1#include <linux/kernel.h>
2
3#include <linux/string.h>
4#include <linux/bitops.h>
5#include <linux/smp.h>
6#include <linux/sched.h>
7#include <linux/thread_info.h>
8#include <linux/module.h>
9#include <linux/uaccess.h>
10
11#include <asm/processor.h>
12#include <asm/pgtable.h>
13#include <asm/msr.h>
14#include <asm/bugs.h>
15#include <asm/cpu.h>
16
17#ifdef CONFIG_X86_64
18#include <linux/topology.h>
19#endif
20
21#include "cpu.h"
22
23#ifdef CONFIG_X86_LOCAL_APIC
24#include <asm/mpspec.h>
25#include <asm/apic.h>
26#endif
27
28static void early_init_intel(struct cpuinfo_x86 *c)
29{
30	u64 misc_enable;
31
32	/* Unmask CPUID levels if masked: */
33	if (c->x86 > 6 || (c->x86 == 6 && c->x86_model >= 0xd)) {
34		if (msr_clear_bit(MSR_IA32_MISC_ENABLE,
35				  MSR_IA32_MISC_ENABLE_LIMIT_CPUID_BIT) > 0) {
36			c->cpuid_level = cpuid_eax(0);
37			get_cpu_cap(c);
38		}
39	}
40
41	if ((c->x86 == 0xf && c->x86_model >= 0x03) ||
42		(c->x86 == 0x6 && c->x86_model >= 0x0e))
43		set_cpu_cap(c, X86_FEATURE_CONSTANT_TSC);
44
45	if (c->x86 >= 6 && !cpu_has(c, X86_FEATURE_IA64)) {
46		unsigned lower_word;
47
48		wrmsr(MSR_IA32_UCODE_REV, 0, 0);
49		/* Required by the SDM */
50		sync_core();
51		rdmsr(MSR_IA32_UCODE_REV, lower_word, c->microcode);
52	}
53
54	/*
55	 * Atom erratum AAE44/AAF40/AAG38/AAH41:
56	 *
57	 * A race condition between speculative fetches and invalidating
58	 * a large page.  This is worked around in microcode, but we
59	 * need the microcode to have already been loaded... so if it is
60	 * not, recommend a BIOS update and disable large pages.
61	 */
62	if (c->x86 == 6 && c->x86_model == 0x1c && c->x86_mask <= 2 &&
63	    c->microcode < 0x20e) {
64		printk(KERN_WARNING "Atom PSE erratum detected, BIOS microcode update recommended\n");
65		clear_cpu_cap(c, X86_FEATURE_PSE);
66	}
67
68#ifdef CONFIG_X86_64
69	set_cpu_cap(c, X86_FEATURE_SYSENTER32);
70#else
71	/* Netburst reports 64 bytes clflush size, but does IO in 128 bytes */
72	if (c->x86 == 15 && c->x86_cache_alignment == 64)
73		c->x86_cache_alignment = 128;
74#endif
75
76	/* CPUID workaround for 0F33/0F34 CPU */
77	if (c->x86 == 0xF && c->x86_model == 0x3
78	    && (c->x86_mask == 0x3 || c->x86_mask == 0x4))
79		c->x86_phys_bits = 36;
80
81	/*
82	 * c->x86_power is 8000_0007 edx. Bit 8 is TSC runs at constant rate
83	 * with P/T states and does not stop in deep C-states.
84	 *
85	 * It is also reliable across cores and sockets. (but not across
86	 * cabinets - we turn it off in that case explicitly.)
87	 */
88	if (c->x86_power & (1 << 8)) {
89		set_cpu_cap(c, X86_FEATURE_CONSTANT_TSC);
90		set_cpu_cap(c, X86_FEATURE_NONSTOP_TSC);
91		if (!check_tsc_unstable())
92			set_sched_clock_stable();
93	}
94
95	/* Penwell and Cloverview have the TSC which doesn't sleep on S3 */
96	if (c->x86 == 6) {
97		switch (c->x86_model) {
98		case 0x27:	/* Penwell */
99		case 0x35:	/* Cloverview */
100			set_cpu_cap(c, X86_FEATURE_NONSTOP_TSC_S3);
101			break;
102		default:
103			break;
104		}
105	}
106
107	/*
108	 * There is a known erratum on Pentium III and Core Solo
109	 * and Core Duo CPUs.
110	 * " Page with PAT set to WC while associated MTRR is UC
111	 *   may consolidate to UC "
112	 * Because of this erratum, it is better to stick with
113	 * setting WC in MTRR rather than using PAT on these CPUs.
114	 *
115	 * Enable PAT WC only on P4, Core 2 or later CPUs.
116	 */
117	if (c->x86 == 6 && c->x86_model < 15)
118		clear_cpu_cap(c, X86_FEATURE_PAT);
119
120#ifdef CONFIG_KMEMCHECK
121	/*
122	 * P4s have a "fast strings" feature which causes single-
123	 * stepping REP instructions to only generate a #DB on
124	 * cache-line boundaries.
125	 *
126	 * Ingo Molnar reported a Pentium D (model 6) and a Xeon
127	 * (model 2) with the same problem.
128	 */
129	if (c->x86 == 15)
130		if (msr_clear_bit(MSR_IA32_MISC_ENABLE,
131				  MSR_IA32_MISC_ENABLE_FAST_STRING_BIT) > 0)
132			pr_info("kmemcheck: Disabling fast string operations\n");
133#endif
134
135	/*
136	 * If fast string is not enabled in IA32_MISC_ENABLE for any reason,
137	 * clear the fast string and enhanced fast string CPU capabilities.
138	 */
139	if (c->x86 > 6 || (c->x86 == 6 && c->x86_model >= 0xd)) {
140		rdmsrl(MSR_IA32_MISC_ENABLE, misc_enable);
141		if (!(misc_enable & MSR_IA32_MISC_ENABLE_FAST_STRING)) {
142			printk(KERN_INFO "Disabled fast string operations\n");
143			setup_clear_cpu_cap(X86_FEATURE_REP_GOOD);
144			setup_clear_cpu_cap(X86_FEATURE_ERMS);
145		}
146	}
147
148	/*
149	 * Intel Quark Core DevMan_001.pdf section 6.4.11
150	 * "The operating system also is required to invalidate (i.e., flush)
151	 *  the TLB when any changes are made to any of the page table entries.
152	 *  The operating system must reload CR3 to cause the TLB to be flushed"
153	 *
154	 * As a result cpu_has_pge() in arch/x86/include/asm/tlbflush.h should
155	 * be false so that __flush_tlb_all() causes CR3 insted of CR4.PGE
156	 * to be modified
157	 */
158	if (c->x86 == 5 && c->x86_model == 9) {
159		pr_info("Disabling PGE capability bit\n");
160		setup_clear_cpu_cap(X86_FEATURE_PGE);
161	}
162}
163
164#ifdef CONFIG_X86_32
165/*
166 *	Early probe support logic for ppro memory erratum #50
167 *
168 *	This is called before we do cpu ident work
169 */
170
171int ppro_with_ram_bug(void)
172{
173	/* Uses data from early_cpu_detect now */
174	if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL &&
175	    boot_cpu_data.x86 == 6 &&
176	    boot_cpu_data.x86_model == 1 &&
177	    boot_cpu_data.x86_mask < 8) {
178		printk(KERN_INFO "Pentium Pro with Errata#50 detected. Taking evasive action.\n");
179		return 1;
180	}
181	return 0;
182}
183
184static void intel_smp_check(struct cpuinfo_x86 *c)
185{
186	/* calling is from identify_secondary_cpu() ? */
187	if (!c->cpu_index)
188		return;
189
190	/*
191	 * Mask B, Pentium, but not Pentium MMX
192	 */
193	if (c->x86 == 5 &&
194	    c->x86_mask >= 1 && c->x86_mask <= 4 &&
195	    c->x86_model <= 3) {
196		/*
197		 * Remember we have B step Pentia with bugs
198		 */
199		WARN_ONCE(1, "WARNING: SMP operation may be unreliable"
200				    "with B stepping processors.\n");
201	}
202}
203
204static int forcepae;
205static int __init forcepae_setup(char *__unused)
206{
207	forcepae = 1;
208	return 1;
209}
210__setup("forcepae", forcepae_setup);
211
212static void intel_workarounds(struct cpuinfo_x86 *c)
213{
214#ifdef CONFIG_X86_F00F_BUG
215	/*
216	 * All models of Pentium and Pentium with MMX technology CPUs
217	 * have the F0 0F bug, which lets nonprivileged users lock up the
218	 * system. Announce that the fault handler will be checking for it.
219	 * The Quark is also family 5, but does not have the same bug.
220	 */
221	clear_cpu_bug(c, X86_BUG_F00F);
222	if (!paravirt_enabled() && c->x86 == 5 && c->x86_model < 9) {
223		static int f00f_workaround_enabled;
224
225		set_cpu_bug(c, X86_BUG_F00F);
226		if (!f00f_workaround_enabled) {
227			printk(KERN_NOTICE "Intel Pentium with F0 0F bug - workaround enabled.\n");
228			f00f_workaround_enabled = 1;
229		}
230	}
231#endif
232
233	/*
234	 * SEP CPUID bug: Pentium Pro reports SEP but doesn't have it until
235	 * model 3 mask 3
236	 */
237	if ((c->x86<<8 | c->x86_model<<4 | c->x86_mask) < 0x633)
238		clear_cpu_cap(c, X86_FEATURE_SEP);
239
240	/*
241	 * PAE CPUID issue: many Pentium M report no PAE but may have a
242	 * functionally usable PAE implementation.
243	 * Forcefully enable PAE if kernel parameter "forcepae" is present.
244	 */
245	if (forcepae) {
246		printk(KERN_WARNING "PAE forced!\n");
247		set_cpu_cap(c, X86_FEATURE_PAE);
248		add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_NOW_UNRELIABLE);
249	}
250
251	/*
252	 * P4 Xeon errata 037 workaround.
253	 * Hardware prefetcher may cause stale data to be loaded into the cache.
254	 */
255	if ((c->x86 == 15) && (c->x86_model == 1) && (c->x86_mask == 1)) {
256		if (msr_set_bit(MSR_IA32_MISC_ENABLE,
257				MSR_IA32_MISC_ENABLE_PREFETCH_DISABLE_BIT)
258		    > 0) {
259			pr_info("CPU: C0 stepping P4 Xeon detected.\n");
260			pr_info("CPU: Disabling hardware prefetching (Errata 037)\n");
261		}
262	}
263
264	/*
265	 * See if we have a good local APIC by checking for buggy Pentia,
266	 * i.e. all B steppings and the C2 stepping of P54C when using their
267	 * integrated APIC (see 11AP erratum in "Pentium Processor
268	 * Specification Update").
269	 */
270	if (cpu_has_apic && (c->x86<<8 | c->x86_model<<4) == 0x520 &&
271	    (c->x86_mask < 0x6 || c->x86_mask == 0xb))
272		set_cpu_bug(c, X86_BUG_11AP);
273
274
275#ifdef CONFIG_X86_INTEL_USERCOPY
276	/*
277	 * Set up the preferred alignment for movsl bulk memory moves
278	 */
279	switch (c->x86) {
280	case 4:		/* 486: untested */
281		break;
282	case 5:		/* Old Pentia: untested */
283		break;
284	case 6:		/* PII/PIII only like movsl with 8-byte alignment */
285		movsl_mask.mask = 7;
286		break;
287	case 15:	/* P4 is OK down to 8-byte alignment */
288		movsl_mask.mask = 7;
289		break;
290	}
291#endif
292
293	intel_smp_check(c);
294}
295#else
296static void intel_workarounds(struct cpuinfo_x86 *c)
297{
298}
299#endif
300
301static void srat_detect_node(struct cpuinfo_x86 *c)
302{
303#ifdef CONFIG_NUMA
304	unsigned node;
305	int cpu = smp_processor_id();
306
307	/* Don't do the funky fallback heuristics the AMD version employs
308	   for now. */
309	node = numa_cpu_node(cpu);
310	if (node == NUMA_NO_NODE || !node_online(node)) {
311		/* reuse the value from init_cpu_to_node() */
312		node = cpu_to_node(cpu);
313	}
314	numa_set_node(cpu, node);
315#endif
316}
317
318/*
319 * find out the number of processor cores on the die
320 */
321static int intel_num_cpu_cores(struct cpuinfo_x86 *c)
322{
323	unsigned int eax, ebx, ecx, edx;
324
325	if (c->cpuid_level < 4)
326		return 1;
327
328	/* Intel has a non-standard dependency on %ecx for this CPUID level. */
329	cpuid_count(4, 0, &eax, &ebx, &ecx, &edx);
330	if (eax & 0x1f)
331		return (eax >> 26) + 1;
332	else
333		return 1;
334}
335
336static void detect_vmx_virtcap(struct cpuinfo_x86 *c)
337{
338	/* Intel VMX MSR indicated features */
339#define X86_VMX_FEATURE_PROC_CTLS_TPR_SHADOW	0x00200000
340#define X86_VMX_FEATURE_PROC_CTLS_VNMI		0x00400000
341#define X86_VMX_FEATURE_PROC_CTLS_2ND_CTLS	0x80000000
342#define X86_VMX_FEATURE_PROC_CTLS2_VIRT_APIC	0x00000001
343#define X86_VMX_FEATURE_PROC_CTLS2_EPT		0x00000002
344#define X86_VMX_FEATURE_PROC_CTLS2_VPID		0x00000020
345
346	u32 vmx_msr_low, vmx_msr_high, msr_ctl, msr_ctl2;
347
348	clear_cpu_cap(c, X86_FEATURE_TPR_SHADOW);
349	clear_cpu_cap(c, X86_FEATURE_VNMI);
350	clear_cpu_cap(c, X86_FEATURE_FLEXPRIORITY);
351	clear_cpu_cap(c, X86_FEATURE_EPT);
352	clear_cpu_cap(c, X86_FEATURE_VPID);
353
354	rdmsr(MSR_IA32_VMX_PROCBASED_CTLS, vmx_msr_low, vmx_msr_high);
355	msr_ctl = vmx_msr_high | vmx_msr_low;
356	if (msr_ctl & X86_VMX_FEATURE_PROC_CTLS_TPR_SHADOW)
357		set_cpu_cap(c, X86_FEATURE_TPR_SHADOW);
358	if (msr_ctl & X86_VMX_FEATURE_PROC_CTLS_VNMI)
359		set_cpu_cap(c, X86_FEATURE_VNMI);
360	if (msr_ctl & X86_VMX_FEATURE_PROC_CTLS_2ND_CTLS) {
361		rdmsr(MSR_IA32_VMX_PROCBASED_CTLS2,
362		      vmx_msr_low, vmx_msr_high);
363		msr_ctl2 = vmx_msr_high | vmx_msr_low;
364		if ((msr_ctl2 & X86_VMX_FEATURE_PROC_CTLS2_VIRT_APIC) &&
365		    (msr_ctl & X86_VMX_FEATURE_PROC_CTLS_TPR_SHADOW))
366			set_cpu_cap(c, X86_FEATURE_FLEXPRIORITY);
367		if (msr_ctl2 & X86_VMX_FEATURE_PROC_CTLS2_EPT)
368			set_cpu_cap(c, X86_FEATURE_EPT);
369		if (msr_ctl2 & X86_VMX_FEATURE_PROC_CTLS2_VPID)
370			set_cpu_cap(c, X86_FEATURE_VPID);
371	}
372}
373
374static void init_intel(struct cpuinfo_x86 *c)
375{
376	unsigned int l2 = 0;
377
378	early_init_intel(c);
379
380	intel_workarounds(c);
381
382	/*
383	 * Detect the extended topology information if available. This
384	 * will reinitialise the initial_apicid which will be used
385	 * in init_intel_cacheinfo()
386	 */
387	detect_extended_topology(c);
388
389	if (!cpu_has(c, X86_FEATURE_XTOPOLOGY)) {
390		/*
391		 * let's use the legacy cpuid vector 0x1 and 0x4 for topology
392		 * detection.
393		 */
394		c->x86_max_cores = intel_num_cpu_cores(c);
395#ifdef CONFIG_X86_32
396		detect_ht(c);
397#endif
398	}
399
400	l2 = init_intel_cacheinfo(c);
401
402	/* Detect legacy cache sizes if init_intel_cacheinfo did not */
403	if (l2 == 0) {
404		cpu_detect_cache_sizes(c);
405		l2 = c->x86_cache_size;
406	}
407
408	if (c->cpuid_level > 9) {
409		unsigned eax = cpuid_eax(10);
410		/* Check for version and the number of counters */
411		if ((eax & 0xff) && (((eax>>8) & 0xff) > 1))
412			set_cpu_cap(c, X86_FEATURE_ARCH_PERFMON);
413	}
414
415	if (cpu_has_xmm2)
416		set_cpu_cap(c, X86_FEATURE_LFENCE_RDTSC);
417	if (cpu_has_ds) {
418		unsigned int l1;
419		rdmsr(MSR_IA32_MISC_ENABLE, l1, l2);
420		if (!(l1 & (1<<11)))
421			set_cpu_cap(c, X86_FEATURE_BTS);
422		if (!(l1 & (1<<12)))
423			set_cpu_cap(c, X86_FEATURE_PEBS);
424	}
425
426	if (c->x86 == 6 && cpu_has_clflush &&
427	    (c->x86_model == 29 || c->x86_model == 46 || c->x86_model == 47))
428		set_cpu_bug(c, X86_BUG_CLFLUSH_MONITOR);
429
430#ifdef CONFIG_X86_64
431	if (c->x86 == 15)
432		c->x86_cache_alignment = c->x86_clflush_size * 2;
433	if (c->x86 == 6)
434		set_cpu_cap(c, X86_FEATURE_REP_GOOD);
435#else
436	/*
437	 * Names for the Pentium II/Celeron processors
438	 * detectable only by also checking the cache size.
439	 * Dixon is NOT a Celeron.
440	 */
441	if (c->x86 == 6) {
442		char *p = NULL;
443
444		switch (c->x86_model) {
445		case 5:
446			if (l2 == 0)
447				p = "Celeron (Covington)";
448			else if (l2 == 256)
449				p = "Mobile Pentium II (Dixon)";
450			break;
451
452		case 6:
453			if (l2 == 128)
454				p = "Celeron (Mendocino)";
455			else if (c->x86_mask == 0 || c->x86_mask == 5)
456				p = "Celeron-A";
457			break;
458
459		case 8:
460			if (l2 == 128)
461				p = "Celeron (Coppermine)";
462			break;
463		}
464
465		if (p)
466			strcpy(c->x86_model_id, p);
467	}
468
469	if (c->x86 == 15)
470		set_cpu_cap(c, X86_FEATURE_P4);
471	if (c->x86 == 6)
472		set_cpu_cap(c, X86_FEATURE_P3);
473#endif
474
475	/* Work around errata */
476	srat_detect_node(c);
477
478	if (cpu_has(c, X86_FEATURE_VMX))
479		detect_vmx_virtcap(c);
480
481	/*
482	 * Initialize MSR_IA32_ENERGY_PERF_BIAS if BIOS did not.
483	 * x86_energy_perf_policy(8) is available to change it at run-time
484	 */
485	if (cpu_has(c, X86_FEATURE_EPB)) {
486		u64 epb;
487
488		rdmsrl(MSR_IA32_ENERGY_PERF_BIAS, epb);
489		if ((epb & 0xF) == ENERGY_PERF_BIAS_PERFORMANCE) {
490			printk_once(KERN_WARNING "ENERGY_PERF_BIAS:"
491				" Set to 'normal', was 'performance'\n"
492				"ENERGY_PERF_BIAS: View and update with"
493				" x86_energy_perf_policy(8)\n");
494			epb = (epb & ~0xF) | ENERGY_PERF_BIAS_NORMAL;
495			wrmsrl(MSR_IA32_ENERGY_PERF_BIAS, epb);
496		}
497	}
498}
499
500#ifdef CONFIG_X86_32
501static unsigned int intel_size_cache(struct cpuinfo_x86 *c, unsigned int size)
502{
503	/*
504	 * Intel PIII Tualatin. This comes in two flavours.
505	 * One has 256kb of cache, the other 512. We have no way
506	 * to determine which, so we use a boottime override
507	 * for the 512kb model, and assume 256 otherwise.
508	 */
509	if ((c->x86 == 6) && (c->x86_model == 11) && (size == 0))
510		size = 256;
511
512	/*
513	 * Intel Quark SoC X1000 contains a 4-way set associative
514	 * 16K cache with a 16 byte cache line and 256 lines per tag
515	 */
516	if ((c->x86 == 5) && (c->x86_model == 9))
517		size = 16;
518	return size;
519}
520#endif
521
522#define TLB_INST_4K	0x01
523#define TLB_INST_4M	0x02
524#define TLB_INST_2M_4M	0x03
525
526#define TLB_INST_ALL	0x05
527#define TLB_INST_1G	0x06
528
529#define TLB_DATA_4K	0x11
530#define TLB_DATA_4M	0x12
531#define TLB_DATA_2M_4M	0x13
532#define TLB_DATA_4K_4M	0x14
533
534#define TLB_DATA_1G	0x16
535
536#define TLB_DATA0_4K	0x21
537#define TLB_DATA0_4M	0x22
538#define TLB_DATA0_2M_4M	0x23
539
540#define STLB_4K		0x41
541#define STLB_4K_2M	0x42
542
543static const struct _tlb_table intel_tlb_table[] = {
544	{ 0x01, TLB_INST_4K,		32,	" TLB_INST 4 KByte pages, 4-way set associative" },
545	{ 0x02, TLB_INST_4M,		2,	" TLB_INST 4 MByte pages, full associative" },
546	{ 0x03, TLB_DATA_4K,		64,	" TLB_DATA 4 KByte pages, 4-way set associative" },
547	{ 0x04, TLB_DATA_4M,		8,	" TLB_DATA 4 MByte pages, 4-way set associative" },
548	{ 0x05, TLB_DATA_4M,		32,	" TLB_DATA 4 MByte pages, 4-way set associative" },
549	{ 0x0b, TLB_INST_4M,		4,	" TLB_INST 4 MByte pages, 4-way set associative" },
550	{ 0x4f, TLB_INST_4K,		32,	" TLB_INST 4 KByte pages */" },
551	{ 0x50, TLB_INST_ALL,		64,	" TLB_INST 4 KByte and 2-MByte or 4-MByte pages" },
552	{ 0x51, TLB_INST_ALL,		128,	" TLB_INST 4 KByte and 2-MByte or 4-MByte pages" },
553	{ 0x52, TLB_INST_ALL,		256,	" TLB_INST 4 KByte and 2-MByte or 4-MByte pages" },
554	{ 0x55, TLB_INST_2M_4M,		7,	" TLB_INST 2-MByte or 4-MByte pages, fully associative" },
555	{ 0x56, TLB_DATA0_4M,		16,	" TLB_DATA0 4 MByte pages, 4-way set associative" },
556	{ 0x57, TLB_DATA0_4K,		16,	" TLB_DATA0 4 KByte pages, 4-way associative" },
557	{ 0x59, TLB_DATA0_4K,		16,	" TLB_DATA0 4 KByte pages, fully associative" },
558	{ 0x5a, TLB_DATA0_2M_4M,	32,	" TLB_DATA0 2-MByte or 4 MByte pages, 4-way set associative" },
559	{ 0x5b, TLB_DATA_4K_4M,		64,	" TLB_DATA 4 KByte and 4 MByte pages" },
560	{ 0x5c, TLB_DATA_4K_4M,		128,	" TLB_DATA 4 KByte and 4 MByte pages" },
561	{ 0x5d, TLB_DATA_4K_4M,		256,	" TLB_DATA 4 KByte and 4 MByte pages" },
562	{ 0x61, TLB_INST_4K,		48,	" TLB_INST 4 KByte pages, full associative" },
563	{ 0x63, TLB_DATA_1G,		4,	" TLB_DATA 1 GByte pages, 4-way set associative" },
564	{ 0x76, TLB_INST_2M_4M,		8,	" TLB_INST 2-MByte or 4-MByte pages, fully associative" },
565	{ 0xb0, TLB_INST_4K,		128,	" TLB_INST 4 KByte pages, 4-way set associative" },
566	{ 0xb1, TLB_INST_2M_4M,		4,	" TLB_INST 2M pages, 4-way, 8 entries or 4M pages, 4-way entries" },
567	{ 0xb2, TLB_INST_4K,		64,	" TLB_INST 4KByte pages, 4-way set associative" },
568	{ 0xb3, TLB_DATA_4K,		128,	" TLB_DATA 4 KByte pages, 4-way set associative" },
569	{ 0xb4, TLB_DATA_4K,		256,	" TLB_DATA 4 KByte pages, 4-way associative" },
570	{ 0xb5, TLB_INST_4K,		64,	" TLB_INST 4 KByte pages, 8-way set ssociative" },
571	{ 0xb6, TLB_INST_4K,		128,	" TLB_INST 4 KByte pages, 8-way set ssociative" },
572	{ 0xba, TLB_DATA_4K,		64,	" TLB_DATA 4 KByte pages, 4-way associative" },
573	{ 0xc0, TLB_DATA_4K_4M,		8,	" TLB_DATA 4 KByte and 4 MByte pages, 4-way associative" },
574	{ 0xc1, STLB_4K_2M,		1024,	" STLB 4 KByte and 2 MByte pages, 8-way associative" },
575	{ 0xc2, TLB_DATA_2M_4M,		16,	" DTLB 2 MByte/4MByte pages, 4-way associative" },
576	{ 0xca, STLB_4K,		512,	" STLB 4 KByte pages, 4-way associative" },
577	{ 0x00, 0, 0 }
578};
579
580static void intel_tlb_lookup(const unsigned char desc)
581{
582	unsigned char k;
583	if (desc == 0)
584		return;
585
586	/* look up this descriptor in the table */
587	for (k = 0; intel_tlb_table[k].descriptor != desc && \
588			intel_tlb_table[k].descriptor != 0; k++)
589		;
590
591	if (intel_tlb_table[k].tlb_type == 0)
592		return;
593
594	switch (intel_tlb_table[k].tlb_type) {
595	case STLB_4K:
596		if (tlb_lli_4k[ENTRIES] < intel_tlb_table[k].entries)
597			tlb_lli_4k[ENTRIES] = intel_tlb_table[k].entries;
598		if (tlb_lld_4k[ENTRIES] < intel_tlb_table[k].entries)
599			tlb_lld_4k[ENTRIES] = intel_tlb_table[k].entries;
600		break;
601	case STLB_4K_2M:
602		if (tlb_lli_4k[ENTRIES] < intel_tlb_table[k].entries)
603			tlb_lli_4k[ENTRIES] = intel_tlb_table[k].entries;
604		if (tlb_lld_4k[ENTRIES] < intel_tlb_table[k].entries)
605			tlb_lld_4k[ENTRIES] = intel_tlb_table[k].entries;
606		if (tlb_lli_2m[ENTRIES] < intel_tlb_table[k].entries)
607			tlb_lli_2m[ENTRIES] = intel_tlb_table[k].entries;
608		if (tlb_lld_2m[ENTRIES] < intel_tlb_table[k].entries)
609			tlb_lld_2m[ENTRIES] = intel_tlb_table[k].entries;
610		if (tlb_lli_4m[ENTRIES] < intel_tlb_table[k].entries)
611			tlb_lli_4m[ENTRIES] = intel_tlb_table[k].entries;
612		if (tlb_lld_4m[ENTRIES] < intel_tlb_table[k].entries)
613			tlb_lld_4m[ENTRIES] = intel_tlb_table[k].entries;
614		break;
615	case TLB_INST_ALL:
616		if (tlb_lli_4k[ENTRIES] < intel_tlb_table[k].entries)
617			tlb_lli_4k[ENTRIES] = intel_tlb_table[k].entries;
618		if (tlb_lli_2m[ENTRIES] < intel_tlb_table[k].entries)
619			tlb_lli_2m[ENTRIES] = intel_tlb_table[k].entries;
620		if (tlb_lli_4m[ENTRIES] < intel_tlb_table[k].entries)
621			tlb_lli_4m[ENTRIES] = intel_tlb_table[k].entries;
622		break;
623	case TLB_INST_4K:
624		if (tlb_lli_4k[ENTRIES] < intel_tlb_table[k].entries)
625			tlb_lli_4k[ENTRIES] = intel_tlb_table[k].entries;
626		break;
627	case TLB_INST_4M:
628		if (tlb_lli_4m[ENTRIES] < intel_tlb_table[k].entries)
629			tlb_lli_4m[ENTRIES] = intel_tlb_table[k].entries;
630		break;
631	case TLB_INST_2M_4M:
632		if (tlb_lli_2m[ENTRIES] < intel_tlb_table[k].entries)
633			tlb_lli_2m[ENTRIES] = intel_tlb_table[k].entries;
634		if (tlb_lli_4m[ENTRIES] < intel_tlb_table[k].entries)
635			tlb_lli_4m[ENTRIES] = intel_tlb_table[k].entries;
636		break;
637	case TLB_DATA_4K:
638	case TLB_DATA0_4K:
639		if (tlb_lld_4k[ENTRIES] < intel_tlb_table[k].entries)
640			tlb_lld_4k[ENTRIES] = intel_tlb_table[k].entries;
641		break;
642	case TLB_DATA_4M:
643	case TLB_DATA0_4M:
644		if (tlb_lld_4m[ENTRIES] < intel_tlb_table[k].entries)
645			tlb_lld_4m[ENTRIES] = intel_tlb_table[k].entries;
646		break;
647	case TLB_DATA_2M_4M:
648	case TLB_DATA0_2M_4M:
649		if (tlb_lld_2m[ENTRIES] < intel_tlb_table[k].entries)
650			tlb_lld_2m[ENTRIES] = intel_tlb_table[k].entries;
651		if (tlb_lld_4m[ENTRIES] < intel_tlb_table[k].entries)
652			tlb_lld_4m[ENTRIES] = intel_tlb_table[k].entries;
653		break;
654	case TLB_DATA_4K_4M:
655		if (tlb_lld_4k[ENTRIES] < intel_tlb_table[k].entries)
656			tlb_lld_4k[ENTRIES] = intel_tlb_table[k].entries;
657		if (tlb_lld_4m[ENTRIES] < intel_tlb_table[k].entries)
658			tlb_lld_4m[ENTRIES] = intel_tlb_table[k].entries;
659		break;
660	case TLB_DATA_1G:
661		if (tlb_lld_1g[ENTRIES] < intel_tlb_table[k].entries)
662			tlb_lld_1g[ENTRIES] = intel_tlb_table[k].entries;
663		break;
664	}
665}
666
667static void intel_detect_tlb(struct cpuinfo_x86 *c)
668{
669	int i, j, n;
670	unsigned int regs[4];
671	unsigned char *desc = (unsigned char *)regs;
672
673	if (c->cpuid_level < 2)
674		return;
675
676	/* Number of times to iterate */
677	n = cpuid_eax(2) & 0xFF;
678
679	for (i = 0 ; i < n ; i++) {
680		cpuid(2, &regs[0], &regs[1], &regs[2], &regs[3]);
681
682		/* If bit 31 is set, this is an unknown format */
683		for (j = 0 ; j < 3 ; j++)
684			if (regs[j] & (1 << 31))
685				regs[j] = 0;
686
687		/* Byte 0 is level count, not a descriptor */
688		for (j = 1 ; j < 16 ; j++)
689			intel_tlb_lookup(desc[j]);
690	}
691}
692
693static const struct cpu_dev intel_cpu_dev = {
694	.c_vendor	= "Intel",
695	.c_ident	= { "GenuineIntel" },
696#ifdef CONFIG_X86_32
697	.legacy_models = {
698		{ .family = 4, .model_names =
699		  {
700			  [0] = "486 DX-25/33",
701			  [1] = "486 DX-50",
702			  [2] = "486 SX",
703			  [3] = "486 DX/2",
704			  [4] = "486 SL",
705			  [5] = "486 SX/2",
706			  [7] = "486 DX/2-WB",
707			  [8] = "486 DX/4",
708			  [9] = "486 DX/4-WB"
709		  }
710		},
711		{ .family = 5, .model_names =
712		  {
713			  [0] = "Pentium 60/66 A-step",
714			  [1] = "Pentium 60/66",
715			  [2] = "Pentium 75 - 200",
716			  [3] = "OverDrive PODP5V83",
717			  [4] = "Pentium MMX",
718			  [7] = "Mobile Pentium 75 - 200",
719			  [8] = "Mobile Pentium MMX",
720			  [9] = "Quark SoC X1000",
721		  }
722		},
723		{ .family = 6, .model_names =
724		  {
725			  [0] = "Pentium Pro A-step",
726			  [1] = "Pentium Pro",
727			  [3] = "Pentium II (Klamath)",
728			  [4] = "Pentium II (Deschutes)",
729			  [5] = "Pentium II (Deschutes)",
730			  [6] = "Mobile Pentium II",
731			  [7] = "Pentium III (Katmai)",
732			  [8] = "Pentium III (Coppermine)",
733			  [10] = "Pentium III (Cascades)",
734			  [11] = "Pentium III (Tualatin)",
735		  }
736		},
737		{ .family = 15, .model_names =
738		  {
739			  [0] = "Pentium 4 (Unknown)",
740			  [1] = "Pentium 4 (Willamette)",
741			  [2] = "Pentium 4 (Northwood)",
742			  [4] = "Pentium 4 (Foster)",
743			  [5] = "Pentium 4 (Foster)",
744		  }
745		},
746	},
747	.legacy_cache_size = intel_size_cache,
748#endif
749	.c_detect_tlb	= intel_detect_tlb,
750	.c_early_init   = early_init_intel,
751	.c_init		= init_intel,
752	.c_x86_vendor	= X86_VENDOR_INTEL,
753};
754
755cpu_dev_register(intel_cpu_dev);
756
757