mce.c revision 0937195715713b37ec843f28d99930dd7b1e8fbe
1/*
2 * Machine check handler.
3 *
4 * K8 parts Copyright 2002,2003 Andi Kleen, SuSE Labs.
5 * Rest from unknown author(s).
6 * 2004 Andi Kleen. Rewrote most of it.
7 * Copyright 2008 Intel Corporation
8 * Author: Andi Kleen
9 */
10#include <linux/thread_info.h>
11#include <linux/capability.h>
12#include <linux/miscdevice.h>
13#include <linux/ratelimit.h>
14#include <linux/kallsyms.h>
15#include <linux/rcupdate.h>
16#include <linux/kobject.h>
17#include <linux/uaccess.h>
18#include <linux/kdebug.h>
19#include <linux/kernel.h>
20#include <linux/percpu.h>
21#include <linux/string.h>
22#include <linux/sysdev.h>
23#include <linux/syscore_ops.h>
24#include <linux/delay.h>
25#include <linux/ctype.h>
26#include <linux/sched.h>
27#include <linux/sysfs.h>
28#include <linux/types.h>
29#include <linux/slab.h>
30#include <linux/init.h>
31#include <linux/kmod.h>
32#include <linux/poll.h>
33#include <linux/nmi.h>
34#include <linux/cpu.h>
35#include <linux/smp.h>
36#include <linux/fs.h>
37#include <linux/mm.h>
38#include <linux/debugfs.h>
39#include <linux/irq_work.h>
40#include <linux/export.h>
41
42#include <asm/processor.h>
43#include <asm/mce.h>
44#include <asm/msr.h>
45
46#include "mce-internal.h"
47
48static DEFINE_MUTEX(mce_chrdev_read_mutex);
49
50#define rcu_dereference_check_mce(p) \
51	rcu_dereference_index_check((p), \
52			      rcu_read_lock_sched_held() || \
53			      lockdep_is_held(&mce_chrdev_read_mutex))
54
55#define CREATE_TRACE_POINTS
56#include <trace/events/mce.h>
57
58int mce_disabled __read_mostly;
59
60#define MISC_MCELOG_MINOR	227
61
62#define SPINUNIT 100	/* 100ns */
63
64atomic_t mce_entry;
65
66DEFINE_PER_CPU(unsigned, mce_exception_count);
67
68/*
69 * Tolerant levels:
70 *   0: always panic on uncorrected errors, log corrected errors
71 *   1: panic or SIGBUS on uncorrected errors, log corrected errors
72 *   2: SIGBUS or log uncorrected errors (if possible), log corrected errors
73 *   3: never panic or SIGBUS, log all errors (for testing only)
74 */
75static int			tolerant		__read_mostly = 1;
76static int			banks			__read_mostly;
77static int			rip_msr			__read_mostly;
78static int			mce_bootlog		__read_mostly = -1;
79static int			monarch_timeout		__read_mostly = -1;
80static int			mce_panic_timeout	__read_mostly;
81static int			mce_dont_log_ce		__read_mostly;
82int				mce_cmci_disabled	__read_mostly;
83int				mce_ignore_ce		__read_mostly;
84int				mce_ser			__read_mostly;
85
86struct mce_bank                *mce_banks		__read_mostly;
87
88/* User mode helper program triggered by machine check event */
89static unsigned long		mce_need_notify;
90static char			mce_helper[128];
91static char			*mce_helper_argv[2] = { mce_helper, NULL };
92
93static DECLARE_WAIT_QUEUE_HEAD(mce_chrdev_wait);
94
95static DEFINE_PER_CPU(struct mce, mces_seen);
96static int			cpu_missing;
97
98/* MCA banks polled by the period polling timer for corrected events */
99DEFINE_PER_CPU(mce_banks_t, mce_poll_banks) = {
100	[0 ... BITS_TO_LONGS(MAX_NR_BANKS)-1] = ~0UL
101};
102
103static DEFINE_PER_CPU(struct work_struct, mce_work);
104
105/*
106 * CPU/chipset specific EDAC code can register a notifier call here to print
107 * MCE errors in a human-readable form.
108 */
109ATOMIC_NOTIFIER_HEAD(x86_mce_decoder_chain);
110
111/* Do initial initialization of a struct mce */
112void mce_setup(struct mce *m)
113{
114	memset(m, 0, sizeof(struct mce));
115	m->cpu = m->extcpu = smp_processor_id();
116	rdtscll(m->tsc);
117	/* We hope get_seconds stays lockless */
118	m->time = get_seconds();
119	m->cpuvendor = boot_cpu_data.x86_vendor;
120	m->cpuid = cpuid_eax(1);
121#ifdef CONFIG_SMP
122	m->socketid = cpu_data(m->extcpu).phys_proc_id;
123#endif
124	m->apicid = cpu_data(m->extcpu).initial_apicid;
125	rdmsrl(MSR_IA32_MCG_CAP, m->mcgcap);
126}
127
128DEFINE_PER_CPU(struct mce, injectm);
129EXPORT_PER_CPU_SYMBOL_GPL(injectm);
130
131/*
132 * Lockless MCE logging infrastructure.
133 * This avoids deadlocks on printk locks without having to break locks. Also
134 * separate MCEs from kernel messages to avoid bogus bug reports.
135 */
136
137static struct mce_log mcelog = {
138	.signature	= MCE_LOG_SIGNATURE,
139	.len		= MCE_LOG_LEN,
140	.recordlen	= sizeof(struct mce),
141};
142
143void mce_log(struct mce *mce)
144{
145	unsigned next, entry;
146	int ret = 0;
147
148	/* Emit the trace record: */
149	trace_mce_record(mce);
150
151	ret = atomic_notifier_call_chain(&x86_mce_decoder_chain, 0, mce);
152	if (ret == NOTIFY_STOP)
153		return;
154
155	mce->finished = 0;
156	wmb();
157	for (;;) {
158		entry = rcu_dereference_check_mce(mcelog.next);
159		for (;;) {
160
161			/*
162			 * When the buffer fills up discard new entries.
163			 * Assume that the earlier errors are the more
164			 * interesting ones:
165			 */
166			if (entry >= MCE_LOG_LEN) {
167				set_bit(MCE_OVERFLOW,
168					(unsigned long *)&mcelog.flags);
169				return;
170			}
171			/* Old left over entry. Skip: */
172			if (mcelog.entry[entry].finished) {
173				entry++;
174				continue;
175			}
176			break;
177		}
178		smp_rmb();
179		next = entry + 1;
180		if (cmpxchg(&mcelog.next, entry, next) == entry)
181			break;
182	}
183	memcpy(mcelog.entry + entry, mce, sizeof(struct mce));
184	wmb();
185	mcelog.entry[entry].finished = 1;
186	wmb();
187
188	mce->finished = 1;
189	set_bit(0, &mce_need_notify);
190}
191
192static void drain_mcelog_buffer(void)
193{
194	unsigned int next, i, prev = 0;
195
196	next = rcu_dereference_check_mce(mcelog.next);
197
198	do {
199		struct mce *m;
200
201		/* drain what was logged during boot */
202		for (i = prev; i < next; i++) {
203			unsigned long start = jiffies;
204			unsigned retries = 1;
205
206			m = &mcelog.entry[i];
207
208			while (!m->finished) {
209				if (time_after_eq(jiffies, start + 2*retries))
210					retries++;
211
212				cpu_relax();
213
214				if (!m->finished && retries >= 4) {
215					pr_err("MCE: skipping error being logged currently!\n");
216					break;
217				}
218			}
219			smp_rmb();
220			atomic_notifier_call_chain(&x86_mce_decoder_chain, 0, m);
221		}
222
223		memset(mcelog.entry + prev, 0, (next - prev) * sizeof(*m));
224		prev = next;
225		next = cmpxchg(&mcelog.next, prev, 0);
226	} while (next != prev);
227}
228
229
230void mce_register_decode_chain(struct notifier_block *nb)
231{
232	atomic_notifier_chain_register(&x86_mce_decoder_chain, nb);
233	drain_mcelog_buffer();
234}
235EXPORT_SYMBOL_GPL(mce_register_decode_chain);
236
237void mce_unregister_decode_chain(struct notifier_block *nb)
238{
239	atomic_notifier_chain_unregister(&x86_mce_decoder_chain, nb);
240}
241EXPORT_SYMBOL_GPL(mce_unregister_decode_chain);
242
243static void print_mce(struct mce *m)
244{
245	int ret = 0;
246
247	pr_emerg(HW_ERR "CPU %d: Machine Check Exception: %Lx Bank %d: %016Lx\n",
248	       m->extcpu, m->mcgstatus, m->bank, m->status);
249
250	if (m->ip) {
251		pr_emerg(HW_ERR "RIP%s %02x:<%016Lx> ",
252			!(m->mcgstatus & MCG_STATUS_EIPV) ? " !INEXACT!" : "",
253				m->cs, m->ip);
254
255		if (m->cs == __KERNEL_CS)
256			print_symbol("{%s}", m->ip);
257		pr_cont("\n");
258	}
259
260	pr_emerg(HW_ERR "TSC %llx ", m->tsc);
261	if (m->addr)
262		pr_cont("ADDR %llx ", m->addr);
263	if (m->misc)
264		pr_cont("MISC %llx ", m->misc);
265
266	pr_cont("\n");
267	/*
268	 * Note this output is parsed by external tools and old fields
269	 * should not be changed.
270	 */
271	pr_emerg(HW_ERR "PROCESSOR %u:%x TIME %llu SOCKET %u APIC %x microcode %x\n",
272		m->cpuvendor, m->cpuid, m->time, m->socketid, m->apicid,
273		cpu_data(m->extcpu).microcode);
274
275	/*
276	 * Print out human-readable details about the MCE error,
277	 * (if the CPU has an implementation for that)
278	 */
279	ret = atomic_notifier_call_chain(&x86_mce_decoder_chain, 0, m);
280	if (ret == NOTIFY_STOP)
281		return;
282
283	pr_emerg_ratelimited(HW_ERR "Run the above through 'mcelog --ascii'\n");
284}
285
286#define PANIC_TIMEOUT 5 /* 5 seconds */
287
288static atomic_t mce_paniced;
289
290static int fake_panic;
291static atomic_t mce_fake_paniced;
292
293/* Panic in progress. Enable interrupts and wait for final IPI */
294static void wait_for_panic(void)
295{
296	long timeout = PANIC_TIMEOUT*USEC_PER_SEC;
297
298	preempt_disable();
299	local_irq_enable();
300	while (timeout-- > 0)
301		udelay(1);
302	if (panic_timeout == 0)
303		panic_timeout = mce_panic_timeout;
304	panic("Panicing machine check CPU died");
305}
306
307static void mce_panic(char *msg, struct mce *final, char *exp)
308{
309	int i, apei_err = 0;
310
311	if (!fake_panic) {
312		/*
313		 * Make sure only one CPU runs in machine check panic
314		 */
315		if (atomic_inc_return(&mce_paniced) > 1)
316			wait_for_panic();
317		barrier();
318
319		bust_spinlocks(1);
320		console_verbose();
321	} else {
322		/* Don't log too much for fake panic */
323		if (atomic_inc_return(&mce_fake_paniced) > 1)
324			return;
325	}
326	/* First print corrected ones that are still unlogged */
327	for (i = 0; i < MCE_LOG_LEN; i++) {
328		struct mce *m = &mcelog.entry[i];
329		if (!(m->status & MCI_STATUS_VAL))
330			continue;
331		if (!(m->status & MCI_STATUS_UC)) {
332			print_mce(m);
333			if (!apei_err)
334				apei_err = apei_write_mce(m);
335		}
336	}
337	/* Now print uncorrected but with the final one last */
338	for (i = 0; i < MCE_LOG_LEN; i++) {
339		struct mce *m = &mcelog.entry[i];
340		if (!(m->status & MCI_STATUS_VAL))
341			continue;
342		if (!(m->status & MCI_STATUS_UC))
343			continue;
344		if (!final || memcmp(m, final, sizeof(struct mce))) {
345			print_mce(m);
346			if (!apei_err)
347				apei_err = apei_write_mce(m);
348		}
349	}
350	if (final) {
351		print_mce(final);
352		if (!apei_err)
353			apei_err = apei_write_mce(final);
354	}
355	if (cpu_missing)
356		pr_emerg(HW_ERR "Some CPUs didn't answer in synchronization\n");
357	if (exp)
358		pr_emerg(HW_ERR "Machine check: %s\n", exp);
359	if (!fake_panic) {
360		if (panic_timeout == 0)
361			panic_timeout = mce_panic_timeout;
362		panic(msg);
363	} else
364		pr_emerg(HW_ERR "Fake kernel panic: %s\n", msg);
365}
366
367/* Support code for software error injection */
368
369static int msr_to_offset(u32 msr)
370{
371	unsigned bank = __this_cpu_read(injectm.bank);
372
373	if (msr == rip_msr)
374		return offsetof(struct mce, ip);
375	if (msr == MSR_IA32_MCx_STATUS(bank))
376		return offsetof(struct mce, status);
377	if (msr == MSR_IA32_MCx_ADDR(bank))
378		return offsetof(struct mce, addr);
379	if (msr == MSR_IA32_MCx_MISC(bank))
380		return offsetof(struct mce, misc);
381	if (msr == MSR_IA32_MCG_STATUS)
382		return offsetof(struct mce, mcgstatus);
383	return -1;
384}
385
386/* MSR access wrappers used for error injection */
387static u64 mce_rdmsrl(u32 msr)
388{
389	u64 v;
390
391	if (__this_cpu_read(injectm.finished)) {
392		int offset = msr_to_offset(msr);
393
394		if (offset < 0)
395			return 0;
396		return *(u64 *)((char *)&__get_cpu_var(injectm) + offset);
397	}
398
399	if (rdmsrl_safe(msr, &v)) {
400		WARN_ONCE(1, "mce: Unable to read msr %d!\n", msr);
401		/*
402		 * Return zero in case the access faulted. This should
403		 * not happen normally but can happen if the CPU does
404		 * something weird, or if the code is buggy.
405		 */
406		v = 0;
407	}
408
409	return v;
410}
411
412static void mce_wrmsrl(u32 msr, u64 v)
413{
414	if (__this_cpu_read(injectm.finished)) {
415		int offset = msr_to_offset(msr);
416
417		if (offset >= 0)
418			*(u64 *)((char *)&__get_cpu_var(injectm) + offset) = v;
419		return;
420	}
421	wrmsrl(msr, v);
422}
423
424/*
425 * Collect all global (w.r.t. this processor) status about this machine
426 * check into our "mce" struct so that we can use it later to assess
427 * the severity of the problem as we read per-bank specific details.
428 */
429static inline void mce_gather_info(struct mce *m, struct pt_regs *regs)
430{
431	mce_setup(m);
432
433	m->mcgstatus = mce_rdmsrl(MSR_IA32_MCG_STATUS);
434	if (regs) {
435		/*
436		 * Get the address of the instruction at the time of
437		 * the machine check error.
438		 */
439		if (m->mcgstatus & (MCG_STATUS_RIPV|MCG_STATUS_EIPV)) {
440			m->ip = regs->ip;
441			m->cs = regs->cs;
442		}
443		/* Use accurate RIP reporting if available. */
444		if (rip_msr)
445			m->ip = mce_rdmsrl(rip_msr);
446	}
447}
448
449/*
450 * Simple lockless ring to communicate PFNs from the exception handler with the
451 * process context work function. This is vastly simplified because there's
452 * only a single reader and a single writer.
453 */
454#define MCE_RING_SIZE 16	/* we use one entry less */
455
456struct mce_ring {
457	unsigned short start;
458	unsigned short end;
459	unsigned long ring[MCE_RING_SIZE];
460};
461static DEFINE_PER_CPU(struct mce_ring, mce_ring);
462
463/* Runs with CPU affinity in workqueue */
464static int mce_ring_empty(void)
465{
466	struct mce_ring *r = &__get_cpu_var(mce_ring);
467
468	return r->start == r->end;
469}
470
471static int mce_ring_get(unsigned long *pfn)
472{
473	struct mce_ring *r;
474	int ret = 0;
475
476	*pfn = 0;
477	get_cpu();
478	r = &__get_cpu_var(mce_ring);
479	if (r->start == r->end)
480		goto out;
481	*pfn = r->ring[r->start];
482	r->start = (r->start + 1) % MCE_RING_SIZE;
483	ret = 1;
484out:
485	put_cpu();
486	return ret;
487}
488
489/* Always runs in MCE context with preempt off */
490static int mce_ring_add(unsigned long pfn)
491{
492	struct mce_ring *r = &__get_cpu_var(mce_ring);
493	unsigned next;
494
495	next = (r->end + 1) % MCE_RING_SIZE;
496	if (next == r->start)
497		return -1;
498	r->ring[r->end] = pfn;
499	wmb();
500	r->end = next;
501	return 0;
502}
503
504int mce_available(struct cpuinfo_x86 *c)
505{
506	if (mce_disabled)
507		return 0;
508	return cpu_has(c, X86_FEATURE_MCE) && cpu_has(c, X86_FEATURE_MCA);
509}
510
511static void mce_schedule_work(void)
512{
513	if (!mce_ring_empty()) {
514		struct work_struct *work = &__get_cpu_var(mce_work);
515		if (!work_pending(work))
516			schedule_work(work);
517	}
518}
519
520DEFINE_PER_CPU(struct irq_work, mce_irq_work);
521
522static void mce_irq_work_cb(struct irq_work *entry)
523{
524	mce_notify_irq();
525	mce_schedule_work();
526}
527
528static void mce_report_event(struct pt_regs *regs)
529{
530	if (regs->flags & (X86_VM_MASK|X86_EFLAGS_IF)) {
531		mce_notify_irq();
532		/*
533		 * Triggering the work queue here is just an insurance
534		 * policy in case the syscall exit notify handler
535		 * doesn't run soon enough or ends up running on the
536		 * wrong CPU (can happen when audit sleeps)
537		 */
538		mce_schedule_work();
539		return;
540	}
541
542	irq_work_queue(&__get_cpu_var(mce_irq_work));
543}
544
545DEFINE_PER_CPU(unsigned, mce_poll_count);
546
547/*
548 * Poll for corrected events or events that happened before reset.
549 * Those are just logged through /dev/mcelog.
550 *
551 * This is executed in standard interrupt context.
552 *
553 * Note: spec recommends to panic for fatal unsignalled
554 * errors here. However this would be quite problematic --
555 * we would need to reimplement the Monarch handling and
556 * it would mess up the exclusion between exception handler
557 * and poll hander -- * so we skip this for now.
558 * These cases should not happen anyways, or only when the CPU
559 * is already totally * confused. In this case it's likely it will
560 * not fully execute the machine check handler either.
561 */
562void machine_check_poll(enum mcp_flags flags, mce_banks_t *b)
563{
564	struct mce m;
565	int i;
566
567	percpu_inc(mce_poll_count);
568
569	mce_gather_info(&m, NULL);
570
571	for (i = 0; i < banks; i++) {
572		if (!mce_banks[i].ctl || !test_bit(i, *b))
573			continue;
574
575		m.misc = 0;
576		m.addr = 0;
577		m.bank = i;
578		m.tsc = 0;
579
580		barrier();
581		m.status = mce_rdmsrl(MSR_IA32_MCx_STATUS(i));
582		if (!(m.status & MCI_STATUS_VAL))
583			continue;
584
585		/*
586		 * Uncorrected or signalled events are handled by the exception
587		 * handler when it is enabled, so don't process those here.
588		 *
589		 * TBD do the same check for MCI_STATUS_EN here?
590		 */
591		if (!(flags & MCP_UC) &&
592		    (m.status & (mce_ser ? MCI_STATUS_S : MCI_STATUS_UC)))
593			continue;
594
595		if (m.status & MCI_STATUS_MISCV)
596			m.misc = mce_rdmsrl(MSR_IA32_MCx_MISC(i));
597		if (m.status & MCI_STATUS_ADDRV)
598			m.addr = mce_rdmsrl(MSR_IA32_MCx_ADDR(i));
599
600		if (!(flags & MCP_TIMESTAMP))
601			m.tsc = 0;
602		/*
603		 * Don't get the IP here because it's unlikely to
604		 * have anything to do with the actual error location.
605		 */
606		if (!(flags & MCP_DONTLOG) && !mce_dont_log_ce)
607			mce_log(&m);
608
609		/*
610		 * Clear state for this bank.
611		 */
612		mce_wrmsrl(MSR_IA32_MCx_STATUS(i), 0);
613	}
614
615	/*
616	 * Don't clear MCG_STATUS here because it's only defined for
617	 * exceptions.
618	 */
619
620	sync_core();
621}
622EXPORT_SYMBOL_GPL(machine_check_poll);
623
624/*
625 * Do a quick check if any of the events requires a panic.
626 * This decides if we keep the events around or clear them.
627 */
628static int mce_no_way_out(struct mce *m, char **msg)
629{
630	int i;
631
632	for (i = 0; i < banks; i++) {
633		m->status = mce_rdmsrl(MSR_IA32_MCx_STATUS(i));
634		if (mce_severity(m, tolerant, msg) >= MCE_PANIC_SEVERITY)
635			return 1;
636	}
637	return 0;
638}
639
640/*
641 * Variable to establish order between CPUs while scanning.
642 * Each CPU spins initially until executing is equal its number.
643 */
644static atomic_t mce_executing;
645
646/*
647 * Defines order of CPUs on entry. First CPU becomes Monarch.
648 */
649static atomic_t mce_callin;
650
651/*
652 * Check if a timeout waiting for other CPUs happened.
653 */
654static int mce_timed_out(u64 *t)
655{
656	/*
657	 * The others already did panic for some reason.
658	 * Bail out like in a timeout.
659	 * rmb() to tell the compiler that system_state
660	 * might have been modified by someone else.
661	 */
662	rmb();
663	if (atomic_read(&mce_paniced))
664		wait_for_panic();
665	if (!monarch_timeout)
666		goto out;
667	if ((s64)*t < SPINUNIT) {
668		/* CHECKME: Make panic default for 1 too? */
669		if (tolerant < 1)
670			mce_panic("Timeout synchronizing machine check over CPUs",
671				  NULL, NULL);
672		cpu_missing = 1;
673		return 1;
674	}
675	*t -= SPINUNIT;
676out:
677	touch_nmi_watchdog();
678	return 0;
679}
680
681/*
682 * The Monarch's reign.  The Monarch is the CPU who entered
683 * the machine check handler first. It waits for the others to
684 * raise the exception too and then grades them. When any
685 * error is fatal panic. Only then let the others continue.
686 *
687 * The other CPUs entering the MCE handler will be controlled by the
688 * Monarch. They are called Subjects.
689 *
690 * This way we prevent any potential data corruption in a unrecoverable case
691 * and also makes sure always all CPU's errors are examined.
692 *
693 * Also this detects the case of a machine check event coming from outer
694 * space (not detected by any CPUs) In this case some external agent wants
695 * us to shut down, so panic too.
696 *
697 * The other CPUs might still decide to panic if the handler happens
698 * in a unrecoverable place, but in this case the system is in a semi-stable
699 * state and won't corrupt anything by itself. It's ok to let the others
700 * continue for a bit first.
701 *
702 * All the spin loops have timeouts; when a timeout happens a CPU
703 * typically elects itself to be Monarch.
704 */
705static void mce_reign(void)
706{
707	int cpu;
708	struct mce *m = NULL;
709	int global_worst = 0;
710	char *msg = NULL;
711	char *nmsg = NULL;
712
713	/*
714	 * This CPU is the Monarch and the other CPUs have run
715	 * through their handlers.
716	 * Grade the severity of the errors of all the CPUs.
717	 */
718	for_each_possible_cpu(cpu) {
719		int severity = mce_severity(&per_cpu(mces_seen, cpu), tolerant,
720					    &nmsg);
721		if (severity > global_worst) {
722			msg = nmsg;
723			global_worst = severity;
724			m = &per_cpu(mces_seen, cpu);
725		}
726	}
727
728	/*
729	 * Cannot recover? Panic here then.
730	 * This dumps all the mces in the log buffer and stops the
731	 * other CPUs.
732	 */
733	if (m && global_worst >= MCE_PANIC_SEVERITY && tolerant < 3)
734		mce_panic("Fatal Machine check", m, msg);
735
736	/*
737	 * For UC somewhere we let the CPU who detects it handle it.
738	 * Also must let continue the others, otherwise the handling
739	 * CPU could deadlock on a lock.
740	 */
741
742	/*
743	 * No machine check event found. Must be some external
744	 * source or one CPU is hung. Panic.
745	 */
746	if (global_worst <= MCE_KEEP_SEVERITY && tolerant < 3)
747		mce_panic("Machine check from unknown source", NULL, NULL);
748
749	/*
750	 * Now clear all the mces_seen so that they don't reappear on
751	 * the next mce.
752	 */
753	for_each_possible_cpu(cpu)
754		memset(&per_cpu(mces_seen, cpu), 0, sizeof(struct mce));
755}
756
757static atomic_t global_nwo;
758
759/*
760 * Start of Monarch synchronization. This waits until all CPUs have
761 * entered the exception handler and then determines if any of them
762 * saw a fatal event that requires panic. Then it executes them
763 * in the entry order.
764 * TBD double check parallel CPU hotunplug
765 */
766static int mce_start(int *no_way_out)
767{
768	int order;
769	int cpus = num_online_cpus();
770	u64 timeout = (u64)monarch_timeout * NSEC_PER_USEC;
771
772	if (!timeout)
773		return -1;
774
775	atomic_add(*no_way_out, &global_nwo);
776	/*
777	 * global_nwo should be updated before mce_callin
778	 */
779	smp_wmb();
780	order = atomic_inc_return(&mce_callin);
781
782	/*
783	 * Wait for everyone.
784	 */
785	while (atomic_read(&mce_callin) != cpus) {
786		if (mce_timed_out(&timeout)) {
787			atomic_set(&global_nwo, 0);
788			return -1;
789		}
790		ndelay(SPINUNIT);
791	}
792
793	/*
794	 * mce_callin should be read before global_nwo
795	 */
796	smp_rmb();
797
798	if (order == 1) {
799		/*
800		 * Monarch: Starts executing now, the others wait.
801		 */
802		atomic_set(&mce_executing, 1);
803	} else {
804		/*
805		 * Subject: Now start the scanning loop one by one in
806		 * the original callin order.
807		 * This way when there are any shared banks it will be
808		 * only seen by one CPU before cleared, avoiding duplicates.
809		 */
810		while (atomic_read(&mce_executing) < order) {
811			if (mce_timed_out(&timeout)) {
812				atomic_set(&global_nwo, 0);
813				return -1;
814			}
815			ndelay(SPINUNIT);
816		}
817	}
818
819	/*
820	 * Cache the global no_way_out state.
821	 */
822	*no_way_out = atomic_read(&global_nwo);
823
824	return order;
825}
826
827/*
828 * Synchronize between CPUs after main scanning loop.
829 * This invokes the bulk of the Monarch processing.
830 */
831static int mce_end(int order)
832{
833	int ret = -1;
834	u64 timeout = (u64)monarch_timeout * NSEC_PER_USEC;
835
836	if (!timeout)
837		goto reset;
838	if (order < 0)
839		goto reset;
840
841	/*
842	 * Allow others to run.
843	 */
844	atomic_inc(&mce_executing);
845
846	if (order == 1) {
847		/* CHECKME: Can this race with a parallel hotplug? */
848		int cpus = num_online_cpus();
849
850		/*
851		 * Monarch: Wait for everyone to go through their scanning
852		 * loops.
853		 */
854		while (atomic_read(&mce_executing) <= cpus) {
855			if (mce_timed_out(&timeout))
856				goto reset;
857			ndelay(SPINUNIT);
858		}
859
860		mce_reign();
861		barrier();
862		ret = 0;
863	} else {
864		/*
865		 * Subject: Wait for Monarch to finish.
866		 */
867		while (atomic_read(&mce_executing) != 0) {
868			if (mce_timed_out(&timeout))
869				goto reset;
870			ndelay(SPINUNIT);
871		}
872
873		/*
874		 * Don't reset anything. That's done by the Monarch.
875		 */
876		return 0;
877	}
878
879	/*
880	 * Reset all global state.
881	 */
882reset:
883	atomic_set(&global_nwo, 0);
884	atomic_set(&mce_callin, 0);
885	barrier();
886
887	/*
888	 * Let others run again.
889	 */
890	atomic_set(&mce_executing, 0);
891	return ret;
892}
893
894/*
895 * Check if the address reported by the CPU is in a format we can parse.
896 * It would be possible to add code for most other cases, but all would
897 * be somewhat complicated (e.g. segment offset would require an instruction
898 * parser). So only support physical addresses up to page granuality for now.
899 */
900static int mce_usable_address(struct mce *m)
901{
902	if (!(m->status & MCI_STATUS_MISCV) || !(m->status & MCI_STATUS_ADDRV))
903		return 0;
904	if (MCI_MISC_ADDR_LSB(m->misc) > PAGE_SHIFT)
905		return 0;
906	if (MCI_MISC_ADDR_MODE(m->misc) != MCI_MISC_ADDR_PHYS)
907		return 0;
908	return 1;
909}
910
911static void mce_clear_state(unsigned long *toclear)
912{
913	int i;
914
915	for (i = 0; i < banks; i++) {
916		if (test_bit(i, toclear))
917			mce_wrmsrl(MSR_IA32_MCx_STATUS(i), 0);
918	}
919}
920
921/*
922 * The actual machine check handler. This only handles real
923 * exceptions when something got corrupted coming in through int 18.
924 *
925 * This is executed in NMI context not subject to normal locking rules. This
926 * implies that most kernel services cannot be safely used. Don't even
927 * think about putting a printk in there!
928 *
929 * On Intel systems this is entered on all CPUs in parallel through
930 * MCE broadcast. However some CPUs might be broken beyond repair,
931 * so be always careful when synchronizing with others.
932 */
933void do_machine_check(struct pt_regs *regs, long error_code)
934{
935	struct mce m, *final;
936	int i;
937	int worst = 0;
938	int severity;
939	/*
940	 * Establish sequential order between the CPUs entering the machine
941	 * check handler.
942	 */
943	int order;
944	/*
945	 * If no_way_out gets set, there is no safe way to recover from this
946	 * MCE.  If tolerant is cranked up, we'll try anyway.
947	 */
948	int no_way_out = 0;
949	/*
950	 * If kill_it gets set, there might be a way to recover from this
951	 * error.
952	 */
953	int kill_it = 0;
954	DECLARE_BITMAP(toclear, MAX_NR_BANKS);
955	char *msg = "Unknown";
956
957	atomic_inc(&mce_entry);
958
959	percpu_inc(mce_exception_count);
960
961	if (!banks)
962		goto out;
963
964	mce_gather_info(&m, regs);
965
966	final = &__get_cpu_var(mces_seen);
967	*final = m;
968
969	no_way_out = mce_no_way_out(&m, &msg);
970
971	barrier();
972
973	/*
974	 * When no restart IP must always kill or panic.
975	 */
976	if (!(m.mcgstatus & MCG_STATUS_RIPV))
977		kill_it = 1;
978
979	/*
980	 * Go through all the banks in exclusion of the other CPUs.
981	 * This way we don't report duplicated events on shared banks
982	 * because the first one to see it will clear it.
983	 */
984	order = mce_start(&no_way_out);
985	for (i = 0; i < banks; i++) {
986		__clear_bit(i, toclear);
987		if (!mce_banks[i].ctl)
988			continue;
989
990		m.misc = 0;
991		m.addr = 0;
992		m.bank = i;
993
994		m.status = mce_rdmsrl(MSR_IA32_MCx_STATUS(i));
995		if ((m.status & MCI_STATUS_VAL) == 0)
996			continue;
997
998		/*
999		 * Non uncorrected or non signaled errors are handled by
1000		 * machine_check_poll. Leave them alone, unless this panics.
1001		 */
1002		if (!(m.status & (mce_ser ? MCI_STATUS_S : MCI_STATUS_UC)) &&
1003			!no_way_out)
1004			continue;
1005
1006		/*
1007		 * Set taint even when machine check was not enabled.
1008		 */
1009		add_taint(TAINT_MACHINE_CHECK);
1010
1011		severity = mce_severity(&m, tolerant, NULL);
1012
1013		/*
1014		 * When machine check was for corrected handler don't touch,
1015		 * unless we're panicing.
1016		 */
1017		if (severity == MCE_KEEP_SEVERITY && !no_way_out)
1018			continue;
1019		__set_bit(i, toclear);
1020		if (severity == MCE_NO_SEVERITY) {
1021			/*
1022			 * Machine check event was not enabled. Clear, but
1023			 * ignore.
1024			 */
1025			continue;
1026		}
1027
1028		/*
1029		 * Kill on action required.
1030		 */
1031		if (severity == MCE_AR_SEVERITY)
1032			kill_it = 1;
1033
1034		if (m.status & MCI_STATUS_MISCV)
1035			m.misc = mce_rdmsrl(MSR_IA32_MCx_MISC(i));
1036		if (m.status & MCI_STATUS_ADDRV)
1037			m.addr = mce_rdmsrl(MSR_IA32_MCx_ADDR(i));
1038
1039		/*
1040		 * Action optional error. Queue address for later processing.
1041		 * When the ring overflows we just ignore the AO error.
1042		 * RED-PEN add some logging mechanism when
1043		 * usable_address or mce_add_ring fails.
1044		 * RED-PEN don't ignore overflow for tolerant == 0
1045		 */
1046		if (severity == MCE_AO_SEVERITY && mce_usable_address(&m))
1047			mce_ring_add(m.addr >> PAGE_SHIFT);
1048
1049		mce_log(&m);
1050
1051		if (severity > worst) {
1052			*final = m;
1053			worst = severity;
1054		}
1055	}
1056
1057	if (!no_way_out)
1058		mce_clear_state(toclear);
1059
1060	/*
1061	 * Do most of the synchronization with other CPUs.
1062	 * When there's any problem use only local no_way_out state.
1063	 */
1064	if (mce_end(order) < 0)
1065		no_way_out = worst >= MCE_PANIC_SEVERITY;
1066
1067	/*
1068	 * If we have decided that we just CAN'T continue, and the user
1069	 * has not set tolerant to an insane level, give up and die.
1070	 *
1071	 * This is mainly used in the case when the system doesn't
1072	 * support MCE broadcasting or it has been disabled.
1073	 */
1074	if (no_way_out && tolerant < 3)
1075		mce_panic("Fatal machine check on current CPU", final, msg);
1076
1077	/*
1078	 * If the error seems to be unrecoverable, something should be
1079	 * done.  Try to kill as little as possible.  If we can kill just
1080	 * one task, do that.  If the user has set the tolerance very
1081	 * high, don't try to do anything at all.
1082	 */
1083
1084	if (kill_it && tolerant < 3)
1085		force_sig(SIGBUS, current);
1086
1087	/* notify userspace ASAP */
1088	set_thread_flag(TIF_MCE_NOTIFY);
1089
1090	if (worst > 0)
1091		mce_report_event(regs);
1092	mce_wrmsrl(MSR_IA32_MCG_STATUS, 0);
1093out:
1094	atomic_dec(&mce_entry);
1095	sync_core();
1096}
1097EXPORT_SYMBOL_GPL(do_machine_check);
1098
1099/* dummy to break dependency. actual code is in mm/memory-failure.c */
1100void __attribute__((weak)) memory_failure(unsigned long pfn, int vector)
1101{
1102	printk(KERN_ERR "Action optional memory failure at %lx ignored\n", pfn);
1103}
1104
1105/*
1106 * Called after mce notification in process context. This code
1107 * is allowed to sleep. Call the high level VM handler to process
1108 * any corrupted pages.
1109 * Assume that the work queue code only calls this one at a time
1110 * per CPU.
1111 * Note we don't disable preemption, so this code might run on the wrong
1112 * CPU. In this case the event is picked up by the scheduled work queue.
1113 * This is merely a fast path to expedite processing in some common
1114 * cases.
1115 */
1116void mce_notify_process(void)
1117{
1118	unsigned long pfn;
1119	mce_notify_irq();
1120	while (mce_ring_get(&pfn))
1121		memory_failure(pfn, MCE_VECTOR);
1122}
1123
1124static void mce_process_work(struct work_struct *dummy)
1125{
1126	mce_notify_process();
1127}
1128
1129#ifdef CONFIG_X86_MCE_INTEL
1130/***
1131 * mce_log_therm_throt_event - Logs the thermal throttling event to mcelog
1132 * @cpu: The CPU on which the event occurred.
1133 * @status: Event status information
1134 *
1135 * This function should be called by the thermal interrupt after the
1136 * event has been processed and the decision was made to log the event
1137 * further.
1138 *
1139 * The status parameter will be saved to the 'status' field of 'struct mce'
1140 * and historically has been the register value of the
1141 * MSR_IA32_THERMAL_STATUS (Intel) msr.
1142 */
1143void mce_log_therm_throt_event(__u64 status)
1144{
1145	struct mce m;
1146
1147	mce_setup(&m);
1148	m.bank = MCE_THERMAL_BANK;
1149	m.status = status;
1150	mce_log(&m);
1151}
1152#endif /* CONFIG_X86_MCE_INTEL */
1153
1154/*
1155 * Periodic polling timer for "silent" machine check errors.  If the
1156 * poller finds an MCE, poll 2x faster.  When the poller finds no more
1157 * errors, poll 2x slower (up to check_interval seconds).
1158 */
1159static int check_interval = 5 * 60; /* 5 minutes */
1160
1161static DEFINE_PER_CPU(int, mce_next_interval); /* in jiffies */
1162static DEFINE_PER_CPU(struct timer_list, mce_timer);
1163
1164static void mce_start_timer(unsigned long data)
1165{
1166	struct timer_list *t = &per_cpu(mce_timer, data);
1167	int *n;
1168
1169	WARN_ON(smp_processor_id() != data);
1170
1171	if (mce_available(__this_cpu_ptr(&cpu_info))) {
1172		machine_check_poll(MCP_TIMESTAMP,
1173				&__get_cpu_var(mce_poll_banks));
1174	}
1175
1176	/*
1177	 * Alert userspace if needed.  If we logged an MCE, reduce the
1178	 * polling interval, otherwise increase the polling interval.
1179	 */
1180	n = &__get_cpu_var(mce_next_interval);
1181	if (mce_notify_irq())
1182		*n = max(*n/2, HZ/100);
1183	else
1184		*n = min(*n*2, (int)round_jiffies_relative(check_interval*HZ));
1185
1186	t->expires = jiffies + *n;
1187	add_timer_on(t, smp_processor_id());
1188}
1189
1190/* Must not be called in IRQ context where del_timer_sync() can deadlock */
1191static void mce_timer_delete_all(void)
1192{
1193	int cpu;
1194
1195	for_each_online_cpu(cpu)
1196		del_timer_sync(&per_cpu(mce_timer, cpu));
1197}
1198
1199static void mce_do_trigger(struct work_struct *work)
1200{
1201	call_usermodehelper(mce_helper, mce_helper_argv, NULL, UMH_NO_WAIT);
1202}
1203
1204static DECLARE_WORK(mce_trigger_work, mce_do_trigger);
1205
1206/*
1207 * Notify the user(s) about new machine check events.
1208 * Can be called from interrupt context, but not from machine check/NMI
1209 * context.
1210 */
1211int mce_notify_irq(void)
1212{
1213	/* Not more than two messages every minute */
1214	static DEFINE_RATELIMIT_STATE(ratelimit, 60*HZ, 2);
1215
1216	clear_thread_flag(TIF_MCE_NOTIFY);
1217
1218	if (test_and_clear_bit(0, &mce_need_notify)) {
1219		/* wake processes polling /dev/mcelog */
1220		wake_up_interruptible(&mce_chrdev_wait);
1221
1222		/*
1223		 * There is no risk of missing notifications because
1224		 * work_pending is always cleared before the function is
1225		 * executed.
1226		 */
1227		if (mce_helper[0] && !work_pending(&mce_trigger_work))
1228			schedule_work(&mce_trigger_work);
1229
1230		if (__ratelimit(&ratelimit))
1231			pr_info(HW_ERR "Machine check events logged\n");
1232
1233		return 1;
1234	}
1235	return 0;
1236}
1237EXPORT_SYMBOL_GPL(mce_notify_irq);
1238
1239static int __cpuinit __mcheck_cpu_mce_banks_init(void)
1240{
1241	int i;
1242
1243	mce_banks = kzalloc(banks * sizeof(struct mce_bank), GFP_KERNEL);
1244	if (!mce_banks)
1245		return -ENOMEM;
1246	for (i = 0; i < banks; i++) {
1247		struct mce_bank *b = &mce_banks[i];
1248
1249		b->ctl = -1ULL;
1250		b->init = 1;
1251	}
1252	return 0;
1253}
1254
1255/*
1256 * Initialize Machine Checks for a CPU.
1257 */
1258static int __cpuinit __mcheck_cpu_cap_init(void)
1259{
1260	unsigned b;
1261	u64 cap;
1262
1263	rdmsrl(MSR_IA32_MCG_CAP, cap);
1264
1265	b = cap & MCG_BANKCNT_MASK;
1266	if (!banks)
1267		printk(KERN_INFO "mce: CPU supports %d MCE banks\n", b);
1268
1269	if (b > MAX_NR_BANKS) {
1270		printk(KERN_WARNING
1271		       "MCE: Using only %u machine check banks out of %u\n",
1272			MAX_NR_BANKS, b);
1273		b = MAX_NR_BANKS;
1274	}
1275
1276	/* Don't support asymmetric configurations today */
1277	WARN_ON(banks != 0 && b != banks);
1278	banks = b;
1279	if (!mce_banks) {
1280		int err = __mcheck_cpu_mce_banks_init();
1281
1282		if (err)
1283			return err;
1284	}
1285
1286	/* Use accurate RIP reporting if available. */
1287	if ((cap & MCG_EXT_P) && MCG_EXT_CNT(cap) >= 9)
1288		rip_msr = MSR_IA32_MCG_EIP;
1289
1290	if (cap & MCG_SER_P)
1291		mce_ser = 1;
1292
1293	return 0;
1294}
1295
1296static void __mcheck_cpu_init_generic(void)
1297{
1298	mce_banks_t all_banks;
1299	u64 cap;
1300	int i;
1301
1302	/*
1303	 * Log the machine checks left over from the previous reset.
1304	 */
1305	bitmap_fill(all_banks, MAX_NR_BANKS);
1306	machine_check_poll(MCP_UC|(!mce_bootlog ? MCP_DONTLOG : 0), &all_banks);
1307
1308	set_in_cr4(X86_CR4_MCE);
1309
1310	rdmsrl(MSR_IA32_MCG_CAP, cap);
1311	if (cap & MCG_CTL_P)
1312		wrmsr(MSR_IA32_MCG_CTL, 0xffffffff, 0xffffffff);
1313
1314	for (i = 0; i < banks; i++) {
1315		struct mce_bank *b = &mce_banks[i];
1316
1317		if (!b->init)
1318			continue;
1319		wrmsrl(MSR_IA32_MCx_CTL(i), b->ctl);
1320		wrmsrl(MSR_IA32_MCx_STATUS(i), 0);
1321	}
1322}
1323
1324/* Add per CPU specific workarounds here */
1325static int __cpuinit __mcheck_cpu_apply_quirks(struct cpuinfo_x86 *c)
1326{
1327	if (c->x86_vendor == X86_VENDOR_UNKNOWN) {
1328		pr_info("MCE: unknown CPU type - not enabling MCE support.\n");
1329		return -EOPNOTSUPP;
1330	}
1331
1332	/* This should be disabled by the BIOS, but isn't always */
1333	if (c->x86_vendor == X86_VENDOR_AMD) {
1334		if (c->x86 == 15 && banks > 4) {
1335			/*
1336			 * disable GART TBL walk error reporting, which
1337			 * trips off incorrectly with the IOMMU & 3ware
1338			 * & Cerberus:
1339			 */
1340			clear_bit(10, (unsigned long *)&mce_banks[4].ctl);
1341		}
1342		if (c->x86 <= 17 && mce_bootlog < 0) {
1343			/*
1344			 * Lots of broken BIOS around that don't clear them
1345			 * by default and leave crap in there. Don't log:
1346			 */
1347			mce_bootlog = 0;
1348		}
1349		/*
1350		 * Various K7s with broken bank 0 around. Always disable
1351		 * by default.
1352		 */
1353		 if (c->x86 == 6 && banks > 0)
1354			mce_banks[0].ctl = 0;
1355	}
1356
1357	if (c->x86_vendor == X86_VENDOR_INTEL) {
1358		/*
1359		 * SDM documents that on family 6 bank 0 should not be written
1360		 * because it aliases to another special BIOS controlled
1361		 * register.
1362		 * But it's not aliased anymore on model 0x1a+
1363		 * Don't ignore bank 0 completely because there could be a
1364		 * valid event later, merely don't write CTL0.
1365		 */
1366
1367		if (c->x86 == 6 && c->x86_model < 0x1A && banks > 0)
1368			mce_banks[0].init = 0;
1369
1370		/*
1371		 * All newer Intel systems support MCE broadcasting. Enable
1372		 * synchronization with a one second timeout.
1373		 */
1374		if ((c->x86 > 6 || (c->x86 == 6 && c->x86_model >= 0xe)) &&
1375			monarch_timeout < 0)
1376			monarch_timeout = USEC_PER_SEC;
1377
1378		/*
1379		 * There are also broken BIOSes on some Pentium M and
1380		 * earlier systems:
1381		 */
1382		if (c->x86 == 6 && c->x86_model <= 13 && mce_bootlog < 0)
1383			mce_bootlog = 0;
1384	}
1385	if (monarch_timeout < 0)
1386		monarch_timeout = 0;
1387	if (mce_bootlog != 0)
1388		mce_panic_timeout = 30;
1389
1390	return 0;
1391}
1392
1393static int __cpuinit __mcheck_cpu_ancient_init(struct cpuinfo_x86 *c)
1394{
1395	if (c->x86 != 5)
1396		return 0;
1397
1398	switch (c->x86_vendor) {
1399	case X86_VENDOR_INTEL:
1400		intel_p5_mcheck_init(c);
1401		return 1;
1402		break;
1403	case X86_VENDOR_CENTAUR:
1404		winchip_mcheck_init(c);
1405		return 1;
1406		break;
1407	}
1408
1409	return 0;
1410}
1411
1412static void __mcheck_cpu_init_vendor(struct cpuinfo_x86 *c)
1413{
1414	switch (c->x86_vendor) {
1415	case X86_VENDOR_INTEL:
1416		mce_intel_feature_init(c);
1417		break;
1418	case X86_VENDOR_AMD:
1419		mce_amd_feature_init(c);
1420		break;
1421	default:
1422		break;
1423	}
1424}
1425
1426static void __mcheck_cpu_init_timer(void)
1427{
1428	struct timer_list *t = &__get_cpu_var(mce_timer);
1429	int *n = &__get_cpu_var(mce_next_interval);
1430
1431	setup_timer(t, mce_start_timer, smp_processor_id());
1432
1433	if (mce_ignore_ce)
1434		return;
1435
1436	*n = check_interval * HZ;
1437	if (!*n)
1438		return;
1439	t->expires = round_jiffies(jiffies + *n);
1440	add_timer_on(t, smp_processor_id());
1441}
1442
1443/* Handle unconfigured int18 (should never happen) */
1444static void unexpected_machine_check(struct pt_regs *regs, long error_code)
1445{
1446	printk(KERN_ERR "CPU#%d: Unexpected int18 (Machine Check).\n",
1447	       smp_processor_id());
1448}
1449
1450/* Call the installed machine check handler for this CPU setup. */
1451void (*machine_check_vector)(struct pt_regs *, long error_code) =
1452						unexpected_machine_check;
1453
1454/*
1455 * Called for each booted CPU to set up machine checks.
1456 * Must be called with preempt off:
1457 */
1458void __cpuinit mcheck_cpu_init(struct cpuinfo_x86 *c)
1459{
1460	if (mce_disabled)
1461		return;
1462
1463	if (__mcheck_cpu_ancient_init(c))
1464		return;
1465
1466	if (!mce_available(c))
1467		return;
1468
1469	if (__mcheck_cpu_cap_init() < 0 || __mcheck_cpu_apply_quirks(c) < 0) {
1470		mce_disabled = 1;
1471		return;
1472	}
1473
1474	machine_check_vector = do_machine_check;
1475
1476	__mcheck_cpu_init_generic();
1477	__mcheck_cpu_init_vendor(c);
1478	__mcheck_cpu_init_timer();
1479	INIT_WORK(&__get_cpu_var(mce_work), mce_process_work);
1480	init_irq_work(&__get_cpu_var(mce_irq_work), &mce_irq_work_cb);
1481}
1482
1483/*
1484 * mce_chrdev: Character device /dev/mcelog to read and clear the MCE log.
1485 */
1486
1487static DEFINE_SPINLOCK(mce_chrdev_state_lock);
1488static int mce_chrdev_open_count;	/* #times opened */
1489static int mce_chrdev_open_exclu;	/* already open exclusive? */
1490
1491static int mce_chrdev_open(struct inode *inode, struct file *file)
1492{
1493	spin_lock(&mce_chrdev_state_lock);
1494
1495	if (mce_chrdev_open_exclu ||
1496	    (mce_chrdev_open_count && (file->f_flags & O_EXCL))) {
1497		spin_unlock(&mce_chrdev_state_lock);
1498
1499		return -EBUSY;
1500	}
1501
1502	if (file->f_flags & O_EXCL)
1503		mce_chrdev_open_exclu = 1;
1504	mce_chrdev_open_count++;
1505
1506	spin_unlock(&mce_chrdev_state_lock);
1507
1508	return nonseekable_open(inode, file);
1509}
1510
1511static int mce_chrdev_release(struct inode *inode, struct file *file)
1512{
1513	spin_lock(&mce_chrdev_state_lock);
1514
1515	mce_chrdev_open_count--;
1516	mce_chrdev_open_exclu = 0;
1517
1518	spin_unlock(&mce_chrdev_state_lock);
1519
1520	return 0;
1521}
1522
1523static void collect_tscs(void *data)
1524{
1525	unsigned long *cpu_tsc = (unsigned long *)data;
1526
1527	rdtscll(cpu_tsc[smp_processor_id()]);
1528}
1529
1530static int mce_apei_read_done;
1531
1532/* Collect MCE record of previous boot in persistent storage via APEI ERST. */
1533static int __mce_read_apei(char __user **ubuf, size_t usize)
1534{
1535	int rc;
1536	u64 record_id;
1537	struct mce m;
1538
1539	if (usize < sizeof(struct mce))
1540		return -EINVAL;
1541
1542	rc = apei_read_mce(&m, &record_id);
1543	/* Error or no more MCE record */
1544	if (rc <= 0) {
1545		mce_apei_read_done = 1;
1546		return rc;
1547	}
1548	rc = -EFAULT;
1549	if (copy_to_user(*ubuf, &m, sizeof(struct mce)))
1550		return rc;
1551	/*
1552	 * In fact, we should have cleared the record after that has
1553	 * been flushed to the disk or sent to network in
1554	 * /sbin/mcelog, but we have no interface to support that now,
1555	 * so just clear it to avoid duplication.
1556	 */
1557	rc = apei_clear_mce(record_id);
1558	if (rc) {
1559		mce_apei_read_done = 1;
1560		return rc;
1561	}
1562	*ubuf += sizeof(struct mce);
1563
1564	return 0;
1565}
1566
1567static ssize_t mce_chrdev_read(struct file *filp, char __user *ubuf,
1568				size_t usize, loff_t *off)
1569{
1570	char __user *buf = ubuf;
1571	unsigned long *cpu_tsc;
1572	unsigned prev, next;
1573	int i, err;
1574
1575	cpu_tsc = kmalloc(nr_cpu_ids * sizeof(long), GFP_KERNEL);
1576	if (!cpu_tsc)
1577		return -ENOMEM;
1578
1579	mutex_lock(&mce_chrdev_read_mutex);
1580
1581	if (!mce_apei_read_done) {
1582		err = __mce_read_apei(&buf, usize);
1583		if (err || buf != ubuf)
1584			goto out;
1585	}
1586
1587	next = rcu_dereference_check_mce(mcelog.next);
1588
1589	/* Only supports full reads right now */
1590	err = -EINVAL;
1591	if (*off != 0 || usize < MCE_LOG_LEN*sizeof(struct mce))
1592		goto out;
1593
1594	err = 0;
1595	prev = 0;
1596	do {
1597		for (i = prev; i < next; i++) {
1598			unsigned long start = jiffies;
1599			struct mce *m = &mcelog.entry[i];
1600
1601			while (!m->finished) {
1602				if (time_after_eq(jiffies, start + 2)) {
1603					memset(m, 0, sizeof(*m));
1604					goto timeout;
1605				}
1606				cpu_relax();
1607			}
1608			smp_rmb();
1609			err |= copy_to_user(buf, m, sizeof(*m));
1610			buf += sizeof(*m);
1611timeout:
1612			;
1613		}
1614
1615		memset(mcelog.entry + prev, 0,
1616		       (next - prev) * sizeof(struct mce));
1617		prev = next;
1618		next = cmpxchg(&mcelog.next, prev, 0);
1619	} while (next != prev);
1620
1621	synchronize_sched();
1622
1623	/*
1624	 * Collect entries that were still getting written before the
1625	 * synchronize.
1626	 */
1627	on_each_cpu(collect_tscs, cpu_tsc, 1);
1628
1629	for (i = next; i < MCE_LOG_LEN; i++) {
1630		struct mce *m = &mcelog.entry[i];
1631
1632		if (m->finished && m->tsc < cpu_tsc[m->cpu]) {
1633			err |= copy_to_user(buf, m, sizeof(*m));
1634			smp_rmb();
1635			buf += sizeof(*m);
1636			memset(m, 0, sizeof(*m));
1637		}
1638	}
1639
1640	if (err)
1641		err = -EFAULT;
1642
1643out:
1644	mutex_unlock(&mce_chrdev_read_mutex);
1645	kfree(cpu_tsc);
1646
1647	return err ? err : buf - ubuf;
1648}
1649
1650static unsigned int mce_chrdev_poll(struct file *file, poll_table *wait)
1651{
1652	poll_wait(file, &mce_chrdev_wait, wait);
1653	if (rcu_access_index(mcelog.next))
1654		return POLLIN | POLLRDNORM;
1655	if (!mce_apei_read_done && apei_check_mce())
1656		return POLLIN | POLLRDNORM;
1657	return 0;
1658}
1659
1660static long mce_chrdev_ioctl(struct file *f, unsigned int cmd,
1661				unsigned long arg)
1662{
1663	int __user *p = (int __user *)arg;
1664
1665	if (!capable(CAP_SYS_ADMIN))
1666		return -EPERM;
1667
1668	switch (cmd) {
1669	case MCE_GET_RECORD_LEN:
1670		return put_user(sizeof(struct mce), p);
1671	case MCE_GET_LOG_LEN:
1672		return put_user(MCE_LOG_LEN, p);
1673	case MCE_GETCLEAR_FLAGS: {
1674		unsigned flags;
1675
1676		do {
1677			flags = mcelog.flags;
1678		} while (cmpxchg(&mcelog.flags, flags, 0) != flags);
1679
1680		return put_user(flags, p);
1681	}
1682	default:
1683		return -ENOTTY;
1684	}
1685}
1686
1687static ssize_t (*mce_write)(struct file *filp, const char __user *ubuf,
1688			    size_t usize, loff_t *off);
1689
1690void register_mce_write_callback(ssize_t (*fn)(struct file *filp,
1691			     const char __user *ubuf,
1692			     size_t usize, loff_t *off))
1693{
1694	mce_write = fn;
1695}
1696EXPORT_SYMBOL_GPL(register_mce_write_callback);
1697
1698ssize_t mce_chrdev_write(struct file *filp, const char __user *ubuf,
1699			 size_t usize, loff_t *off)
1700{
1701	if (mce_write)
1702		return mce_write(filp, ubuf, usize, off);
1703	else
1704		return -EINVAL;
1705}
1706
1707static const struct file_operations mce_chrdev_ops = {
1708	.open			= mce_chrdev_open,
1709	.release		= mce_chrdev_release,
1710	.read			= mce_chrdev_read,
1711	.write			= mce_chrdev_write,
1712	.poll			= mce_chrdev_poll,
1713	.unlocked_ioctl		= mce_chrdev_ioctl,
1714	.llseek			= no_llseek,
1715};
1716
1717static struct miscdevice mce_chrdev_device = {
1718	MISC_MCELOG_MINOR,
1719	"mcelog",
1720	&mce_chrdev_ops,
1721};
1722
1723/*
1724 * mce=off Disables machine check
1725 * mce=no_cmci Disables CMCI
1726 * mce=dont_log_ce Clears corrected events silently, no log created for CEs.
1727 * mce=ignore_ce Disables polling and CMCI, corrected events are not cleared.
1728 * mce=TOLERANCELEVEL[,monarchtimeout] (number, see above)
1729 *	monarchtimeout is how long to wait for other CPUs on machine
1730 *	check, or 0 to not wait
1731 * mce=bootlog Log MCEs from before booting. Disabled by default on AMD.
1732 * mce=nobootlog Don't log MCEs from before booting.
1733 */
1734static int __init mcheck_enable(char *str)
1735{
1736	if (*str == 0) {
1737		enable_p5_mce();
1738		return 1;
1739	}
1740	if (*str == '=')
1741		str++;
1742	if (!strcmp(str, "off"))
1743		mce_disabled = 1;
1744	else if (!strcmp(str, "no_cmci"))
1745		mce_cmci_disabled = 1;
1746	else if (!strcmp(str, "dont_log_ce"))
1747		mce_dont_log_ce = 1;
1748	else if (!strcmp(str, "ignore_ce"))
1749		mce_ignore_ce = 1;
1750	else if (!strcmp(str, "bootlog") || !strcmp(str, "nobootlog"))
1751		mce_bootlog = (str[0] == 'b');
1752	else if (isdigit(str[0])) {
1753		get_option(&str, &tolerant);
1754		if (*str == ',') {
1755			++str;
1756			get_option(&str, &monarch_timeout);
1757		}
1758	} else {
1759		printk(KERN_INFO "mce argument %s ignored. Please use /sys\n",
1760		       str);
1761		return 0;
1762	}
1763	return 1;
1764}
1765__setup("mce", mcheck_enable);
1766
1767int __init mcheck_init(void)
1768{
1769	mcheck_intel_therm_init();
1770
1771	return 0;
1772}
1773
1774/*
1775 * mce_syscore: PM support
1776 */
1777
1778/*
1779 * Disable machine checks on suspend and shutdown. We can't really handle
1780 * them later.
1781 */
1782static int mce_disable_error_reporting(void)
1783{
1784	int i;
1785
1786	for (i = 0; i < banks; i++) {
1787		struct mce_bank *b = &mce_banks[i];
1788
1789		if (b->init)
1790			wrmsrl(MSR_IA32_MCx_CTL(i), 0);
1791	}
1792	return 0;
1793}
1794
1795static int mce_syscore_suspend(void)
1796{
1797	return mce_disable_error_reporting();
1798}
1799
1800static void mce_syscore_shutdown(void)
1801{
1802	mce_disable_error_reporting();
1803}
1804
1805/*
1806 * On resume clear all MCE state. Don't want to see leftovers from the BIOS.
1807 * Only one CPU is active at this time, the others get re-added later using
1808 * CPU hotplug:
1809 */
1810static void mce_syscore_resume(void)
1811{
1812	__mcheck_cpu_init_generic();
1813	__mcheck_cpu_init_vendor(__this_cpu_ptr(&cpu_info));
1814}
1815
1816static struct syscore_ops mce_syscore_ops = {
1817	.suspend	= mce_syscore_suspend,
1818	.shutdown	= mce_syscore_shutdown,
1819	.resume		= mce_syscore_resume,
1820};
1821
1822/*
1823 * mce_sysdev: Sysfs support
1824 */
1825
1826static void mce_cpu_restart(void *data)
1827{
1828	if (!mce_available(__this_cpu_ptr(&cpu_info)))
1829		return;
1830	__mcheck_cpu_init_generic();
1831	__mcheck_cpu_init_timer();
1832}
1833
1834/* Reinit MCEs after user configuration changes */
1835static void mce_restart(void)
1836{
1837	mce_timer_delete_all();
1838	on_each_cpu(mce_cpu_restart, NULL, 1);
1839}
1840
1841/* Toggle features for corrected errors */
1842static void mce_disable_cmci(void *data)
1843{
1844	if (!mce_available(__this_cpu_ptr(&cpu_info)))
1845		return;
1846	cmci_clear();
1847}
1848
1849static void mce_enable_ce(void *all)
1850{
1851	if (!mce_available(__this_cpu_ptr(&cpu_info)))
1852		return;
1853	cmci_reenable();
1854	cmci_recheck();
1855	if (all)
1856		__mcheck_cpu_init_timer();
1857}
1858
1859static struct sysdev_class mce_sysdev_class = {
1860	.name		= "machinecheck",
1861};
1862
1863DEFINE_PER_CPU(struct sys_device, mce_sysdev);
1864
1865__cpuinitdata
1866void (*threshold_cpu_callback)(unsigned long action, unsigned int cpu);
1867
1868static inline struct mce_bank *attr_to_bank(struct sysdev_attribute *attr)
1869{
1870	return container_of(attr, struct mce_bank, attr);
1871}
1872
1873static ssize_t show_bank(struct sys_device *s, struct sysdev_attribute *attr,
1874			 char *buf)
1875{
1876	return sprintf(buf, "%llx\n", attr_to_bank(attr)->ctl);
1877}
1878
1879static ssize_t set_bank(struct sys_device *s, struct sysdev_attribute *attr,
1880			const char *buf, size_t size)
1881{
1882	u64 new;
1883
1884	if (strict_strtoull(buf, 0, &new) < 0)
1885		return -EINVAL;
1886
1887	attr_to_bank(attr)->ctl = new;
1888	mce_restart();
1889
1890	return size;
1891}
1892
1893static ssize_t
1894show_trigger(struct sys_device *s, struct sysdev_attribute *attr, char *buf)
1895{
1896	strcpy(buf, mce_helper);
1897	strcat(buf, "\n");
1898	return strlen(mce_helper) + 1;
1899}
1900
1901static ssize_t set_trigger(struct sys_device *s, struct sysdev_attribute *attr,
1902				const char *buf, size_t siz)
1903{
1904	char *p;
1905
1906	strncpy(mce_helper, buf, sizeof(mce_helper));
1907	mce_helper[sizeof(mce_helper)-1] = 0;
1908	p = strchr(mce_helper, '\n');
1909
1910	if (p)
1911		*p = 0;
1912
1913	return strlen(mce_helper) + !!p;
1914}
1915
1916static ssize_t set_ignore_ce(struct sys_device *s,
1917			     struct sysdev_attribute *attr,
1918			     const char *buf, size_t size)
1919{
1920	u64 new;
1921
1922	if (strict_strtoull(buf, 0, &new) < 0)
1923		return -EINVAL;
1924
1925	if (mce_ignore_ce ^ !!new) {
1926		if (new) {
1927			/* disable ce features */
1928			mce_timer_delete_all();
1929			on_each_cpu(mce_disable_cmci, NULL, 1);
1930			mce_ignore_ce = 1;
1931		} else {
1932			/* enable ce features */
1933			mce_ignore_ce = 0;
1934			on_each_cpu(mce_enable_ce, (void *)1, 1);
1935		}
1936	}
1937	return size;
1938}
1939
1940static ssize_t set_cmci_disabled(struct sys_device *s,
1941				 struct sysdev_attribute *attr,
1942				 const char *buf, size_t size)
1943{
1944	u64 new;
1945
1946	if (strict_strtoull(buf, 0, &new) < 0)
1947		return -EINVAL;
1948
1949	if (mce_cmci_disabled ^ !!new) {
1950		if (new) {
1951			/* disable cmci */
1952			on_each_cpu(mce_disable_cmci, NULL, 1);
1953			mce_cmci_disabled = 1;
1954		} else {
1955			/* enable cmci */
1956			mce_cmci_disabled = 0;
1957			on_each_cpu(mce_enable_ce, NULL, 1);
1958		}
1959	}
1960	return size;
1961}
1962
1963static ssize_t store_int_with_restart(struct sys_device *s,
1964				      struct sysdev_attribute *attr,
1965				      const char *buf, size_t size)
1966{
1967	ssize_t ret = sysdev_store_int(s, attr, buf, size);
1968	mce_restart();
1969	return ret;
1970}
1971
1972static SYSDEV_ATTR(trigger, 0644, show_trigger, set_trigger);
1973static SYSDEV_INT_ATTR(tolerant, 0644, tolerant);
1974static SYSDEV_INT_ATTR(monarch_timeout, 0644, monarch_timeout);
1975static SYSDEV_INT_ATTR(dont_log_ce, 0644, mce_dont_log_ce);
1976
1977static struct sysdev_ext_attribute attr_check_interval = {
1978	_SYSDEV_ATTR(check_interval, 0644, sysdev_show_int,
1979		     store_int_with_restart),
1980	&check_interval
1981};
1982
1983static struct sysdev_ext_attribute attr_ignore_ce = {
1984	_SYSDEV_ATTR(ignore_ce, 0644, sysdev_show_int, set_ignore_ce),
1985	&mce_ignore_ce
1986};
1987
1988static struct sysdev_ext_attribute attr_cmci_disabled = {
1989	_SYSDEV_ATTR(cmci_disabled, 0644, sysdev_show_int, set_cmci_disabled),
1990	&mce_cmci_disabled
1991};
1992
1993static struct sysdev_attribute *mce_sysdev_attrs[] = {
1994	&attr_tolerant.attr,
1995	&attr_check_interval.attr,
1996	&attr_trigger,
1997	&attr_monarch_timeout.attr,
1998	&attr_dont_log_ce.attr,
1999	&attr_ignore_ce.attr,
2000	&attr_cmci_disabled.attr,
2001	NULL
2002};
2003
2004static cpumask_var_t mce_sysdev_initialized;
2005
2006/* Per cpu sysdev init. All of the cpus still share the same ctrl bank: */
2007static __cpuinit int mce_sysdev_create(unsigned int cpu)
2008{
2009	struct sys_device *sysdev = &per_cpu(mce_sysdev, cpu);
2010	int err;
2011	int i, j;
2012
2013	if (!mce_available(&boot_cpu_data))
2014		return -EIO;
2015
2016	memset(&sysdev->kobj, 0, sizeof(struct kobject));
2017	sysdev->id  = cpu;
2018	sysdev->cls = &mce_sysdev_class;
2019
2020	err = sysdev_register(sysdev);
2021	if (err)
2022		return err;
2023
2024	for (i = 0; mce_sysdev_attrs[i]; i++) {
2025		err = sysdev_create_file(sysdev, mce_sysdev_attrs[i]);
2026		if (err)
2027			goto error;
2028	}
2029	for (j = 0; j < banks; j++) {
2030		err = sysdev_create_file(sysdev, &mce_banks[j].attr);
2031		if (err)
2032			goto error2;
2033	}
2034	cpumask_set_cpu(cpu, mce_sysdev_initialized);
2035
2036	return 0;
2037error2:
2038	while (--j >= 0)
2039		sysdev_remove_file(sysdev, &mce_banks[j].attr);
2040error:
2041	while (--i >= 0)
2042		sysdev_remove_file(sysdev, mce_sysdev_attrs[i]);
2043
2044	sysdev_unregister(sysdev);
2045
2046	return err;
2047}
2048
2049static __cpuinit void mce_sysdev_remove(unsigned int cpu)
2050{
2051	struct sys_device *sysdev = &per_cpu(mce_sysdev, cpu);
2052	int i;
2053
2054	if (!cpumask_test_cpu(cpu, mce_sysdev_initialized))
2055		return;
2056
2057	for (i = 0; mce_sysdev_attrs[i]; i++)
2058		sysdev_remove_file(sysdev, mce_sysdev_attrs[i]);
2059
2060	for (i = 0; i < banks; i++)
2061		sysdev_remove_file(sysdev, &mce_banks[i].attr);
2062
2063	sysdev_unregister(sysdev);
2064	cpumask_clear_cpu(cpu, mce_sysdev_initialized);
2065}
2066
2067/* Make sure there are no machine checks on offlined CPUs. */
2068static void __cpuinit mce_disable_cpu(void *h)
2069{
2070	unsigned long action = *(unsigned long *)h;
2071	int i;
2072
2073	if (!mce_available(__this_cpu_ptr(&cpu_info)))
2074		return;
2075
2076	if (!(action & CPU_TASKS_FROZEN))
2077		cmci_clear();
2078	for (i = 0; i < banks; i++) {
2079		struct mce_bank *b = &mce_banks[i];
2080
2081		if (b->init)
2082			wrmsrl(MSR_IA32_MCx_CTL(i), 0);
2083	}
2084}
2085
2086static void __cpuinit mce_reenable_cpu(void *h)
2087{
2088	unsigned long action = *(unsigned long *)h;
2089	int i;
2090
2091	if (!mce_available(__this_cpu_ptr(&cpu_info)))
2092		return;
2093
2094	if (!(action & CPU_TASKS_FROZEN))
2095		cmci_reenable();
2096	for (i = 0; i < banks; i++) {
2097		struct mce_bank *b = &mce_banks[i];
2098
2099		if (b->init)
2100			wrmsrl(MSR_IA32_MCx_CTL(i), b->ctl);
2101	}
2102}
2103
2104/* Get notified when a cpu comes on/off. Be hotplug friendly. */
2105static int __cpuinit
2106mce_cpu_callback(struct notifier_block *nfb, unsigned long action, void *hcpu)
2107{
2108	unsigned int cpu = (unsigned long)hcpu;
2109	struct timer_list *t = &per_cpu(mce_timer, cpu);
2110
2111	switch (action) {
2112	case CPU_ONLINE:
2113	case CPU_ONLINE_FROZEN:
2114		mce_sysdev_create(cpu);
2115		if (threshold_cpu_callback)
2116			threshold_cpu_callback(action, cpu);
2117		break;
2118	case CPU_DEAD:
2119	case CPU_DEAD_FROZEN:
2120		if (threshold_cpu_callback)
2121			threshold_cpu_callback(action, cpu);
2122		mce_sysdev_remove(cpu);
2123		break;
2124	case CPU_DOWN_PREPARE:
2125	case CPU_DOWN_PREPARE_FROZEN:
2126		del_timer_sync(t);
2127		smp_call_function_single(cpu, mce_disable_cpu, &action, 1);
2128		break;
2129	case CPU_DOWN_FAILED:
2130	case CPU_DOWN_FAILED_FROZEN:
2131		if (!mce_ignore_ce && check_interval) {
2132			t->expires = round_jiffies(jiffies +
2133					   __get_cpu_var(mce_next_interval));
2134			add_timer_on(t, cpu);
2135		}
2136		smp_call_function_single(cpu, mce_reenable_cpu, &action, 1);
2137		break;
2138	case CPU_POST_DEAD:
2139		/* intentionally ignoring frozen here */
2140		cmci_rediscover(cpu);
2141		break;
2142	}
2143	return NOTIFY_OK;
2144}
2145
2146static struct notifier_block mce_cpu_notifier __cpuinitdata = {
2147	.notifier_call = mce_cpu_callback,
2148};
2149
2150static __init void mce_init_banks(void)
2151{
2152	int i;
2153
2154	for (i = 0; i < banks; i++) {
2155		struct mce_bank *b = &mce_banks[i];
2156		struct sysdev_attribute *a = &b->attr;
2157
2158		sysfs_attr_init(&a->attr);
2159		a->attr.name	= b->attrname;
2160		snprintf(b->attrname, ATTR_LEN, "bank%d", i);
2161
2162		a->attr.mode	= 0644;
2163		a->show		= show_bank;
2164		a->store	= set_bank;
2165	}
2166}
2167
2168static __init int mcheck_init_device(void)
2169{
2170	int err;
2171	int i = 0;
2172
2173	if (!mce_available(&boot_cpu_data))
2174		return -EIO;
2175
2176	zalloc_cpumask_var(&mce_sysdev_initialized, GFP_KERNEL);
2177
2178	mce_init_banks();
2179
2180	err = sysdev_class_register(&mce_sysdev_class);
2181	if (err)
2182		return err;
2183
2184	for_each_online_cpu(i) {
2185		err = mce_sysdev_create(i);
2186		if (err)
2187			return err;
2188	}
2189
2190	register_syscore_ops(&mce_syscore_ops);
2191	register_hotcpu_notifier(&mce_cpu_notifier);
2192
2193	/* register character device /dev/mcelog */
2194	misc_register(&mce_chrdev_device);
2195
2196	return err;
2197}
2198device_initcall(mcheck_init_device);
2199
2200/*
2201 * Old style boot options parsing. Only for compatibility.
2202 */
2203static int __init mcheck_disable(char *str)
2204{
2205	mce_disabled = 1;
2206	return 1;
2207}
2208__setup("nomce", mcheck_disable);
2209
2210#ifdef CONFIG_DEBUG_FS
2211struct dentry *mce_get_debugfs_dir(void)
2212{
2213	static struct dentry *dmce;
2214
2215	if (!dmce)
2216		dmce = debugfs_create_dir("mce", NULL);
2217
2218	return dmce;
2219}
2220
2221static void mce_reset(void)
2222{
2223	cpu_missing = 0;
2224	atomic_set(&mce_fake_paniced, 0);
2225	atomic_set(&mce_executing, 0);
2226	atomic_set(&mce_callin, 0);
2227	atomic_set(&global_nwo, 0);
2228}
2229
2230static int fake_panic_get(void *data, u64 *val)
2231{
2232	*val = fake_panic;
2233	return 0;
2234}
2235
2236static int fake_panic_set(void *data, u64 val)
2237{
2238	mce_reset();
2239	fake_panic = val;
2240	return 0;
2241}
2242
2243DEFINE_SIMPLE_ATTRIBUTE(fake_panic_fops, fake_panic_get,
2244			fake_panic_set, "%llu\n");
2245
2246static int __init mcheck_debugfs_init(void)
2247{
2248	struct dentry *dmce, *ffake_panic;
2249
2250	dmce = mce_get_debugfs_dir();
2251	if (!dmce)
2252		return -ENOMEM;
2253	ffake_panic = debugfs_create_file("fake_panic", 0444, dmce, NULL,
2254					  &fake_panic_fops);
2255	if (!ffake_panic)
2256		return -ENOMEM;
2257
2258	return 0;
2259}
2260late_initcall(mcheck_debugfs_init);
2261#endif
2262