single_step.c revision 0707ad30d10110aebc01a5a64fb63f4b32d20b73
1/*
2 * Copyright 2010 Tilera Corporation. All Rights Reserved.
3 *
4 *   This program is free software; you can redistribute it and/or
5 *   modify it under the terms of the GNU General Public License
6 *   as published by the Free Software Foundation, version 2.
7 *
8 *   This program is distributed in the hope that it will be useful, but
9 *   WITHOUT ANY WARRANTY; without even the implied warranty of
10 *   MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
11 *   NON INFRINGEMENT.  See the GNU General Public License for
12 *   more details.
13 *
14 * A code-rewriter that enables instruction single-stepping.
15 * Derived from iLib's single-stepping code.
16 */
17
18#ifndef __tilegx__   /* No support for single-step yet. */
19
20/* These functions are only used on the TILE platform */
21#include <linux/slab.h>
22#include <linux/thread_info.h>
23#include <linux/uaccess.h>
24#include <linux/mman.h>
25#include <linux/types.h>
26#include <linux/err.h>
27#include <asm/cacheflush.h>
28#include <asm/opcode-tile.h>
29#include <asm/opcode_constants.h>
30#include <arch/abi.h>
31
32#define signExtend17(val) sign_extend((val), 17)
33#define TILE_X1_MASK (0xffffffffULL << 31)
34
35int unaligned_printk;
36
37static int __init setup_unaligned_printk(char *str)
38{
39	long val;
40	if (strict_strtol(str, 0, &val) != 0)
41		return 0;
42	unaligned_printk = val;
43	pr_info("Printk for each unaligned data accesses is %s\n",
44		unaligned_printk ? "enabled" : "disabled");
45	return 1;
46}
47__setup("unaligned_printk=", setup_unaligned_printk);
48
49unsigned int unaligned_fixup_count;
50
51enum mem_op {
52	MEMOP_NONE,
53	MEMOP_LOAD,
54	MEMOP_STORE,
55	MEMOP_LOAD_POSTINCR,
56	MEMOP_STORE_POSTINCR
57};
58
59static inline tile_bundle_bits set_BrOff_X1(tile_bundle_bits n, int32_t offset)
60{
61	tile_bundle_bits result;
62
63	/* mask out the old offset */
64	tile_bundle_bits mask = create_BrOff_X1(-1);
65	result = n & (~mask);
66
67	/* or in the new offset */
68	result |= create_BrOff_X1(offset);
69
70	return result;
71}
72
73static inline tile_bundle_bits move_X1(tile_bundle_bits n, int dest, int src)
74{
75	tile_bundle_bits result;
76	tile_bundle_bits op;
77
78	result = n & (~TILE_X1_MASK);
79
80	op = create_Opcode_X1(SPECIAL_0_OPCODE_X1) |
81		create_RRROpcodeExtension_X1(OR_SPECIAL_0_OPCODE_X1) |
82		create_Dest_X1(dest) |
83		create_SrcB_X1(TREG_ZERO) |
84		create_SrcA_X1(src) ;
85
86	result |= op;
87	return result;
88}
89
90static inline tile_bundle_bits nop_X1(tile_bundle_bits n)
91{
92	return move_X1(n, TREG_ZERO, TREG_ZERO);
93}
94
95static inline tile_bundle_bits addi_X1(
96	tile_bundle_bits n, int dest, int src, int imm)
97{
98	n &= ~TILE_X1_MASK;
99
100	n |=  (create_SrcA_X1(src) |
101	       create_Dest_X1(dest) |
102	       create_Imm8_X1(imm) |
103	       create_S_X1(0) |
104	       create_Opcode_X1(IMM_0_OPCODE_X1) |
105	       create_ImmOpcodeExtension_X1(ADDI_IMM_0_OPCODE_X1));
106
107	return n;
108}
109
110static tile_bundle_bits rewrite_load_store_unaligned(
111	struct single_step_state *state,
112	tile_bundle_bits bundle,
113	struct pt_regs *regs,
114	enum mem_op mem_op,
115	int size, int sign_ext)
116{
117	unsigned char __user *addr;
118	int val_reg, addr_reg, err, val;
119
120	/* Get address and value registers */
121	if (bundle & TILE_BUNDLE_Y_ENCODING_MASK) {
122		addr_reg = get_SrcA_Y2(bundle);
123		val_reg = get_SrcBDest_Y2(bundle);
124	} else if (mem_op == MEMOP_LOAD || mem_op == MEMOP_LOAD_POSTINCR) {
125		addr_reg = get_SrcA_X1(bundle);
126		val_reg  = get_Dest_X1(bundle);
127	} else {
128		addr_reg = get_SrcA_X1(bundle);
129		val_reg  = get_SrcB_X1(bundle);
130	}
131
132	/*
133	 * If registers are not GPRs, don't try to handle it.
134	 *
135	 * FIXME: we could handle non-GPR loads by getting the real value
136	 * from memory, writing it to the single step buffer, using a
137	 * temp_reg to hold a pointer to that memory, then executing that
138	 * instruction and resetting temp_reg.  For non-GPR stores, it's a
139	 * little trickier; we could use the single step buffer for that
140	 * too, but we'd have to add some more state bits so that we could
141	 * call back in here to copy that value to the real target.  For
142	 * now, we just handle the simple case.
143	 */
144	if ((val_reg >= PTREGS_NR_GPRS &&
145	     (val_reg != TREG_ZERO ||
146	      mem_op == MEMOP_LOAD ||
147	      mem_op == MEMOP_LOAD_POSTINCR)) ||
148	    addr_reg >= PTREGS_NR_GPRS)
149		return bundle;
150
151	/* If it's aligned, don't handle it specially */
152	addr = (void __user *)regs->regs[addr_reg];
153	if (((unsigned long)addr % size) == 0)
154		return bundle;
155
156#ifndef __LITTLE_ENDIAN
157# error We assume little-endian representation with copy_xx_user size 2 here
158#endif
159	/* Handle unaligned load/store */
160	if (mem_op == MEMOP_LOAD || mem_op == MEMOP_LOAD_POSTINCR) {
161		unsigned short val_16;
162		switch (size) {
163		case 2:
164			err = copy_from_user(&val_16, addr, sizeof(val_16));
165			val = sign_ext ? ((short)val_16) : val_16;
166			break;
167		case 4:
168			err = copy_from_user(&val, addr, sizeof(val));
169			break;
170		default:
171			BUG();
172		}
173		if (err == 0) {
174			state->update_reg = val_reg;
175			state->update_value = val;
176			state->update = 1;
177		}
178	} else {
179		val = (val_reg == TREG_ZERO) ? 0 : regs->regs[val_reg];
180		err = copy_to_user(addr, &val, size);
181	}
182
183	if (err) {
184		siginfo_t info = {
185			.si_signo = SIGSEGV,
186			.si_code = SEGV_MAPERR,
187			.si_addr = addr
188		};
189		force_sig_info(info.si_signo, &info, current);
190		return (tile_bundle_bits) 0;
191	}
192
193	if (unaligned_fixup == 0) {
194		siginfo_t info = {
195			.si_signo = SIGBUS,
196			.si_code = BUS_ADRALN,
197			.si_addr = addr
198		};
199		force_sig_info(info.si_signo, &info, current);
200		return (tile_bundle_bits) 0;
201	}
202
203	if (unaligned_printk || unaligned_fixup_count == 0) {
204		pr_info("Process %d/%s: PC %#lx: Fixup of"
205			" unaligned %s at %#lx.\n",
206			current->pid, current->comm, regs->pc,
207			(mem_op == MEMOP_LOAD ||
208			 mem_op == MEMOP_LOAD_POSTINCR) ?
209			"load" : "store",
210			(unsigned long)addr);
211		if (!unaligned_printk) {
212#define P pr_info
213P("\n");
214P("Unaligned fixups in the kernel will slow your application considerably.\n");
215P("To find them, write a \"1\" to /proc/sys/tile/unaligned_fixup/printk,\n");
216P("which requests the kernel show all unaligned fixups, or write a \"0\"\n");
217P("to /proc/sys/tile/unaligned_fixup/enabled, in which case each unaligned\n");
218P("access will become a SIGBUS you can debug. No further warnings will be\n");
219P("shown so as to avoid additional slowdown, but you can track the number\n");
220P("of fixups performed via /proc/sys/tile/unaligned_fixup/count.\n");
221P("Use the tile-addr2line command (see \"info addr2line\") to decode PCs.\n");
222P("\n");
223#undef P
224		}
225	}
226	++unaligned_fixup_count;
227
228	if (bundle & TILE_BUNDLE_Y_ENCODING_MASK) {
229		/* Convert the Y2 instruction to a prefetch. */
230		bundle &= ~(create_SrcBDest_Y2(-1) |
231			    create_Opcode_Y2(-1));
232		bundle |= (create_SrcBDest_Y2(TREG_ZERO) |
233			   create_Opcode_Y2(LW_OPCODE_Y2));
234	/* Replace the load postincr with an addi */
235	} else if (mem_op == MEMOP_LOAD_POSTINCR) {
236		bundle = addi_X1(bundle, addr_reg, addr_reg,
237				 get_Imm8_X1(bundle));
238	/* Replace the store postincr with an addi */
239	} else if (mem_op == MEMOP_STORE_POSTINCR) {
240		bundle = addi_X1(bundle, addr_reg, addr_reg,
241				 get_Dest_Imm8_X1(bundle));
242	} else {
243		/* Convert the X1 instruction to a nop. */
244		bundle &= ~(create_Opcode_X1(-1) |
245			    create_UnShOpcodeExtension_X1(-1) |
246			    create_UnOpcodeExtension_X1(-1));
247		bundle |= (create_Opcode_X1(SHUN_0_OPCODE_X1) |
248			   create_UnShOpcodeExtension_X1(
249				   UN_0_SHUN_0_OPCODE_X1) |
250			   create_UnOpcodeExtension_X1(
251				   NOP_UN_0_SHUN_0_OPCODE_X1));
252	}
253
254	return bundle;
255}
256
257/**
258 * single_step_once() - entry point when single stepping has been triggered.
259 * @regs: The machine register state
260 *
261 *  When we arrive at this routine via a trampoline, the single step
262 *  engine copies the executing bundle to the single step buffer.
263 *  If the instruction is a condition branch, then the target is
264 *  reset to one past the next instruction. If the instruction
265 *  sets the lr, then that is noted. If the instruction is a jump
266 *  or call, then the new target pc is preserved and the current
267 *  bundle instruction set to null.
268 *
269 *  The necessary post-single-step rewriting information is stored in
270 *  single_step_state->  We use data segment values because the
271 *  stack will be rewound when we run the rewritten single-stepped
272 *  instruction.
273 */
274void single_step_once(struct pt_regs *regs)
275{
276	extern tile_bundle_bits __single_step_ill_insn;
277	extern tile_bundle_bits __single_step_j_insn;
278	extern tile_bundle_bits __single_step_addli_insn;
279	extern tile_bundle_bits __single_step_auli_insn;
280	struct thread_info *info = (void *)current_thread_info();
281	struct single_step_state *state = info->step_state;
282	int is_single_step = test_ti_thread_flag(info, TIF_SINGLESTEP);
283	tile_bundle_bits __user *buffer, *pc;
284	tile_bundle_bits bundle;
285	int temp_reg;
286	int target_reg = TREG_LR;
287	int err;
288	enum mem_op mem_op = MEMOP_NONE;
289	int size = 0, sign_ext = 0;  /* happy compiler */
290
291	asm(
292"    .pushsection .rodata.single_step\n"
293"    .align 8\n"
294"    .globl    __single_step_ill_insn\n"
295"__single_step_ill_insn:\n"
296"    ill\n"
297"    .globl    __single_step_addli_insn\n"
298"__single_step_addli_insn:\n"
299"    { nop; addli r0, zero, 0 }\n"
300"    .globl    __single_step_auli_insn\n"
301"__single_step_auli_insn:\n"
302"    { nop; auli r0, r0, 0 }\n"
303"    .globl    __single_step_j_insn\n"
304"__single_step_j_insn:\n"
305"    j .\n"
306"    .popsection\n"
307	);
308
309	if (state == NULL) {
310		/* allocate a page of writable, executable memory */
311		state = kmalloc(sizeof(struct single_step_state), GFP_KERNEL);
312		if (state == NULL) {
313			pr_err("Out of kernel memory trying to single-step\n");
314			return;
315		}
316
317		/* allocate a cache line of writable, executable memory */
318		down_write(&current->mm->mmap_sem);
319		buffer = (void __user *) do_mmap(NULL, 0, 64,
320					  PROT_EXEC | PROT_READ | PROT_WRITE,
321					  MAP_PRIVATE | MAP_ANONYMOUS,
322					  0);
323		up_write(&current->mm->mmap_sem);
324
325		if (IS_ERR((void __force *)buffer)) {
326			kfree(state);
327			pr_err("Out of kernel pages trying to single-step\n");
328			return;
329		}
330
331		state->buffer = buffer;
332		state->is_enabled = 0;
333
334		info->step_state = state;
335
336		/* Validate our stored instruction patterns */
337		BUG_ON(get_Opcode_X1(__single_step_addli_insn) !=
338		       ADDLI_OPCODE_X1);
339		BUG_ON(get_Opcode_X1(__single_step_auli_insn) !=
340		       AULI_OPCODE_X1);
341		BUG_ON(get_SrcA_X1(__single_step_addli_insn) != TREG_ZERO);
342		BUG_ON(get_Dest_X1(__single_step_addli_insn) != 0);
343		BUG_ON(get_JOffLong_X1(__single_step_j_insn) != 0);
344	}
345
346	/*
347	 * If we are returning from a syscall, we still haven't hit the
348	 * "ill" for the swint1 instruction.  So back the PC up to be
349	 * pointing at the swint1, but we'll actually return directly
350	 * back to the "ill" so we come back in via SIGILL as if we
351	 * had "executed" the swint1 without ever being in kernel space.
352	 */
353	if (regs->faultnum == INT_SWINT_1)
354		regs->pc -= 8;
355
356	pc = (tile_bundle_bits __user *)(regs->pc);
357	if (get_user(bundle, pc) != 0) {
358		pr_err("Couldn't read instruction at %p trying to step\n", pc);
359		return;
360	}
361
362	/* We'll follow the instruction with 2 ill op bundles */
363	state->orig_pc = (unsigned long)pc;
364	state->next_pc = (unsigned long)(pc + 1);
365	state->branch_next_pc = 0;
366	state->update = 0;
367
368	if (!(bundle & TILE_BUNDLE_Y_ENCODING_MASK)) {
369		/* two wide, check for control flow */
370		int opcode = get_Opcode_X1(bundle);
371
372		switch (opcode) {
373		/* branches */
374		case BRANCH_OPCODE_X1:
375		{
376			int32_t offset = signExtend17(get_BrOff_X1(bundle));
377
378			/*
379			 * For branches, we use a rewriting trick to let the
380			 * hardware evaluate whether the branch is taken or
381			 * untaken.  We record the target offset and then
382			 * rewrite the branch instruction to target 1 insn
383			 * ahead if the branch is taken.  We then follow the
384			 * rewritten branch with two bundles, each containing
385			 * an "ill" instruction. The supervisor examines the
386			 * pc after the single step code is executed, and if
387			 * the pc is the first ill instruction, then the
388			 * branch (if any) was not taken.  If the pc is the
389			 * second ill instruction, then the branch was
390			 * taken. The new pc is computed for these cases, and
391			 * inserted into the registers for the thread.  If
392			 * the pc is the start of the single step code, then
393			 * an exception or interrupt was taken before the
394			 * code started processing, and the same "original"
395			 * pc is restored.  This change, different from the
396			 * original implementation, has the advantage of
397			 * executing a single user instruction.
398			 */
399			state->branch_next_pc = (unsigned long)(pc + offset);
400
401			/* rewrite branch offset to go forward one bundle */
402			bundle = set_BrOff_X1(bundle, 2);
403		}
404		break;
405
406		/* jumps */
407		case JALB_OPCODE_X1:
408		case JALF_OPCODE_X1:
409			state->update = 1;
410			state->next_pc =
411				(unsigned long) (pc + get_JOffLong_X1(bundle));
412			break;
413
414		case JB_OPCODE_X1:
415		case JF_OPCODE_X1:
416			state->next_pc =
417				(unsigned long) (pc + get_JOffLong_X1(bundle));
418			bundle = nop_X1(bundle);
419			break;
420
421		case SPECIAL_0_OPCODE_X1:
422			switch (get_RRROpcodeExtension_X1(bundle)) {
423			/* jump-register */
424			case JALRP_SPECIAL_0_OPCODE_X1:
425			case JALR_SPECIAL_0_OPCODE_X1:
426				state->update = 1;
427				state->next_pc =
428					regs->regs[get_SrcA_X1(bundle)];
429				break;
430
431			case JRP_SPECIAL_0_OPCODE_X1:
432			case JR_SPECIAL_0_OPCODE_X1:
433				state->next_pc =
434					regs->regs[get_SrcA_X1(bundle)];
435				bundle = nop_X1(bundle);
436				break;
437
438			case LNK_SPECIAL_0_OPCODE_X1:
439				state->update = 1;
440				target_reg = get_Dest_X1(bundle);
441				break;
442
443			/* stores */
444			case SH_SPECIAL_0_OPCODE_X1:
445				mem_op = MEMOP_STORE;
446				size = 2;
447				break;
448
449			case SW_SPECIAL_0_OPCODE_X1:
450				mem_op = MEMOP_STORE;
451				size = 4;
452				break;
453			}
454			break;
455
456		/* loads and iret */
457		case SHUN_0_OPCODE_X1:
458			if (get_UnShOpcodeExtension_X1(bundle) ==
459			    UN_0_SHUN_0_OPCODE_X1) {
460				switch (get_UnOpcodeExtension_X1(bundle)) {
461				case LH_UN_0_SHUN_0_OPCODE_X1:
462					mem_op = MEMOP_LOAD;
463					size = 2;
464					sign_ext = 1;
465					break;
466
467				case LH_U_UN_0_SHUN_0_OPCODE_X1:
468					mem_op = MEMOP_LOAD;
469					size = 2;
470					sign_ext = 0;
471					break;
472
473				case LW_UN_0_SHUN_0_OPCODE_X1:
474					mem_op = MEMOP_LOAD;
475					size = 4;
476					break;
477
478				case IRET_UN_0_SHUN_0_OPCODE_X1:
479				{
480					unsigned long ex0_0 = __insn_mfspr(
481						SPR_EX_CONTEXT_0_0);
482					unsigned long ex0_1 = __insn_mfspr(
483						SPR_EX_CONTEXT_0_1);
484					/*
485					 * Special-case it if we're iret'ing
486					 * to PL0 again.  Otherwise just let
487					 * it run and it will generate SIGILL.
488					 */
489					if (EX1_PL(ex0_1) == USER_PL) {
490						state->next_pc = ex0_0;
491						regs->ex1 = ex0_1;
492						bundle = nop_X1(bundle);
493					}
494				}
495				}
496			}
497			break;
498
499#if CHIP_HAS_WH64()
500		/* postincrement operations */
501		case IMM_0_OPCODE_X1:
502			switch (get_ImmOpcodeExtension_X1(bundle)) {
503			case LWADD_IMM_0_OPCODE_X1:
504				mem_op = MEMOP_LOAD_POSTINCR;
505				size = 4;
506				break;
507
508			case LHADD_IMM_0_OPCODE_X1:
509				mem_op = MEMOP_LOAD_POSTINCR;
510				size = 2;
511				sign_ext = 1;
512				break;
513
514			case LHADD_U_IMM_0_OPCODE_X1:
515				mem_op = MEMOP_LOAD_POSTINCR;
516				size = 2;
517				sign_ext = 0;
518				break;
519
520			case SWADD_IMM_0_OPCODE_X1:
521				mem_op = MEMOP_STORE_POSTINCR;
522				size = 4;
523				break;
524
525			case SHADD_IMM_0_OPCODE_X1:
526				mem_op = MEMOP_STORE_POSTINCR;
527				size = 2;
528				break;
529
530			default:
531				break;
532			}
533			break;
534#endif /* CHIP_HAS_WH64() */
535		}
536
537		if (state->update) {
538			/*
539			 * Get an available register.  We start with a
540			 * bitmask with 1's for available registers.
541			 * We truncate to the low 32 registers since
542			 * we are guaranteed to have set bits in the
543			 * low 32 bits, then use ctz to pick the first.
544			 */
545			u32 mask = (u32) ~((1ULL << get_Dest_X0(bundle)) |
546					   (1ULL << get_SrcA_X0(bundle)) |
547					   (1ULL << get_SrcB_X0(bundle)) |
548					   (1ULL << target_reg));
549			temp_reg = __builtin_ctz(mask);
550			state->update_reg = temp_reg;
551			state->update_value = regs->regs[temp_reg];
552			regs->regs[temp_reg] = (unsigned long) (pc+1);
553			regs->flags |= PT_FLAGS_RESTORE_REGS;
554			bundle = move_X1(bundle, target_reg, temp_reg);
555		}
556	} else {
557		int opcode = get_Opcode_Y2(bundle);
558
559		switch (opcode) {
560		/* loads */
561		case LH_OPCODE_Y2:
562			mem_op = MEMOP_LOAD;
563			size = 2;
564			sign_ext = 1;
565			break;
566
567		case LH_U_OPCODE_Y2:
568			mem_op = MEMOP_LOAD;
569			size = 2;
570			sign_ext = 0;
571			break;
572
573		case LW_OPCODE_Y2:
574			mem_op = MEMOP_LOAD;
575			size = 4;
576			break;
577
578		/* stores */
579		case SH_OPCODE_Y2:
580			mem_op = MEMOP_STORE;
581			size = 2;
582			break;
583
584		case SW_OPCODE_Y2:
585			mem_op = MEMOP_STORE;
586			size = 4;
587			break;
588		}
589	}
590
591	/*
592	 * Check if we need to rewrite an unaligned load/store.
593	 * Returning zero is a special value meaning we need to SIGSEGV.
594	 */
595	if (mem_op != MEMOP_NONE && unaligned_fixup >= 0) {
596		bundle = rewrite_load_store_unaligned(state, bundle, regs,
597						      mem_op, size, sign_ext);
598		if (bundle == 0)
599			return;
600	}
601
602	/* write the bundle to our execution area */
603	buffer = state->buffer;
604	err = __put_user(bundle, buffer++);
605
606	/*
607	 * If we're really single-stepping, we take an INT_ILL after.
608	 * If we're just handling an unaligned access, we can just
609	 * jump directly back to where we were in user code.
610	 */
611	if (is_single_step) {
612		err |= __put_user(__single_step_ill_insn, buffer++);
613		err |= __put_user(__single_step_ill_insn, buffer++);
614	} else {
615		long delta;
616
617		if (state->update) {
618			/* We have some state to update; do it inline */
619			int ha16;
620			bundle = __single_step_addli_insn;
621			bundle |= create_Dest_X1(state->update_reg);
622			bundle |= create_Imm16_X1(state->update_value);
623			err |= __put_user(bundle, buffer++);
624			bundle = __single_step_auli_insn;
625			bundle |= create_Dest_X1(state->update_reg);
626			bundle |= create_SrcA_X1(state->update_reg);
627			ha16 = (state->update_value + 0x8000) >> 16;
628			bundle |= create_Imm16_X1(ha16);
629			err |= __put_user(bundle, buffer++);
630			state->update = 0;
631		}
632
633		/* End with a jump back to the next instruction */
634		delta = ((regs->pc + TILE_BUNDLE_SIZE_IN_BYTES) -
635			(unsigned long)buffer) >>
636			TILE_LOG2_BUNDLE_ALIGNMENT_IN_BYTES;
637		bundle = __single_step_j_insn;
638		bundle |= create_JOffLong_X1(delta);
639		err |= __put_user(bundle, buffer++);
640	}
641
642	if (err) {
643		pr_err("Fault when writing to single-step buffer\n");
644		return;
645	}
646
647	/*
648	 * Flush the buffer.
649	 * We do a local flush only, since this is a thread-specific buffer.
650	 */
651	__flush_icache_range((unsigned long)state->buffer,
652			     (unsigned long)buffer);
653
654	/* Indicate enabled */
655	state->is_enabled = is_single_step;
656	regs->pc = (unsigned long)state->buffer;
657
658	/* Fault immediately if we are coming back from a syscall. */
659	if (regs->faultnum == INT_SWINT_1)
660		regs->pc += 8;
661}
662
663#endif /* !__tilegx__ */
664