fpu-internal.h revision c6ae41e7d469f00d9c92a2b2887c7235d121c009
1/*
2 * Copyright (C) 1994 Linus Torvalds
3 *
4 * Pentium III FXSR, SSE support
5 * General FPU state handling cleanups
6 *	Gareth Hughes <gareth@valinux.com>, May 2000
7 * x86-64 work by Andi Kleen 2002
8 */
9
10#ifndef _FPU_INTERNAL_H
11#define _FPU_INTERNAL_H
12
13#include <linux/kernel_stat.h>
14#include <linux/regset.h>
15#include <linux/slab.h>
16#include <asm/asm.h>
17#include <asm/cpufeature.h>
18#include <asm/processor.h>
19#include <asm/sigcontext.h>
20#include <asm/user.h>
21#include <asm/uaccess.h>
22#include <asm/xsave.h>
23
24extern unsigned int sig_xstate_size;
25extern void fpu_init(void);
26
27DECLARE_PER_CPU(struct task_struct *, fpu_owner_task);
28
29extern user_regset_active_fn fpregs_active, xfpregs_active;
30extern user_regset_get_fn fpregs_get, xfpregs_get, fpregs_soft_get,
31				xstateregs_get;
32extern user_regset_set_fn fpregs_set, xfpregs_set, fpregs_soft_set,
33				 xstateregs_set;
34
35
36/*
37 * xstateregs_active == fpregs_active. Please refer to the comment
38 * at the definition of fpregs_active.
39 */
40#define xstateregs_active	fpregs_active
41
42extern struct _fpx_sw_bytes fx_sw_reserved;
43#ifdef CONFIG_IA32_EMULATION
44extern unsigned int sig_xstate_ia32_size;
45extern struct _fpx_sw_bytes fx_sw_reserved_ia32;
46struct _fpstate_ia32;
47struct _xstate_ia32;
48extern int save_i387_xstate_ia32(void __user *buf);
49extern int restore_i387_xstate_ia32(void __user *buf);
50#endif
51
52#ifdef CONFIG_MATH_EMULATION
53extern void finit_soft_fpu(struct i387_soft_struct *soft);
54#else
55static inline void finit_soft_fpu(struct i387_soft_struct *soft) {}
56#endif
57
58#define X87_FSW_ES (1 << 7)	/* Exception Summary */
59
60static __always_inline __pure bool use_xsaveopt(void)
61{
62	return static_cpu_has(X86_FEATURE_XSAVEOPT);
63}
64
65static __always_inline __pure bool use_xsave(void)
66{
67	return static_cpu_has(X86_FEATURE_XSAVE);
68}
69
70static __always_inline __pure bool use_fxsr(void)
71{
72        return static_cpu_has(X86_FEATURE_FXSR);
73}
74
75extern void __sanitize_i387_state(struct task_struct *);
76
77static inline void sanitize_i387_state(struct task_struct *tsk)
78{
79	if (!use_xsaveopt())
80		return;
81	__sanitize_i387_state(tsk);
82}
83
84#ifdef CONFIG_X86_64
85static inline int fxrstor_checking(struct i387_fxsave_struct *fx)
86{
87	int err;
88
89	/* See comment in fxsave() below. */
90#ifdef CONFIG_AS_FXSAVEQ
91	asm volatile("1:  fxrstorq %[fx]\n\t"
92		     "2:\n"
93		     ".section .fixup,\"ax\"\n"
94		     "3:  movl $-1,%[err]\n"
95		     "    jmp  2b\n"
96		     ".previous\n"
97		     _ASM_EXTABLE(1b, 3b)
98		     : [err] "=r" (err)
99		     : [fx] "m" (*fx), "0" (0));
100#else
101	asm volatile("1:  rex64/fxrstor (%[fx])\n\t"
102		     "2:\n"
103		     ".section .fixup,\"ax\"\n"
104		     "3:  movl $-1,%[err]\n"
105		     "    jmp  2b\n"
106		     ".previous\n"
107		     _ASM_EXTABLE(1b, 3b)
108		     : [err] "=r" (err)
109		     : [fx] "R" (fx), "m" (*fx), "0" (0));
110#endif
111	return err;
112}
113
114static inline int fxsave_user(struct i387_fxsave_struct __user *fx)
115{
116	int err;
117
118	/*
119	 * Clear the bytes not touched by the fxsave and reserved
120	 * for the SW usage.
121	 */
122	err = __clear_user(&fx->sw_reserved,
123			   sizeof(struct _fpx_sw_bytes));
124	if (unlikely(err))
125		return -EFAULT;
126
127	/* See comment in fxsave() below. */
128#ifdef CONFIG_AS_FXSAVEQ
129	asm volatile("1:  fxsaveq %[fx]\n\t"
130		     "2:\n"
131		     ".section .fixup,\"ax\"\n"
132		     "3:  movl $-1,%[err]\n"
133		     "    jmp  2b\n"
134		     ".previous\n"
135		     _ASM_EXTABLE(1b, 3b)
136		     : [err] "=r" (err), [fx] "=m" (*fx)
137		     : "0" (0));
138#else
139	asm volatile("1:  rex64/fxsave (%[fx])\n\t"
140		     "2:\n"
141		     ".section .fixup,\"ax\"\n"
142		     "3:  movl $-1,%[err]\n"
143		     "    jmp  2b\n"
144		     ".previous\n"
145		     _ASM_EXTABLE(1b, 3b)
146		     : [err] "=r" (err), "=m" (*fx)
147		     : [fx] "R" (fx), "0" (0));
148#endif
149	if (unlikely(err) &&
150	    __clear_user(fx, sizeof(struct i387_fxsave_struct)))
151		err = -EFAULT;
152	/* No need to clear here because the caller clears USED_MATH */
153	return err;
154}
155
156static inline void fpu_fxsave(struct fpu *fpu)
157{
158	/* Using "rex64; fxsave %0" is broken because, if the memory operand
159	   uses any extended registers for addressing, a second REX prefix
160	   will be generated (to the assembler, rex64 followed by semicolon
161	   is a separate instruction), and hence the 64-bitness is lost. */
162
163#ifdef CONFIG_AS_FXSAVEQ
164	/* Using "fxsaveq %0" would be the ideal choice, but is only supported
165	   starting with gas 2.16. */
166	__asm__ __volatile__("fxsaveq %0"
167			     : "=m" (fpu->state->fxsave));
168#else
169	/* Using, as a workaround, the properly prefixed form below isn't
170	   accepted by any binutils version so far released, complaining that
171	   the same type of prefix is used twice if an extended register is
172	   needed for addressing (fix submitted to mainline 2005-11-21).
173	asm volatile("rex64/fxsave %0"
174		     : "=m" (fpu->state->fxsave));
175	   This, however, we can work around by forcing the compiler to select
176	   an addressing mode that doesn't require extended registers. */
177	asm volatile("rex64/fxsave (%[fx])"
178		     : "=m" (fpu->state->fxsave)
179		     : [fx] "R" (&fpu->state->fxsave));
180#endif
181}
182
183#else  /* CONFIG_X86_32 */
184
185/* perform fxrstor iff the processor has extended states, otherwise frstor */
186static inline int fxrstor_checking(struct i387_fxsave_struct *fx)
187{
188	/*
189	 * The "nop" is needed to make the instructions the same
190	 * length.
191	 */
192	alternative_input(
193		"nop ; frstor %1",
194		"fxrstor %1",
195		X86_FEATURE_FXSR,
196		"m" (*fx));
197
198	return 0;
199}
200
201static inline void fpu_fxsave(struct fpu *fpu)
202{
203	asm volatile("fxsave %[fx]"
204		     : [fx] "=m" (fpu->state->fxsave));
205}
206
207#endif	/* CONFIG_X86_64 */
208
209/*
210 * These must be called with preempt disabled. Returns
211 * 'true' if the FPU state is still intact.
212 */
213static inline int fpu_save_init(struct fpu *fpu)
214{
215	if (use_xsave()) {
216		fpu_xsave(fpu);
217
218		/*
219		 * xsave header may indicate the init state of the FP.
220		 */
221		if (!(fpu->state->xsave.xsave_hdr.xstate_bv & XSTATE_FP))
222			return 1;
223	} else if (use_fxsr()) {
224		fpu_fxsave(fpu);
225	} else {
226		asm volatile("fnsave %[fx]; fwait"
227			     : [fx] "=m" (fpu->state->fsave));
228		return 0;
229	}
230
231	/*
232	 * If exceptions are pending, we need to clear them so
233	 * that we don't randomly get exceptions later.
234	 *
235	 * FIXME! Is this perhaps only true for the old-style
236	 * irq13 case? Maybe we could leave the x87 state
237	 * intact otherwise?
238	 */
239	if (unlikely(fpu->state->fxsave.swd & X87_FSW_ES)) {
240		asm volatile("fnclex");
241		return 0;
242	}
243	return 1;
244}
245
246static inline int __save_init_fpu(struct task_struct *tsk)
247{
248	return fpu_save_init(&tsk->thread.fpu);
249}
250
251static inline int fpu_fxrstor_checking(struct fpu *fpu)
252{
253	return fxrstor_checking(&fpu->state->fxsave);
254}
255
256static inline int fpu_restore_checking(struct fpu *fpu)
257{
258	if (use_xsave())
259		return fpu_xrstor_checking(fpu);
260	else
261		return fpu_fxrstor_checking(fpu);
262}
263
264static inline int restore_fpu_checking(struct task_struct *tsk)
265{
266	/* AMD K7/K8 CPUs don't save/restore FDP/FIP/FOP unless an exception
267	   is pending.  Clear the x87 state here by setting it to fixed
268	   values. "m" is a random variable that should be in L1 */
269	alternative_input(
270		ASM_NOP8 ASM_NOP2,
271		"emms\n\t"		/* clear stack tags */
272		"fildl %P[addr]",	/* set F?P to defined value */
273		X86_FEATURE_FXSAVE_LEAK,
274		[addr] "m" (tsk->thread.fpu.has_fpu));
275
276	return fpu_restore_checking(&tsk->thread.fpu);
277}
278
279/*
280 * Software FPU state helpers. Careful: these need to
281 * be preemption protection *and* they need to be
282 * properly paired with the CR0.TS changes!
283 */
284static inline int __thread_has_fpu(struct task_struct *tsk)
285{
286	return tsk->thread.fpu.has_fpu;
287}
288
289/* Must be paired with an 'stts' after! */
290static inline void __thread_clear_has_fpu(struct task_struct *tsk)
291{
292	tsk->thread.fpu.has_fpu = 0;
293	this_cpu_write(fpu_owner_task, NULL);
294}
295
296/* Must be paired with a 'clts' before! */
297static inline void __thread_set_has_fpu(struct task_struct *tsk)
298{
299	tsk->thread.fpu.has_fpu = 1;
300	this_cpu_write(fpu_owner_task, tsk);
301}
302
303/*
304 * Encapsulate the CR0.TS handling together with the
305 * software flag.
306 *
307 * These generally need preemption protection to work,
308 * do try to avoid using these on their own.
309 */
310static inline void __thread_fpu_end(struct task_struct *tsk)
311{
312	__thread_clear_has_fpu(tsk);
313	stts();
314}
315
316static inline void __thread_fpu_begin(struct task_struct *tsk)
317{
318	clts();
319	__thread_set_has_fpu(tsk);
320}
321
322/*
323 * FPU state switching for scheduling.
324 *
325 * This is a two-stage process:
326 *
327 *  - switch_fpu_prepare() saves the old state and
328 *    sets the new state of the CR0.TS bit. This is
329 *    done within the context of the old process.
330 *
331 *  - switch_fpu_finish() restores the new state as
332 *    necessary.
333 */
334typedef struct { int preload; } fpu_switch_t;
335
336/*
337 * FIXME! We could do a totally lazy restore, but we need to
338 * add a per-cpu "this was the task that last touched the FPU
339 * on this CPU" variable, and the task needs to have a "I last
340 * touched the FPU on this CPU" and check them.
341 *
342 * We don't do that yet, so "fpu_lazy_restore()" always returns
343 * false, but some day..
344 */
345static inline int fpu_lazy_restore(struct task_struct *new, unsigned int cpu)
346{
347	return new == this_cpu_read_stable(fpu_owner_task) &&
348		cpu == new->thread.fpu.last_cpu;
349}
350
351static inline fpu_switch_t switch_fpu_prepare(struct task_struct *old, struct task_struct *new, int cpu)
352{
353	fpu_switch_t fpu;
354
355	fpu.preload = tsk_used_math(new) && new->fpu_counter > 5;
356	if (__thread_has_fpu(old)) {
357		if (!__save_init_fpu(old))
358			cpu = ~0;
359		old->thread.fpu.last_cpu = cpu;
360		old->thread.fpu.has_fpu = 0;	/* But leave fpu_owner_task! */
361
362		/* Don't change CR0.TS if we just switch! */
363		if (fpu.preload) {
364			new->fpu_counter++;
365			__thread_set_has_fpu(new);
366			prefetch(new->thread.fpu.state);
367		} else
368			stts();
369	} else {
370		old->fpu_counter = 0;
371		old->thread.fpu.last_cpu = ~0;
372		if (fpu.preload) {
373			new->fpu_counter++;
374			if (fpu_lazy_restore(new, cpu))
375				fpu.preload = 0;
376			else
377				prefetch(new->thread.fpu.state);
378			__thread_fpu_begin(new);
379		}
380	}
381	return fpu;
382}
383
384/*
385 * By the time this gets called, we've already cleared CR0.TS and
386 * given the process the FPU if we are going to preload the FPU
387 * state - all we need to do is to conditionally restore the register
388 * state itself.
389 */
390static inline void switch_fpu_finish(struct task_struct *new, fpu_switch_t fpu)
391{
392	if (fpu.preload) {
393		if (unlikely(restore_fpu_checking(new)))
394			__thread_fpu_end(new);
395	}
396}
397
398/*
399 * Signal frame handlers...
400 */
401extern int save_i387_xstate(void __user *buf);
402extern int restore_i387_xstate(void __user *buf);
403
404static inline void __clear_fpu(struct task_struct *tsk)
405{
406	if (__thread_has_fpu(tsk)) {
407		/* Ignore delayed exceptions from user space */
408		asm volatile("1: fwait\n"
409			     "2:\n"
410			     _ASM_EXTABLE(1b, 2b));
411		__thread_fpu_end(tsk);
412	}
413}
414
415/*
416 * The actual user_fpu_begin/end() functions
417 * need to be preemption-safe.
418 *
419 * NOTE! user_fpu_end() must be used only after you
420 * have saved the FP state, and user_fpu_begin() must
421 * be used only immediately before restoring it.
422 * These functions do not do any save/restore on
423 * their own.
424 */
425static inline void user_fpu_end(void)
426{
427	preempt_disable();
428	__thread_fpu_end(current);
429	preempt_enable();
430}
431
432static inline void user_fpu_begin(void)
433{
434	preempt_disable();
435	if (!user_has_fpu())
436		__thread_fpu_begin(current);
437	preempt_enable();
438}
439
440/*
441 * These disable preemption on their own and are safe
442 */
443static inline void save_init_fpu(struct task_struct *tsk)
444{
445	WARN_ON_ONCE(!__thread_has_fpu(tsk));
446	preempt_disable();
447	__save_init_fpu(tsk);
448	__thread_fpu_end(tsk);
449	preempt_enable();
450}
451
452static inline void clear_fpu(struct task_struct *tsk)
453{
454	preempt_disable();
455	__clear_fpu(tsk);
456	preempt_enable();
457}
458
459/*
460 * i387 state interaction
461 */
462static inline unsigned short get_fpu_cwd(struct task_struct *tsk)
463{
464	if (cpu_has_fxsr) {
465		return tsk->thread.fpu.state->fxsave.cwd;
466	} else {
467		return (unsigned short)tsk->thread.fpu.state->fsave.cwd;
468	}
469}
470
471static inline unsigned short get_fpu_swd(struct task_struct *tsk)
472{
473	if (cpu_has_fxsr) {
474		return tsk->thread.fpu.state->fxsave.swd;
475	} else {
476		return (unsigned short)tsk->thread.fpu.state->fsave.swd;
477	}
478}
479
480static inline unsigned short get_fpu_mxcsr(struct task_struct *tsk)
481{
482	if (cpu_has_xmm) {
483		return tsk->thread.fpu.state->fxsave.mxcsr;
484	} else {
485		return MXCSR_DEFAULT;
486	}
487}
488
489static bool fpu_allocated(struct fpu *fpu)
490{
491	return fpu->state != NULL;
492}
493
494static inline int fpu_alloc(struct fpu *fpu)
495{
496	if (fpu_allocated(fpu))
497		return 0;
498	fpu->state = kmem_cache_alloc(task_xstate_cachep, GFP_KERNEL);
499	if (!fpu->state)
500		return -ENOMEM;
501	WARN_ON((unsigned long)fpu->state & 15);
502	return 0;
503}
504
505static inline void fpu_free(struct fpu *fpu)
506{
507	if (fpu->state) {
508		kmem_cache_free(task_xstate_cachep, fpu->state);
509		fpu->state = NULL;
510	}
511}
512
513static inline void fpu_copy(struct fpu *dst, struct fpu *src)
514{
515	memcpy(dst->state, src->state, xstate_size);
516}
517
518extern void fpu_finit(struct fpu *fpu);
519
520#endif
521