1/*
2 * Performance event support - powerpc architecture code
3 *
4 * Copyright 2008-2009 Paul Mackerras, IBM Corporation.
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version
9 * 2 of the License, or (at your option) any later version.
10 */
11#include <linux/kernel.h>
12#include <linux/sched.h>
13#include <linux/perf_event.h>
14#include <linux/percpu.h>
15#include <linux/hardirq.h>
16#include <linux/uaccess.h>
17#include <asm/reg.h>
18#include <asm/pmc.h>
19#include <asm/machdep.h>
20#include <asm/firmware.h>
21#include <asm/ptrace.h>
22#include <asm/code-patching.h>
23
24#define BHRB_MAX_ENTRIES	32
25#define BHRB_TARGET		0x0000000000000002
26#define BHRB_PREDICTION		0x0000000000000001
27#define BHRB_EA			0xFFFFFFFFFFFFFFFCUL
28
29struct cpu_hw_events {
30	int n_events;
31	int n_percpu;
32	int disabled;
33	int n_added;
34	int n_limited;
35	u8  pmcs_enabled;
36	struct perf_event *event[MAX_HWEVENTS];
37	u64 events[MAX_HWEVENTS];
38	unsigned int flags[MAX_HWEVENTS];
39	/*
40	 * The order of the MMCR array is:
41	 *  - 64-bit, MMCR0, MMCR1, MMCRA, MMCR2
42	 *  - 32-bit, MMCR0, MMCR1, MMCR2
43	 */
44	unsigned long mmcr[4];
45	struct perf_event *limited_counter[MAX_LIMITED_HWCOUNTERS];
46	u8  limited_hwidx[MAX_LIMITED_HWCOUNTERS];
47	u64 alternatives[MAX_HWEVENTS][MAX_EVENT_ALTERNATIVES];
48	unsigned long amasks[MAX_HWEVENTS][MAX_EVENT_ALTERNATIVES];
49	unsigned long avalues[MAX_HWEVENTS][MAX_EVENT_ALTERNATIVES];
50
51	unsigned int group_flag;
52	int n_txn_start;
53
54	/* BHRB bits */
55	u64				bhrb_filter;	/* BHRB HW branch filter */
56	int				bhrb_users;
57	void				*bhrb_context;
58	struct	perf_branch_stack	bhrb_stack;
59	struct	perf_branch_entry	bhrb_entries[BHRB_MAX_ENTRIES];
60};
61
62static DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events);
63
64static struct power_pmu *ppmu;
65
66/*
67 * Normally, to ignore kernel events we set the FCS (freeze counters
68 * in supervisor mode) bit in MMCR0, but if the kernel runs with the
69 * hypervisor bit set in the MSR, or if we are running on a processor
70 * where the hypervisor bit is forced to 1 (as on Apple G5 processors),
71 * then we need to use the FCHV bit to ignore kernel events.
72 */
73static unsigned int freeze_events_kernel = MMCR0_FCS;
74
75/*
76 * 32-bit doesn't have MMCRA but does have an MMCR2,
77 * and a few other names are different.
78 */
79#ifdef CONFIG_PPC32
80
81#define MMCR0_FCHV		0
82#define MMCR0_PMCjCE		MMCR0_PMCnCE
83#define MMCR0_FC56		0
84#define MMCR0_PMAO		0
85#define MMCR0_EBE		0
86#define MMCR0_BHRBA		0
87#define MMCR0_PMCC		0
88#define MMCR0_PMCC_U6		0
89
90#define SPRN_MMCRA		SPRN_MMCR2
91#define MMCRA_SAMPLE_ENABLE	0
92
93static inline unsigned long perf_ip_adjust(struct pt_regs *regs)
94{
95	return 0;
96}
97static inline void perf_get_data_addr(struct pt_regs *regs, u64 *addrp) { }
98static inline u32 perf_get_misc_flags(struct pt_regs *regs)
99{
100	return 0;
101}
102static inline void perf_read_regs(struct pt_regs *regs)
103{
104	regs->result = 0;
105}
106static inline int perf_intr_is_nmi(struct pt_regs *regs)
107{
108	return 0;
109}
110
111static inline int siar_valid(struct pt_regs *regs)
112{
113	return 1;
114}
115
116static bool is_ebb_event(struct perf_event *event) { return false; }
117static int ebb_event_check(struct perf_event *event) { return 0; }
118static void ebb_event_add(struct perf_event *event) { }
119static void ebb_switch_out(unsigned long mmcr0) { }
120static unsigned long ebb_switch_in(bool ebb, struct cpu_hw_events *cpuhw)
121{
122	return cpuhw->mmcr[0];
123}
124
125static inline void power_pmu_bhrb_enable(struct perf_event *event) {}
126static inline void power_pmu_bhrb_disable(struct perf_event *event) {}
127static void power_pmu_flush_branch_stack(void) {}
128static inline void power_pmu_bhrb_read(struct cpu_hw_events *cpuhw) {}
129static void pmao_restore_workaround(bool ebb) { }
130#endif /* CONFIG_PPC32 */
131
132static bool regs_use_siar(struct pt_regs *regs)
133{
134	return !!regs->result;
135}
136
137/*
138 * Things that are specific to 64-bit implementations.
139 */
140#ifdef CONFIG_PPC64
141
142static inline unsigned long perf_ip_adjust(struct pt_regs *regs)
143{
144	unsigned long mmcra = regs->dsisr;
145
146	if ((ppmu->flags & PPMU_HAS_SSLOT) && (mmcra & MMCRA_SAMPLE_ENABLE)) {
147		unsigned long slot = (mmcra & MMCRA_SLOT) >> MMCRA_SLOT_SHIFT;
148		if (slot > 1)
149			return 4 * (slot - 1);
150	}
151
152	return 0;
153}
154
155/*
156 * The user wants a data address recorded.
157 * If we're not doing instruction sampling, give them the SDAR
158 * (sampled data address).  If we are doing instruction sampling, then
159 * only give them the SDAR if it corresponds to the instruction
160 * pointed to by SIAR; this is indicated by the [POWER6_]MMCRA_SDSYNC, the
161 * [POWER7P_]MMCRA_SDAR_VALID bit in MMCRA, or the SDAR_VALID bit in SIER.
162 */
163static inline void perf_get_data_addr(struct pt_regs *regs, u64 *addrp)
164{
165	unsigned long mmcra = regs->dsisr;
166	bool sdar_valid;
167
168	if (ppmu->flags & PPMU_HAS_SIER)
169		sdar_valid = regs->dar & SIER_SDAR_VALID;
170	else {
171		unsigned long sdsync;
172
173		if (ppmu->flags & PPMU_SIAR_VALID)
174			sdsync = POWER7P_MMCRA_SDAR_VALID;
175		else if (ppmu->flags & PPMU_ALT_SIPR)
176			sdsync = POWER6_MMCRA_SDSYNC;
177		else
178			sdsync = MMCRA_SDSYNC;
179
180		sdar_valid = mmcra & sdsync;
181	}
182
183	if (!(mmcra & MMCRA_SAMPLE_ENABLE) || sdar_valid)
184		*addrp = mfspr(SPRN_SDAR);
185}
186
187static bool regs_sihv(struct pt_regs *regs)
188{
189	unsigned long sihv = MMCRA_SIHV;
190
191	if (ppmu->flags & PPMU_HAS_SIER)
192		return !!(regs->dar & SIER_SIHV);
193
194	if (ppmu->flags & PPMU_ALT_SIPR)
195		sihv = POWER6_MMCRA_SIHV;
196
197	return !!(regs->dsisr & sihv);
198}
199
200static bool regs_sipr(struct pt_regs *regs)
201{
202	unsigned long sipr = MMCRA_SIPR;
203
204	if (ppmu->flags & PPMU_HAS_SIER)
205		return !!(regs->dar & SIER_SIPR);
206
207	if (ppmu->flags & PPMU_ALT_SIPR)
208		sipr = POWER6_MMCRA_SIPR;
209
210	return !!(regs->dsisr & sipr);
211}
212
213static inline u32 perf_flags_from_msr(struct pt_regs *regs)
214{
215	if (regs->msr & MSR_PR)
216		return PERF_RECORD_MISC_USER;
217	if ((regs->msr & MSR_HV) && freeze_events_kernel != MMCR0_FCHV)
218		return PERF_RECORD_MISC_HYPERVISOR;
219	return PERF_RECORD_MISC_KERNEL;
220}
221
222static inline u32 perf_get_misc_flags(struct pt_regs *regs)
223{
224	bool use_siar = regs_use_siar(regs);
225
226	if (!use_siar)
227		return perf_flags_from_msr(regs);
228
229	/*
230	 * If we don't have flags in MMCRA, rather than using
231	 * the MSR, we intuit the flags from the address in
232	 * SIAR which should give slightly more reliable
233	 * results
234	 */
235	if (ppmu->flags & PPMU_NO_SIPR) {
236		unsigned long siar = mfspr(SPRN_SIAR);
237		if (siar >= PAGE_OFFSET)
238			return PERF_RECORD_MISC_KERNEL;
239		return PERF_RECORD_MISC_USER;
240	}
241
242	/* PR has priority over HV, so order below is important */
243	if (regs_sipr(regs))
244		return PERF_RECORD_MISC_USER;
245
246	if (regs_sihv(regs) && (freeze_events_kernel != MMCR0_FCHV))
247		return PERF_RECORD_MISC_HYPERVISOR;
248
249	return PERF_RECORD_MISC_KERNEL;
250}
251
252/*
253 * Overload regs->dsisr to store MMCRA so we only need to read it once
254 * on each interrupt.
255 * Overload regs->dar to store SIER if we have it.
256 * Overload regs->result to specify whether we should use the MSR (result
257 * is zero) or the SIAR (result is non zero).
258 */
259static inline void perf_read_regs(struct pt_regs *regs)
260{
261	unsigned long mmcra = mfspr(SPRN_MMCRA);
262	int marked = mmcra & MMCRA_SAMPLE_ENABLE;
263	int use_siar;
264
265	regs->dsisr = mmcra;
266
267	if (ppmu->flags & PPMU_HAS_SIER)
268		regs->dar = mfspr(SPRN_SIER);
269
270	/*
271	 * If this isn't a PMU exception (eg a software event) the SIAR is
272	 * not valid. Use pt_regs.
273	 *
274	 * If it is a marked event use the SIAR.
275	 *
276	 * If the PMU doesn't update the SIAR for non marked events use
277	 * pt_regs.
278	 *
279	 * If the PMU has HV/PR flags then check to see if they
280	 * place the exception in userspace. If so, use pt_regs. In
281	 * continuous sampling mode the SIAR and the PMU exception are
282	 * not synchronised, so they may be many instructions apart.
283	 * This can result in confusing backtraces. We still want
284	 * hypervisor samples as well as samples in the kernel with
285	 * interrupts off hence the userspace check.
286	 */
287	if (TRAP(regs) != 0xf00)
288		use_siar = 0;
289	else if (marked)
290		use_siar = 1;
291	else if ((ppmu->flags & PPMU_NO_CONT_SAMPLING))
292		use_siar = 0;
293	else if (!(ppmu->flags & PPMU_NO_SIPR) && regs_sipr(regs))
294		use_siar = 0;
295	else
296		use_siar = 1;
297
298	regs->result = use_siar;
299}
300
301/*
302 * If interrupts were soft-disabled when a PMU interrupt occurs, treat
303 * it as an NMI.
304 */
305static inline int perf_intr_is_nmi(struct pt_regs *regs)
306{
307	return !regs->softe;
308}
309
310/*
311 * On processors like P7+ that have the SIAR-Valid bit, marked instructions
312 * must be sampled only if the SIAR-valid bit is set.
313 *
314 * For unmarked instructions and for processors that don't have the SIAR-Valid
315 * bit, assume that SIAR is valid.
316 */
317static inline int siar_valid(struct pt_regs *regs)
318{
319	unsigned long mmcra = regs->dsisr;
320	int marked = mmcra & MMCRA_SAMPLE_ENABLE;
321
322	if (marked) {
323		if (ppmu->flags & PPMU_HAS_SIER)
324			return regs->dar & SIER_SIAR_VALID;
325
326		if (ppmu->flags & PPMU_SIAR_VALID)
327			return mmcra & POWER7P_MMCRA_SIAR_VALID;
328	}
329
330	return 1;
331}
332
333
334/* Reset all possible BHRB entries */
335static void power_pmu_bhrb_reset(void)
336{
337	asm volatile(PPC_CLRBHRB);
338}
339
340static void power_pmu_bhrb_enable(struct perf_event *event)
341{
342	struct cpu_hw_events *cpuhw = &__get_cpu_var(cpu_hw_events);
343
344	if (!ppmu->bhrb_nr)
345		return;
346
347	/* Clear BHRB if we changed task context to avoid data leaks */
348	if (event->ctx->task && cpuhw->bhrb_context != event->ctx) {
349		power_pmu_bhrb_reset();
350		cpuhw->bhrb_context = event->ctx;
351	}
352	cpuhw->bhrb_users++;
353}
354
355static void power_pmu_bhrb_disable(struct perf_event *event)
356{
357	struct cpu_hw_events *cpuhw = &__get_cpu_var(cpu_hw_events);
358
359	if (!ppmu->bhrb_nr)
360		return;
361
362	cpuhw->bhrb_users--;
363	WARN_ON_ONCE(cpuhw->bhrb_users < 0);
364
365	if (!cpuhw->disabled && !cpuhw->bhrb_users) {
366		/* BHRB cannot be turned off when other
367		 * events are active on the PMU.
368		 */
369
370		/* avoid stale pointer */
371		cpuhw->bhrb_context = NULL;
372	}
373}
374
375/* Called from ctxsw to prevent one process's branch entries to
376 * mingle with the other process's entries during context switch.
377 */
378static void power_pmu_flush_branch_stack(void)
379{
380	if (ppmu->bhrb_nr)
381		power_pmu_bhrb_reset();
382}
383/* Calculate the to address for a branch */
384static __u64 power_pmu_bhrb_to(u64 addr)
385{
386	unsigned int instr;
387	int ret;
388	__u64 target;
389
390	if (is_kernel_addr(addr))
391		return branch_target((unsigned int *)addr);
392
393	/* Userspace: need copy instruction here then translate it */
394	pagefault_disable();
395	ret = __get_user_inatomic(instr, (unsigned int __user *)addr);
396	if (ret) {
397		pagefault_enable();
398		return 0;
399	}
400	pagefault_enable();
401
402	target = branch_target(&instr);
403	if ((!target) || (instr & BRANCH_ABSOLUTE))
404		return target;
405
406	/* Translate relative branch target from kernel to user address */
407	return target - (unsigned long)&instr + addr;
408}
409
410/* Processing BHRB entries */
411static void power_pmu_bhrb_read(struct cpu_hw_events *cpuhw)
412{
413	u64 val;
414	u64 addr;
415	int r_index, u_index, pred;
416
417	r_index = 0;
418	u_index = 0;
419	while (r_index < ppmu->bhrb_nr) {
420		/* Assembly read function */
421		val = read_bhrb(r_index++);
422		if (!val)
423			/* Terminal marker: End of valid BHRB entries */
424			break;
425		else {
426			addr = val & BHRB_EA;
427			pred = val & BHRB_PREDICTION;
428
429			if (!addr)
430				/* invalid entry */
431				continue;
432
433			/* Branches are read most recent first (ie. mfbhrb 0 is
434			 * the most recent branch).
435			 * There are two types of valid entries:
436			 * 1) a target entry which is the to address of a
437			 *    computed goto like a blr,bctr,btar.  The next
438			 *    entry read from the bhrb will be branch
439			 *    corresponding to this target (ie. the actual
440			 *    blr/bctr/btar instruction).
441			 * 2) a from address which is an actual branch.  If a
442			 *    target entry proceeds this, then this is the
443			 *    matching branch for that target.  If this is not
444			 *    following a target entry, then this is a branch
445			 *    where the target is given as an immediate field
446			 *    in the instruction (ie. an i or b form branch).
447			 *    In this case we need to read the instruction from
448			 *    memory to determine the target/to address.
449			 */
450
451			if (val & BHRB_TARGET) {
452				/* Target branches use two entries
453				 * (ie. computed gotos/XL form)
454				 */
455				cpuhw->bhrb_entries[u_index].to = addr;
456				cpuhw->bhrb_entries[u_index].mispred = pred;
457				cpuhw->bhrb_entries[u_index].predicted = ~pred;
458
459				/* Get from address in next entry */
460				val = read_bhrb(r_index++);
461				addr = val & BHRB_EA;
462				if (val & BHRB_TARGET) {
463					/* Shouldn't have two targets in a
464					   row.. Reset index and try again */
465					r_index--;
466					addr = 0;
467				}
468				cpuhw->bhrb_entries[u_index].from = addr;
469			} else {
470				/* Branches to immediate field
471				   (ie I or B form) */
472				cpuhw->bhrb_entries[u_index].from = addr;
473				cpuhw->bhrb_entries[u_index].to =
474					power_pmu_bhrb_to(addr);
475				cpuhw->bhrb_entries[u_index].mispred = pred;
476				cpuhw->bhrb_entries[u_index].predicted = ~pred;
477			}
478			u_index++;
479
480		}
481	}
482	cpuhw->bhrb_stack.nr = u_index;
483	return;
484}
485
486static bool is_ebb_event(struct perf_event *event)
487{
488	/*
489	 * This could be a per-PMU callback, but we'd rather avoid the cost. We
490	 * check that the PMU supports EBB, meaning those that don't can still
491	 * use bit 63 of the event code for something else if they wish.
492	 */
493	return (ppmu->flags & PPMU_ARCH_207S) &&
494	       ((event->attr.config >> PERF_EVENT_CONFIG_EBB_SHIFT) & 1);
495}
496
497static int ebb_event_check(struct perf_event *event)
498{
499	struct perf_event *leader = event->group_leader;
500
501	/* Event and group leader must agree on EBB */
502	if (is_ebb_event(leader) != is_ebb_event(event))
503		return -EINVAL;
504
505	if (is_ebb_event(event)) {
506		if (!(event->attach_state & PERF_ATTACH_TASK))
507			return -EINVAL;
508
509		if (!leader->attr.pinned || !leader->attr.exclusive)
510			return -EINVAL;
511
512		if (event->attr.freq ||
513		    event->attr.inherit ||
514		    event->attr.sample_type ||
515		    event->attr.sample_period ||
516		    event->attr.enable_on_exec)
517			return -EINVAL;
518	}
519
520	return 0;
521}
522
523static void ebb_event_add(struct perf_event *event)
524{
525	if (!is_ebb_event(event) || current->thread.used_ebb)
526		return;
527
528	/*
529	 * IFF this is the first time we've added an EBB event, set
530	 * PMXE in the user MMCR0 so we can detect when it's cleared by
531	 * userspace. We need this so that we can context switch while
532	 * userspace is in the EBB handler (where PMXE is 0).
533	 */
534	current->thread.used_ebb = 1;
535	current->thread.mmcr0 |= MMCR0_PMXE;
536}
537
538static void ebb_switch_out(unsigned long mmcr0)
539{
540	if (!(mmcr0 & MMCR0_EBE))
541		return;
542
543	current->thread.siar  = mfspr(SPRN_SIAR);
544	current->thread.sier  = mfspr(SPRN_SIER);
545	current->thread.sdar  = mfspr(SPRN_SDAR);
546	current->thread.mmcr0 = mmcr0 & MMCR0_USER_MASK;
547	current->thread.mmcr2 = mfspr(SPRN_MMCR2) & MMCR2_USER_MASK;
548}
549
550static unsigned long ebb_switch_in(bool ebb, struct cpu_hw_events *cpuhw)
551{
552	unsigned long mmcr0 = cpuhw->mmcr[0];
553
554	if (!ebb)
555		goto out;
556
557	/* Enable EBB and read/write to all 6 PMCs and BHRB for userspace */
558	mmcr0 |= MMCR0_EBE | MMCR0_BHRBA | MMCR0_PMCC_U6;
559
560	/*
561	 * Add any bits from the user MMCR0, FC or PMAO. This is compatible
562	 * with pmao_restore_workaround() because we may add PMAO but we never
563	 * clear it here.
564	 */
565	mmcr0 |= current->thread.mmcr0;
566
567	/*
568	 * Be careful not to set PMXE if userspace had it cleared. This is also
569	 * compatible with pmao_restore_workaround() because it has already
570	 * cleared PMXE and we leave PMAO alone.
571	 */
572	if (!(current->thread.mmcr0 & MMCR0_PMXE))
573		mmcr0 &= ~MMCR0_PMXE;
574
575	mtspr(SPRN_SIAR, current->thread.siar);
576	mtspr(SPRN_SIER, current->thread.sier);
577	mtspr(SPRN_SDAR, current->thread.sdar);
578
579	/*
580	 * Merge the kernel & user values of MMCR2. The semantics we implement
581	 * are that the user MMCR2 can set bits, ie. cause counters to freeze,
582	 * but not clear bits. If a task wants to be able to clear bits, ie.
583	 * unfreeze counters, it should not set exclude_xxx in its events and
584	 * instead manage the MMCR2 entirely by itself.
585	 */
586	mtspr(SPRN_MMCR2, cpuhw->mmcr[3] | current->thread.mmcr2);
587out:
588	return mmcr0;
589}
590
591static void pmao_restore_workaround(bool ebb)
592{
593	unsigned pmcs[6];
594
595	if (!cpu_has_feature(CPU_FTR_PMAO_BUG))
596		return;
597
598	/*
599	 * On POWER8E there is a hardware defect which affects the PMU context
600	 * switch logic, ie. power_pmu_disable/enable().
601	 *
602	 * When a counter overflows PMXE is cleared and FC/PMAO is set in MMCR0
603	 * by the hardware. Sometime later the actual PMU exception is
604	 * delivered.
605	 *
606	 * If we context switch, or simply disable/enable, the PMU prior to the
607	 * exception arriving, the exception will be lost when we clear PMAO.
608	 *
609	 * When we reenable the PMU, we will write the saved MMCR0 with PMAO
610	 * set, and this _should_ generate an exception. However because of the
611	 * defect no exception is generated when we write PMAO, and we get
612	 * stuck with no counters counting but no exception delivered.
613	 *
614	 * The workaround is to detect this case and tweak the hardware to
615	 * create another pending PMU exception.
616	 *
617	 * We do that by setting up PMC6 (cycles) for an imminent overflow and
618	 * enabling the PMU. That causes a new exception to be generated in the
619	 * chip, but we don't take it yet because we have interrupts hard
620	 * disabled. We then write back the PMU state as we want it to be seen
621	 * by the exception handler. When we reenable interrupts the exception
622	 * handler will be called and see the correct state.
623	 *
624	 * The logic is the same for EBB, except that the exception is gated by
625	 * us having interrupts hard disabled as well as the fact that we are
626	 * not in userspace. The exception is finally delivered when we return
627	 * to userspace.
628	 */
629
630	/* Only if PMAO is set and PMAO_SYNC is clear */
631	if ((current->thread.mmcr0 & (MMCR0_PMAO | MMCR0_PMAO_SYNC)) != MMCR0_PMAO)
632		return;
633
634	/* If we're doing EBB, only if BESCR[GE] is set */
635	if (ebb && !(current->thread.bescr & BESCR_GE))
636		return;
637
638	/*
639	 * We are already soft-disabled in power_pmu_enable(). We need to hard
640	 * enable to actually prevent the PMU exception from firing.
641	 */
642	hard_irq_disable();
643
644	/*
645	 * This is a bit gross, but we know we're on POWER8E and have 6 PMCs.
646	 * Using read/write_pmc() in a for loop adds 12 function calls and
647	 * almost doubles our code size.
648	 */
649	pmcs[0] = mfspr(SPRN_PMC1);
650	pmcs[1] = mfspr(SPRN_PMC2);
651	pmcs[2] = mfspr(SPRN_PMC3);
652	pmcs[3] = mfspr(SPRN_PMC4);
653	pmcs[4] = mfspr(SPRN_PMC5);
654	pmcs[5] = mfspr(SPRN_PMC6);
655
656	/* Ensure all freeze bits are unset */
657	mtspr(SPRN_MMCR2, 0);
658
659	/* Set up PMC6 to overflow in one cycle */
660	mtspr(SPRN_PMC6, 0x7FFFFFFE);
661
662	/* Enable exceptions and unfreeze PMC6 */
663	mtspr(SPRN_MMCR0, MMCR0_PMXE | MMCR0_PMCjCE | MMCR0_PMAO);
664
665	/* Now we need to refreeze and restore the PMCs */
666	mtspr(SPRN_MMCR0, MMCR0_FC | MMCR0_PMAO);
667
668	mtspr(SPRN_PMC1, pmcs[0]);
669	mtspr(SPRN_PMC2, pmcs[1]);
670	mtspr(SPRN_PMC3, pmcs[2]);
671	mtspr(SPRN_PMC4, pmcs[3]);
672	mtspr(SPRN_PMC5, pmcs[4]);
673	mtspr(SPRN_PMC6, pmcs[5]);
674}
675#endif /* CONFIG_PPC64 */
676
677static void perf_event_interrupt(struct pt_regs *regs);
678
679/*
680 * Read one performance monitor counter (PMC).
681 */
682static unsigned long read_pmc(int idx)
683{
684	unsigned long val;
685
686	switch (idx) {
687	case 1:
688		val = mfspr(SPRN_PMC1);
689		break;
690	case 2:
691		val = mfspr(SPRN_PMC2);
692		break;
693	case 3:
694		val = mfspr(SPRN_PMC3);
695		break;
696	case 4:
697		val = mfspr(SPRN_PMC4);
698		break;
699	case 5:
700		val = mfspr(SPRN_PMC5);
701		break;
702	case 6:
703		val = mfspr(SPRN_PMC6);
704		break;
705#ifdef CONFIG_PPC64
706	case 7:
707		val = mfspr(SPRN_PMC7);
708		break;
709	case 8:
710		val = mfspr(SPRN_PMC8);
711		break;
712#endif /* CONFIG_PPC64 */
713	default:
714		printk(KERN_ERR "oops trying to read PMC%d\n", idx);
715		val = 0;
716	}
717	return val;
718}
719
720/*
721 * Write one PMC.
722 */
723static void write_pmc(int idx, unsigned long val)
724{
725	switch (idx) {
726	case 1:
727		mtspr(SPRN_PMC1, val);
728		break;
729	case 2:
730		mtspr(SPRN_PMC2, val);
731		break;
732	case 3:
733		mtspr(SPRN_PMC3, val);
734		break;
735	case 4:
736		mtspr(SPRN_PMC4, val);
737		break;
738	case 5:
739		mtspr(SPRN_PMC5, val);
740		break;
741	case 6:
742		mtspr(SPRN_PMC6, val);
743		break;
744#ifdef CONFIG_PPC64
745	case 7:
746		mtspr(SPRN_PMC7, val);
747		break;
748	case 8:
749		mtspr(SPRN_PMC8, val);
750		break;
751#endif /* CONFIG_PPC64 */
752	default:
753		printk(KERN_ERR "oops trying to write PMC%d\n", idx);
754	}
755}
756
757/* Called from sysrq_handle_showregs() */
758void perf_event_print_debug(void)
759{
760	unsigned long sdar, sier, flags;
761	u32 pmcs[MAX_HWEVENTS];
762	int i;
763
764	if (!ppmu->n_counter)
765		return;
766
767	local_irq_save(flags);
768
769	pr_info("CPU: %d PMU registers, ppmu = %s n_counters = %d",
770		 smp_processor_id(), ppmu->name, ppmu->n_counter);
771
772	for (i = 0; i < ppmu->n_counter; i++)
773		pmcs[i] = read_pmc(i + 1);
774
775	for (; i < MAX_HWEVENTS; i++)
776		pmcs[i] = 0xdeadbeef;
777
778	pr_info("PMC1:  %08x PMC2: %08x PMC3: %08x PMC4: %08x\n",
779		 pmcs[0], pmcs[1], pmcs[2], pmcs[3]);
780
781	if (ppmu->n_counter > 4)
782		pr_info("PMC5:  %08x PMC6: %08x PMC7: %08x PMC8: %08x\n",
783			 pmcs[4], pmcs[5], pmcs[6], pmcs[7]);
784
785	pr_info("MMCR0: %016lx MMCR1: %016lx MMCRA: %016lx\n",
786		mfspr(SPRN_MMCR0), mfspr(SPRN_MMCR1), mfspr(SPRN_MMCRA));
787
788	sdar = sier = 0;
789#ifdef CONFIG_PPC64
790	sdar = mfspr(SPRN_SDAR);
791
792	if (ppmu->flags & PPMU_HAS_SIER)
793		sier = mfspr(SPRN_SIER);
794
795	if (ppmu->flags & PPMU_ARCH_207S) {
796		pr_info("MMCR2: %016lx EBBHR: %016lx\n",
797			mfspr(SPRN_MMCR2), mfspr(SPRN_EBBHR));
798		pr_info("EBBRR: %016lx BESCR: %016lx\n",
799			mfspr(SPRN_EBBRR), mfspr(SPRN_BESCR));
800	}
801#endif
802	pr_info("SIAR:  %016lx SDAR:  %016lx SIER:  %016lx\n",
803		mfspr(SPRN_SIAR), sdar, sier);
804
805	local_irq_restore(flags);
806}
807
808/*
809 * Check if a set of events can all go on the PMU at once.
810 * If they can't, this will look at alternative codes for the events
811 * and see if any combination of alternative codes is feasible.
812 * The feasible set is returned in event_id[].
813 */
814static int power_check_constraints(struct cpu_hw_events *cpuhw,
815				   u64 event_id[], unsigned int cflags[],
816				   int n_ev)
817{
818	unsigned long mask, value, nv;
819	unsigned long smasks[MAX_HWEVENTS], svalues[MAX_HWEVENTS];
820	int n_alt[MAX_HWEVENTS], choice[MAX_HWEVENTS];
821	int i, j;
822	unsigned long addf = ppmu->add_fields;
823	unsigned long tadd = ppmu->test_adder;
824
825	if (n_ev > ppmu->n_counter)
826		return -1;
827
828	/* First see if the events will go on as-is */
829	for (i = 0; i < n_ev; ++i) {
830		if ((cflags[i] & PPMU_LIMITED_PMC_REQD)
831		    && !ppmu->limited_pmc_event(event_id[i])) {
832			ppmu->get_alternatives(event_id[i], cflags[i],
833					       cpuhw->alternatives[i]);
834			event_id[i] = cpuhw->alternatives[i][0];
835		}
836		if (ppmu->get_constraint(event_id[i], &cpuhw->amasks[i][0],
837					 &cpuhw->avalues[i][0]))
838			return -1;
839	}
840	value = mask = 0;
841	for (i = 0; i < n_ev; ++i) {
842		nv = (value | cpuhw->avalues[i][0]) +
843			(value & cpuhw->avalues[i][0] & addf);
844		if ((((nv + tadd) ^ value) & mask) != 0 ||
845		    (((nv + tadd) ^ cpuhw->avalues[i][0]) &
846		     cpuhw->amasks[i][0]) != 0)
847			break;
848		value = nv;
849		mask |= cpuhw->amasks[i][0];
850	}
851	if (i == n_ev)
852		return 0;	/* all OK */
853
854	/* doesn't work, gather alternatives... */
855	if (!ppmu->get_alternatives)
856		return -1;
857	for (i = 0; i < n_ev; ++i) {
858		choice[i] = 0;
859		n_alt[i] = ppmu->get_alternatives(event_id[i], cflags[i],
860						  cpuhw->alternatives[i]);
861		for (j = 1; j < n_alt[i]; ++j)
862			ppmu->get_constraint(cpuhw->alternatives[i][j],
863					     &cpuhw->amasks[i][j],
864					     &cpuhw->avalues[i][j]);
865	}
866
867	/* enumerate all possibilities and see if any will work */
868	i = 0;
869	j = -1;
870	value = mask = nv = 0;
871	while (i < n_ev) {
872		if (j >= 0) {
873			/* we're backtracking, restore context */
874			value = svalues[i];
875			mask = smasks[i];
876			j = choice[i];
877		}
878		/*
879		 * See if any alternative k for event_id i,
880		 * where k > j, will satisfy the constraints.
881		 */
882		while (++j < n_alt[i]) {
883			nv = (value | cpuhw->avalues[i][j]) +
884				(value & cpuhw->avalues[i][j] & addf);
885			if ((((nv + tadd) ^ value) & mask) == 0 &&
886			    (((nv + tadd) ^ cpuhw->avalues[i][j])
887			     & cpuhw->amasks[i][j]) == 0)
888				break;
889		}
890		if (j >= n_alt[i]) {
891			/*
892			 * No feasible alternative, backtrack
893			 * to event_id i-1 and continue enumerating its
894			 * alternatives from where we got up to.
895			 */
896			if (--i < 0)
897				return -1;
898		} else {
899			/*
900			 * Found a feasible alternative for event_id i,
901			 * remember where we got up to with this event_id,
902			 * go on to the next event_id, and start with
903			 * the first alternative for it.
904			 */
905			choice[i] = j;
906			svalues[i] = value;
907			smasks[i] = mask;
908			value = nv;
909			mask |= cpuhw->amasks[i][j];
910			++i;
911			j = -1;
912		}
913	}
914
915	/* OK, we have a feasible combination, tell the caller the solution */
916	for (i = 0; i < n_ev; ++i)
917		event_id[i] = cpuhw->alternatives[i][choice[i]];
918	return 0;
919}
920
921/*
922 * Check if newly-added events have consistent settings for
923 * exclude_{user,kernel,hv} with each other and any previously
924 * added events.
925 */
926static int check_excludes(struct perf_event **ctrs, unsigned int cflags[],
927			  int n_prev, int n_new)
928{
929	int eu = 0, ek = 0, eh = 0;
930	int i, n, first;
931	struct perf_event *event;
932
933	/*
934	 * If the PMU we're on supports per event exclude settings then we
935	 * don't need to do any of this logic. NB. This assumes no PMU has both
936	 * per event exclude and limited PMCs.
937	 */
938	if (ppmu->flags & PPMU_ARCH_207S)
939		return 0;
940
941	n = n_prev + n_new;
942	if (n <= 1)
943		return 0;
944
945	first = 1;
946	for (i = 0; i < n; ++i) {
947		if (cflags[i] & PPMU_LIMITED_PMC_OK) {
948			cflags[i] &= ~PPMU_LIMITED_PMC_REQD;
949			continue;
950		}
951		event = ctrs[i];
952		if (first) {
953			eu = event->attr.exclude_user;
954			ek = event->attr.exclude_kernel;
955			eh = event->attr.exclude_hv;
956			first = 0;
957		} else if (event->attr.exclude_user != eu ||
958			   event->attr.exclude_kernel != ek ||
959			   event->attr.exclude_hv != eh) {
960			return -EAGAIN;
961		}
962	}
963
964	if (eu || ek || eh)
965		for (i = 0; i < n; ++i)
966			if (cflags[i] & PPMU_LIMITED_PMC_OK)
967				cflags[i] |= PPMU_LIMITED_PMC_REQD;
968
969	return 0;
970}
971
972static u64 check_and_compute_delta(u64 prev, u64 val)
973{
974	u64 delta = (val - prev) & 0xfffffffful;
975
976	/*
977	 * POWER7 can roll back counter values, if the new value is smaller
978	 * than the previous value it will cause the delta and the counter to
979	 * have bogus values unless we rolled a counter over.  If a coutner is
980	 * rolled back, it will be smaller, but within 256, which is the maximum
981	 * number of events to rollback at once.  If we dectect a rollback
982	 * return 0.  This can lead to a small lack of precision in the
983	 * counters.
984	 */
985	if (prev > val && (prev - val) < 256)
986		delta = 0;
987
988	return delta;
989}
990
991static void power_pmu_read(struct perf_event *event)
992{
993	s64 val, delta, prev;
994
995	if (event->hw.state & PERF_HES_STOPPED)
996		return;
997
998	if (!event->hw.idx)
999		return;
1000
1001	if (is_ebb_event(event)) {
1002		val = read_pmc(event->hw.idx);
1003		local64_set(&event->hw.prev_count, val);
1004		return;
1005	}
1006
1007	/*
1008	 * Performance monitor interrupts come even when interrupts
1009	 * are soft-disabled, as long as interrupts are hard-enabled.
1010	 * Therefore we treat them like NMIs.
1011	 */
1012	do {
1013		prev = local64_read(&event->hw.prev_count);
1014		barrier();
1015		val = read_pmc(event->hw.idx);
1016		delta = check_and_compute_delta(prev, val);
1017		if (!delta)
1018			return;
1019	} while (local64_cmpxchg(&event->hw.prev_count, prev, val) != prev);
1020
1021	local64_add(delta, &event->count);
1022
1023	/*
1024	 * A number of places program the PMC with (0x80000000 - period_left).
1025	 * We never want period_left to be less than 1 because we will program
1026	 * the PMC with a value >= 0x800000000 and an edge detected PMC will
1027	 * roll around to 0 before taking an exception. We have seen this
1028	 * on POWER8.
1029	 *
1030	 * To fix this, clamp the minimum value of period_left to 1.
1031	 */
1032	do {
1033		prev = local64_read(&event->hw.period_left);
1034		val = prev - delta;
1035		if (val < 1)
1036			val = 1;
1037	} while (local64_cmpxchg(&event->hw.period_left, prev, val) != prev);
1038}
1039
1040/*
1041 * On some machines, PMC5 and PMC6 can't be written, don't respect
1042 * the freeze conditions, and don't generate interrupts.  This tells
1043 * us if `event' is using such a PMC.
1044 */
1045static int is_limited_pmc(int pmcnum)
1046{
1047	return (ppmu->flags & PPMU_LIMITED_PMC5_6)
1048		&& (pmcnum == 5 || pmcnum == 6);
1049}
1050
1051static void freeze_limited_counters(struct cpu_hw_events *cpuhw,
1052				    unsigned long pmc5, unsigned long pmc6)
1053{
1054	struct perf_event *event;
1055	u64 val, prev, delta;
1056	int i;
1057
1058	for (i = 0; i < cpuhw->n_limited; ++i) {
1059		event = cpuhw->limited_counter[i];
1060		if (!event->hw.idx)
1061			continue;
1062		val = (event->hw.idx == 5) ? pmc5 : pmc6;
1063		prev = local64_read(&event->hw.prev_count);
1064		event->hw.idx = 0;
1065		delta = check_and_compute_delta(prev, val);
1066		if (delta)
1067			local64_add(delta, &event->count);
1068	}
1069}
1070
1071static void thaw_limited_counters(struct cpu_hw_events *cpuhw,
1072				  unsigned long pmc5, unsigned long pmc6)
1073{
1074	struct perf_event *event;
1075	u64 val, prev;
1076	int i;
1077
1078	for (i = 0; i < cpuhw->n_limited; ++i) {
1079		event = cpuhw->limited_counter[i];
1080		event->hw.idx = cpuhw->limited_hwidx[i];
1081		val = (event->hw.idx == 5) ? pmc5 : pmc6;
1082		prev = local64_read(&event->hw.prev_count);
1083		if (check_and_compute_delta(prev, val))
1084			local64_set(&event->hw.prev_count, val);
1085		perf_event_update_userpage(event);
1086	}
1087}
1088
1089/*
1090 * Since limited events don't respect the freeze conditions, we
1091 * have to read them immediately after freezing or unfreezing the
1092 * other events.  We try to keep the values from the limited
1093 * events as consistent as possible by keeping the delay (in
1094 * cycles and instructions) between freezing/unfreezing and reading
1095 * the limited events as small and consistent as possible.
1096 * Therefore, if any limited events are in use, we read them
1097 * both, and always in the same order, to minimize variability,
1098 * and do it inside the same asm that writes MMCR0.
1099 */
1100static void write_mmcr0(struct cpu_hw_events *cpuhw, unsigned long mmcr0)
1101{
1102	unsigned long pmc5, pmc6;
1103
1104	if (!cpuhw->n_limited) {
1105		mtspr(SPRN_MMCR0, mmcr0);
1106		return;
1107	}
1108
1109	/*
1110	 * Write MMCR0, then read PMC5 and PMC6 immediately.
1111	 * To ensure we don't get a performance monitor interrupt
1112	 * between writing MMCR0 and freezing/thawing the limited
1113	 * events, we first write MMCR0 with the event overflow
1114	 * interrupt enable bits turned off.
1115	 */
1116	asm volatile("mtspr %3,%2; mfspr %0,%4; mfspr %1,%5"
1117		     : "=&r" (pmc5), "=&r" (pmc6)
1118		     : "r" (mmcr0 & ~(MMCR0_PMC1CE | MMCR0_PMCjCE)),
1119		       "i" (SPRN_MMCR0),
1120		       "i" (SPRN_PMC5), "i" (SPRN_PMC6));
1121
1122	if (mmcr0 & MMCR0_FC)
1123		freeze_limited_counters(cpuhw, pmc5, pmc6);
1124	else
1125		thaw_limited_counters(cpuhw, pmc5, pmc6);
1126
1127	/*
1128	 * Write the full MMCR0 including the event overflow interrupt
1129	 * enable bits, if necessary.
1130	 */
1131	if (mmcr0 & (MMCR0_PMC1CE | MMCR0_PMCjCE))
1132		mtspr(SPRN_MMCR0, mmcr0);
1133}
1134
1135/*
1136 * Disable all events to prevent PMU interrupts and to allow
1137 * events to be added or removed.
1138 */
1139static void power_pmu_disable(struct pmu *pmu)
1140{
1141	struct cpu_hw_events *cpuhw;
1142	unsigned long flags, mmcr0, val;
1143
1144	if (!ppmu)
1145		return;
1146	local_irq_save(flags);
1147	cpuhw = &__get_cpu_var(cpu_hw_events);
1148
1149	if (!cpuhw->disabled) {
1150		/*
1151		 * Check if we ever enabled the PMU on this cpu.
1152		 */
1153		if (!cpuhw->pmcs_enabled) {
1154			ppc_enable_pmcs();
1155			cpuhw->pmcs_enabled = 1;
1156		}
1157
1158		/*
1159		 * Set the 'freeze counters' bit, clear EBE/BHRBA/PMCC/PMAO/FC56
1160		 */
1161		val  = mmcr0 = mfspr(SPRN_MMCR0);
1162		val |= MMCR0_FC;
1163		val &= ~(MMCR0_EBE | MMCR0_BHRBA | MMCR0_PMCC | MMCR0_PMAO |
1164			 MMCR0_FC56);
1165
1166		/*
1167		 * The barrier is to make sure the mtspr has been
1168		 * executed and the PMU has frozen the events etc.
1169		 * before we return.
1170		 */
1171		write_mmcr0(cpuhw, val);
1172		mb();
1173
1174		/*
1175		 * Disable instruction sampling if it was enabled
1176		 */
1177		if (cpuhw->mmcr[2] & MMCRA_SAMPLE_ENABLE) {
1178			mtspr(SPRN_MMCRA,
1179			      cpuhw->mmcr[2] & ~MMCRA_SAMPLE_ENABLE);
1180			mb();
1181		}
1182
1183		cpuhw->disabled = 1;
1184		cpuhw->n_added = 0;
1185
1186		ebb_switch_out(mmcr0);
1187	}
1188
1189	local_irq_restore(flags);
1190}
1191
1192/*
1193 * Re-enable all events if disable == 0.
1194 * If we were previously disabled and events were added, then
1195 * put the new config on the PMU.
1196 */
1197static void power_pmu_enable(struct pmu *pmu)
1198{
1199	struct perf_event *event;
1200	struct cpu_hw_events *cpuhw;
1201	unsigned long flags;
1202	long i;
1203	unsigned long val, mmcr0;
1204	s64 left;
1205	unsigned int hwc_index[MAX_HWEVENTS];
1206	int n_lim;
1207	int idx;
1208	bool ebb;
1209
1210	if (!ppmu)
1211		return;
1212	local_irq_save(flags);
1213
1214	cpuhw = &__get_cpu_var(cpu_hw_events);
1215	if (!cpuhw->disabled)
1216		goto out;
1217
1218	if (cpuhw->n_events == 0) {
1219		ppc_set_pmu_inuse(0);
1220		goto out;
1221	}
1222
1223	cpuhw->disabled = 0;
1224
1225	/*
1226	 * EBB requires an exclusive group and all events must have the EBB
1227	 * flag set, or not set, so we can just check a single event. Also we
1228	 * know we have at least one event.
1229	 */
1230	ebb = is_ebb_event(cpuhw->event[0]);
1231
1232	/*
1233	 * If we didn't change anything, or only removed events,
1234	 * no need to recalculate MMCR* settings and reset the PMCs.
1235	 * Just reenable the PMU with the current MMCR* settings
1236	 * (possibly updated for removal of events).
1237	 */
1238	if (!cpuhw->n_added) {
1239		mtspr(SPRN_MMCRA, cpuhw->mmcr[2] & ~MMCRA_SAMPLE_ENABLE);
1240		mtspr(SPRN_MMCR1, cpuhw->mmcr[1]);
1241		goto out_enable;
1242	}
1243
1244	/*
1245	 * Clear all MMCR settings and recompute them for the new set of events.
1246	 */
1247	memset(cpuhw->mmcr, 0, sizeof(cpuhw->mmcr));
1248
1249	if (ppmu->compute_mmcr(cpuhw->events, cpuhw->n_events, hwc_index,
1250			       cpuhw->mmcr, cpuhw->event)) {
1251		/* shouldn't ever get here */
1252		printk(KERN_ERR "oops compute_mmcr failed\n");
1253		goto out;
1254	}
1255
1256	if (!(ppmu->flags & PPMU_ARCH_207S)) {
1257		/*
1258		 * Add in MMCR0 freeze bits corresponding to the attr.exclude_*
1259		 * bits for the first event. We have already checked that all
1260		 * events have the same value for these bits as the first event.
1261		 */
1262		event = cpuhw->event[0];
1263		if (event->attr.exclude_user)
1264			cpuhw->mmcr[0] |= MMCR0_FCP;
1265		if (event->attr.exclude_kernel)
1266			cpuhw->mmcr[0] |= freeze_events_kernel;
1267		if (event->attr.exclude_hv)
1268			cpuhw->mmcr[0] |= MMCR0_FCHV;
1269	}
1270
1271	/*
1272	 * Write the new configuration to MMCR* with the freeze
1273	 * bit set and set the hardware events to their initial values.
1274	 * Then unfreeze the events.
1275	 */
1276	ppc_set_pmu_inuse(1);
1277	mtspr(SPRN_MMCRA, cpuhw->mmcr[2] & ~MMCRA_SAMPLE_ENABLE);
1278	mtspr(SPRN_MMCR1, cpuhw->mmcr[1]);
1279	mtspr(SPRN_MMCR0, (cpuhw->mmcr[0] & ~(MMCR0_PMC1CE | MMCR0_PMCjCE))
1280				| MMCR0_FC);
1281	if (ppmu->flags & PPMU_ARCH_207S)
1282		mtspr(SPRN_MMCR2, cpuhw->mmcr[3]);
1283
1284	/*
1285	 * Read off any pre-existing events that need to move
1286	 * to another PMC.
1287	 */
1288	for (i = 0; i < cpuhw->n_events; ++i) {
1289		event = cpuhw->event[i];
1290		if (event->hw.idx && event->hw.idx != hwc_index[i] + 1) {
1291			power_pmu_read(event);
1292			write_pmc(event->hw.idx, 0);
1293			event->hw.idx = 0;
1294		}
1295	}
1296
1297	/*
1298	 * Initialize the PMCs for all the new and moved events.
1299	 */
1300	cpuhw->n_limited = n_lim = 0;
1301	for (i = 0; i < cpuhw->n_events; ++i) {
1302		event = cpuhw->event[i];
1303		if (event->hw.idx)
1304			continue;
1305		idx = hwc_index[i] + 1;
1306		if (is_limited_pmc(idx)) {
1307			cpuhw->limited_counter[n_lim] = event;
1308			cpuhw->limited_hwidx[n_lim] = idx;
1309			++n_lim;
1310			continue;
1311		}
1312
1313		if (ebb)
1314			val = local64_read(&event->hw.prev_count);
1315		else {
1316			val = 0;
1317			if (event->hw.sample_period) {
1318				left = local64_read(&event->hw.period_left);
1319				if (left < 0x80000000L)
1320					val = 0x80000000L - left;
1321			}
1322			local64_set(&event->hw.prev_count, val);
1323		}
1324
1325		event->hw.idx = idx;
1326		if (event->hw.state & PERF_HES_STOPPED)
1327			val = 0;
1328		write_pmc(idx, val);
1329
1330		perf_event_update_userpage(event);
1331	}
1332	cpuhw->n_limited = n_lim;
1333	cpuhw->mmcr[0] |= MMCR0_PMXE | MMCR0_FCECE;
1334
1335 out_enable:
1336	pmao_restore_workaround(ebb);
1337
1338	mmcr0 = ebb_switch_in(ebb, cpuhw);
1339
1340	mb();
1341	if (cpuhw->bhrb_users)
1342		ppmu->config_bhrb(cpuhw->bhrb_filter);
1343
1344	write_mmcr0(cpuhw, mmcr0);
1345
1346	/*
1347	 * Enable instruction sampling if necessary
1348	 */
1349	if (cpuhw->mmcr[2] & MMCRA_SAMPLE_ENABLE) {
1350		mb();
1351		mtspr(SPRN_MMCRA, cpuhw->mmcr[2]);
1352	}
1353
1354 out:
1355
1356	local_irq_restore(flags);
1357}
1358
1359static int collect_events(struct perf_event *group, int max_count,
1360			  struct perf_event *ctrs[], u64 *events,
1361			  unsigned int *flags)
1362{
1363	int n = 0;
1364	struct perf_event *event;
1365
1366	if (!is_software_event(group)) {
1367		if (n >= max_count)
1368			return -1;
1369		ctrs[n] = group;
1370		flags[n] = group->hw.event_base;
1371		events[n++] = group->hw.config;
1372	}
1373	list_for_each_entry(event, &group->sibling_list, group_entry) {
1374		if (!is_software_event(event) &&
1375		    event->state != PERF_EVENT_STATE_OFF) {
1376			if (n >= max_count)
1377				return -1;
1378			ctrs[n] = event;
1379			flags[n] = event->hw.event_base;
1380			events[n++] = event->hw.config;
1381		}
1382	}
1383	return n;
1384}
1385
1386/*
1387 * Add a event to the PMU.
1388 * If all events are not already frozen, then we disable and
1389 * re-enable the PMU in order to get hw_perf_enable to do the
1390 * actual work of reconfiguring the PMU.
1391 */
1392static int power_pmu_add(struct perf_event *event, int ef_flags)
1393{
1394	struct cpu_hw_events *cpuhw;
1395	unsigned long flags;
1396	int n0;
1397	int ret = -EAGAIN;
1398
1399	local_irq_save(flags);
1400	perf_pmu_disable(event->pmu);
1401
1402	/*
1403	 * Add the event to the list (if there is room)
1404	 * and check whether the total set is still feasible.
1405	 */
1406	cpuhw = &__get_cpu_var(cpu_hw_events);
1407	n0 = cpuhw->n_events;
1408	if (n0 >= ppmu->n_counter)
1409		goto out;
1410	cpuhw->event[n0] = event;
1411	cpuhw->events[n0] = event->hw.config;
1412	cpuhw->flags[n0] = event->hw.event_base;
1413
1414	/*
1415	 * This event may have been disabled/stopped in record_and_restart()
1416	 * because we exceeded the ->event_limit. If re-starting the event,
1417	 * clear the ->hw.state (STOPPED and UPTODATE flags), so the user
1418	 * notification is re-enabled.
1419	 */
1420	if (!(ef_flags & PERF_EF_START))
1421		event->hw.state = PERF_HES_STOPPED | PERF_HES_UPTODATE;
1422	else
1423		event->hw.state = 0;
1424
1425	/*
1426	 * If group events scheduling transaction was started,
1427	 * skip the schedulability test here, it will be performed
1428	 * at commit time(->commit_txn) as a whole
1429	 */
1430	if (cpuhw->group_flag & PERF_EVENT_TXN)
1431		goto nocheck;
1432
1433	if (check_excludes(cpuhw->event, cpuhw->flags, n0, 1))
1434		goto out;
1435	if (power_check_constraints(cpuhw, cpuhw->events, cpuhw->flags, n0 + 1))
1436		goto out;
1437	event->hw.config = cpuhw->events[n0];
1438
1439nocheck:
1440	ebb_event_add(event);
1441
1442	++cpuhw->n_events;
1443	++cpuhw->n_added;
1444
1445	ret = 0;
1446 out:
1447	if (has_branch_stack(event)) {
1448		power_pmu_bhrb_enable(event);
1449		cpuhw->bhrb_filter = ppmu->bhrb_filter_map(
1450					event->attr.branch_sample_type);
1451	}
1452
1453	perf_pmu_enable(event->pmu);
1454	local_irq_restore(flags);
1455	return ret;
1456}
1457
1458/*
1459 * Remove a event from the PMU.
1460 */
1461static void power_pmu_del(struct perf_event *event, int ef_flags)
1462{
1463	struct cpu_hw_events *cpuhw;
1464	long i;
1465	unsigned long flags;
1466
1467	local_irq_save(flags);
1468	perf_pmu_disable(event->pmu);
1469
1470	power_pmu_read(event);
1471
1472	cpuhw = &__get_cpu_var(cpu_hw_events);
1473	for (i = 0; i < cpuhw->n_events; ++i) {
1474		if (event == cpuhw->event[i]) {
1475			while (++i < cpuhw->n_events) {
1476				cpuhw->event[i-1] = cpuhw->event[i];
1477				cpuhw->events[i-1] = cpuhw->events[i];
1478				cpuhw->flags[i-1] = cpuhw->flags[i];
1479			}
1480			--cpuhw->n_events;
1481			ppmu->disable_pmc(event->hw.idx - 1, cpuhw->mmcr);
1482			if (event->hw.idx) {
1483				write_pmc(event->hw.idx, 0);
1484				event->hw.idx = 0;
1485			}
1486			perf_event_update_userpage(event);
1487			break;
1488		}
1489	}
1490	for (i = 0; i < cpuhw->n_limited; ++i)
1491		if (event == cpuhw->limited_counter[i])
1492			break;
1493	if (i < cpuhw->n_limited) {
1494		while (++i < cpuhw->n_limited) {
1495			cpuhw->limited_counter[i-1] = cpuhw->limited_counter[i];
1496			cpuhw->limited_hwidx[i-1] = cpuhw->limited_hwidx[i];
1497		}
1498		--cpuhw->n_limited;
1499	}
1500	if (cpuhw->n_events == 0) {
1501		/* disable exceptions if no events are running */
1502		cpuhw->mmcr[0] &= ~(MMCR0_PMXE | MMCR0_FCECE);
1503	}
1504
1505	if (has_branch_stack(event))
1506		power_pmu_bhrb_disable(event);
1507
1508	perf_pmu_enable(event->pmu);
1509	local_irq_restore(flags);
1510}
1511
1512/*
1513 * POWER-PMU does not support disabling individual counters, hence
1514 * program their cycle counter to their max value and ignore the interrupts.
1515 */
1516
1517static void power_pmu_start(struct perf_event *event, int ef_flags)
1518{
1519	unsigned long flags;
1520	s64 left;
1521	unsigned long val;
1522
1523	if (!event->hw.idx || !event->hw.sample_period)
1524		return;
1525
1526	if (!(event->hw.state & PERF_HES_STOPPED))
1527		return;
1528
1529	if (ef_flags & PERF_EF_RELOAD)
1530		WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));
1531
1532	local_irq_save(flags);
1533	perf_pmu_disable(event->pmu);
1534
1535	event->hw.state = 0;
1536	left = local64_read(&event->hw.period_left);
1537
1538	val = 0;
1539	if (left < 0x80000000L)
1540		val = 0x80000000L - left;
1541
1542	write_pmc(event->hw.idx, val);
1543
1544	perf_event_update_userpage(event);
1545	perf_pmu_enable(event->pmu);
1546	local_irq_restore(flags);
1547}
1548
1549static void power_pmu_stop(struct perf_event *event, int ef_flags)
1550{
1551	unsigned long flags;
1552
1553	if (!event->hw.idx || !event->hw.sample_period)
1554		return;
1555
1556	if (event->hw.state & PERF_HES_STOPPED)
1557		return;
1558
1559	local_irq_save(flags);
1560	perf_pmu_disable(event->pmu);
1561
1562	power_pmu_read(event);
1563	event->hw.state |= PERF_HES_STOPPED | PERF_HES_UPTODATE;
1564	write_pmc(event->hw.idx, 0);
1565
1566	perf_event_update_userpage(event);
1567	perf_pmu_enable(event->pmu);
1568	local_irq_restore(flags);
1569}
1570
1571/*
1572 * Start group events scheduling transaction
1573 * Set the flag to make pmu::enable() not perform the
1574 * schedulability test, it will be performed at commit time
1575 */
1576static void power_pmu_start_txn(struct pmu *pmu)
1577{
1578	struct cpu_hw_events *cpuhw = &__get_cpu_var(cpu_hw_events);
1579
1580	perf_pmu_disable(pmu);
1581	cpuhw->group_flag |= PERF_EVENT_TXN;
1582	cpuhw->n_txn_start = cpuhw->n_events;
1583}
1584
1585/*
1586 * Stop group events scheduling transaction
1587 * Clear the flag and pmu::enable() will perform the
1588 * schedulability test.
1589 */
1590static void power_pmu_cancel_txn(struct pmu *pmu)
1591{
1592	struct cpu_hw_events *cpuhw = &__get_cpu_var(cpu_hw_events);
1593
1594	cpuhw->group_flag &= ~PERF_EVENT_TXN;
1595	perf_pmu_enable(pmu);
1596}
1597
1598/*
1599 * Commit group events scheduling transaction
1600 * Perform the group schedulability test as a whole
1601 * Return 0 if success
1602 */
1603static int power_pmu_commit_txn(struct pmu *pmu)
1604{
1605	struct cpu_hw_events *cpuhw;
1606	long i, n;
1607
1608	if (!ppmu)
1609		return -EAGAIN;
1610	cpuhw = &__get_cpu_var(cpu_hw_events);
1611	n = cpuhw->n_events;
1612	if (check_excludes(cpuhw->event, cpuhw->flags, 0, n))
1613		return -EAGAIN;
1614	i = power_check_constraints(cpuhw, cpuhw->events, cpuhw->flags, n);
1615	if (i < 0)
1616		return -EAGAIN;
1617
1618	for (i = cpuhw->n_txn_start; i < n; ++i)
1619		cpuhw->event[i]->hw.config = cpuhw->events[i];
1620
1621	cpuhw->group_flag &= ~PERF_EVENT_TXN;
1622	perf_pmu_enable(pmu);
1623	return 0;
1624}
1625
1626/*
1627 * Return 1 if we might be able to put event on a limited PMC,
1628 * or 0 if not.
1629 * A event can only go on a limited PMC if it counts something
1630 * that a limited PMC can count, doesn't require interrupts, and
1631 * doesn't exclude any processor mode.
1632 */
1633static int can_go_on_limited_pmc(struct perf_event *event, u64 ev,
1634				 unsigned int flags)
1635{
1636	int n;
1637	u64 alt[MAX_EVENT_ALTERNATIVES];
1638
1639	if (event->attr.exclude_user
1640	    || event->attr.exclude_kernel
1641	    || event->attr.exclude_hv
1642	    || event->attr.sample_period)
1643		return 0;
1644
1645	if (ppmu->limited_pmc_event(ev))
1646		return 1;
1647
1648	/*
1649	 * The requested event_id isn't on a limited PMC already;
1650	 * see if any alternative code goes on a limited PMC.
1651	 */
1652	if (!ppmu->get_alternatives)
1653		return 0;
1654
1655	flags |= PPMU_LIMITED_PMC_OK | PPMU_LIMITED_PMC_REQD;
1656	n = ppmu->get_alternatives(ev, flags, alt);
1657
1658	return n > 0;
1659}
1660
1661/*
1662 * Find an alternative event_id that goes on a normal PMC, if possible,
1663 * and return the event_id code, or 0 if there is no such alternative.
1664 * (Note: event_id code 0 is "don't count" on all machines.)
1665 */
1666static u64 normal_pmc_alternative(u64 ev, unsigned long flags)
1667{
1668	u64 alt[MAX_EVENT_ALTERNATIVES];
1669	int n;
1670
1671	flags &= ~(PPMU_LIMITED_PMC_OK | PPMU_LIMITED_PMC_REQD);
1672	n = ppmu->get_alternatives(ev, flags, alt);
1673	if (!n)
1674		return 0;
1675	return alt[0];
1676}
1677
1678/* Number of perf_events counting hardware events */
1679static atomic_t num_events;
1680/* Used to avoid races in calling reserve/release_pmc_hardware */
1681static DEFINE_MUTEX(pmc_reserve_mutex);
1682
1683/*
1684 * Release the PMU if this is the last perf_event.
1685 */
1686static void hw_perf_event_destroy(struct perf_event *event)
1687{
1688	if (!atomic_add_unless(&num_events, -1, 1)) {
1689		mutex_lock(&pmc_reserve_mutex);
1690		if (atomic_dec_return(&num_events) == 0)
1691			release_pmc_hardware();
1692		mutex_unlock(&pmc_reserve_mutex);
1693	}
1694}
1695
1696/*
1697 * Translate a generic cache event_id config to a raw event_id code.
1698 */
1699static int hw_perf_cache_event(u64 config, u64 *eventp)
1700{
1701	unsigned long type, op, result;
1702	int ev;
1703
1704	if (!ppmu->cache_events)
1705		return -EINVAL;
1706
1707	/* unpack config */
1708	type = config & 0xff;
1709	op = (config >> 8) & 0xff;
1710	result = (config >> 16) & 0xff;
1711
1712	if (type >= PERF_COUNT_HW_CACHE_MAX ||
1713	    op >= PERF_COUNT_HW_CACHE_OP_MAX ||
1714	    result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
1715		return -EINVAL;
1716
1717	ev = (*ppmu->cache_events)[type][op][result];
1718	if (ev == 0)
1719		return -EOPNOTSUPP;
1720	if (ev == -1)
1721		return -EINVAL;
1722	*eventp = ev;
1723	return 0;
1724}
1725
1726static int power_pmu_event_init(struct perf_event *event)
1727{
1728	u64 ev;
1729	unsigned long flags;
1730	struct perf_event *ctrs[MAX_HWEVENTS];
1731	u64 events[MAX_HWEVENTS];
1732	unsigned int cflags[MAX_HWEVENTS];
1733	int n;
1734	int err;
1735	struct cpu_hw_events *cpuhw;
1736
1737	if (!ppmu)
1738		return -ENOENT;
1739
1740	if (has_branch_stack(event)) {
1741	        /* PMU has BHRB enabled */
1742		if (!(ppmu->flags & PPMU_ARCH_207S))
1743			return -EOPNOTSUPP;
1744	}
1745
1746	switch (event->attr.type) {
1747	case PERF_TYPE_HARDWARE:
1748		ev = event->attr.config;
1749		if (ev >= ppmu->n_generic || ppmu->generic_events[ev] == 0)
1750			return -EOPNOTSUPP;
1751		ev = ppmu->generic_events[ev];
1752		break;
1753	case PERF_TYPE_HW_CACHE:
1754		err = hw_perf_cache_event(event->attr.config, &ev);
1755		if (err)
1756			return err;
1757		break;
1758	case PERF_TYPE_RAW:
1759		ev = event->attr.config;
1760		break;
1761	default:
1762		return -ENOENT;
1763	}
1764
1765	event->hw.config_base = ev;
1766	event->hw.idx = 0;
1767
1768	/*
1769	 * If we are not running on a hypervisor, force the
1770	 * exclude_hv bit to 0 so that we don't care what
1771	 * the user set it to.
1772	 */
1773	if (!firmware_has_feature(FW_FEATURE_LPAR))
1774		event->attr.exclude_hv = 0;
1775
1776	/*
1777	 * If this is a per-task event, then we can use
1778	 * PM_RUN_* events interchangeably with their non RUN_*
1779	 * equivalents, e.g. PM_RUN_CYC instead of PM_CYC.
1780	 * XXX we should check if the task is an idle task.
1781	 */
1782	flags = 0;
1783	if (event->attach_state & PERF_ATTACH_TASK)
1784		flags |= PPMU_ONLY_COUNT_RUN;
1785
1786	/*
1787	 * If this machine has limited events, check whether this
1788	 * event_id could go on a limited event.
1789	 */
1790	if (ppmu->flags & PPMU_LIMITED_PMC5_6) {
1791		if (can_go_on_limited_pmc(event, ev, flags)) {
1792			flags |= PPMU_LIMITED_PMC_OK;
1793		} else if (ppmu->limited_pmc_event(ev)) {
1794			/*
1795			 * The requested event_id is on a limited PMC,
1796			 * but we can't use a limited PMC; see if any
1797			 * alternative goes on a normal PMC.
1798			 */
1799			ev = normal_pmc_alternative(ev, flags);
1800			if (!ev)
1801				return -EINVAL;
1802		}
1803	}
1804
1805	/* Extra checks for EBB */
1806	err = ebb_event_check(event);
1807	if (err)
1808		return err;
1809
1810	/*
1811	 * If this is in a group, check if it can go on with all the
1812	 * other hardware events in the group.  We assume the event
1813	 * hasn't been linked into its leader's sibling list at this point.
1814	 */
1815	n = 0;
1816	if (event->group_leader != event) {
1817		n = collect_events(event->group_leader, ppmu->n_counter - 1,
1818				   ctrs, events, cflags);
1819		if (n < 0)
1820			return -EINVAL;
1821	}
1822	events[n] = ev;
1823	ctrs[n] = event;
1824	cflags[n] = flags;
1825	if (check_excludes(ctrs, cflags, n, 1))
1826		return -EINVAL;
1827
1828	cpuhw = &get_cpu_var(cpu_hw_events);
1829	err = power_check_constraints(cpuhw, events, cflags, n + 1);
1830
1831	if (has_branch_stack(event)) {
1832		cpuhw->bhrb_filter = ppmu->bhrb_filter_map(
1833					event->attr.branch_sample_type);
1834
1835		if(cpuhw->bhrb_filter == -1)
1836			return -EOPNOTSUPP;
1837	}
1838
1839	put_cpu_var(cpu_hw_events);
1840	if (err)
1841		return -EINVAL;
1842
1843	event->hw.config = events[n];
1844	event->hw.event_base = cflags[n];
1845	event->hw.last_period = event->hw.sample_period;
1846	local64_set(&event->hw.period_left, event->hw.last_period);
1847
1848	/*
1849	 * For EBB events we just context switch the PMC value, we don't do any
1850	 * of the sample_period logic. We use hw.prev_count for this.
1851	 */
1852	if (is_ebb_event(event))
1853		local64_set(&event->hw.prev_count, 0);
1854
1855	/*
1856	 * See if we need to reserve the PMU.
1857	 * If no events are currently in use, then we have to take a
1858	 * mutex to ensure that we don't race with another task doing
1859	 * reserve_pmc_hardware or release_pmc_hardware.
1860	 */
1861	err = 0;
1862	if (!atomic_inc_not_zero(&num_events)) {
1863		mutex_lock(&pmc_reserve_mutex);
1864		if (atomic_read(&num_events) == 0 &&
1865		    reserve_pmc_hardware(perf_event_interrupt))
1866			err = -EBUSY;
1867		else
1868			atomic_inc(&num_events);
1869		mutex_unlock(&pmc_reserve_mutex);
1870	}
1871	event->destroy = hw_perf_event_destroy;
1872
1873	return err;
1874}
1875
1876static int power_pmu_event_idx(struct perf_event *event)
1877{
1878	return event->hw.idx;
1879}
1880
1881ssize_t power_events_sysfs_show(struct device *dev,
1882				struct device_attribute *attr, char *page)
1883{
1884	struct perf_pmu_events_attr *pmu_attr;
1885
1886	pmu_attr = container_of(attr, struct perf_pmu_events_attr, attr);
1887
1888	return sprintf(page, "event=0x%02llx\n", pmu_attr->id);
1889}
1890
1891static struct pmu power_pmu = {
1892	.pmu_enable	= power_pmu_enable,
1893	.pmu_disable	= power_pmu_disable,
1894	.event_init	= power_pmu_event_init,
1895	.add		= power_pmu_add,
1896	.del		= power_pmu_del,
1897	.start		= power_pmu_start,
1898	.stop		= power_pmu_stop,
1899	.read		= power_pmu_read,
1900	.start_txn	= power_pmu_start_txn,
1901	.cancel_txn	= power_pmu_cancel_txn,
1902	.commit_txn	= power_pmu_commit_txn,
1903	.event_idx	= power_pmu_event_idx,
1904	.flush_branch_stack = power_pmu_flush_branch_stack,
1905};
1906
1907/*
1908 * A counter has overflowed; update its count and record
1909 * things if requested.  Note that interrupts are hard-disabled
1910 * here so there is no possibility of being interrupted.
1911 */
1912static void record_and_restart(struct perf_event *event, unsigned long val,
1913			       struct pt_regs *regs)
1914{
1915	u64 period = event->hw.sample_period;
1916	s64 prev, delta, left;
1917	int record = 0;
1918
1919	if (event->hw.state & PERF_HES_STOPPED) {
1920		write_pmc(event->hw.idx, 0);
1921		return;
1922	}
1923
1924	/* we don't have to worry about interrupts here */
1925	prev = local64_read(&event->hw.prev_count);
1926	delta = check_and_compute_delta(prev, val);
1927	local64_add(delta, &event->count);
1928
1929	/*
1930	 * See if the total period for this event has expired,
1931	 * and update for the next period.
1932	 */
1933	val = 0;
1934	left = local64_read(&event->hw.period_left) - delta;
1935	if (delta == 0)
1936		left++;
1937	if (period) {
1938		if (left <= 0) {
1939			left += period;
1940			if (left <= 0)
1941				left = period;
1942			record = siar_valid(regs);
1943			event->hw.last_period = event->hw.sample_period;
1944		}
1945		if (left < 0x80000000LL)
1946			val = 0x80000000LL - left;
1947	}
1948
1949	write_pmc(event->hw.idx, val);
1950	local64_set(&event->hw.prev_count, val);
1951	local64_set(&event->hw.period_left, left);
1952	perf_event_update_userpage(event);
1953
1954	/*
1955	 * Finally record data if requested.
1956	 */
1957	if (record) {
1958		struct perf_sample_data data;
1959
1960		perf_sample_data_init(&data, ~0ULL, event->hw.last_period);
1961
1962		if (event->attr.sample_type & PERF_SAMPLE_ADDR)
1963			perf_get_data_addr(regs, &data.addr);
1964
1965		if (event->attr.sample_type & PERF_SAMPLE_BRANCH_STACK) {
1966			struct cpu_hw_events *cpuhw;
1967			cpuhw = &__get_cpu_var(cpu_hw_events);
1968			power_pmu_bhrb_read(cpuhw);
1969			data.br_stack = &cpuhw->bhrb_stack;
1970		}
1971
1972		if (perf_event_overflow(event, &data, regs))
1973			power_pmu_stop(event, 0);
1974	}
1975}
1976
1977/*
1978 * Called from generic code to get the misc flags (i.e. processor mode)
1979 * for an event_id.
1980 */
1981unsigned long perf_misc_flags(struct pt_regs *regs)
1982{
1983	u32 flags = perf_get_misc_flags(regs);
1984
1985	if (flags)
1986		return flags;
1987	return user_mode(regs) ? PERF_RECORD_MISC_USER :
1988		PERF_RECORD_MISC_KERNEL;
1989}
1990
1991/*
1992 * Called from generic code to get the instruction pointer
1993 * for an event_id.
1994 */
1995unsigned long perf_instruction_pointer(struct pt_regs *regs)
1996{
1997	bool use_siar = regs_use_siar(regs);
1998
1999	if (use_siar && siar_valid(regs))
2000		return mfspr(SPRN_SIAR) + perf_ip_adjust(regs);
2001	else if (use_siar)
2002		return 0;		// no valid instruction pointer
2003	else
2004		return regs->nip;
2005}
2006
2007static bool pmc_overflow_power7(unsigned long val)
2008{
2009	/*
2010	 * Events on POWER7 can roll back if a speculative event doesn't
2011	 * eventually complete. Unfortunately in some rare cases they will
2012	 * raise a performance monitor exception. We need to catch this to
2013	 * ensure we reset the PMC. In all cases the PMC will be 256 or less
2014	 * cycles from overflow.
2015	 *
2016	 * We only do this if the first pass fails to find any overflowing
2017	 * PMCs because a user might set a period of less than 256 and we
2018	 * don't want to mistakenly reset them.
2019	 */
2020	if ((0x80000000 - val) <= 256)
2021		return true;
2022
2023	return false;
2024}
2025
2026static bool pmc_overflow(unsigned long val)
2027{
2028	if ((int)val < 0)
2029		return true;
2030
2031	return false;
2032}
2033
2034/*
2035 * Performance monitor interrupt stuff
2036 */
2037static void perf_event_interrupt(struct pt_regs *regs)
2038{
2039	int i, j;
2040	struct cpu_hw_events *cpuhw = &__get_cpu_var(cpu_hw_events);
2041	struct perf_event *event;
2042	unsigned long val[8];
2043	int found, active;
2044	int nmi;
2045
2046	if (cpuhw->n_limited)
2047		freeze_limited_counters(cpuhw, mfspr(SPRN_PMC5),
2048					mfspr(SPRN_PMC6));
2049
2050	perf_read_regs(regs);
2051
2052	nmi = perf_intr_is_nmi(regs);
2053	if (nmi)
2054		nmi_enter();
2055	else
2056		irq_enter();
2057
2058	/* Read all the PMCs since we'll need them a bunch of times */
2059	for (i = 0; i < ppmu->n_counter; ++i)
2060		val[i] = read_pmc(i + 1);
2061
2062	/* Try to find what caused the IRQ */
2063	found = 0;
2064	for (i = 0; i < ppmu->n_counter; ++i) {
2065		if (!pmc_overflow(val[i]))
2066			continue;
2067		if (is_limited_pmc(i + 1))
2068			continue; /* these won't generate IRQs */
2069		/*
2070		 * We've found one that's overflowed.  For active
2071		 * counters we need to log this.  For inactive
2072		 * counters, we need to reset it anyway
2073		 */
2074		found = 1;
2075		active = 0;
2076		for (j = 0; j < cpuhw->n_events; ++j) {
2077			event = cpuhw->event[j];
2078			if (event->hw.idx == (i + 1)) {
2079				active = 1;
2080				record_and_restart(event, val[i], regs);
2081				break;
2082			}
2083		}
2084		if (!active)
2085			/* reset non active counters that have overflowed */
2086			write_pmc(i + 1, 0);
2087	}
2088	if (!found && pvr_version_is(PVR_POWER7)) {
2089		/* check active counters for special buggy p7 overflow */
2090		for (i = 0; i < cpuhw->n_events; ++i) {
2091			event = cpuhw->event[i];
2092			if (!event->hw.idx || is_limited_pmc(event->hw.idx))
2093				continue;
2094			if (pmc_overflow_power7(val[event->hw.idx - 1])) {
2095				/* event has overflowed in a buggy way*/
2096				found = 1;
2097				record_and_restart(event,
2098						   val[event->hw.idx - 1],
2099						   regs);
2100			}
2101		}
2102	}
2103	if (!found && !nmi && printk_ratelimit())
2104		printk(KERN_WARNING "Can't find PMC that caused IRQ\n");
2105
2106	/*
2107	 * Reset MMCR0 to its normal value.  This will set PMXE and
2108	 * clear FC (freeze counters) and PMAO (perf mon alert occurred)
2109	 * and thus allow interrupts to occur again.
2110	 * XXX might want to use MSR.PM to keep the events frozen until
2111	 * we get back out of this interrupt.
2112	 */
2113	write_mmcr0(cpuhw, cpuhw->mmcr[0]);
2114
2115	if (nmi)
2116		nmi_exit();
2117	else
2118		irq_exit();
2119}
2120
2121static void power_pmu_setup(int cpu)
2122{
2123	struct cpu_hw_events *cpuhw = &per_cpu(cpu_hw_events, cpu);
2124
2125	if (!ppmu)
2126		return;
2127	memset(cpuhw, 0, sizeof(*cpuhw));
2128	cpuhw->mmcr[0] = MMCR0_FC;
2129}
2130
2131static int
2132power_pmu_notifier(struct notifier_block *self, unsigned long action, void *hcpu)
2133{
2134	unsigned int cpu = (long)hcpu;
2135
2136	switch (action & ~CPU_TASKS_FROZEN) {
2137	case CPU_UP_PREPARE:
2138		power_pmu_setup(cpu);
2139		break;
2140
2141	default:
2142		break;
2143	}
2144
2145	return NOTIFY_OK;
2146}
2147
2148int register_power_pmu(struct power_pmu *pmu)
2149{
2150	if (ppmu)
2151		return -EBUSY;		/* something's already registered */
2152
2153	ppmu = pmu;
2154	pr_info("%s performance monitor hardware support registered\n",
2155		pmu->name);
2156
2157	power_pmu.attr_groups = ppmu->attr_groups;
2158
2159#ifdef MSR_HV
2160	/*
2161	 * Use FCHV to ignore kernel events if MSR.HV is set.
2162	 */
2163	if (mfmsr() & MSR_HV)
2164		freeze_events_kernel = MMCR0_FCHV;
2165#endif /* CONFIG_PPC64 */
2166
2167	perf_pmu_register(&power_pmu, "cpu", PERF_TYPE_RAW);
2168	perf_cpu_notifier(power_pmu_notifier);
2169
2170	return 0;
2171}
2172