p frame=%p newsp=%lx\n",
1478	       regs, frame, newsp);
1479#endif
1480	if (show_unhandled_signals)
1481		printk_ratelimited(KERN_INFO
1482				   "%s[%d]: bad frame in handle_signal32: "
1483				   "%p nip %08lx lr %08lx\n",
1484				   current->comm, current->pid,
1485				   frame, regs->nip, regs->link);
1486
1487	force_sigsegv(sig, current);
1488	return 0;
1489}
1490
1491/*
1492 * Do a signal return; undo the signal stack.
1493 */
1494long sys_sigreturn(int r3, int r4, int r5, int r6, int r7, int r8,
1495		       struct pt_regs *regs)
1496{
1497	struct sigframe __user *sf;
1498	struct sigcontext __user *sc;
1499	struct sigcontext sigctx;
1500	struct mcontext __user *sr;
1501	void __user *addr;
1502	sigset_t set;
1503#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1504	struct mcontext __user *mcp, *tm_mcp;
1505	unsigned long msr_hi;
1506#endif
1507
1508	/* Always make any pending restarted system calls return -EINTR */
1509	current_thread_info()->restart_block.fn = do_no_restart_syscall;
1510
1511	sf = (struct sigframe __user *)(regs->gpr[1] + __SIGNAL_FRAMESIZE);
1512	sc = &sf->sctx;
1513	addr = sc;
1514	if (copy_from_user(&sigctx, sc, sizeof(sigctx)))
1515		goto badframe;
1516
1517#ifdef CONFIG_PPC64
1518	/*
1519	 * Note that PPC32 puts the upper 32 bits of the sigmask in the
1520	 * unused part of the signal stackframe
1521	 */
1522	set.sig[0] = sigctx.oldmask + ((long)(sigctx._unused[3]) << 32);
1523#else
1524	set.sig[0] = sigctx.oldmask;
1525	set.sig[1] = sigctx._unused[3];
1526#endif
1527	set_current_blocked(&set);
1528
1529#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1530	mcp = (struct mcontext __user *)&sf->mctx;
1531	tm_mcp = (struct mcontext __user *)&sf->mctx_transact;
1532	if (__get_user(msr_hi, &tm_mcp->mc_gregs[PT_MSR]))
1533		goto badframe;
1534	if (MSR_TM_ACTIVE(msr_hi<<32)) {
1535		if (!cpu_has_feature(CPU_FTR_TM))
1536			goto badframe;
1537		if (restore_tm_user_regs(regs, mcp, tm_mcp))
1538			goto badframe;
1539	} else
1540#endif
1541	{
1542		sr = (struct mcontext __user *)from_user_ptr(sigctx.regs);
1543		addr = sr;
1544		if (!access_ok(VERIFY_READ, sr, sizeof(*sr))
1545		    || restore_user_regs(regs, sr, 1))
1546			goto badframe;
1547	}
1548
1549	set_thread_flag(TIF_RESTOREALL);
1550	return 0;
1551
1552badframe:
1553	if (show_unhandled_signals)
1554		printk_ratelimited(KERN_INFO
1555				   "%s[%d]: bad frame in sys_sigreturn: "
1556				   "%p nip %08lx lr %08lx\n",
1557				   current->comm, current->pid,
1558				   addr, regs->nip, regs->link);
1559
1560	force_sig(SIGSEGV, current);
1561	return 0;
1562}
1563