percpu.h revision d55c5a93db2d5fa95f233ab153f594365d95b777
1#ifndef _ASM_X86_PERCPU_H
2#define _ASM_X86_PERCPU_H
3
4#ifdef CONFIG_X86_64
5#define __percpu_seg		gs
6#define __percpu_mov_op		movq
7#else
8#define __percpu_seg		fs
9#define __percpu_mov_op		movl
10#endif
11
12#ifdef __ASSEMBLY__
13
14/*
15 * PER_CPU finds an address of a per-cpu variable.
16 *
17 * Args:
18 *    var - variable name
19 *    reg - 32bit register
20 *
21 * The resulting address is stored in the "reg" argument.
22 *
23 * Example:
24 *    PER_CPU(cpu_gdt_descr, %ebx)
25 */
26#ifdef CONFIG_SMP
27#define PER_CPU(var, reg)						\
28	__percpu_mov_op %__percpu_seg:this_cpu_off, reg;		\
29	lea var(reg), reg
30#define PER_CPU_VAR(var)	%__percpu_seg:var
31#else /* ! SMP */
32#define PER_CPU(var, reg)	__percpu_mov_op $var, reg
33#define PER_CPU_VAR(var)	var
34#endif	/* SMP */
35
36#ifdef CONFIG_X86_64_SMP
37#define INIT_PER_CPU_VAR(var)  init_per_cpu__##var
38#else
39#define INIT_PER_CPU_VAR(var)  var
40#endif
41
42#else /* ...!ASSEMBLY */
43
44#include <linux/kernel.h>
45#include <linux/stringify.h>
46
47#ifdef CONFIG_SMP
48#define __percpu_prefix		"%%"__stringify(__percpu_seg)":"
49#define __my_cpu_offset		this_cpu_read(this_cpu_off)
50
51/*
52 * Compared to the generic __my_cpu_offset version, the following
53 * saves one instruction and avoids clobbering a temp register.
54 */
55#define __this_cpu_ptr(ptr)				\
56({							\
57	unsigned long tcp_ptr__;			\
58	__verify_pcpu_ptr(ptr);				\
59	asm volatile("add " __percpu_arg(1) ", %0"	\
60		     : "=r" (tcp_ptr__)			\
61		     : "m" (this_cpu_off), "0" (ptr));	\
62	(typeof(*(ptr)) __kernel __force *)tcp_ptr__;	\
63})
64#else
65#define __percpu_prefix		""
66#endif
67
68#define __percpu_arg(x)		__percpu_prefix "%P" #x
69
70/*
71 * Initialized pointers to per-cpu variables needed for the boot
72 * processor need to use these macros to get the proper address
73 * offset from __per_cpu_load on SMP.
74 *
75 * There also must be an entry in vmlinux_64.lds.S
76 */
77#define DECLARE_INIT_PER_CPU(var) \
78       extern typeof(var) init_per_cpu_var(var)
79
80#ifdef CONFIG_X86_64_SMP
81#define init_per_cpu_var(var)  init_per_cpu__##var
82#else
83#define init_per_cpu_var(var)  var
84#endif
85
86/* For arch-specific code, we can use direct single-insn ops (they
87 * don't give an lvalue though). */
88extern void __bad_percpu_size(void);
89
90#define percpu_to_op(op, var, val)			\
91do {							\
92	typedef typeof(var) pto_T__;			\
93	if (0) {					\
94		pto_T__ pto_tmp__;			\
95		pto_tmp__ = (val);			\
96		(void)pto_tmp__;			\
97	}						\
98	switch (sizeof(var)) {				\
99	case 1:						\
100		asm(op "b %1,"__percpu_arg(0)		\
101		    : "+m" (var)			\
102		    : "qi" ((pto_T__)(val)));		\
103		break;					\
104	case 2:						\
105		asm(op "w %1,"__percpu_arg(0)		\
106		    : "+m" (var)			\
107		    : "ri" ((pto_T__)(val)));		\
108		break;					\
109	case 4:						\
110		asm(op "l %1,"__percpu_arg(0)		\
111		    : "+m" (var)			\
112		    : "ri" ((pto_T__)(val)));		\
113		break;					\
114	case 8:						\
115		asm(op "q %1,"__percpu_arg(0)		\
116		    : "+m" (var)			\
117		    : "re" ((pto_T__)(val)));		\
118		break;					\
119	default: __bad_percpu_size();			\
120	}						\
121} while (0)
122
123/*
124 * Generate a percpu add to memory instruction and optimize code
125 * if one is added or subtracted.
126 */
127#define percpu_add_op(var, val)						\
128do {									\
129	typedef typeof(var) pao_T__;					\
130	const int pao_ID__ = (__builtin_constant_p(val) &&		\
131			      ((val) == 1 || (val) == -1)) ? (val) : 0;	\
132	if (0) {							\
133		pao_T__ pao_tmp__;					\
134		pao_tmp__ = (val);					\
135		(void)pao_tmp__;					\
136	}								\
137	switch (sizeof(var)) {						\
138	case 1:								\
139		if (pao_ID__ == 1)					\
140			asm("incb "__percpu_arg(0) : "+m" (var));	\
141		else if (pao_ID__ == -1)				\
142			asm("decb "__percpu_arg(0) : "+m" (var));	\
143		else							\
144			asm("addb %1, "__percpu_arg(0)			\
145			    : "+m" (var)				\
146			    : "qi" ((pao_T__)(val)));			\
147		break;							\
148	case 2:								\
149		if (pao_ID__ == 1)					\
150			asm("incw "__percpu_arg(0) : "+m" (var));	\
151		else if (pao_ID__ == -1)				\
152			asm("decw "__percpu_arg(0) : "+m" (var));	\
153		else							\
154			asm("addw %1, "__percpu_arg(0)			\
155			    : "+m" (var)				\
156			    : "ri" ((pao_T__)(val)));			\
157		break;							\
158	case 4:								\
159		if (pao_ID__ == 1)					\
160			asm("incl "__percpu_arg(0) : "+m" (var));	\
161		else if (pao_ID__ == -1)				\
162			asm("decl "__percpu_arg(0) : "+m" (var));	\
163		else							\
164			asm("addl %1, "__percpu_arg(0)			\
165			    : "+m" (var)				\
166			    : "ri" ((pao_T__)(val)));			\
167		break;							\
168	case 8:								\
169		if (pao_ID__ == 1)					\
170			asm("incq "__percpu_arg(0) : "+m" (var));	\
171		else if (pao_ID__ == -1)				\
172			asm("decq "__percpu_arg(0) : "+m" (var));	\
173		else							\
174			asm("addq %1, "__percpu_arg(0)			\
175			    : "+m" (var)				\
176			    : "re" ((pao_T__)(val)));			\
177		break;							\
178	default: __bad_percpu_size();					\
179	}								\
180} while (0)
181
182#define percpu_from_op(op, var, constraint)		\
183({							\
184	typeof(var) pfo_ret__;				\
185	switch (sizeof(var)) {				\
186	case 1:						\
187		asm(op "b "__percpu_arg(1)",%0"		\
188		    : "=q" (pfo_ret__)			\
189		    : constraint);			\
190		break;					\
191	case 2:						\
192		asm(op "w "__percpu_arg(1)",%0"		\
193		    : "=r" (pfo_ret__)			\
194		    : constraint);			\
195		break;					\
196	case 4:						\
197		asm(op "l "__percpu_arg(1)",%0"		\
198		    : "=r" (pfo_ret__)			\
199		    : constraint);			\
200		break;					\
201	case 8:						\
202		asm(op "q "__percpu_arg(1)",%0"		\
203		    : "=r" (pfo_ret__)			\
204		    : constraint);			\
205		break;					\
206	default: __bad_percpu_size();			\
207	}						\
208	pfo_ret__;					\
209})
210
211#define percpu_unary_op(op, var)			\
212({							\
213	switch (sizeof(var)) {				\
214	case 1:						\
215		asm(op "b "__percpu_arg(0)		\
216		    : "+m" (var));			\
217		break;					\
218	case 2:						\
219		asm(op "w "__percpu_arg(0)		\
220		    : "+m" (var));			\
221		break;					\
222	case 4:						\
223		asm(op "l "__percpu_arg(0)		\
224		    : "+m" (var));			\
225		break;					\
226	case 8:						\
227		asm(op "q "__percpu_arg(0)		\
228		    : "+m" (var));			\
229		break;					\
230	default: __bad_percpu_size();			\
231	}						\
232})
233
234/*
235 * Add return operation
236 */
237#define percpu_add_return_op(var, val)					\
238({									\
239	typeof(var) paro_ret__ = val;					\
240	switch (sizeof(var)) {						\
241	case 1:								\
242		asm("xaddb %0, "__percpu_arg(1)				\
243			    : "+q" (paro_ret__), "+m" (var)		\
244			    : : "memory");				\
245		break;							\
246	case 2:								\
247		asm("xaddw %0, "__percpu_arg(1)				\
248			    : "+r" (paro_ret__), "+m" (var)		\
249			    : : "memory");				\
250		break;							\
251	case 4:								\
252		asm("xaddl %0, "__percpu_arg(1)				\
253			    : "+r" (paro_ret__), "+m" (var)		\
254			    : : "memory");				\
255		break;							\
256	case 8:								\
257		asm("xaddq %0, "__percpu_arg(1)				\
258			    : "+re" (paro_ret__), "+m" (var)		\
259			    : : "memory");				\
260		break;							\
261	default: __bad_percpu_size();					\
262	}								\
263	paro_ret__ += val;						\
264	paro_ret__;							\
265})
266
267/*
268 * xchg is implemented using cmpxchg without a lock prefix. xchg is
269 * expensive due to the implied lock prefix.  The processor cannot prefetch
270 * cachelines if xchg is used.
271 */
272#define percpu_xchg_op(var, nval)					\
273({									\
274	typeof(var) pxo_ret__;						\
275	typeof(var) pxo_new__ = (nval);					\
276	switch (sizeof(var)) {						\
277	case 1:								\
278		asm("\n\tmov "__percpu_arg(1)",%%al"			\
279		    "\n1:\tcmpxchgb %2, "__percpu_arg(1)		\
280		    "\n\tjnz 1b"					\
281			    : "=&a" (pxo_ret__), "+m" (var)		\
282			    : "q" (pxo_new__)				\
283			    : "memory");				\
284		break;							\
285	case 2:								\
286		asm("\n\tmov "__percpu_arg(1)",%%ax"			\
287		    "\n1:\tcmpxchgw %2, "__percpu_arg(1)		\
288		    "\n\tjnz 1b"					\
289			    : "=&a" (pxo_ret__), "+m" (var)		\
290			    : "r" (pxo_new__)				\
291			    : "memory");				\
292		break;							\
293	case 4:								\
294		asm("\n\tmov "__percpu_arg(1)",%%eax"			\
295		    "\n1:\tcmpxchgl %2, "__percpu_arg(1)		\
296		    "\n\tjnz 1b"					\
297			    : "=&a" (pxo_ret__), "+m" (var)		\
298			    : "r" (pxo_new__)				\
299			    : "memory");				\
300		break;							\
301	case 8:								\
302		asm("\n\tmov "__percpu_arg(1)",%%rax"			\
303		    "\n1:\tcmpxchgq %2, "__percpu_arg(1)		\
304		    "\n\tjnz 1b"					\
305			    : "=&a" (pxo_ret__), "+m" (var)		\
306			    : "r" (pxo_new__)				\
307			    : "memory");				\
308		break;							\
309	default: __bad_percpu_size();					\
310	}								\
311	pxo_ret__;							\
312})
313
314/*
315 * cmpxchg has no such implied lock semantics as a result it is much
316 * more efficient for cpu local operations.
317 */
318#define percpu_cmpxchg_op(var, oval, nval)				\
319({									\
320	typeof(var) pco_ret__;						\
321	typeof(var) pco_old__ = (oval);					\
322	typeof(var) pco_new__ = (nval);					\
323	switch (sizeof(var)) {						\
324	case 1:								\
325		asm("cmpxchgb %2, "__percpu_arg(1)			\
326			    : "=a" (pco_ret__), "+m" (var)		\
327			    : "q" (pco_new__), "0" (pco_old__)		\
328			    : "memory");				\
329		break;							\
330	case 2:								\
331		asm("cmpxchgw %2, "__percpu_arg(1)			\
332			    : "=a" (pco_ret__), "+m" (var)		\
333			    : "r" (pco_new__), "0" (pco_old__)		\
334			    : "memory");				\
335		break;							\
336	case 4:								\
337		asm("cmpxchgl %2, "__percpu_arg(1)			\
338			    : "=a" (pco_ret__), "+m" (var)		\
339			    : "r" (pco_new__), "0" (pco_old__)		\
340			    : "memory");				\
341		break;							\
342	case 8:								\
343		asm("cmpxchgq %2, "__percpu_arg(1)			\
344			    : "=a" (pco_ret__), "+m" (var)		\
345			    : "r" (pco_new__), "0" (pco_old__)		\
346			    : "memory");				\
347		break;							\
348	default: __bad_percpu_size();					\
349	}								\
350	pco_ret__;							\
351})
352
353/*
354 * this_cpu_read() makes gcc load the percpu variable every time it is
355 * accessed while this_cpu_read_stable() allows the value to be cached.
356 * this_cpu_read_stable() is more efficient and can be used if its value
357 * is guaranteed to be valid across cpus.  The current users include
358 * get_current() and get_thread_info() both of which are actually
359 * per-thread variables implemented as per-cpu variables and thus
360 * stable for the duration of the respective task.
361 */
362#define this_cpu_read_stable(var)	percpu_from_op("mov", var, "p" (&(var)))
363
364#define __this_cpu_read_1(pcp)		percpu_from_op("mov", (pcp), "m"(pcp))
365#define __this_cpu_read_2(pcp)		percpu_from_op("mov", (pcp), "m"(pcp))
366#define __this_cpu_read_4(pcp)		percpu_from_op("mov", (pcp), "m"(pcp))
367
368#define __this_cpu_write_1(pcp, val)	percpu_to_op("mov", (pcp), val)
369#define __this_cpu_write_2(pcp, val)	percpu_to_op("mov", (pcp), val)
370#define __this_cpu_write_4(pcp, val)	percpu_to_op("mov", (pcp), val)
371#define __this_cpu_add_1(pcp, val)	percpu_add_op((pcp), val)
372#define __this_cpu_add_2(pcp, val)	percpu_add_op((pcp), val)
373#define __this_cpu_add_4(pcp, val)	percpu_add_op((pcp), val)
374#define __this_cpu_and_1(pcp, val)	percpu_to_op("and", (pcp), val)
375#define __this_cpu_and_2(pcp, val)	percpu_to_op("and", (pcp), val)
376#define __this_cpu_and_4(pcp, val)	percpu_to_op("and", (pcp), val)
377#define __this_cpu_or_1(pcp, val)	percpu_to_op("or", (pcp), val)
378#define __this_cpu_or_2(pcp, val)	percpu_to_op("or", (pcp), val)
379#define __this_cpu_or_4(pcp, val)	percpu_to_op("or", (pcp), val)
380#define __this_cpu_xor_1(pcp, val)	percpu_to_op("xor", (pcp), val)
381#define __this_cpu_xor_2(pcp, val)	percpu_to_op("xor", (pcp), val)
382#define __this_cpu_xor_4(pcp, val)	percpu_to_op("xor", (pcp), val)
383#define __this_cpu_xchg_1(pcp, val)	percpu_xchg_op(pcp, val)
384#define __this_cpu_xchg_2(pcp, val)	percpu_xchg_op(pcp, val)
385#define __this_cpu_xchg_4(pcp, val)	percpu_xchg_op(pcp, val)
386
387#define this_cpu_read_1(pcp)		percpu_from_op("mov", (pcp), "m"(pcp))
388#define this_cpu_read_2(pcp)		percpu_from_op("mov", (pcp), "m"(pcp))
389#define this_cpu_read_4(pcp)		percpu_from_op("mov", (pcp), "m"(pcp))
390#define this_cpu_write_1(pcp, val)	percpu_to_op("mov", (pcp), val)
391#define this_cpu_write_2(pcp, val)	percpu_to_op("mov", (pcp), val)
392#define this_cpu_write_4(pcp, val)	percpu_to_op("mov", (pcp), val)
393#define this_cpu_add_1(pcp, val)	percpu_add_op((pcp), val)
394#define this_cpu_add_2(pcp, val)	percpu_add_op((pcp), val)
395#define this_cpu_add_4(pcp, val)	percpu_add_op((pcp), val)
396#define this_cpu_and_1(pcp, val)	percpu_to_op("and", (pcp), val)
397#define this_cpu_and_2(pcp, val)	percpu_to_op("and", (pcp), val)
398#define this_cpu_and_4(pcp, val)	percpu_to_op("and", (pcp), val)
399#define this_cpu_or_1(pcp, val)		percpu_to_op("or", (pcp), val)
400#define this_cpu_or_2(pcp, val)		percpu_to_op("or", (pcp), val)
401#define this_cpu_or_4(pcp, val)		percpu_to_op("or", (pcp), val)
402#define this_cpu_xor_1(pcp, val)	percpu_to_op("xor", (pcp), val)
403#define this_cpu_xor_2(pcp, val)	percpu_to_op("xor", (pcp), val)
404#define this_cpu_xor_4(pcp, val)	percpu_to_op("xor", (pcp), val)
405#define this_cpu_xchg_1(pcp, nval)	percpu_xchg_op(pcp, nval)
406#define this_cpu_xchg_2(pcp, nval)	percpu_xchg_op(pcp, nval)
407#define this_cpu_xchg_4(pcp, nval)	percpu_xchg_op(pcp, nval)
408
409#define __this_cpu_add_return_1(pcp, val) percpu_add_return_op(pcp, val)
410#define __this_cpu_add_return_2(pcp, val) percpu_add_return_op(pcp, val)
411#define __this_cpu_add_return_4(pcp, val) percpu_add_return_op(pcp, val)
412#define __this_cpu_cmpxchg_1(pcp, oval, nval)	percpu_cmpxchg_op(pcp, oval, nval)
413#define __this_cpu_cmpxchg_2(pcp, oval, nval)	percpu_cmpxchg_op(pcp, oval, nval)
414#define __this_cpu_cmpxchg_4(pcp, oval, nval)	percpu_cmpxchg_op(pcp, oval, nval)
415
416#define this_cpu_add_return_1(pcp, val)	percpu_add_return_op(pcp, val)
417#define this_cpu_add_return_2(pcp, val)	percpu_add_return_op(pcp, val)
418#define this_cpu_add_return_4(pcp, val)	percpu_add_return_op(pcp, val)
419#define this_cpu_cmpxchg_1(pcp, oval, nval)	percpu_cmpxchg_op(pcp, oval, nval)
420#define this_cpu_cmpxchg_2(pcp, oval, nval)	percpu_cmpxchg_op(pcp, oval, nval)
421#define this_cpu_cmpxchg_4(pcp, oval, nval)	percpu_cmpxchg_op(pcp, oval, nval)
422
423#ifdef CONFIG_X86_CMPXCHG64
424#define percpu_cmpxchg8b_double(pcp1, pcp2, o1, o2, n1, n2)		\
425({									\
426	bool __ret;							\
427	typeof(pcp1) __o1 = (o1), __n1 = (n1);				\
428	typeof(pcp2) __o2 = (o2), __n2 = (n2);				\
429	asm volatile("cmpxchg8b "__percpu_arg(1)"\n\tsetz %0\n\t"	\
430		    : "=a" (__ret), "+m" (pcp1), "+m" (pcp2), "+d" (__o2) \
431		    :  "b" (__n1), "c" (__n2), "a" (__o1));		\
432	__ret;								\
433})
434
435#define __this_cpu_cmpxchg_double_4	percpu_cmpxchg8b_double
436#define this_cpu_cmpxchg_double_4	percpu_cmpxchg8b_double
437#endif /* CONFIG_X86_CMPXCHG64 */
438
439/*
440 * Per cpu atomic 64 bit operations are only available under 64 bit.
441 * 32 bit must fall back to generic operations.
442 */
443#ifdef CONFIG_X86_64
444#define __this_cpu_read_8(pcp)		percpu_from_op("mov", (pcp), "m"(pcp))
445#define __this_cpu_write_8(pcp, val)	percpu_to_op("mov", (pcp), val)
446#define __this_cpu_add_8(pcp, val)	percpu_add_op((pcp), val)
447#define __this_cpu_and_8(pcp, val)	percpu_to_op("and", (pcp), val)
448#define __this_cpu_or_8(pcp, val)	percpu_to_op("or", (pcp), val)
449#define __this_cpu_xor_8(pcp, val)	percpu_to_op("xor", (pcp), val)
450#define __this_cpu_add_return_8(pcp, val) percpu_add_return_op(pcp, val)
451#define __this_cpu_xchg_8(pcp, nval)	percpu_xchg_op(pcp, nval)
452#define __this_cpu_cmpxchg_8(pcp, oval, nval)	percpu_cmpxchg_op(pcp, oval, nval)
453
454#define this_cpu_read_8(pcp)		percpu_from_op("mov", (pcp), "m"(pcp))
455#define this_cpu_write_8(pcp, val)	percpu_to_op("mov", (pcp), val)
456#define this_cpu_add_8(pcp, val)	percpu_add_op((pcp), val)
457#define this_cpu_and_8(pcp, val)	percpu_to_op("and", (pcp), val)
458#define this_cpu_or_8(pcp, val)		percpu_to_op("or", (pcp), val)
459#define this_cpu_xor_8(pcp, val)	percpu_to_op("xor", (pcp), val)
460#define this_cpu_add_return_8(pcp, val)	percpu_add_return_op(pcp, val)
461#define this_cpu_xchg_8(pcp, nval)	percpu_xchg_op(pcp, nval)
462#define this_cpu_cmpxchg_8(pcp, oval, nval)	percpu_cmpxchg_op(pcp, oval, nval)
463
464/*
465 * Pretty complex macro to generate cmpxchg16 instruction.  The instruction
466 * is not supported on early AMD64 processors so we must be able to emulate
467 * it in software.  The address used in the cmpxchg16 instruction must be
468 * aligned to a 16 byte boundary.
469 */
470#define percpu_cmpxchg16b_double(pcp1, pcp2, o1, o2, n1, n2)		\
471({									\
472	bool __ret;							\
473	typeof(pcp1) __o1 = (o1), __n1 = (n1);				\
474	typeof(pcp2) __o2 = (o2), __n2 = (n2);				\
475	alternative_io("leaq %P1,%%rsi\n\tcall this_cpu_cmpxchg16b_emu\n\t", \
476		       "cmpxchg16b " __percpu_arg(1) "\n\tsetz %0\n\t",	\
477		       X86_FEATURE_CX16,				\
478		       ASM_OUTPUT2("=a" (__ret), "+m" (pcp1),		\
479				   "+m" (pcp2), "+d" (__o2)),		\
480		       "b" (__n1), "c" (__n2), "a" (__o1) : "rsi");	\
481	__ret;								\
482})
483
484#define __this_cpu_cmpxchg_double_8	percpu_cmpxchg16b_double
485#define this_cpu_cmpxchg_double_8	percpu_cmpxchg16b_double
486
487#endif
488
489/* This is not atomic against other CPUs -- CPU preemption needs to be off */
490#define x86_test_and_clear_bit_percpu(bit, var)				\
491({									\
492	int old__;							\
493	asm volatile("btr %2,"__percpu_arg(1)"\n\tsbbl %0,%0"		\
494		     : "=r" (old__), "+m" (var)				\
495		     : "dIr" (bit));					\
496	old__;								\
497})
498
499static __always_inline int x86_this_cpu_constant_test_bit(unsigned int nr,
500                        const unsigned long __percpu *addr)
501{
502	unsigned long __percpu *a = (unsigned long *)addr + nr / BITS_PER_LONG;
503
504#ifdef CONFIG_X86_64
505	return ((1UL << (nr % BITS_PER_LONG)) & __this_cpu_read_8(*a)) != 0;
506#else
507	return ((1UL << (nr % BITS_PER_LONG)) & __this_cpu_read_4(*a)) != 0;
508#endif
509}
510
511static inline int x86_this_cpu_variable_test_bit(int nr,
512                        const unsigned long __percpu *addr)
513{
514	int oldbit;
515
516	asm volatile("bt "__percpu_arg(2)",%1\n\t"
517			"sbb %0,%0"
518			: "=r" (oldbit)
519			: "m" (*(unsigned long *)addr), "Ir" (nr));
520
521	return oldbit;
522}
523
524#define x86_this_cpu_test_bit(nr, addr)			\
525	(__builtin_constant_p((nr))			\
526	 ? x86_this_cpu_constant_test_bit((nr), (addr))	\
527	 : x86_this_cpu_variable_test_bit((nr), (addr)))
528
529
530#include <asm-generic/percpu.h>
531
532/* We can use this directly for local CPU (faster). */
533DECLARE_PER_CPU(unsigned long, this_cpu_off);
534
535#endif /* !__ASSEMBLY__ */
536
537#ifdef CONFIG_SMP
538
539/*
540 * Define the "EARLY_PER_CPU" macros.  These are used for some per_cpu
541 * variables that are initialized and accessed before there are per_cpu
542 * areas allocated.
543 */
544
545#define	DEFINE_EARLY_PER_CPU(_type, _name, _initvalue)			\
546	DEFINE_PER_CPU(_type, _name) = _initvalue;			\
547	__typeof__(_type) _name##_early_map[NR_CPUS] __initdata =	\
548				{ [0 ... NR_CPUS-1] = _initvalue };	\
549	__typeof__(_type) *_name##_early_ptr __refdata = _name##_early_map
550
551#define DEFINE_EARLY_PER_CPU_READ_MOSTLY(_type, _name, _initvalue)	\
552	DEFINE_PER_CPU_READ_MOSTLY(_type, _name) = _initvalue;		\
553	__typeof__(_type) _name##_early_map[NR_CPUS] __initdata =	\
554				{ [0 ... NR_CPUS-1] = _initvalue };	\
555	__typeof__(_type) *_name##_early_ptr __refdata = _name##_early_map
556
557#define EXPORT_EARLY_PER_CPU_SYMBOL(_name)			\
558	EXPORT_PER_CPU_SYMBOL(_name)
559
560#define DECLARE_EARLY_PER_CPU(_type, _name)			\
561	DECLARE_PER_CPU(_type, _name);				\
562	extern __typeof__(_type) *_name##_early_ptr;		\
563	extern __typeof__(_type)  _name##_early_map[]
564
565#define DECLARE_EARLY_PER_CPU_READ_MOSTLY(_type, _name)		\
566	DECLARE_PER_CPU_READ_MOSTLY(_type, _name);		\
567	extern __typeof__(_type) *_name##_early_ptr;		\
568	extern __typeof__(_type)  _name##_early_map[]
569
570#define	early_per_cpu_ptr(_name) (_name##_early_ptr)
571#define	early_per_cpu_map(_name, _idx) (_name##_early_map[_idx])
572#define	early_per_cpu(_name, _cpu) 				\
573	*(early_per_cpu_ptr(_name) ?				\
574		&early_per_cpu_ptr(_name)[_cpu] :		\
575		&per_cpu(_name, _cpu))
576
577#else	/* !CONFIG_SMP */
578#define	DEFINE_EARLY_PER_CPU(_type, _name, _initvalue)		\
579	DEFINE_PER_CPU(_type, _name) = _initvalue
580
581#define DEFINE_EARLY_PER_CPU_READ_MOSTLY(_type, _name, _initvalue)	\
582	DEFINE_PER_CPU_READ_MOSTLY(_type, _name) = _initvalue
583
584#define EXPORT_EARLY_PER_CPU_SYMBOL(_name)			\
585	EXPORT_PER_CPU_SYMBOL(_name)
586
587#define DECLARE_EARLY_PER_CPU(_type, _name)			\
588	DECLARE_PER_CPU(_type, _name)
589
590#define DECLARE_EARLY_PER_CPU_READ_MOSTLY(_type, _name)		\
591	DECLARE_PER_CPU_READ_MOSTLY(_type, _name)
592
593#define	early_per_cpu(_name, _cpu) per_cpu(_name, _cpu)
594#define	early_per_cpu_ptr(_name) NULL
595/* no early_per_cpu_map() */
596
597#endif	/* !CONFIG_SMP */
598
599#endif /* _ASM_X86_PERCPU_H */
600