1/* irq.c: UltraSparc IRQ handling/init/registry.
2 *
3 * Copyright (C) 1997, 2007, 2008 David S. Miller (davem@davemloft.net)
4 * Copyright (C) 1998  Eddie C. Dost    (ecd@skynet.be)
5 * Copyright (C) 1998  Jakub Jelinek    (jj@ultra.linux.cz)
6 */
7
8#include <linux/sched.h>
9#include <linux/linkage.h>
10#include <linux/ptrace.h>
11#include <linux/errno.h>
12#include <linux/kernel_stat.h>
13#include <linux/signal.h>
14#include <linux/mm.h>
15#include <linux/interrupt.h>
16#include <linux/slab.h>
17#include <linux/random.h>
18#include <linux/init.h>
19#include <linux/delay.h>
20#include <linux/proc_fs.h>
21#include <linux/seq_file.h>
22#include <linux/ftrace.h>
23#include <linux/irq.h>
24#include <linux/kmemleak.h>
25
26#include <asm/ptrace.h>
27#include <asm/processor.h>
28#include <linux/atomic.h>
29#include <asm/irq.h>
30#include <asm/io.h>
31#include <asm/iommu.h>
32#include <asm/upa.h>
33#include <asm/oplib.h>
34#include <asm/prom.h>
35#include <asm/timer.h>
36#include <asm/smp.h>
37#include <asm/starfire.h>
38#include <asm/uaccess.h>
39#include <asm/cache.h>
40#include <asm/cpudata.h>
41#include <asm/auxio.h>
42#include <asm/head.h>
43#include <asm/hypervisor.h>
44#include <asm/cacheflush.h>
45
46#include "entry.h"
47#include "cpumap.h"
48#include "kstack.h"
49
50struct ino_bucket *ivector_table;
51unsigned long ivector_table_pa;
52
53/* On several sun4u processors, it is illegal to mix bypass and
54 * non-bypass accesses.  Therefore we access all INO buckets
55 * using bypass accesses only.
56 */
57static unsigned long bucket_get_chain_pa(unsigned long bucket_pa)
58{
59	unsigned long ret;
60
61	__asm__ __volatile__("ldxa	[%1] %2, %0"
62			     : "=&r" (ret)
63			     : "r" (bucket_pa +
64				    offsetof(struct ino_bucket,
65					     __irq_chain_pa)),
66			       "i" (ASI_PHYS_USE_EC));
67
68	return ret;
69}
70
71static void bucket_clear_chain_pa(unsigned long bucket_pa)
72{
73	__asm__ __volatile__("stxa	%%g0, [%0] %1"
74			     : /* no outputs */
75			     : "r" (bucket_pa +
76				    offsetof(struct ino_bucket,
77					     __irq_chain_pa)),
78			       "i" (ASI_PHYS_USE_EC));
79}
80
81static unsigned int bucket_get_irq(unsigned long bucket_pa)
82{
83	unsigned int ret;
84
85	__asm__ __volatile__("lduwa	[%1] %2, %0"
86			     : "=&r" (ret)
87			     : "r" (bucket_pa +
88				    offsetof(struct ino_bucket,
89					     __irq)),
90			       "i" (ASI_PHYS_USE_EC));
91
92	return ret;
93}
94
95static void bucket_set_irq(unsigned long bucket_pa, unsigned int irq)
96{
97	__asm__ __volatile__("stwa	%0, [%1] %2"
98			     : /* no outputs */
99			     : "r" (irq),
100			       "r" (bucket_pa +
101				    offsetof(struct ino_bucket,
102					     __irq)),
103			       "i" (ASI_PHYS_USE_EC));
104}
105
106#define irq_work_pa(__cpu)	&(trap_block[(__cpu)].irq_worklist_pa)
107
108static unsigned long hvirq_major __initdata;
109static int __init early_hvirq_major(char *p)
110{
111	int rc = kstrtoul(p, 10, &hvirq_major);
112
113	return rc;
114}
115early_param("hvirq", early_hvirq_major);
116
117static int hv_irq_version;
118
119/* Major version 2.0 of HV_GRP_INTR added support for the VIRQ cookie
120 * based interfaces, but:
121 *
122 * 1) Several OSs, Solaris and Linux included, use them even when only
123 *    negotiating version 1.0 (or failing to negotiate at all).  So the
124 *    hypervisor has a workaround that provides the VIRQ interfaces even
125 *    when only verion 1.0 of the API is in use.
126 *
127 * 2) Second, and more importantly, with major version 2.0 these VIRQ
128 *    interfaces only were actually hooked up for LDC interrupts, even
129 *    though the Hypervisor specification clearly stated:
130 *
131 *	The new interrupt API functions will be available to a guest
132 *	when it negotiates version 2.0 in the interrupt API group 0x2. When
133 *	a guest negotiates version 2.0, all interrupt sources will only
134 *	support using the cookie interface, and any attempt to use the
135 *	version 1.0 interrupt APIs numbered 0xa0 to 0xa6 will result in the
136 *	ENOTSUPPORTED error being returned.
137 *
138 *   with an emphasis on "all interrupt sources".
139 *
140 * To correct this, major version 3.0 was created which does actually
141 * support VIRQs for all interrupt sources (not just LDC devices).  So
142 * if we want to move completely over the cookie based VIRQs we must
143 * negotiate major version 3.0 or later of HV_GRP_INTR.
144 */
145static bool sun4v_cookie_only_virqs(void)
146{
147	if (hv_irq_version >= 3)
148		return true;
149	return false;
150}
151
152static void __init irq_init_hv(void)
153{
154	unsigned long hv_error, major, minor = 0;
155
156	if (tlb_type != hypervisor)
157		return;
158
159	if (hvirq_major)
160		major = hvirq_major;
161	else
162		major = 3;
163
164	hv_error = sun4v_hvapi_register(HV_GRP_INTR, major, &minor);
165	if (!hv_error)
166		hv_irq_version = major;
167	else
168		hv_irq_version = 1;
169
170	pr_info("SUN4V: Using IRQ API major %d, cookie only virqs %s\n",
171		hv_irq_version,
172		sun4v_cookie_only_virqs() ? "enabled" : "disabled");
173}
174
175/* This function is for the timer interrupt.*/
176int __init arch_probe_nr_irqs(void)
177{
178	return 1;
179}
180
181#define DEFAULT_NUM_IVECS	(0xfffU)
182static unsigned int nr_ivec = DEFAULT_NUM_IVECS;
183#define NUM_IVECS (nr_ivec)
184
185static unsigned int __init size_nr_ivec(void)
186{
187	if (tlb_type == hypervisor) {
188		switch (sun4v_chip_type) {
189		/* Athena's devhandle|devino is large.*/
190		case SUN4V_CHIP_SPARC64X:
191			nr_ivec = 0xffff;
192			break;
193		}
194	}
195	return nr_ivec;
196}
197
198struct irq_handler_data {
199	union {
200		struct {
201			unsigned int dev_handle;
202			unsigned int dev_ino;
203		};
204		unsigned long sysino;
205	};
206	struct ino_bucket bucket;
207	unsigned long	iclr;
208	unsigned long	imap;
209};
210
211static inline unsigned int irq_data_to_handle(struct irq_data *data)
212{
213	struct irq_handler_data *ihd = data->handler_data;
214
215	return ihd->dev_handle;
216}
217
218static inline unsigned int irq_data_to_ino(struct irq_data *data)
219{
220	struct irq_handler_data *ihd = data->handler_data;
221
222	return ihd->dev_ino;
223}
224
225static inline unsigned long irq_data_to_sysino(struct irq_data *data)
226{
227	struct irq_handler_data *ihd = data->handler_data;
228
229	return ihd->sysino;
230}
231
232void irq_free(unsigned int irq)
233{
234	void *data = irq_get_handler_data(irq);
235
236	kfree(data);
237	irq_set_handler_data(irq, NULL);
238	irq_free_descs(irq, 1);
239}
240
241unsigned int irq_alloc(unsigned int dev_handle, unsigned int dev_ino)
242{
243	int irq;
244
245	irq = __irq_alloc_descs(-1, 1, 1, numa_node_id(), NULL);
246	if (irq <= 0)
247		goto out;
248
249	return irq;
250out:
251	return 0;
252}
253
254static unsigned int cookie_exists(u32 devhandle, unsigned int devino)
255{
256	unsigned long hv_err, cookie;
257	struct ino_bucket *bucket;
258	unsigned int irq = 0U;
259
260	hv_err = sun4v_vintr_get_cookie(devhandle, devino, &cookie);
261	if (hv_err) {
262		pr_err("HV get cookie failed hv_err = %ld\n", hv_err);
263		goto out;
264	}
265
266	if (cookie & ((1UL << 63UL))) {
267		cookie = ~cookie;
268		bucket = (struct ino_bucket *) __va(cookie);
269		irq = bucket->__irq;
270	}
271out:
272	return irq;
273}
274
275static unsigned int sysino_exists(u32 devhandle, unsigned int devino)
276{
277	unsigned long sysino = sun4v_devino_to_sysino(devhandle, devino);
278	struct ino_bucket *bucket;
279	unsigned int irq;
280
281	bucket = &ivector_table[sysino];
282	irq = bucket_get_irq(__pa(bucket));
283
284	return irq;
285}
286
287void ack_bad_irq(unsigned int irq)
288{
289	pr_crit("BAD IRQ ack %d\n", irq);
290}
291
292void irq_install_pre_handler(int irq,
293			     void (*func)(unsigned int, void *, void *),
294			     void *arg1, void *arg2)
295{
296	pr_warn("IRQ pre handler NOT supported.\n");
297}
298
299/*
300 * /proc/interrupts printing:
301 */
302int arch_show_interrupts(struct seq_file *p, int prec)
303{
304	int j;
305
306	seq_printf(p, "NMI: ");
307	for_each_online_cpu(j)
308		seq_printf(p, "%10u ", cpu_data(j).__nmi_count);
309	seq_printf(p, "     Non-maskable interrupts\n");
310	return 0;
311}
312
313static unsigned int sun4u_compute_tid(unsigned long imap, unsigned long cpuid)
314{
315	unsigned int tid;
316
317	if (this_is_starfire) {
318		tid = starfire_translate(imap, cpuid);
319		tid <<= IMAP_TID_SHIFT;
320		tid &= IMAP_TID_UPA;
321	} else {
322		if (tlb_type == cheetah || tlb_type == cheetah_plus) {
323			unsigned long ver;
324
325			__asm__ ("rdpr %%ver, %0" : "=r" (ver));
326			if ((ver >> 32UL) == __JALAPENO_ID ||
327			    (ver >> 32UL) == __SERRANO_ID) {
328				tid = cpuid << IMAP_TID_SHIFT;
329				tid &= IMAP_TID_JBUS;
330			} else {
331				unsigned int a = cpuid & 0x1f;
332				unsigned int n = (cpuid >> 5) & 0x1f;
333
334				tid = ((a << IMAP_AID_SHIFT) |
335				       (n << IMAP_NID_SHIFT));
336				tid &= (IMAP_AID_SAFARI |
337					IMAP_NID_SAFARI);
338			}
339		} else {
340			tid = cpuid << IMAP_TID_SHIFT;
341			tid &= IMAP_TID_UPA;
342		}
343	}
344
345	return tid;
346}
347
348#ifdef CONFIG_SMP
349static int irq_choose_cpu(unsigned int irq, const struct cpumask *affinity)
350{
351	cpumask_t mask;
352	int cpuid;
353
354	cpumask_copy(&mask, affinity);
355	if (cpumask_equal(&mask, cpu_online_mask)) {
356		cpuid = map_to_cpu(irq);
357	} else {
358		cpumask_t tmp;
359
360		cpumask_and(&tmp, cpu_online_mask, &mask);
361		cpuid = cpumask_empty(&tmp) ? map_to_cpu(irq) : cpumask_first(&tmp);
362	}
363
364	return cpuid;
365}
366#else
367#define irq_choose_cpu(irq, affinity)	\
368	real_hard_smp_processor_id()
369#endif
370
371static void sun4u_irq_enable(struct irq_data *data)
372{
373	struct irq_handler_data *handler_data = data->handler_data;
374
375	if (likely(handler_data)) {
376		unsigned long cpuid, imap, val;
377		unsigned int tid;
378
379		cpuid = irq_choose_cpu(data->irq, data->affinity);
380		imap = handler_data->imap;
381
382		tid = sun4u_compute_tid(imap, cpuid);
383
384		val = upa_readq(imap);
385		val &= ~(IMAP_TID_UPA | IMAP_TID_JBUS |
386			 IMAP_AID_SAFARI | IMAP_NID_SAFARI);
387		val |= tid | IMAP_VALID;
388		upa_writeq(val, imap);
389		upa_writeq(ICLR_IDLE, handler_data->iclr);
390	}
391}
392
393static int sun4u_set_affinity(struct irq_data *data,
394			       const struct cpumask *mask, bool force)
395{
396	struct irq_handler_data *handler_data = data->handler_data;
397
398	if (likely(handler_data)) {
399		unsigned long cpuid, imap, val;
400		unsigned int tid;
401
402		cpuid = irq_choose_cpu(data->irq, mask);
403		imap = handler_data->imap;
404
405		tid = sun4u_compute_tid(imap, cpuid);
406
407		val = upa_readq(imap);
408		val &= ~(IMAP_TID_UPA | IMAP_TID_JBUS |
409			 IMAP_AID_SAFARI | IMAP_NID_SAFARI);
410		val |= tid | IMAP_VALID;
411		upa_writeq(val, imap);
412		upa_writeq(ICLR_IDLE, handler_data->iclr);
413	}
414
415	return 0;
416}
417
418/* Don't do anything.  The desc->status check for IRQ_DISABLED in
419 * handler_irq() will skip the handler call and that will leave the
420 * interrupt in the sent state.  The next ->enable() call will hit the
421 * ICLR register to reset the state machine.
422 *
423 * This scheme is necessary, instead of clearing the Valid bit in the
424 * IMAP register, to handle the case of IMAP registers being shared by
425 * multiple INOs (and thus ICLR registers).  Since we use a different
426 * virtual IRQ for each shared IMAP instance, the generic code thinks
427 * there is only one user so it prematurely calls ->disable() on
428 * free_irq().
429 *
430 * We have to provide an explicit ->disable() method instead of using
431 * NULL to get the default.  The reason is that if the generic code
432 * sees that, it also hooks up a default ->shutdown method which
433 * invokes ->mask() which we do not want.  See irq_chip_set_defaults().
434 */
435static void sun4u_irq_disable(struct irq_data *data)
436{
437}
438
439static void sun4u_irq_eoi(struct irq_data *data)
440{
441	struct irq_handler_data *handler_data = data->handler_data;
442
443	if (likely(handler_data))
444		upa_writeq(ICLR_IDLE, handler_data->iclr);
445}
446
447static void sun4v_irq_enable(struct irq_data *data)
448{
449	unsigned long cpuid = irq_choose_cpu(data->irq, data->affinity);
450	unsigned int ino = irq_data_to_sysino(data);
451	int err;
452
453	err = sun4v_intr_settarget(ino, cpuid);
454	if (err != HV_EOK)
455		printk(KERN_ERR "sun4v_intr_settarget(%x,%lu): "
456		       "err(%d)\n", ino, cpuid, err);
457	err = sun4v_intr_setstate(ino, HV_INTR_STATE_IDLE);
458	if (err != HV_EOK)
459		printk(KERN_ERR "sun4v_intr_setstate(%x): "
460		       "err(%d)\n", ino, err);
461	err = sun4v_intr_setenabled(ino, HV_INTR_ENABLED);
462	if (err != HV_EOK)
463		printk(KERN_ERR "sun4v_intr_setenabled(%x): err(%d)\n",
464		       ino, err);
465}
466
467static int sun4v_set_affinity(struct irq_data *data,
468			       const struct cpumask *mask, bool force)
469{
470	unsigned long cpuid = irq_choose_cpu(data->irq, mask);
471	unsigned int ino = irq_data_to_sysino(data);
472	int err;
473
474	err = sun4v_intr_settarget(ino, cpuid);
475	if (err != HV_EOK)
476		printk(KERN_ERR "sun4v_intr_settarget(%x,%lu): "
477		       "err(%d)\n", ino, cpuid, err);
478
479	return 0;
480}
481
482static void sun4v_irq_disable(struct irq_data *data)
483{
484	unsigned int ino = irq_data_to_sysino(data);
485	int err;
486
487	err = sun4v_intr_setenabled(ino, HV_INTR_DISABLED);
488	if (err != HV_EOK)
489		printk(KERN_ERR "sun4v_intr_setenabled(%x): "
490		       "err(%d)\n", ino, err);
491}
492
493static void sun4v_irq_eoi(struct irq_data *data)
494{
495	unsigned int ino = irq_data_to_sysino(data);
496	int err;
497
498	err = sun4v_intr_setstate(ino, HV_INTR_STATE_IDLE);
499	if (err != HV_EOK)
500		printk(KERN_ERR "sun4v_intr_setstate(%x): "
501		       "err(%d)\n", ino, err);
502}
503
504static void sun4v_virq_enable(struct irq_data *data)
505{
506	unsigned long dev_handle = irq_data_to_handle(data);
507	unsigned long dev_ino = irq_data_to_ino(data);
508	unsigned long cpuid;
509	int err;
510
511	cpuid = irq_choose_cpu(data->irq, data->affinity);
512
513	err = sun4v_vintr_set_target(dev_handle, dev_ino, cpuid);
514	if (err != HV_EOK)
515		printk(KERN_ERR "sun4v_vintr_set_target(%lx,%lx,%lu): "
516		       "err(%d)\n",
517		       dev_handle, dev_ino, cpuid, err);
518	err = sun4v_vintr_set_state(dev_handle, dev_ino,
519				    HV_INTR_STATE_IDLE);
520	if (err != HV_EOK)
521		printk(KERN_ERR "sun4v_vintr_set_state(%lx,%lx,"
522		       "HV_INTR_STATE_IDLE): err(%d)\n",
523		       dev_handle, dev_ino, err);
524	err = sun4v_vintr_set_valid(dev_handle, dev_ino,
525				    HV_INTR_ENABLED);
526	if (err != HV_EOK)
527		printk(KERN_ERR "sun4v_vintr_set_state(%lx,%lx,"
528		       "HV_INTR_ENABLED): err(%d)\n",
529		       dev_handle, dev_ino, err);
530}
531
532static int sun4v_virt_set_affinity(struct irq_data *data,
533				    const struct cpumask *mask, bool force)
534{
535	unsigned long dev_handle = irq_data_to_handle(data);
536	unsigned long dev_ino = irq_data_to_ino(data);
537	unsigned long cpuid;
538	int err;
539
540	cpuid = irq_choose_cpu(data->irq, mask);
541
542	err = sun4v_vintr_set_target(dev_handle, dev_ino, cpuid);
543	if (err != HV_EOK)
544		printk(KERN_ERR "sun4v_vintr_set_target(%lx,%lx,%lu): "
545		       "err(%d)\n",
546		       dev_handle, dev_ino, cpuid, err);
547
548	return 0;
549}
550
551static void sun4v_virq_disable(struct irq_data *data)
552{
553	unsigned long dev_handle = irq_data_to_handle(data);
554	unsigned long dev_ino = irq_data_to_ino(data);
555	int err;
556
557
558	err = sun4v_vintr_set_valid(dev_handle, dev_ino,
559				    HV_INTR_DISABLED);
560	if (err != HV_EOK)
561		printk(KERN_ERR "sun4v_vintr_set_state(%lx,%lx,"
562		       "HV_INTR_DISABLED): err(%d)\n",
563		       dev_handle, dev_ino, err);
564}
565
566static void sun4v_virq_eoi(struct irq_data *data)
567{
568	unsigned long dev_handle = irq_data_to_handle(data);
569	unsigned long dev_ino = irq_data_to_ino(data);
570	int err;
571
572	err = sun4v_vintr_set_state(dev_handle, dev_ino,
573				    HV_INTR_STATE_IDLE);
574	if (err != HV_EOK)
575		printk(KERN_ERR "sun4v_vintr_set_state(%lx,%lx,"
576		       "HV_INTR_STATE_IDLE): err(%d)\n",
577		       dev_handle, dev_ino, err);
578}
579
580static struct irq_chip sun4u_irq = {
581	.name			= "sun4u",
582	.irq_enable		= sun4u_irq_enable,
583	.irq_disable		= sun4u_irq_disable,
584	.irq_eoi		= sun4u_irq_eoi,
585	.irq_set_affinity	= sun4u_set_affinity,
586	.flags			= IRQCHIP_EOI_IF_HANDLED,
587};
588
589static struct irq_chip sun4v_irq = {
590	.name			= "sun4v",
591	.irq_enable		= sun4v_irq_enable,
592	.irq_disable		= sun4v_irq_disable,
593	.irq_eoi		= sun4v_irq_eoi,
594	.irq_set_affinity	= sun4v_set_affinity,
595	.flags			= IRQCHIP_EOI_IF_HANDLED,
596};
597
598static struct irq_chip sun4v_virq = {
599	.name			= "vsun4v",
600	.irq_enable		= sun4v_virq_enable,
601	.irq_disable		= sun4v_virq_disable,
602	.irq_eoi		= sun4v_virq_eoi,
603	.irq_set_affinity	= sun4v_virt_set_affinity,
604	.flags			= IRQCHIP_EOI_IF_HANDLED,
605};
606
607unsigned int build_irq(int inofixup, unsigned long iclr, unsigned long imap)
608{
609	struct irq_handler_data *handler_data;
610	struct ino_bucket *bucket;
611	unsigned int irq;
612	int ino;
613
614	BUG_ON(tlb_type == hypervisor);
615
616	ino = (upa_readq(imap) & (IMAP_IGN | IMAP_INO)) + inofixup;
617	bucket = &ivector_table[ino];
618	irq = bucket_get_irq(__pa(bucket));
619	if (!irq) {
620		irq = irq_alloc(0, ino);
621		bucket_set_irq(__pa(bucket), irq);
622		irq_set_chip_and_handler_name(irq, &sun4u_irq,
623					      handle_fasteoi_irq, "IVEC");
624	}
625
626	handler_data = irq_get_handler_data(irq);
627	if (unlikely(handler_data))
628		goto out;
629
630	handler_data = kzalloc(sizeof(struct irq_handler_data), GFP_ATOMIC);
631	if (unlikely(!handler_data)) {
632		prom_printf("IRQ: kzalloc(irq_handler_data) failed.\n");
633		prom_halt();
634	}
635	irq_set_handler_data(irq, handler_data);
636
637	handler_data->imap  = imap;
638	handler_data->iclr  = iclr;
639
640out:
641	return irq;
642}
643
644static unsigned int sun4v_build_common(u32 devhandle, unsigned int devino,
645		void (*handler_data_init)(struct irq_handler_data *data,
646		u32 devhandle, unsigned int devino),
647		struct irq_chip *chip)
648{
649	struct irq_handler_data *data;
650	unsigned int irq;
651
652	irq = irq_alloc(devhandle, devino);
653	if (!irq)
654		goto out;
655
656	data = kzalloc(sizeof(struct irq_handler_data), GFP_ATOMIC);
657	if (unlikely(!data)) {
658		pr_err("IRQ handler data allocation failed.\n");
659		irq_free(irq);
660		irq = 0;
661		goto out;
662	}
663
664	irq_set_handler_data(irq, data);
665	handler_data_init(data, devhandle, devino);
666	irq_set_chip_and_handler_name(irq, chip, handle_fasteoi_irq, "IVEC");
667	data->imap = ~0UL;
668	data->iclr = ~0UL;
669out:
670	return irq;
671}
672
673static unsigned long cookie_assign(unsigned int irq, u32 devhandle,
674		unsigned int devino)
675{
676	struct irq_handler_data *ihd = irq_get_handler_data(irq);
677	unsigned long hv_error, cookie;
678
679	/* handler_irq needs to find the irq. cookie is seen signed in
680	 * sun4v_dev_mondo and treated as a non ivector_table delivery.
681	 */
682	ihd->bucket.__irq = irq;
683	cookie = ~__pa(&ihd->bucket);
684
685	hv_error = sun4v_vintr_set_cookie(devhandle, devino, cookie);
686	if (hv_error)
687		pr_err("HV vintr set cookie failed = %ld\n", hv_error);
688
689	return hv_error;
690}
691
692static void cookie_handler_data(struct irq_handler_data *data,
693				u32 devhandle, unsigned int devino)
694{
695	data->dev_handle = devhandle;
696	data->dev_ino = devino;
697}
698
699static unsigned int cookie_build_irq(u32 devhandle, unsigned int devino,
700				     struct irq_chip *chip)
701{
702	unsigned long hv_error;
703	unsigned int irq;
704
705	irq = sun4v_build_common(devhandle, devino, cookie_handler_data, chip);
706
707	hv_error = cookie_assign(irq, devhandle, devino);
708	if (hv_error) {
709		irq_free(irq);
710		irq = 0;
711	}
712
713	return irq;
714}
715
716static unsigned int sun4v_build_cookie(u32 devhandle, unsigned int devino)
717{
718	unsigned int irq;
719
720	irq = cookie_exists(devhandle, devino);
721	if (irq)
722		goto out;
723
724	irq = cookie_build_irq(devhandle, devino, &sun4v_virq);
725
726out:
727	return irq;
728}
729
730static void sysino_set_bucket(unsigned int irq)
731{
732	struct irq_handler_data *ihd = irq_get_handler_data(irq);
733	struct ino_bucket *bucket;
734	unsigned long sysino;
735
736	sysino = sun4v_devino_to_sysino(ihd->dev_handle, ihd->dev_ino);
737	BUG_ON(sysino >= nr_ivec);
738	bucket = &ivector_table[sysino];
739	bucket_set_irq(__pa(bucket), irq);
740}
741
742static void sysino_handler_data(struct irq_handler_data *data,
743				u32 devhandle, unsigned int devino)
744{
745	unsigned long sysino;
746
747	sysino = sun4v_devino_to_sysino(devhandle, devino);
748	data->sysino = sysino;
749}
750
751static unsigned int sysino_build_irq(u32 devhandle, unsigned int devino,
752				     struct irq_chip *chip)
753{
754	unsigned int irq;
755
756	irq = sun4v_build_common(devhandle, devino, sysino_handler_data, chip);
757	if (!irq)
758		goto out;
759
760	sysino_set_bucket(irq);
761out:
762	return irq;
763}
764
765static int sun4v_build_sysino(u32 devhandle, unsigned int devino)
766{
767	int irq;
768
769	irq = sysino_exists(devhandle, devino);
770	if (irq)
771		goto out;
772
773	irq = sysino_build_irq(devhandle, devino, &sun4v_irq);
774out:
775	return irq;
776}
777
778unsigned int sun4v_build_irq(u32 devhandle, unsigned int devino)
779{
780	unsigned int irq;
781
782	if (sun4v_cookie_only_virqs())
783		irq = sun4v_build_cookie(devhandle, devino);
784	else
785		irq = sun4v_build_sysino(devhandle, devino);
786
787	return irq;
788}
789
790unsigned int sun4v_build_virq(u32 devhandle, unsigned int devino)
791{
792	int irq;
793
794	irq = cookie_build_irq(devhandle, devino, &sun4v_virq);
795	if (!irq)
796		goto out;
797
798	/* This is borrowed from the original function.
799	 */
800	irq_set_status_flags(irq, IRQ_NOAUTOEN);
801
802out:
803	return irq;
804}
805
806void *hardirq_stack[NR_CPUS];
807void *softirq_stack[NR_CPUS];
808
809void __irq_entry handler_irq(int pil, struct pt_regs *regs)
810{
811	unsigned long pstate, bucket_pa;
812	struct pt_regs *old_regs;
813	void *orig_sp;
814
815	clear_softint(1 << pil);
816
817	old_regs = set_irq_regs(regs);
818	irq_enter();
819
820	/* Grab an atomic snapshot of the pending IVECs.  */
821	__asm__ __volatile__("rdpr	%%pstate, %0\n\t"
822			     "wrpr	%0, %3, %%pstate\n\t"
823			     "ldx	[%2], %1\n\t"
824			     "stx	%%g0, [%2]\n\t"
825			     "wrpr	%0, 0x0, %%pstate\n\t"
826			     : "=&r" (pstate), "=&r" (bucket_pa)
827			     : "r" (irq_work_pa(smp_processor_id())),
828			       "i" (PSTATE_IE)
829			     : "memory");
830
831	orig_sp = set_hardirq_stack();
832
833	while (bucket_pa) {
834		unsigned long next_pa;
835		unsigned int irq;
836
837		next_pa = bucket_get_chain_pa(bucket_pa);
838		irq = bucket_get_irq(bucket_pa);
839		bucket_clear_chain_pa(bucket_pa);
840
841		generic_handle_irq(irq);
842
843		bucket_pa = next_pa;
844	}
845
846	restore_hardirq_stack(orig_sp);
847
848	irq_exit();
849	set_irq_regs(old_regs);
850}
851
852void do_softirq_own_stack(void)
853{
854	void *orig_sp, *sp = softirq_stack[smp_processor_id()];
855
856	sp += THREAD_SIZE - 192 - STACK_BIAS;
857
858	__asm__ __volatile__("mov %%sp, %0\n\t"
859			     "mov %1, %%sp"
860			     : "=&r" (orig_sp)
861			     : "r" (sp));
862	__do_softirq();
863	__asm__ __volatile__("mov %0, %%sp"
864			     : : "r" (orig_sp));
865}
866
867#ifdef CONFIG_HOTPLUG_CPU
868void fixup_irqs(void)
869{
870	unsigned int irq;
871
872	for (irq = 0; irq < NR_IRQS; irq++) {
873		struct irq_desc *desc = irq_to_desc(irq);
874		struct irq_data *data;
875		unsigned long flags;
876
877		if (!desc)
878			continue;
879		data = irq_desc_get_irq_data(desc);
880		raw_spin_lock_irqsave(&desc->lock, flags);
881		if (desc->action && !irqd_is_per_cpu(data)) {
882			if (data->chip->irq_set_affinity)
883				data->chip->irq_set_affinity(data,
884							     data->affinity,
885							     false);
886		}
887		raw_spin_unlock_irqrestore(&desc->lock, flags);
888	}
889
890	tick_ops->disable_irq();
891}
892#endif
893
894struct sun5_timer {
895	u64	count0;
896	u64	limit0;
897	u64	count1;
898	u64	limit1;
899};
900
901static struct sun5_timer *prom_timers;
902static u64 prom_limit0, prom_limit1;
903
904static void map_prom_timers(void)
905{
906	struct device_node *dp;
907	const unsigned int *addr;
908
909	/* PROM timer node hangs out in the top level of device siblings... */
910	dp = of_find_node_by_path("/");
911	dp = dp->child;
912	while (dp) {
913		if (!strcmp(dp->name, "counter-timer"))
914			break;
915		dp = dp->sibling;
916	}
917
918	/* Assume if node is not present, PROM uses different tick mechanism
919	 * which we should not care about.
920	 */
921	if (!dp) {
922		prom_timers = (struct sun5_timer *) 0;
923		return;
924	}
925
926	/* If PROM is really using this, it must be mapped by him. */
927	addr = of_get_property(dp, "address", NULL);
928	if (!addr) {
929		prom_printf("PROM does not have timer mapped, trying to continue.\n");
930		prom_timers = (struct sun5_timer *) 0;
931		return;
932	}
933	prom_timers = (struct sun5_timer *) ((unsigned long)addr[0]);
934}
935
936static void kill_prom_timer(void)
937{
938	if (!prom_timers)
939		return;
940
941	/* Save them away for later. */
942	prom_limit0 = prom_timers->limit0;
943	prom_limit1 = prom_timers->limit1;
944
945	/* Just as in sun4c PROM uses timer which ticks at IRQ 14.
946	 * We turn both off here just to be paranoid.
947	 */
948	prom_timers->limit0 = 0;
949	prom_timers->limit1 = 0;
950
951	/* Wheee, eat the interrupt packet too... */
952	__asm__ __volatile__(
953"	mov	0x40, %%g2\n"
954"	ldxa	[%%g0] %0, %%g1\n"
955"	ldxa	[%%g2] %1, %%g1\n"
956"	stxa	%%g0, [%%g0] %0\n"
957"	membar	#Sync\n"
958	: /* no outputs */
959	: "i" (ASI_INTR_RECEIVE), "i" (ASI_INTR_R)
960	: "g1", "g2");
961}
962
963void notrace init_irqwork_curcpu(void)
964{
965	int cpu = hard_smp_processor_id();
966
967	trap_block[cpu].irq_worklist_pa = 0UL;
968}
969
970/* Please be very careful with register_one_mondo() and
971 * sun4v_register_mondo_queues().
972 *
973 * On SMP this gets invoked from the CPU trampoline before
974 * the cpu has fully taken over the trap table from OBP,
975 * and it's kernel stack + %g6 thread register state is
976 * not fully cooked yet.
977 *
978 * Therefore you cannot make any OBP calls, not even prom_printf,
979 * from these two routines.
980 */
981static void notrace register_one_mondo(unsigned long paddr, unsigned long type,
982				       unsigned long qmask)
983{
984	unsigned long num_entries = (qmask + 1) / 64;
985	unsigned long status;
986
987	status = sun4v_cpu_qconf(type, paddr, num_entries);
988	if (status != HV_EOK) {
989		prom_printf("SUN4V: sun4v_cpu_qconf(%lu:%lx:%lu) failed, "
990			    "err %lu\n", type, paddr, num_entries, status);
991		prom_halt();
992	}
993}
994
995void notrace sun4v_register_mondo_queues(int this_cpu)
996{
997	struct trap_per_cpu *tb = &trap_block[this_cpu];
998
999	register_one_mondo(tb->cpu_mondo_pa, HV_CPU_QUEUE_CPU_MONDO,
1000			   tb->cpu_mondo_qmask);
1001	register_one_mondo(tb->dev_mondo_pa, HV_CPU_QUEUE_DEVICE_MONDO,
1002			   tb->dev_mondo_qmask);
1003	register_one_mondo(tb->resum_mondo_pa, HV_CPU_QUEUE_RES_ERROR,
1004			   tb->resum_qmask);
1005	register_one_mondo(tb->nonresum_mondo_pa, HV_CPU_QUEUE_NONRES_ERROR,
1006			   tb->nonresum_qmask);
1007}
1008
1009/* Each queue region must be a power of 2 multiple of 64 bytes in
1010 * size.  The base real address must be aligned to the size of the
1011 * region.  Thus, an 8KB queue must be 8KB aligned, for example.
1012 */
1013static void __init alloc_one_queue(unsigned long *pa_ptr, unsigned long qmask)
1014{
1015	unsigned long size = PAGE_ALIGN(qmask + 1);
1016	unsigned long order = get_order(size);
1017	unsigned long p;
1018
1019	p = __get_free_pages(GFP_KERNEL, order);
1020	if (!p) {
1021		prom_printf("SUN4V: Error, cannot allocate queue.\n");
1022		prom_halt();
1023	}
1024
1025	*pa_ptr = __pa(p);
1026}
1027
1028static void __init init_cpu_send_mondo_info(struct trap_per_cpu *tb)
1029{
1030#ifdef CONFIG_SMP
1031	unsigned long page;
1032
1033	BUILD_BUG_ON((NR_CPUS * sizeof(u16)) > (PAGE_SIZE - 64));
1034
1035	page = get_zeroed_page(GFP_KERNEL);
1036	if (!page) {
1037		prom_printf("SUN4V: Error, cannot allocate cpu mondo page.\n");
1038		prom_halt();
1039	}
1040
1041	tb->cpu_mondo_block_pa = __pa(page);
1042	tb->cpu_list_pa = __pa(page + 64);
1043#endif
1044}
1045
1046/* Allocate mondo and error queues for all possible cpus.  */
1047static void __init sun4v_init_mondo_queues(void)
1048{
1049	int cpu;
1050
1051	for_each_possible_cpu(cpu) {
1052		struct trap_per_cpu *tb = &trap_block[cpu];
1053
1054		alloc_one_queue(&tb->cpu_mondo_pa, tb->cpu_mondo_qmask);
1055		alloc_one_queue(&tb->dev_mondo_pa, tb->dev_mondo_qmask);
1056		alloc_one_queue(&tb->resum_mondo_pa, tb->resum_qmask);
1057		alloc_one_queue(&tb->resum_kernel_buf_pa, tb->resum_qmask);
1058		alloc_one_queue(&tb->nonresum_mondo_pa, tb->nonresum_qmask);
1059		alloc_one_queue(&tb->nonresum_kernel_buf_pa,
1060				tb->nonresum_qmask);
1061	}
1062}
1063
1064static void __init init_send_mondo_info(void)
1065{
1066	int cpu;
1067
1068	for_each_possible_cpu(cpu) {
1069		struct trap_per_cpu *tb = &trap_block[cpu];
1070
1071		init_cpu_send_mondo_info(tb);
1072	}
1073}
1074
1075static struct irqaction timer_irq_action = {
1076	.name = "timer",
1077};
1078
1079static void __init irq_ivector_init(void)
1080{
1081	unsigned long size, order;
1082	unsigned int ivecs;
1083
1084	/* If we are doing cookie only VIRQs then we do not need the ivector
1085	 * table to process interrupts.
1086	 */
1087	if (sun4v_cookie_only_virqs())
1088		return;
1089
1090	ivecs = size_nr_ivec();
1091	size = sizeof(struct ino_bucket) * ivecs;
1092	order = get_order(size);
1093	ivector_table = (struct ino_bucket *)
1094		__get_free_pages(GFP_KERNEL | __GFP_ZERO, order);
1095	if (!ivector_table) {
1096		prom_printf("Fatal error, cannot allocate ivector_table\n");
1097		prom_halt();
1098	}
1099	__flush_dcache_range((unsigned long) ivector_table,
1100			     ((unsigned long) ivector_table) + size);
1101
1102	ivector_table_pa = __pa(ivector_table);
1103}
1104
1105/* Only invoked on boot processor.*/
1106void __init init_IRQ(void)
1107{
1108	irq_init_hv();
1109	irq_ivector_init();
1110	map_prom_timers();
1111	kill_prom_timer();
1112
1113	if (tlb_type == hypervisor)
1114		sun4v_init_mondo_queues();
1115
1116	init_send_mondo_info();
1117
1118	if (tlb_type == hypervisor) {
1119		/* Load up the boot cpu's entries.  */
1120		sun4v_register_mondo_queues(hard_smp_processor_id());
1121	}
1122
1123	/* We need to clear any IRQ's pending in the soft interrupt
1124	 * registers, a spurious one could be left around from the
1125	 * PROM timer which we just disabled.
1126	 */
1127	clear_softint(get_softint());
1128
1129	/* Now that ivector table is initialized, it is safe
1130	 * to receive IRQ vector traps.  We will normally take
1131	 * one or two right now, in case some device PROM used
1132	 * to boot us wants to speak to us.  We just ignore them.
1133	 */
1134	__asm__ __volatile__("rdpr	%%pstate, %%g1\n\t"
1135			     "or	%%g1, %0, %%g1\n\t"
1136			     "wrpr	%%g1, 0x0, %%pstate"
1137			     : /* No outputs */
1138			     : "i" (PSTATE_IE)
1139			     : "g1");
1140
1141	irq_to_desc(0)->action = &timer_irq_action;
1142}
1143