percpu.h revision 8270137a0d50507a5b40f880db636527045b8466
1#ifndef _ASM_X86_PERCPU_H
2#define _ASM_X86_PERCPU_H
3
4#ifdef CONFIG_X86_64
5#define __percpu_seg		gs
6#define __percpu_mov_op		movq
7#else
8#define __percpu_seg		fs
9#define __percpu_mov_op		movl
10#endif
11
12#ifdef __ASSEMBLY__
13
14/*
15 * PER_CPU finds an address of a per-cpu variable.
16 *
17 * Args:
18 *    var - variable name
19 *    reg - 32bit register
20 *
21 * The resulting address is stored in the "reg" argument.
22 *
23 * Example:
24 *    PER_CPU(cpu_gdt_descr, %ebx)
25 */
26#ifdef CONFIG_SMP
27#define PER_CPU(var, reg)						\
28	__percpu_mov_op %__percpu_seg:this_cpu_off, reg;		\
29	lea var(reg), reg
30#define PER_CPU_VAR(var)	%__percpu_seg:var
31#else /* ! SMP */
32#define PER_CPU(var, reg)	__percpu_mov_op $var, reg
33#define PER_CPU_VAR(var)	var
34#endif	/* SMP */
35
36#ifdef CONFIG_X86_64_SMP
37#define INIT_PER_CPU_VAR(var)  init_per_cpu__##var
38#else
39#define INIT_PER_CPU_VAR(var)  var
40#endif
41
42#else /* ...!ASSEMBLY */
43
44#include <linux/kernel.h>
45#include <linux/stringify.h>
46
47#ifdef CONFIG_SMP
48#define __percpu_arg(x)		"%%"__stringify(__percpu_seg)":%P" #x
49#define __my_cpu_offset		percpu_read(this_cpu_off)
50
51/*
52 * Compared to the generic __my_cpu_offset version, the following
53 * saves one instruction and avoids clobbering a temp register.
54 */
55#define __this_cpu_ptr(ptr)				\
56({							\
57	unsigned long tcp_ptr__;			\
58	__verify_pcpu_ptr(ptr);				\
59	asm volatile("add " __percpu_arg(1) ", %0"	\
60		     : "=r" (tcp_ptr__)			\
61		     : "m" (this_cpu_off), "0" (ptr));	\
62	(typeof(*(ptr)) __kernel __force *)tcp_ptr__;	\
63})
64#else
65#define __percpu_arg(x)		"%P" #x
66#endif
67
68/*
69 * Initialized pointers to per-cpu variables needed for the boot
70 * processor need to use these macros to get the proper address
71 * offset from __per_cpu_load on SMP.
72 *
73 * There also must be an entry in vmlinux_64.lds.S
74 */
75#define DECLARE_INIT_PER_CPU(var) \
76       extern typeof(var) init_per_cpu_var(var)
77
78#ifdef CONFIG_X86_64_SMP
79#define init_per_cpu_var(var)  init_per_cpu__##var
80#else
81#define init_per_cpu_var(var)  var
82#endif
83
84/* For arch-specific code, we can use direct single-insn ops (they
85 * don't give an lvalue though). */
86extern void __bad_percpu_size(void);
87
88#define percpu_to_op(op, var, val)			\
89do {							\
90	typedef typeof(var) pto_T__;			\
91	if (0) {					\
92		pto_T__ pto_tmp__;			\
93		pto_tmp__ = (val);			\
94		(void)pto_tmp__;			\
95	}						\
96	switch (sizeof(var)) {				\
97	case 1:						\
98		asm(op "b %1,"__percpu_arg(0)		\
99		    : "+m" (var)			\
100		    : "qi" ((pto_T__)(val)));		\
101		break;					\
102	case 2:						\
103		asm(op "w %1,"__percpu_arg(0)		\
104		    : "+m" (var)			\
105		    : "ri" ((pto_T__)(val)));		\
106		break;					\
107	case 4:						\
108		asm(op "l %1,"__percpu_arg(0)		\
109		    : "+m" (var)			\
110		    : "ri" ((pto_T__)(val)));		\
111		break;					\
112	case 8:						\
113		asm(op "q %1,"__percpu_arg(0)		\
114		    : "+m" (var)			\
115		    : "re" ((pto_T__)(val)));		\
116		break;					\
117	default: __bad_percpu_size();			\
118	}						\
119} while (0)
120
121/*
122 * Generate a percpu add to memory instruction and optimize code
123 * if one is added or subtracted.
124 */
125#define percpu_add_op(var, val)						\
126do {									\
127	typedef typeof(var) pao_T__;					\
128	const int pao_ID__ = (__builtin_constant_p(val) &&		\
129			      ((val) == 1 || (val) == -1)) ? (val) : 0;	\
130	if (0) {							\
131		pao_T__ pao_tmp__;					\
132		pao_tmp__ = (val);					\
133		(void)pao_tmp__;					\
134	}								\
135	switch (sizeof(var)) {						\
136	case 1:								\
137		if (pao_ID__ == 1)					\
138			asm("incb "__percpu_arg(0) : "+m" (var));	\
139		else if (pao_ID__ == -1)				\
140			asm("decb "__percpu_arg(0) : "+m" (var));	\
141		else							\
142			asm("addb %1, "__percpu_arg(0)			\
143			    : "+m" (var)				\
144			    : "qi" ((pao_T__)(val)));			\
145		break;							\
146	case 2:								\
147		if (pao_ID__ == 1)					\
148			asm("incw "__percpu_arg(0) : "+m" (var));	\
149		else if (pao_ID__ == -1)				\
150			asm("decw "__percpu_arg(0) : "+m" (var));	\
151		else							\
152			asm("addw %1, "__percpu_arg(0)			\
153			    : "+m" (var)				\
154			    : "ri" ((pao_T__)(val)));			\
155		break;							\
156	case 4:								\
157		if (pao_ID__ == 1)					\
158			asm("incl "__percpu_arg(0) : "+m" (var));	\
159		else if (pao_ID__ == -1)				\
160			asm("decl "__percpu_arg(0) : "+m" (var));	\
161		else							\
162			asm("addl %1, "__percpu_arg(0)			\
163			    : "+m" (var)				\
164			    : "ri" ((pao_T__)(val)));			\
165		break;							\
166	case 8:								\
167		if (pao_ID__ == 1)					\
168			asm("incq "__percpu_arg(0) : "+m" (var));	\
169		else if (pao_ID__ == -1)				\
170			asm("decq "__percpu_arg(0) : "+m" (var));	\
171		else							\
172			asm("addq %1, "__percpu_arg(0)			\
173			    : "+m" (var)				\
174			    : "re" ((pao_T__)(val)));			\
175		break;							\
176	default: __bad_percpu_size();					\
177	}								\
178} while (0)
179
180#define percpu_from_op(op, var, constraint)		\
181({							\
182	typeof(var) pfo_ret__;				\
183	switch (sizeof(var)) {				\
184	case 1:						\
185		asm(op "b "__percpu_arg(1)",%0"		\
186		    : "=q" (pfo_ret__)			\
187		    : constraint);			\
188		break;					\
189	case 2:						\
190		asm(op "w "__percpu_arg(1)",%0"		\
191		    : "=r" (pfo_ret__)			\
192		    : constraint);			\
193		break;					\
194	case 4:						\
195		asm(op "l "__percpu_arg(1)",%0"		\
196		    : "=r" (pfo_ret__)			\
197		    : constraint);			\
198		break;					\
199	case 8:						\
200		asm(op "q "__percpu_arg(1)",%0"		\
201		    : "=r" (pfo_ret__)			\
202		    : constraint);			\
203		break;					\
204	default: __bad_percpu_size();			\
205	}						\
206	pfo_ret__;					\
207})
208
209#define percpu_unary_op(op, var)			\
210({							\
211	switch (sizeof(var)) {				\
212	case 1:						\
213		asm(op "b "__percpu_arg(0)		\
214		    : "+m" (var));			\
215		break;					\
216	case 2:						\
217		asm(op "w "__percpu_arg(0)		\
218		    : "+m" (var));			\
219		break;					\
220	case 4:						\
221		asm(op "l "__percpu_arg(0)		\
222		    : "+m" (var));			\
223		break;					\
224	case 8:						\
225		asm(op "q "__percpu_arg(0)		\
226		    : "+m" (var));			\
227		break;					\
228	default: __bad_percpu_size();			\
229	}						\
230})
231
232/*
233 * Add return operation
234 */
235#define percpu_add_return_op(var, val)					\
236({									\
237	typeof(var) paro_ret__ = val;					\
238	switch (sizeof(var)) {						\
239	case 1:								\
240		asm("xaddb %0, "__percpu_arg(1)				\
241			    : "+q" (paro_ret__), "+m" (var)		\
242			    : : "memory");				\
243		break;							\
244	case 2:								\
245		asm("xaddw %0, "__percpu_arg(1)				\
246			    : "+r" (paro_ret__), "+m" (var)		\
247			    : : "memory");				\
248		break;							\
249	case 4:								\
250		asm("xaddl %0, "__percpu_arg(1)				\
251			    : "+r" (paro_ret__), "+m" (var)		\
252			    : : "memory");				\
253		break;							\
254	case 8:								\
255		asm("xaddq %0, "__percpu_arg(1)				\
256			    : "+re" (paro_ret__), "+m" (var)		\
257			    : : "memory");				\
258		break;							\
259	default: __bad_percpu_size();					\
260	}								\
261	paro_ret__ += val;						\
262	paro_ret__;							\
263})
264
265/*
266 * xchg is implemented using cmpxchg without a lock prefix. xchg is
267 * expensive due to the implied lock prefix.  The processor cannot prefetch
268 * cachelines if xchg is used.
269 */
270#define percpu_xchg_op(var, nval)					\
271({									\
272	typeof(var) pxo_ret__;						\
273	typeof(var) pxo_new__ = (nval);					\
274	switch (sizeof(var)) {						\
275	case 1:								\
276		asm("\n1:mov "__percpu_arg(1)",%%al"			\
277		    "\n\tcmpxchgb %2, "__percpu_arg(1)			\
278		    "\n\tjnz 1b"					\
279			    : "=a" (pxo_ret__), "+m" (var)		\
280			    : "q" (pxo_new__)				\
281			    : "memory");				\
282		break;							\
283	case 2:								\
284		asm("\n1:mov "__percpu_arg(1)",%%ax"			\
285		    "\n\tcmpxchgw %2, "__percpu_arg(1)			\
286		    "\n\tjnz 1b"					\
287			    : "=a" (pxo_ret__), "+m" (var)		\
288			    : "r" (pxo_new__)				\
289			    : "memory");				\
290		break;							\
291	case 4:								\
292		asm("\n1:mov "__percpu_arg(1)",%%eax"			\
293		    "\n\tcmpxchgl %2, "__percpu_arg(1)			\
294		    "\n\tjnz 1b"					\
295			    : "=a" (pxo_ret__), "+m" (var)		\
296			    : "r" (pxo_new__)				\
297			    : "memory");				\
298		break;							\
299	case 8:								\
300		asm("\n1:mov "__percpu_arg(1)",%%rax"			\
301		    "\n\tcmpxchgq %2, "__percpu_arg(1)			\
302		    "\n\tjnz 1b"					\
303			    : "=a" (pxo_ret__), "+m" (var)		\
304			    : "r" (pxo_new__)				\
305			    : "memory");				\
306		break;							\
307	default: __bad_percpu_size();					\
308	}								\
309	pxo_ret__;							\
310})
311
312/*
313 * cmpxchg has no such implied lock semantics as a result it is much
314 * more efficient for cpu local operations.
315 */
316#define percpu_cmpxchg_op(var, oval, nval)				\
317({									\
318	typeof(var) pco_ret__;						\
319	typeof(var) pco_old__ = (oval);					\
320	typeof(var) pco_new__ = (nval);					\
321	switch (sizeof(var)) {						\
322	case 1:								\
323		asm("cmpxchgb %2, "__percpu_arg(1)			\
324			    : "=a" (pco_ret__), "+m" (var)		\
325			    : "q" (pco_new__), "0" (pco_old__)		\
326			    : "memory");				\
327		break;							\
328	case 2:								\
329		asm("cmpxchgw %2, "__percpu_arg(1)			\
330			    : "=a" (pco_ret__), "+m" (var)		\
331			    : "r" (pco_new__), "0" (pco_old__)		\
332			    : "memory");				\
333		break;							\
334	case 4:								\
335		asm("cmpxchgl %2, "__percpu_arg(1)			\
336			    : "=a" (pco_ret__), "+m" (var)		\
337			    : "r" (pco_new__), "0" (pco_old__)		\
338			    : "memory");				\
339		break;							\
340	case 8:								\
341		asm("cmpxchgq %2, "__percpu_arg(1)			\
342			    : "=a" (pco_ret__), "+m" (var)		\
343			    : "r" (pco_new__), "0" (pco_old__)		\
344			    : "memory");				\
345		break;							\
346	default: __bad_percpu_size();					\
347	}								\
348	pco_ret__;							\
349})
350
351/*
352 * percpu_read() makes gcc load the percpu variable every time it is
353 * accessed while percpu_read_stable() allows the value to be cached.
354 * percpu_read_stable() is more efficient and can be used if its value
355 * is guaranteed to be valid across cpus.  The current users include
356 * get_current() and get_thread_info() both of which are actually
357 * per-thread variables implemented as per-cpu variables and thus
358 * stable for the duration of the respective task.
359 */
360#define percpu_read(var)		percpu_from_op("mov", var, "m" (var))
361#define percpu_read_stable(var)		percpu_from_op("mov", var, "p" (&(var)))
362#define percpu_write(var, val)		percpu_to_op("mov", var, val)
363#define percpu_add(var, val)		percpu_add_op(var, val)
364#define percpu_sub(var, val)		percpu_add_op(var, -(val))
365#define percpu_and(var, val)		percpu_to_op("and", var, val)
366#define percpu_or(var, val)		percpu_to_op("or", var, val)
367#define percpu_xor(var, val)		percpu_to_op("xor", var, val)
368#define percpu_inc(var)		percpu_unary_op("inc", var)
369
370#define __this_cpu_read_1(pcp)		percpu_from_op("mov", (pcp), "m"(pcp))
371#define __this_cpu_read_2(pcp)		percpu_from_op("mov", (pcp), "m"(pcp))
372#define __this_cpu_read_4(pcp)		percpu_from_op("mov", (pcp), "m"(pcp))
373
374#define __this_cpu_write_1(pcp, val)	percpu_to_op("mov", (pcp), val)
375#define __this_cpu_write_2(pcp, val)	percpu_to_op("mov", (pcp), val)
376#define __this_cpu_write_4(pcp, val)	percpu_to_op("mov", (pcp), val)
377#define __this_cpu_add_1(pcp, val)	percpu_add_op((pcp), val)
378#define __this_cpu_add_2(pcp, val)	percpu_add_op((pcp), val)
379#define __this_cpu_add_4(pcp, val)	percpu_add_op((pcp), val)
380#define __this_cpu_and_1(pcp, val)	percpu_to_op("and", (pcp), val)
381#define __this_cpu_and_2(pcp, val)	percpu_to_op("and", (pcp), val)
382#define __this_cpu_and_4(pcp, val)	percpu_to_op("and", (pcp), val)
383#define __this_cpu_or_1(pcp, val)	percpu_to_op("or", (pcp), val)
384#define __this_cpu_or_2(pcp, val)	percpu_to_op("or", (pcp), val)
385#define __this_cpu_or_4(pcp, val)	percpu_to_op("or", (pcp), val)
386#define __this_cpu_xor_1(pcp, val)	percpu_to_op("xor", (pcp), val)
387#define __this_cpu_xor_2(pcp, val)	percpu_to_op("xor", (pcp), val)
388#define __this_cpu_xor_4(pcp, val)	percpu_to_op("xor", (pcp), val)
389/*
390 * Generic fallback operations for __this_cpu_xchg_[1-4] are okay and much
391 * faster than an xchg with forced lock semantics.
392 */
393#define __this_cpu_xchg_8(pcp, nval)	percpu_xchg_op(pcp, nval)
394#define __this_cpu_cmpxchg_8(pcp, oval, nval)	percpu_cmpxchg_op(pcp, oval, nval)
395
396#define this_cpu_read_1(pcp)		percpu_from_op("mov", (pcp), "m"(pcp))
397#define this_cpu_read_2(pcp)		percpu_from_op("mov", (pcp), "m"(pcp))
398#define this_cpu_read_4(pcp)		percpu_from_op("mov", (pcp), "m"(pcp))
399#define this_cpu_write_1(pcp, val)	percpu_to_op("mov", (pcp), val)
400#define this_cpu_write_2(pcp, val)	percpu_to_op("mov", (pcp), val)
401#define this_cpu_write_4(pcp, val)	percpu_to_op("mov", (pcp), val)
402#define this_cpu_add_1(pcp, val)	percpu_add_op((pcp), val)
403#define this_cpu_add_2(pcp, val)	percpu_add_op((pcp), val)
404#define this_cpu_add_4(pcp, val)	percpu_add_op((pcp), val)
405#define this_cpu_and_1(pcp, val)	percpu_to_op("and", (pcp), val)
406#define this_cpu_and_2(pcp, val)	percpu_to_op("and", (pcp), val)
407#define this_cpu_and_4(pcp, val)	percpu_to_op("and", (pcp), val)
408#define this_cpu_or_1(pcp, val)		percpu_to_op("or", (pcp), val)
409#define this_cpu_or_2(pcp, val)		percpu_to_op("or", (pcp), val)
410#define this_cpu_or_4(pcp, val)		percpu_to_op("or", (pcp), val)
411#define this_cpu_xor_1(pcp, val)	percpu_to_op("xor", (pcp), val)
412#define this_cpu_xor_2(pcp, val)	percpu_to_op("xor", (pcp), val)
413#define this_cpu_xor_4(pcp, val)	percpu_to_op("xor", (pcp), val)
414#define this_cpu_xchg_1(pcp, nval)	percpu_xchg_op(pcp, nval)
415#define this_cpu_xchg_2(pcp, nval)	percpu_xchg_op(pcp, nval)
416#define this_cpu_xchg_4(pcp, nval)	percpu_xchg_op(pcp, nval)
417#define this_cpu_xchg_8(pcp, nval)	percpu_xchg_op(pcp, nval)
418#define this_cpu_cmpxchg_8(pcp, oval, nval)	percpu_cmpxchg_op(pcp, oval, nval)
419
420#define irqsafe_cpu_add_1(pcp, val)	percpu_add_op((pcp), val)
421#define irqsafe_cpu_add_2(pcp, val)	percpu_add_op((pcp), val)
422#define irqsafe_cpu_add_4(pcp, val)	percpu_add_op((pcp), val)
423#define irqsafe_cpu_and_1(pcp, val)	percpu_to_op("and", (pcp), val)
424#define irqsafe_cpu_and_2(pcp, val)	percpu_to_op("and", (pcp), val)
425#define irqsafe_cpu_and_4(pcp, val)	percpu_to_op("and", (pcp), val)
426#define irqsafe_cpu_or_1(pcp, val)	percpu_to_op("or", (pcp), val)
427#define irqsafe_cpu_or_2(pcp, val)	percpu_to_op("or", (pcp), val)
428#define irqsafe_cpu_or_4(pcp, val)	percpu_to_op("or", (pcp), val)
429#define irqsafe_cpu_xor_1(pcp, val)	percpu_to_op("xor", (pcp), val)
430#define irqsafe_cpu_xor_2(pcp, val)	percpu_to_op("xor", (pcp), val)
431#define irqsafe_cpu_xor_4(pcp, val)	percpu_to_op("xor", (pcp), val)
432#define irqsafe_cpu_xchg_1(pcp, nval)	percpu_xchg_op(pcp, nval)
433#define irqsafe_cpu_xchg_2(pcp, nval)	percpu_xchg_op(pcp, nval)
434#define irqsafe_cpu_xchg_4(pcp, nval)	percpu_xchg_op(pcp, nval)
435#define irqsafe_cpu_xchg_8(pcp, nval)	percpu_xchg_op(pcp, nval)
436#define irqsafe_cpu_cmpxchg_8(pcp, oval, nval)	percpu_cmpxchg_op(pcp, oval, nval)
437
438#ifndef CONFIG_M386
439#define __this_cpu_add_return_1(pcp, val) percpu_add_return_op(pcp, val)
440#define __this_cpu_add_return_2(pcp, val) percpu_add_return_op(pcp, val)
441#define __this_cpu_add_return_4(pcp, val) percpu_add_return_op(pcp, val)
442#define __this_cpu_cmpxchg_1(pcp, oval, nval)	percpu_cmpxchg_op(pcp, oval, nval)
443#define __this_cpu_cmpxchg_2(pcp, oval, nval)	percpu_cmpxchg_op(pcp, oval, nval)
444#define __this_cpu_cmpxchg_4(pcp, oval, nval)	percpu_cmpxchg_op(pcp, oval, nval)
445
446#define this_cpu_add_return_1(pcp, val)	percpu_add_return_op(pcp, val)
447#define this_cpu_add_return_2(pcp, val)	percpu_add_return_op(pcp, val)
448#define this_cpu_add_return_4(pcp, val)	percpu_add_return_op(pcp, val)
449#define this_cpu_cmpxchg_1(pcp, oval, nval)	percpu_cmpxchg_op(pcp, oval, nval)
450#define this_cpu_cmpxchg_2(pcp, oval, nval)	percpu_cmpxchg_op(pcp, oval, nval)
451#define this_cpu_cmpxchg_4(pcp, oval, nval)	percpu_cmpxchg_op(pcp, oval, nval)
452
453#define irqsafe_cpu_cmpxchg_1(pcp, oval, nval)	percpu_cmpxchg_op(pcp, oval, nval)
454#define irqsafe_cpu_cmpxchg_2(pcp, oval, nval)	percpu_cmpxchg_op(pcp, oval, nval)
455#define irqsafe_cpu_cmpxchg_4(pcp, oval, nval)	percpu_cmpxchg_op(pcp, oval, nval)
456#endif /* !CONFIG_M386 */
457
458/*
459 * Per cpu atomic 64 bit operations are only available under 64 bit.
460 * 32 bit must fall back to generic operations.
461 */
462#ifdef CONFIG_X86_64
463#define __this_cpu_read_8(pcp)		percpu_from_op("mov", (pcp), "m"(pcp))
464#define __this_cpu_write_8(pcp, val)	percpu_to_op("mov", (pcp), val)
465#define __this_cpu_add_8(pcp, val)	percpu_add_op((pcp), val)
466#define __this_cpu_and_8(pcp, val)	percpu_to_op("and", (pcp), val)
467#define __this_cpu_or_8(pcp, val)	percpu_to_op("or", (pcp), val)
468#define __this_cpu_xor_8(pcp, val)	percpu_to_op("xor", (pcp), val)
469#define __this_cpu_add_return_8(pcp, val) percpu_add_return_op(pcp, val)
470
471#define this_cpu_read_8(pcp)		percpu_from_op("mov", (pcp), "m"(pcp))
472#define this_cpu_write_8(pcp, val)	percpu_to_op("mov", (pcp), val)
473#define this_cpu_add_8(pcp, val)	percpu_add_op((pcp), val)
474#define this_cpu_and_8(pcp, val)	percpu_to_op("and", (pcp), val)
475#define this_cpu_or_8(pcp, val)		percpu_to_op("or", (pcp), val)
476#define this_cpu_xor_8(pcp, val)	percpu_to_op("xor", (pcp), val)
477#define this_cpu_add_return_8(pcp, val)	percpu_add_return_op(pcp, val)
478
479#define irqsafe_cpu_add_8(pcp, val)	percpu_add_op((pcp), val)
480#define irqsafe_cpu_and_8(pcp, val)	percpu_to_op("and", (pcp), val)
481#define irqsafe_cpu_or_8(pcp, val)	percpu_to_op("or", (pcp), val)
482#define irqsafe_cpu_xor_8(pcp, val)	percpu_to_op("xor", (pcp), val)
483#endif
484
485/* This is not atomic against other CPUs -- CPU preemption needs to be off */
486#define x86_test_and_clear_bit_percpu(bit, var)				\
487({									\
488	int old__;							\
489	asm volatile("btr %2,"__percpu_arg(1)"\n\tsbbl %0,%0"		\
490		     : "=r" (old__), "+m" (var)				\
491		     : "dIr" (bit));					\
492	old__;								\
493})
494
495#include <asm-generic/percpu.h>
496
497/* We can use this directly for local CPU (faster). */
498DECLARE_PER_CPU(unsigned long, this_cpu_off);
499
500#endif /* !__ASSEMBLY__ */
501
502#ifdef CONFIG_SMP
503
504/*
505 * Define the "EARLY_PER_CPU" macros.  These are used for some per_cpu
506 * variables that are initialized and accessed before there are per_cpu
507 * areas allocated.
508 */
509
510#define	DEFINE_EARLY_PER_CPU(_type, _name, _initvalue)			\
511	DEFINE_PER_CPU(_type, _name) = _initvalue;			\
512	__typeof__(_type) _name##_early_map[NR_CPUS] __initdata =	\
513				{ [0 ... NR_CPUS-1] = _initvalue };	\
514	__typeof__(_type) *_name##_early_ptr __refdata = _name##_early_map
515
516#define EXPORT_EARLY_PER_CPU_SYMBOL(_name)			\
517	EXPORT_PER_CPU_SYMBOL(_name)
518
519#define DECLARE_EARLY_PER_CPU(_type, _name)			\
520	DECLARE_PER_CPU(_type, _name);				\
521	extern __typeof__(_type) *_name##_early_ptr;		\
522	extern __typeof__(_type)  _name##_early_map[]
523
524#define	early_per_cpu_ptr(_name) (_name##_early_ptr)
525#define	early_per_cpu_map(_name, _idx) (_name##_early_map[_idx])
526#define	early_per_cpu(_name, _cpu) 				\
527	*(early_per_cpu_ptr(_name) ?				\
528		&early_per_cpu_ptr(_name)[_cpu] :		\
529		&per_cpu(_name, _cpu))
530
531#else	/* !CONFIG_SMP */
532#define	DEFINE_EARLY_PER_CPU(_type, _name, _initvalue)		\
533	DEFINE_PER_CPU(_type, _name) = _initvalue
534
535#define EXPORT_EARLY_PER_CPU_SYMBOL(_name)			\
536	EXPORT_PER_CPU_SYMBOL(_name)
537
538#define DECLARE_EARLY_PER_CPU(_type, _name)			\
539	DECLARE_PER_CPU(_type, _name)
540
541#define	early_per_cpu(_name, _cpu) per_cpu(_name, _cpu)
542#define	early_per_cpu_ptr(_name) NULL
543/* no early_per_cpu_map() */
544
545#endif	/* !CONFIG_SMP */
546
547#endif /* _ASM_X86_PERCPU_H */
548