mce.c revision 1020bcbcc7da36001d9226c5d57e999949cb80c5
1/*
2 * Machine check handler.
3 *
4 * K8 parts Copyright 2002,2003 Andi Kleen, SuSE Labs.
5 * Rest from unknown author(s).
6 * 2004 Andi Kleen. Rewrote most of it.
7 * Copyright 2008 Intel Corporation
8 * Author: Andi Kleen
9 */
10#include <linux/thread_info.h>
11#include <linux/capability.h>
12#include <linux/miscdevice.h>
13#include <linux/interrupt.h>
14#include <linux/ratelimit.h>
15#include <linux/kallsyms.h>
16#include <linux/rcupdate.h>
17#include <linux/kobject.h>
18#include <linux/uaccess.h>
19#include <linux/kdebug.h>
20#include <linux/kernel.h>
21#include <linux/percpu.h>
22#include <linux/string.h>
23#include <linux/sysdev.h>
24#include <linux/delay.h>
25#include <linux/ctype.h>
26#include <linux/sched.h>
27#include <linux/sysfs.h>
28#include <linux/types.h>
29#include <linux/init.h>
30#include <linux/kmod.h>
31#include <linux/poll.h>
32#include <linux/nmi.h>
33#include <linux/cpu.h>
34#include <linux/smp.h>
35#include <linux/fs.h>
36#include <linux/mm.h>
37
38#include <asm/processor.h>
39#include <asm/hw_irq.h>
40#include <asm/apic.h>
41#include <asm/idle.h>
42#include <asm/ipi.h>
43#include <asm/mce.h>
44#include <asm/msr.h>
45
46#include "mce-internal.h"
47#include "mce.h"
48
49/* Handle unconfigured int18 (should never happen) */
50static void unexpected_machine_check(struct pt_regs *regs, long error_code)
51{
52	printk(KERN_ERR "CPU#%d: Unexpected int18 (Machine Check).\n",
53	       smp_processor_id());
54}
55
56/* Call the installed machine check handler for this CPU setup. */
57void (*machine_check_vector)(struct pt_regs *, long error_code) =
58						unexpected_machine_check;
59
60int mce_disabled __read_mostly;
61
62#ifdef CONFIG_X86_NEW_MCE
63
64#define MISC_MCELOG_MINOR	227
65
66#define SPINUNIT 100	/* 100ns */
67
68atomic_t mce_entry;
69
70DEFINE_PER_CPU(unsigned, mce_exception_count);
71
72/*
73 * Tolerant levels:
74 *   0: always panic on uncorrected errors, log corrected errors
75 *   1: panic or SIGBUS on uncorrected errors, log corrected errors
76 *   2: SIGBUS or log uncorrected errors (if possible), log corrected errors
77 *   3: never panic or SIGBUS, log all errors (for testing only)
78 */
79static int			tolerant		__read_mostly = 1;
80static int			banks			__read_mostly;
81static u64			*bank			__read_mostly;
82static int			rip_msr			__read_mostly;
83static int			mce_bootlog		__read_mostly = -1;
84static int			monarch_timeout		__read_mostly = -1;
85static int			mce_panic_timeout	__read_mostly;
86static int			mce_dont_log_ce		__read_mostly;
87int				mce_cmci_disabled	__read_mostly;
88int				mce_ignore_ce		__read_mostly;
89int				mce_ser			__read_mostly;
90
91/* User mode helper program triggered by machine check event */
92static unsigned long		mce_need_notify;
93static char			mce_helper[128];
94static char			*mce_helper_argv[2] = { mce_helper, NULL };
95
96static unsigned long		dont_init_banks;
97
98static DECLARE_WAIT_QUEUE_HEAD(mce_wait);
99static DEFINE_PER_CPU(struct mce, mces_seen);
100static int			cpu_missing;
101
102
103/* MCA banks polled by the period polling timer for corrected events */
104DEFINE_PER_CPU(mce_banks_t, mce_poll_banks) = {
105	[0 ... BITS_TO_LONGS(MAX_NR_BANKS)-1] = ~0UL
106};
107
108static inline int skip_bank_init(int i)
109{
110	return i < BITS_PER_LONG && test_bit(i, &dont_init_banks);
111}
112
113static DEFINE_PER_CPU(struct work_struct, mce_work);
114
115/* Do initial initialization of a struct mce */
116void mce_setup(struct mce *m)
117{
118	memset(m, 0, sizeof(struct mce));
119	m->cpu = m->extcpu = smp_processor_id();
120	rdtscll(m->tsc);
121	/* We hope get_seconds stays lockless */
122	m->time = get_seconds();
123	m->cpuvendor = boot_cpu_data.x86_vendor;
124	m->cpuid = cpuid_eax(1);
125#ifdef CONFIG_SMP
126	m->socketid = cpu_data(m->extcpu).phys_proc_id;
127#endif
128	m->apicid = cpu_data(m->extcpu).initial_apicid;
129	rdmsrl(MSR_IA32_MCG_CAP, m->mcgcap);
130}
131
132DEFINE_PER_CPU(struct mce, injectm);
133EXPORT_PER_CPU_SYMBOL_GPL(injectm);
134
135/*
136 * Lockless MCE logging infrastructure.
137 * This avoids deadlocks on printk locks without having to break locks. Also
138 * separate MCEs from kernel messages to avoid bogus bug reports.
139 */
140
141static struct mce_log mcelog = {
142	.signature	= MCE_LOG_SIGNATURE,
143	.len		= MCE_LOG_LEN,
144	.recordlen	= sizeof(struct mce),
145};
146
147void mce_log(struct mce *mce)
148{
149	unsigned next, entry;
150
151	mce->finished = 0;
152	wmb();
153	for (;;) {
154		entry = rcu_dereference(mcelog.next);
155		for (;;) {
156			/*
157			 * When the buffer fills up discard new entries.
158			 * Assume that the earlier errors are the more
159			 * interesting ones:
160			 */
161			if (entry >= MCE_LOG_LEN) {
162				set_bit(MCE_OVERFLOW,
163					(unsigned long *)&mcelog.flags);
164				return;
165			}
166			/* Old left over entry. Skip: */
167			if (mcelog.entry[entry].finished) {
168				entry++;
169				continue;
170			}
171			break;
172		}
173		smp_rmb();
174		next = entry + 1;
175		if (cmpxchg(&mcelog.next, entry, next) == entry)
176			break;
177	}
178	memcpy(mcelog.entry + entry, mce, sizeof(struct mce));
179	wmb();
180	mcelog.entry[entry].finished = 1;
181	wmb();
182
183	mce->finished = 1;
184	set_bit(0, &mce_need_notify);
185}
186
187static void print_mce(struct mce *m)
188{
189	printk(KERN_EMERG
190	       "CPU %d: Machine Check Exception: %16Lx Bank %d: %016Lx\n",
191	       m->extcpu, m->mcgstatus, m->bank, m->status);
192	if (m->ip) {
193		printk(KERN_EMERG "RIP%s %02x:<%016Lx> ",
194		       !(m->mcgstatus & MCG_STATUS_EIPV) ? " !INEXACT!" : "",
195		       m->cs, m->ip);
196		if (m->cs == __KERNEL_CS)
197			print_symbol("{%s}", m->ip);
198		printk("\n");
199	}
200	printk(KERN_EMERG "TSC %llx ", m->tsc);
201	if (m->addr)
202		printk("ADDR %llx ", m->addr);
203	if (m->misc)
204		printk("MISC %llx ", m->misc);
205	printk("\n");
206	printk(KERN_EMERG "PROCESSOR %u:%x TIME %llu SOCKET %u APIC %x\n",
207			m->cpuvendor, m->cpuid, m->time, m->socketid,
208			m->apicid);
209}
210
211static void print_mce_head(void)
212{
213	printk(KERN_EMERG "\n" KERN_EMERG "HARDWARE ERROR\n");
214}
215
216static void print_mce_tail(void)
217{
218	printk(KERN_EMERG "This is not a software problem!\n"
219	       KERN_EMERG "Run through mcelog --ascii to decode and contact your hardware vendor\n");
220}
221
222#define PANIC_TIMEOUT 5 /* 5 seconds */
223
224static atomic_t mce_paniced;
225
226/* Panic in progress. Enable interrupts and wait for final IPI */
227static void wait_for_panic(void)
228{
229	long timeout = PANIC_TIMEOUT*USEC_PER_SEC;
230	preempt_disable();
231	local_irq_enable();
232	while (timeout-- > 0)
233		udelay(1);
234	if (panic_timeout == 0)
235		panic_timeout = mce_panic_timeout;
236	panic("Panicing machine check CPU died");
237}
238
239static void mce_panic(char *msg, struct mce *final, char *exp)
240{
241	int i;
242
243	/*
244	 * Make sure only one CPU runs in machine check panic
245	 */
246	if (atomic_add_return(1, &mce_paniced) > 1)
247		wait_for_panic();
248	barrier();
249
250	bust_spinlocks(1);
251	console_verbose();
252	print_mce_head();
253	/* First print corrected ones that are still unlogged */
254	for (i = 0; i < MCE_LOG_LEN; i++) {
255		struct mce *m = &mcelog.entry[i];
256		if (!(m->status & MCI_STATUS_VAL))
257			continue;
258		if (!(m->status & MCI_STATUS_UC))
259			print_mce(m);
260	}
261	/* Now print uncorrected but with the final one last */
262	for (i = 0; i < MCE_LOG_LEN; i++) {
263		struct mce *m = &mcelog.entry[i];
264		if (!(m->status & MCI_STATUS_VAL))
265			continue;
266		if (!(m->status & MCI_STATUS_UC))
267			continue;
268		if (!final || memcmp(m, final, sizeof(struct mce)))
269			print_mce(m);
270	}
271	if (final)
272		print_mce(final);
273	if (cpu_missing)
274		printk(KERN_EMERG "Some CPUs didn't answer in synchronization\n");
275	print_mce_tail();
276	if (exp)
277		printk(KERN_EMERG "Machine check: %s\n", exp);
278	if (panic_timeout == 0)
279		panic_timeout = mce_panic_timeout;
280	panic(msg);
281}
282
283/* Support code for software error injection */
284
285static int msr_to_offset(u32 msr)
286{
287	unsigned bank = __get_cpu_var(injectm.bank);
288	if (msr == rip_msr)
289		return offsetof(struct mce, ip);
290	if (msr == MSR_IA32_MC0_STATUS + bank*4)
291		return offsetof(struct mce, status);
292	if (msr == MSR_IA32_MC0_ADDR + bank*4)
293		return offsetof(struct mce, addr);
294	if (msr == MSR_IA32_MC0_MISC + bank*4)
295		return offsetof(struct mce, misc);
296	if (msr == MSR_IA32_MCG_STATUS)
297		return offsetof(struct mce, mcgstatus);
298	return -1;
299}
300
301/* MSR access wrappers used for error injection */
302static u64 mce_rdmsrl(u32 msr)
303{
304	u64 v;
305	if (__get_cpu_var(injectm).finished) {
306		int offset = msr_to_offset(msr);
307		if (offset < 0)
308			return 0;
309		return *(u64 *)((char *)&__get_cpu_var(injectm) + offset);
310	}
311	rdmsrl(msr, v);
312	return v;
313}
314
315static void mce_wrmsrl(u32 msr, u64 v)
316{
317	if (__get_cpu_var(injectm).finished) {
318		int offset = msr_to_offset(msr);
319		if (offset >= 0)
320			*(u64 *)((char *)&__get_cpu_var(injectm) + offset) = v;
321		return;
322	}
323	wrmsrl(msr, v);
324}
325
326/*
327 * Simple lockless ring to communicate PFNs from the exception handler with the
328 * process context work function. This is vastly simplified because there's
329 * only a single reader and a single writer.
330 */
331#define MCE_RING_SIZE 16	/* we use one entry less */
332
333struct mce_ring {
334	unsigned short start;
335	unsigned short end;
336	unsigned long ring[MCE_RING_SIZE];
337};
338static DEFINE_PER_CPU(struct mce_ring, mce_ring);
339
340/* Runs with CPU affinity in workqueue */
341static int mce_ring_empty(void)
342{
343	struct mce_ring *r = &__get_cpu_var(mce_ring);
344
345	return r->start == r->end;
346}
347
348static int mce_ring_get(unsigned long *pfn)
349{
350	struct mce_ring *r;
351	int ret = 0;
352
353	*pfn = 0;
354	get_cpu();
355	r = &__get_cpu_var(mce_ring);
356	if (r->start == r->end)
357		goto out;
358	*pfn = r->ring[r->start];
359	r->start = (r->start + 1) % MCE_RING_SIZE;
360	ret = 1;
361out:
362	put_cpu();
363	return ret;
364}
365
366/* Always runs in MCE context with preempt off */
367static int mce_ring_add(unsigned long pfn)
368{
369	struct mce_ring *r = &__get_cpu_var(mce_ring);
370	unsigned next;
371
372	next = (r->end + 1) % MCE_RING_SIZE;
373	if (next == r->start)
374		return -1;
375	r->ring[r->end] = pfn;
376	wmb();
377	r->end = next;
378	return 0;
379}
380
381int mce_available(struct cpuinfo_x86 *c)
382{
383	if (mce_disabled)
384		return 0;
385	return cpu_has(c, X86_FEATURE_MCE) && cpu_has(c, X86_FEATURE_MCA);
386}
387
388static void mce_schedule_work(void)
389{
390	if (!mce_ring_empty()) {
391		struct work_struct *work = &__get_cpu_var(mce_work);
392		if (!work_pending(work))
393			schedule_work(work);
394	}
395}
396
397/*
398 * Get the address of the instruction at the time of the machine check
399 * error.
400 */
401static inline void mce_get_rip(struct mce *m, struct pt_regs *regs)
402{
403
404	if (regs && (m->mcgstatus & (MCG_STATUS_RIPV|MCG_STATUS_EIPV))) {
405		m->ip = regs->ip;
406		m->cs = regs->cs;
407	} else {
408		m->ip = 0;
409		m->cs = 0;
410	}
411	if (rip_msr)
412		m->ip = mce_rdmsrl(rip_msr);
413}
414
415#ifdef CONFIG_X86_LOCAL_APIC
416/*
417 * Called after interrupts have been reenabled again
418 * when a MCE happened during an interrupts off region
419 * in the kernel.
420 */
421asmlinkage void smp_mce_self_interrupt(struct pt_regs *regs)
422{
423	ack_APIC_irq();
424	exit_idle();
425	irq_enter();
426	mce_notify_irq();
427	mce_schedule_work();
428	irq_exit();
429}
430#endif
431
432static void mce_report_event(struct pt_regs *regs)
433{
434	if (regs->flags & (X86_VM_MASK|X86_EFLAGS_IF)) {
435		mce_notify_irq();
436		/*
437		 * Triggering the work queue here is just an insurance
438		 * policy in case the syscall exit notify handler
439		 * doesn't run soon enough or ends up running on the
440		 * wrong CPU (can happen when audit sleeps)
441		 */
442		mce_schedule_work();
443		return;
444	}
445
446#ifdef CONFIG_X86_LOCAL_APIC
447	/*
448	 * Without APIC do not notify. The event will be picked
449	 * up eventually.
450	 */
451	if (!cpu_has_apic)
452		return;
453
454	/*
455	 * When interrupts are disabled we cannot use
456	 * kernel services safely. Trigger an self interrupt
457	 * through the APIC to instead do the notification
458	 * after interrupts are reenabled again.
459	 */
460	apic->send_IPI_self(MCE_SELF_VECTOR);
461
462	/*
463	 * Wait for idle afterwards again so that we don't leave the
464	 * APIC in a non idle state because the normal APIC writes
465	 * cannot exclude us.
466	 */
467	apic_wait_icr_idle();
468#endif
469}
470
471DEFINE_PER_CPU(unsigned, mce_poll_count);
472
473/*
474 * Poll for corrected events or events that happened before reset.
475 * Those are just logged through /dev/mcelog.
476 *
477 * This is executed in standard interrupt context.
478 *
479 * Note: spec recommends to panic for fatal unsignalled
480 * errors here. However this would be quite problematic --
481 * we would need to reimplement the Monarch handling and
482 * it would mess up the exclusion between exception handler
483 * and poll hander -- * so we skip this for now.
484 * These cases should not happen anyways, or only when the CPU
485 * is already totally * confused. In this case it's likely it will
486 * not fully execute the machine check handler either.
487 */
488void machine_check_poll(enum mcp_flags flags, mce_banks_t *b)
489{
490	struct mce m;
491	int i;
492
493	__get_cpu_var(mce_poll_count)++;
494
495	mce_setup(&m);
496
497	m.mcgstatus = mce_rdmsrl(MSR_IA32_MCG_STATUS);
498	for (i = 0; i < banks; i++) {
499		if (!bank[i] || !test_bit(i, *b))
500			continue;
501
502		m.misc = 0;
503		m.addr = 0;
504		m.bank = i;
505		m.tsc = 0;
506
507		barrier();
508		m.status = mce_rdmsrl(MSR_IA32_MC0_STATUS + i*4);
509		if (!(m.status & MCI_STATUS_VAL))
510			continue;
511
512		/*
513		 * Uncorrected or signalled events are handled by the exception
514		 * handler when it is enabled, so don't process those here.
515		 *
516		 * TBD do the same check for MCI_STATUS_EN here?
517		 */
518		if (!(flags & MCP_UC) &&
519		    (m.status & (mce_ser ? MCI_STATUS_S : MCI_STATUS_UC)))
520			continue;
521
522		if (m.status & MCI_STATUS_MISCV)
523			m.misc = mce_rdmsrl(MSR_IA32_MC0_MISC + i*4);
524		if (m.status & MCI_STATUS_ADDRV)
525			m.addr = mce_rdmsrl(MSR_IA32_MC0_ADDR + i*4);
526
527		if (!(flags & MCP_TIMESTAMP))
528			m.tsc = 0;
529		/*
530		 * Don't get the IP here because it's unlikely to
531		 * have anything to do with the actual error location.
532		 */
533		if (!(flags & MCP_DONTLOG) && !mce_dont_log_ce) {
534			mce_log(&m);
535			add_taint(TAINT_MACHINE_CHECK);
536		}
537
538		/*
539		 * Clear state for this bank.
540		 */
541		mce_wrmsrl(MSR_IA32_MC0_STATUS+4*i, 0);
542	}
543
544	/*
545	 * Don't clear MCG_STATUS here because it's only defined for
546	 * exceptions.
547	 */
548
549	sync_core();
550}
551EXPORT_SYMBOL_GPL(machine_check_poll);
552
553/*
554 * Do a quick check if any of the events requires a panic.
555 * This decides if we keep the events around or clear them.
556 */
557static int mce_no_way_out(struct mce *m, char **msg)
558{
559	int i;
560
561	for (i = 0; i < banks; i++) {
562		m->status = mce_rdmsrl(MSR_IA32_MC0_STATUS + i*4);
563		if (mce_severity(m, tolerant, msg) >= MCE_PANIC_SEVERITY)
564			return 1;
565	}
566	return 0;
567}
568
569/*
570 * Variable to establish order between CPUs while scanning.
571 * Each CPU spins initially until executing is equal its number.
572 */
573static atomic_t mce_executing;
574
575/*
576 * Defines order of CPUs on entry. First CPU becomes Monarch.
577 */
578static atomic_t mce_callin;
579
580/*
581 * Check if a timeout waiting for other CPUs happened.
582 */
583static int mce_timed_out(u64 *t)
584{
585	/*
586	 * The others already did panic for some reason.
587	 * Bail out like in a timeout.
588	 * rmb() to tell the compiler that system_state
589	 * might have been modified by someone else.
590	 */
591	rmb();
592	if (atomic_read(&mce_paniced))
593		wait_for_panic();
594	if (!monarch_timeout)
595		goto out;
596	if ((s64)*t < SPINUNIT) {
597		/* CHECKME: Make panic default for 1 too? */
598		if (tolerant < 1)
599			mce_panic("Timeout synchronizing machine check over CPUs",
600				  NULL, NULL);
601		cpu_missing = 1;
602		return 1;
603	}
604	*t -= SPINUNIT;
605out:
606	touch_nmi_watchdog();
607	return 0;
608}
609
610/*
611 * The Monarch's reign.  The Monarch is the CPU who entered
612 * the machine check handler first. It waits for the others to
613 * raise the exception too and then grades them. When any
614 * error is fatal panic. Only then let the others continue.
615 *
616 * The other CPUs entering the MCE handler will be controlled by the
617 * Monarch. They are called Subjects.
618 *
619 * This way we prevent any potential data corruption in a unrecoverable case
620 * and also makes sure always all CPU's errors are examined.
621 *
622 * Also this detects the case of an machine check event coming from outer
623 * space (not detected by any CPUs) In this case some external agent wants
624 * us to shut down, so panic too.
625 *
626 * The other CPUs might still decide to panic if the handler happens
627 * in a unrecoverable place, but in this case the system is in a semi-stable
628 * state and won't corrupt anything by itself. It's ok to let the others
629 * continue for a bit first.
630 *
631 * All the spin loops have timeouts; when a timeout happens a CPU
632 * typically elects itself to be Monarch.
633 */
634static void mce_reign(void)
635{
636	int cpu;
637	struct mce *m = NULL;
638	int global_worst = 0;
639	char *msg = NULL;
640	char *nmsg = NULL;
641
642	/*
643	 * This CPU is the Monarch and the other CPUs have run
644	 * through their handlers.
645	 * Grade the severity of the errors of all the CPUs.
646	 */
647	for_each_possible_cpu(cpu) {
648		int severity = mce_severity(&per_cpu(mces_seen, cpu), tolerant,
649					    &nmsg);
650		if (severity > global_worst) {
651			msg = nmsg;
652			global_worst = severity;
653			m = &per_cpu(mces_seen, cpu);
654		}
655	}
656
657	/*
658	 * Cannot recover? Panic here then.
659	 * This dumps all the mces in the log buffer and stops the
660	 * other CPUs.
661	 */
662	if (m && global_worst >= MCE_PANIC_SEVERITY && tolerant < 3)
663		mce_panic("Fatal Machine check", m, msg);
664
665	/*
666	 * For UC somewhere we let the CPU who detects it handle it.
667	 * Also must let continue the others, otherwise the handling
668	 * CPU could deadlock on a lock.
669	 */
670
671	/*
672	 * No machine check event found. Must be some external
673	 * source or one CPU is hung. Panic.
674	 */
675	if (!m && tolerant < 3)
676		mce_panic("Machine check from unknown source", NULL, NULL);
677
678	/*
679	 * Now clear all the mces_seen so that they don't reappear on
680	 * the next mce.
681	 */
682	for_each_possible_cpu(cpu)
683		memset(&per_cpu(mces_seen, cpu), 0, sizeof(struct mce));
684}
685
686static atomic_t global_nwo;
687
688/*
689 * Start of Monarch synchronization. This waits until all CPUs have
690 * entered the exception handler and then determines if any of them
691 * saw a fatal event that requires panic. Then it executes them
692 * in the entry order.
693 * TBD double check parallel CPU hotunplug
694 */
695static int mce_start(int *no_way_out)
696{
697	int order;
698	int cpus = num_online_cpus();
699	u64 timeout = (u64)monarch_timeout * NSEC_PER_USEC;
700
701	if (!timeout)
702		return -1;
703
704	atomic_add(*no_way_out, &global_nwo);
705	/*
706	 * global_nwo should be updated before mce_callin
707	 */
708	smp_wmb();
709	order = atomic_add_return(1, &mce_callin);
710
711	/*
712	 * Wait for everyone.
713	 */
714	while (atomic_read(&mce_callin) != cpus) {
715		if (mce_timed_out(&timeout)) {
716			atomic_set(&global_nwo, 0);
717			return -1;
718		}
719		ndelay(SPINUNIT);
720	}
721
722	/*
723	 * mce_callin should be read before global_nwo
724	 */
725	smp_rmb();
726
727	if (order == 1) {
728		/*
729		 * Monarch: Starts executing now, the others wait.
730		 */
731		atomic_set(&mce_executing, 1);
732	} else {
733		/*
734		 * Subject: Now start the scanning loop one by one in
735		 * the original callin order.
736		 * This way when there are any shared banks it will be
737		 * only seen by one CPU before cleared, avoiding duplicates.
738		 */
739		while (atomic_read(&mce_executing) < order) {
740			if (mce_timed_out(&timeout)) {
741				atomic_set(&global_nwo, 0);
742				return -1;
743			}
744			ndelay(SPINUNIT);
745		}
746	}
747
748	/*
749	 * Cache the global no_way_out state.
750	 */
751	*no_way_out = atomic_read(&global_nwo);
752
753	return order;
754}
755
756/*
757 * Synchronize between CPUs after main scanning loop.
758 * This invokes the bulk of the Monarch processing.
759 */
760static int mce_end(int order)
761{
762	int ret = -1;
763	u64 timeout = (u64)monarch_timeout * NSEC_PER_USEC;
764
765	if (!timeout)
766		goto reset;
767	if (order < 0)
768		goto reset;
769
770	/*
771	 * Allow others to run.
772	 */
773	atomic_inc(&mce_executing);
774
775	if (order == 1) {
776		/* CHECKME: Can this race with a parallel hotplug? */
777		int cpus = num_online_cpus();
778
779		/*
780		 * Monarch: Wait for everyone to go through their scanning
781		 * loops.
782		 */
783		while (atomic_read(&mce_executing) <= cpus) {
784			if (mce_timed_out(&timeout))
785				goto reset;
786			ndelay(SPINUNIT);
787		}
788
789		mce_reign();
790		barrier();
791		ret = 0;
792	} else {
793		/*
794		 * Subject: Wait for Monarch to finish.
795		 */
796		while (atomic_read(&mce_executing) != 0) {
797			if (mce_timed_out(&timeout))
798				goto reset;
799			ndelay(SPINUNIT);
800		}
801
802		/*
803		 * Don't reset anything. That's done by the Monarch.
804		 */
805		return 0;
806	}
807
808	/*
809	 * Reset all global state.
810	 */
811reset:
812	atomic_set(&global_nwo, 0);
813	atomic_set(&mce_callin, 0);
814	barrier();
815
816	/*
817	 * Let others run again.
818	 */
819	atomic_set(&mce_executing, 0);
820	return ret;
821}
822
823/*
824 * Check if the address reported by the CPU is in a format we can parse.
825 * It would be possible to add code for most other cases, but all would
826 * be somewhat complicated (e.g. segment offset would require an instruction
827 * parser). So only support physical addresses upto page granuality for now.
828 */
829static int mce_usable_address(struct mce *m)
830{
831	if (!(m->status & MCI_STATUS_MISCV) || !(m->status & MCI_STATUS_ADDRV))
832		return 0;
833	if ((m->misc & 0x3f) > PAGE_SHIFT)
834		return 0;
835	if (((m->misc >> 6) & 7) != MCM_ADDR_PHYS)
836		return 0;
837	return 1;
838}
839
840static void mce_clear_state(unsigned long *toclear)
841{
842	int i;
843
844	for (i = 0; i < banks; i++) {
845		if (test_bit(i, toclear))
846			mce_wrmsrl(MSR_IA32_MC0_STATUS+4*i, 0);
847	}
848}
849
850/*
851 * The actual machine check handler. This only handles real
852 * exceptions when something got corrupted coming in through int 18.
853 *
854 * This is executed in NMI context not subject to normal locking rules. This
855 * implies that most kernel services cannot be safely used. Don't even
856 * think about putting a printk in there!
857 *
858 * On Intel systems this is entered on all CPUs in parallel through
859 * MCE broadcast. However some CPUs might be broken beyond repair,
860 * so be always careful when synchronizing with others.
861 */
862void do_machine_check(struct pt_regs *regs, long error_code)
863{
864	struct mce m, *final;
865	int i;
866	int worst = 0;
867	int severity;
868	/*
869	 * Establish sequential order between the CPUs entering the machine
870	 * check handler.
871	 */
872	int order;
873	/*
874	 * If no_way_out gets set, there is no safe way to recover from this
875	 * MCE.  If tolerant is cranked up, we'll try anyway.
876	 */
877	int no_way_out = 0;
878	/*
879	 * If kill_it gets set, there might be a way to recover from this
880	 * error.
881	 */
882	int kill_it = 0;
883	DECLARE_BITMAP(toclear, MAX_NR_BANKS);
884	char *msg = "Unknown";
885
886	atomic_inc(&mce_entry);
887
888	__get_cpu_var(mce_exception_count)++;
889
890	if (notify_die(DIE_NMI, "machine check", regs, error_code,
891			   18, SIGKILL) == NOTIFY_STOP)
892		goto out;
893	if (!banks)
894		goto out;
895
896	mce_setup(&m);
897
898	m.mcgstatus = mce_rdmsrl(MSR_IA32_MCG_STATUS);
899	no_way_out = mce_no_way_out(&m, &msg);
900
901	final = &__get_cpu_var(mces_seen);
902	*final = m;
903
904	barrier();
905
906	/*
907	 * When no restart IP must always kill or panic.
908	 */
909	if (!(m.mcgstatus & MCG_STATUS_RIPV))
910		kill_it = 1;
911
912	/*
913	 * Go through all the banks in exclusion of the other CPUs.
914	 * This way we don't report duplicated events on shared banks
915	 * because the first one to see it will clear it.
916	 */
917	order = mce_start(&no_way_out);
918	for (i = 0; i < banks; i++) {
919		__clear_bit(i, toclear);
920		if (!bank[i])
921			continue;
922
923		m.misc = 0;
924		m.addr = 0;
925		m.bank = i;
926
927		m.status = mce_rdmsrl(MSR_IA32_MC0_STATUS + i*4);
928		if ((m.status & MCI_STATUS_VAL) == 0)
929			continue;
930
931		/*
932		 * Non uncorrected or non signaled errors are handled by
933		 * machine_check_poll. Leave them alone, unless this panics.
934		 */
935		if (!(m.status & (mce_ser ? MCI_STATUS_S : MCI_STATUS_UC)) &&
936			!no_way_out)
937			continue;
938
939		/*
940		 * Set taint even when machine check was not enabled.
941		 */
942		add_taint(TAINT_MACHINE_CHECK);
943
944		severity = mce_severity(&m, tolerant, NULL);
945
946		/*
947		 * When machine check was for corrected handler don't touch,
948		 * unless we're panicing.
949		 */
950		if (severity == MCE_KEEP_SEVERITY && !no_way_out)
951			continue;
952		__set_bit(i, toclear);
953		if (severity == MCE_NO_SEVERITY) {
954			/*
955			 * Machine check event was not enabled. Clear, but
956			 * ignore.
957			 */
958			continue;
959		}
960
961		/*
962		 * Kill on action required.
963		 */
964		if (severity == MCE_AR_SEVERITY)
965			kill_it = 1;
966
967		if (m.status & MCI_STATUS_MISCV)
968			m.misc = mce_rdmsrl(MSR_IA32_MC0_MISC + i*4);
969		if (m.status & MCI_STATUS_ADDRV)
970			m.addr = mce_rdmsrl(MSR_IA32_MC0_ADDR + i*4);
971
972		/*
973		 * Action optional error. Queue address for later processing.
974		 * When the ring overflows we just ignore the AO error.
975		 * RED-PEN add some logging mechanism when
976		 * usable_address or mce_add_ring fails.
977		 * RED-PEN don't ignore overflow for tolerant == 0
978		 */
979		if (severity == MCE_AO_SEVERITY && mce_usable_address(&m))
980			mce_ring_add(m.addr >> PAGE_SHIFT);
981
982		mce_get_rip(&m, regs);
983		mce_log(&m);
984
985		if (severity > worst) {
986			*final = m;
987			worst = severity;
988		}
989	}
990
991	if (!no_way_out)
992		mce_clear_state(toclear);
993
994	/*
995	 * Do most of the synchronization with other CPUs.
996	 * When there's any problem use only local no_way_out state.
997	 */
998	if (mce_end(order) < 0)
999		no_way_out = worst >= MCE_PANIC_SEVERITY;
1000
1001	/*
1002	 * If we have decided that we just CAN'T continue, and the user
1003	 * has not set tolerant to an insane level, give up and die.
1004	 *
1005	 * This is mainly used in the case when the system doesn't
1006	 * support MCE broadcasting or it has been disabled.
1007	 */
1008	if (no_way_out && tolerant < 3)
1009		mce_panic("Fatal machine check on current CPU", final, msg);
1010
1011	/*
1012	 * If the error seems to be unrecoverable, something should be
1013	 * done.  Try to kill as little as possible.  If we can kill just
1014	 * one task, do that.  If the user has set the tolerance very
1015	 * high, don't try to do anything at all.
1016	 */
1017
1018	if (kill_it && tolerant < 3)
1019		force_sig(SIGBUS, current);
1020
1021	/* notify userspace ASAP */
1022	set_thread_flag(TIF_MCE_NOTIFY);
1023
1024	if (worst > 0)
1025		mce_report_event(regs);
1026	mce_wrmsrl(MSR_IA32_MCG_STATUS, 0);
1027out:
1028	atomic_dec(&mce_entry);
1029	sync_core();
1030}
1031EXPORT_SYMBOL_GPL(do_machine_check);
1032
1033/* dummy to break dependency. actual code is in mm/memory-failure.c */
1034void __attribute__((weak)) memory_failure(unsigned long pfn, int vector)
1035{
1036	printk(KERN_ERR "Action optional memory failure at %lx ignored\n", pfn);
1037}
1038
1039/*
1040 * Called after mce notification in process context. This code
1041 * is allowed to sleep. Call the high level VM handler to process
1042 * any corrupted pages.
1043 * Assume that the work queue code only calls this one at a time
1044 * per CPU.
1045 * Note we don't disable preemption, so this code might run on the wrong
1046 * CPU. In this case the event is picked up by the scheduled work queue.
1047 * This is merely a fast path to expedite processing in some common
1048 * cases.
1049 */
1050void mce_notify_process(void)
1051{
1052	unsigned long pfn;
1053	mce_notify_irq();
1054	while (mce_ring_get(&pfn))
1055		memory_failure(pfn, MCE_VECTOR);
1056}
1057
1058static void mce_process_work(struct work_struct *dummy)
1059{
1060	mce_notify_process();
1061}
1062
1063#ifdef CONFIG_X86_MCE_INTEL
1064/***
1065 * mce_log_therm_throt_event - Logs the thermal throttling event to mcelog
1066 * @cpu: The CPU on which the event occurred.
1067 * @status: Event status information
1068 *
1069 * This function should be called by the thermal interrupt after the
1070 * event has been processed and the decision was made to log the event
1071 * further.
1072 *
1073 * The status parameter will be saved to the 'status' field of 'struct mce'
1074 * and historically has been the register value of the
1075 * MSR_IA32_THERMAL_STATUS (Intel) msr.
1076 */
1077void mce_log_therm_throt_event(__u64 status)
1078{
1079	struct mce m;
1080
1081	mce_setup(&m);
1082	m.bank = MCE_THERMAL_BANK;
1083	m.status = status;
1084	mce_log(&m);
1085}
1086#endif /* CONFIG_X86_MCE_INTEL */
1087
1088/*
1089 * Periodic polling timer for "silent" machine check errors.  If the
1090 * poller finds an MCE, poll 2x faster.  When the poller finds no more
1091 * errors, poll 2x slower (up to check_interval seconds).
1092 */
1093static int check_interval = 5 * 60; /* 5 minutes */
1094
1095static DEFINE_PER_CPU(int, next_interval); /* in jiffies */
1096static DEFINE_PER_CPU(struct timer_list, mce_timer);
1097
1098static void mcheck_timer(unsigned long data)
1099{
1100	struct timer_list *t = &per_cpu(mce_timer, data);
1101	int *n;
1102
1103	WARN_ON(smp_processor_id() != data);
1104
1105	if (mce_available(&current_cpu_data)) {
1106		machine_check_poll(MCP_TIMESTAMP,
1107				&__get_cpu_var(mce_poll_banks));
1108	}
1109
1110	/*
1111	 * Alert userspace if needed.  If we logged an MCE, reduce the
1112	 * polling interval, otherwise increase the polling interval.
1113	 */
1114	n = &__get_cpu_var(next_interval);
1115	if (mce_notify_irq())
1116		*n = max(*n/2, HZ/100);
1117	else
1118		*n = min(*n*2, (int)round_jiffies_relative(check_interval*HZ));
1119
1120	t->expires = jiffies + *n;
1121	add_timer(t);
1122}
1123
1124static void mce_do_trigger(struct work_struct *work)
1125{
1126	call_usermodehelper(mce_helper, mce_helper_argv, NULL, UMH_NO_WAIT);
1127}
1128
1129static DECLARE_WORK(mce_trigger_work, mce_do_trigger);
1130
1131/*
1132 * Notify the user(s) about new machine check events.
1133 * Can be called from interrupt context, but not from machine check/NMI
1134 * context.
1135 */
1136int mce_notify_irq(void)
1137{
1138	/* Not more than two messages every minute */
1139	static DEFINE_RATELIMIT_STATE(ratelimit, 60*HZ, 2);
1140
1141	clear_thread_flag(TIF_MCE_NOTIFY);
1142
1143	if (test_and_clear_bit(0, &mce_need_notify)) {
1144		wake_up_interruptible(&mce_wait);
1145
1146		/*
1147		 * There is no risk of missing notifications because
1148		 * work_pending is always cleared before the function is
1149		 * executed.
1150		 */
1151		if (mce_helper[0] && !work_pending(&mce_trigger_work))
1152			schedule_work(&mce_trigger_work);
1153
1154		if (__ratelimit(&ratelimit))
1155			printk(KERN_INFO "Machine check events logged\n");
1156
1157		return 1;
1158	}
1159	return 0;
1160}
1161EXPORT_SYMBOL_GPL(mce_notify_irq);
1162
1163/*
1164 * Initialize Machine Checks for a CPU.
1165 */
1166static int mce_cap_init(void)
1167{
1168	unsigned b;
1169	u64 cap;
1170
1171	rdmsrl(MSR_IA32_MCG_CAP, cap);
1172
1173	b = cap & MCG_BANKCNT_MASK;
1174	printk(KERN_INFO "mce: CPU supports %d MCE banks\n", b);
1175
1176	if (b > MAX_NR_BANKS) {
1177		printk(KERN_WARNING
1178		       "MCE: Using only %u machine check banks out of %u\n",
1179			MAX_NR_BANKS, b);
1180		b = MAX_NR_BANKS;
1181	}
1182
1183	/* Don't support asymmetric configurations today */
1184	WARN_ON(banks != 0 && b != banks);
1185	banks = b;
1186	if (!bank) {
1187		bank = kmalloc(banks * sizeof(u64), GFP_KERNEL);
1188		if (!bank)
1189			return -ENOMEM;
1190		memset(bank, 0xff, banks * sizeof(u64));
1191	}
1192
1193	/* Use accurate RIP reporting if available. */
1194	if ((cap & MCG_EXT_P) && MCG_EXT_CNT(cap) >= 9)
1195		rip_msr = MSR_IA32_MCG_EIP;
1196
1197	if (cap & MCG_SER_P)
1198		mce_ser = 1;
1199
1200	return 0;
1201}
1202
1203static void mce_init(void)
1204{
1205	mce_banks_t all_banks;
1206	u64 cap;
1207	int i;
1208
1209	/*
1210	 * Log the machine checks left over from the previous reset.
1211	 */
1212	bitmap_fill(all_banks, MAX_NR_BANKS);
1213	machine_check_poll(MCP_UC|(!mce_bootlog ? MCP_DONTLOG : 0), &all_banks);
1214
1215	set_in_cr4(X86_CR4_MCE);
1216
1217	rdmsrl(MSR_IA32_MCG_CAP, cap);
1218	if (cap & MCG_CTL_P)
1219		wrmsr(MSR_IA32_MCG_CTL, 0xffffffff, 0xffffffff);
1220
1221	for (i = 0; i < banks; i++) {
1222		if (skip_bank_init(i))
1223			continue;
1224		wrmsrl(MSR_IA32_MC0_CTL+4*i, bank[i]);
1225		wrmsrl(MSR_IA32_MC0_STATUS+4*i, 0);
1226	}
1227}
1228
1229/* Add per CPU specific workarounds here */
1230static void mce_cpu_quirks(struct cpuinfo_x86 *c)
1231{
1232	/* This should be disabled by the BIOS, but isn't always */
1233	if (c->x86_vendor == X86_VENDOR_AMD) {
1234		if (c->x86 == 15 && banks > 4) {
1235			/*
1236			 * disable GART TBL walk error reporting, which
1237			 * trips off incorrectly with the IOMMU & 3ware
1238			 * & Cerberus:
1239			 */
1240			clear_bit(10, (unsigned long *)&bank[4]);
1241		}
1242		if (c->x86 <= 17 && mce_bootlog < 0) {
1243			/*
1244			 * Lots of broken BIOS around that don't clear them
1245			 * by default and leave crap in there. Don't log:
1246			 */
1247			mce_bootlog = 0;
1248		}
1249		/*
1250		 * Various K7s with broken bank 0 around. Always disable
1251		 * by default.
1252		 */
1253		 if (c->x86 == 6)
1254			bank[0] = 0;
1255	}
1256
1257	if (c->x86_vendor == X86_VENDOR_INTEL) {
1258		/*
1259		 * SDM documents that on family 6 bank 0 should not be written
1260		 * because it aliases to another special BIOS controlled
1261		 * register.
1262		 * But it's not aliased anymore on model 0x1a+
1263		 * Don't ignore bank 0 completely because there could be a
1264		 * valid event later, merely don't write CTL0.
1265		 */
1266
1267		if (c->x86 == 6 && c->x86_model < 0x1A)
1268			__set_bit(0, &dont_init_banks);
1269
1270		/*
1271		 * All newer Intel systems support MCE broadcasting. Enable
1272		 * synchronization with a one second timeout.
1273		 */
1274		if ((c->x86 > 6 || (c->x86 == 6 && c->x86_model >= 0xe)) &&
1275			monarch_timeout < 0)
1276			monarch_timeout = USEC_PER_SEC;
1277	}
1278	if (monarch_timeout < 0)
1279		monarch_timeout = 0;
1280	if (mce_bootlog != 0)
1281		mce_panic_timeout = 30;
1282}
1283
1284static void __cpuinit mce_ancient_init(struct cpuinfo_x86 *c)
1285{
1286	if (c->x86 != 5)
1287		return;
1288	switch (c->x86_vendor) {
1289	case X86_VENDOR_INTEL:
1290		if (mce_p5_enabled())
1291			intel_p5_mcheck_init(c);
1292		break;
1293	case X86_VENDOR_CENTAUR:
1294		winchip_mcheck_init(c);
1295		break;
1296	}
1297}
1298
1299static void mce_cpu_features(struct cpuinfo_x86 *c)
1300{
1301	switch (c->x86_vendor) {
1302	case X86_VENDOR_INTEL:
1303		mce_intel_feature_init(c);
1304		break;
1305	case X86_VENDOR_AMD:
1306		mce_amd_feature_init(c);
1307		break;
1308	default:
1309		break;
1310	}
1311}
1312
1313static void mce_init_timer(void)
1314{
1315	struct timer_list *t = &__get_cpu_var(mce_timer);
1316	int *n = &__get_cpu_var(next_interval);
1317
1318	if (mce_ignore_ce)
1319		return;
1320
1321	*n = check_interval * HZ;
1322	if (!*n)
1323		return;
1324	setup_timer(t, mcheck_timer, smp_processor_id());
1325	t->expires = round_jiffies(jiffies + *n);
1326	add_timer(t);
1327}
1328
1329/*
1330 * Called for each booted CPU to set up machine checks.
1331 * Must be called with preempt off:
1332 */
1333void __cpuinit mcheck_init(struct cpuinfo_x86 *c)
1334{
1335	if (mce_disabled)
1336		return;
1337
1338	mce_ancient_init(c);
1339
1340	if (!mce_available(c))
1341		return;
1342
1343	if (mce_cap_init() < 0) {
1344		mce_disabled = 1;
1345		return;
1346	}
1347	mce_cpu_quirks(c);
1348
1349	machine_check_vector = do_machine_check;
1350
1351	mce_init();
1352	mce_cpu_features(c);
1353	mce_init_timer();
1354	INIT_WORK(&__get_cpu_var(mce_work), mce_process_work);
1355}
1356
1357/*
1358 * Character device to read and clear the MCE log.
1359 */
1360
1361static DEFINE_SPINLOCK(mce_state_lock);
1362static int		open_count;		/* #times opened */
1363static int		open_exclu;		/* already open exclusive? */
1364
1365static int mce_open(struct inode *inode, struct file *file)
1366{
1367	spin_lock(&mce_state_lock);
1368
1369	if (open_exclu || (open_count && (file->f_flags & O_EXCL))) {
1370		spin_unlock(&mce_state_lock);
1371
1372		return -EBUSY;
1373	}
1374
1375	if (file->f_flags & O_EXCL)
1376		open_exclu = 1;
1377	open_count++;
1378
1379	spin_unlock(&mce_state_lock);
1380
1381	return nonseekable_open(inode, file);
1382}
1383
1384static int mce_release(struct inode *inode, struct file *file)
1385{
1386	spin_lock(&mce_state_lock);
1387
1388	open_count--;
1389	open_exclu = 0;
1390
1391	spin_unlock(&mce_state_lock);
1392
1393	return 0;
1394}
1395
1396static void collect_tscs(void *data)
1397{
1398	unsigned long *cpu_tsc = (unsigned long *)data;
1399
1400	rdtscll(cpu_tsc[smp_processor_id()]);
1401}
1402
1403static DEFINE_MUTEX(mce_read_mutex);
1404
1405static ssize_t mce_read(struct file *filp, char __user *ubuf, size_t usize,
1406			loff_t *off)
1407{
1408	char __user *buf = ubuf;
1409	unsigned long *cpu_tsc;
1410	unsigned prev, next;
1411	int i, err;
1412
1413	cpu_tsc = kmalloc(nr_cpu_ids * sizeof(long), GFP_KERNEL);
1414	if (!cpu_tsc)
1415		return -ENOMEM;
1416
1417	mutex_lock(&mce_read_mutex);
1418	next = rcu_dereference(mcelog.next);
1419
1420	/* Only supports full reads right now */
1421	if (*off != 0 || usize < MCE_LOG_LEN*sizeof(struct mce)) {
1422		mutex_unlock(&mce_read_mutex);
1423		kfree(cpu_tsc);
1424
1425		return -EINVAL;
1426	}
1427
1428	err = 0;
1429	prev = 0;
1430	do {
1431		for (i = prev; i < next; i++) {
1432			unsigned long start = jiffies;
1433
1434			while (!mcelog.entry[i].finished) {
1435				if (time_after_eq(jiffies, start + 2)) {
1436					memset(mcelog.entry + i, 0,
1437					       sizeof(struct mce));
1438					goto timeout;
1439				}
1440				cpu_relax();
1441			}
1442			smp_rmb();
1443			err |= copy_to_user(buf, mcelog.entry + i,
1444					    sizeof(struct mce));
1445			buf += sizeof(struct mce);
1446timeout:
1447			;
1448		}
1449
1450		memset(mcelog.entry + prev, 0,
1451		       (next - prev) * sizeof(struct mce));
1452		prev = next;
1453		next = cmpxchg(&mcelog.next, prev, 0);
1454	} while (next != prev);
1455
1456	synchronize_sched();
1457
1458	/*
1459	 * Collect entries that were still getting written before the
1460	 * synchronize.
1461	 */
1462	on_each_cpu(collect_tscs, cpu_tsc, 1);
1463
1464	for (i = next; i < MCE_LOG_LEN; i++) {
1465		if (mcelog.entry[i].finished &&
1466		    mcelog.entry[i].tsc < cpu_tsc[mcelog.entry[i].cpu]) {
1467			err |= copy_to_user(buf, mcelog.entry+i,
1468					    sizeof(struct mce));
1469			smp_rmb();
1470			buf += sizeof(struct mce);
1471			memset(&mcelog.entry[i], 0, sizeof(struct mce));
1472		}
1473	}
1474	mutex_unlock(&mce_read_mutex);
1475	kfree(cpu_tsc);
1476
1477	return err ? -EFAULT : buf - ubuf;
1478}
1479
1480static unsigned int mce_poll(struct file *file, poll_table *wait)
1481{
1482	poll_wait(file, &mce_wait, wait);
1483	if (rcu_dereference(mcelog.next))
1484		return POLLIN | POLLRDNORM;
1485	return 0;
1486}
1487
1488static long mce_ioctl(struct file *f, unsigned int cmd, unsigned long arg)
1489{
1490	int __user *p = (int __user *)arg;
1491
1492	if (!capable(CAP_SYS_ADMIN))
1493		return -EPERM;
1494
1495	switch (cmd) {
1496	case MCE_GET_RECORD_LEN:
1497		return put_user(sizeof(struct mce), p);
1498	case MCE_GET_LOG_LEN:
1499		return put_user(MCE_LOG_LEN, p);
1500	case MCE_GETCLEAR_FLAGS: {
1501		unsigned flags;
1502
1503		do {
1504			flags = mcelog.flags;
1505		} while (cmpxchg(&mcelog.flags, flags, 0) != flags);
1506
1507		return put_user(flags, p);
1508	}
1509	default:
1510		return -ENOTTY;
1511	}
1512}
1513
1514/* Modified in mce-inject.c, so not static or const */
1515struct file_operations mce_chrdev_ops = {
1516	.open			= mce_open,
1517	.release		= mce_release,
1518	.read			= mce_read,
1519	.poll			= mce_poll,
1520	.unlocked_ioctl		= mce_ioctl,
1521};
1522EXPORT_SYMBOL_GPL(mce_chrdev_ops);
1523
1524static struct miscdevice mce_log_device = {
1525	MISC_MCELOG_MINOR,
1526	"mcelog",
1527	&mce_chrdev_ops,
1528};
1529
1530/*
1531 * mce=off Disables machine check
1532 * mce=no_cmci Disables CMCI
1533 * mce=dont_log_ce Clears corrected events silently, no log created for CEs.
1534 * mce=ignore_ce Disables polling and CMCI, corrected events are not cleared.
1535 * mce=TOLERANCELEVEL[,monarchtimeout] (number, see above)
1536 *	monarchtimeout is how long to wait for other CPUs on machine
1537 *	check, or 0 to not wait
1538 * mce=bootlog Log MCEs from before booting. Disabled by default on AMD.
1539 * mce=nobootlog Don't log MCEs from before booting.
1540 */
1541static int __init mcheck_enable(char *str)
1542{
1543	if (*str == 0)
1544		enable_p5_mce();
1545	if (*str == '=')
1546		str++;
1547	if (!strcmp(str, "off"))
1548		mce_disabled = 1;
1549	else if (!strcmp(str, "no_cmci"))
1550		mce_cmci_disabled = 1;
1551	else if (!strcmp(str, "dont_log_ce"))
1552		mce_dont_log_ce = 1;
1553	else if (!strcmp(str, "ignore_ce"))
1554		mce_ignore_ce = 1;
1555	else if (!strcmp(str, "bootlog") || !strcmp(str, "nobootlog"))
1556		mce_bootlog = (str[0] == 'b');
1557	else if (isdigit(str[0])) {
1558		get_option(&str, &tolerant);
1559		if (*str == ',') {
1560			++str;
1561			get_option(&str, &monarch_timeout);
1562		}
1563	} else {
1564		printk(KERN_INFO "mce argument %s ignored. Please use /sys\n",
1565		       str);
1566		return 0;
1567	}
1568	return 1;
1569}
1570__setup("mce", mcheck_enable);
1571
1572/*
1573 * Sysfs support
1574 */
1575
1576/*
1577 * Disable machine checks on suspend and shutdown. We can't really handle
1578 * them later.
1579 */
1580static int mce_disable(void)
1581{
1582	int i;
1583
1584	for (i = 0; i < banks; i++) {
1585		if (!skip_bank_init(i))
1586			wrmsrl(MSR_IA32_MC0_CTL + i*4, 0);
1587	}
1588	return 0;
1589}
1590
1591static int mce_suspend(struct sys_device *dev, pm_message_t state)
1592{
1593	return mce_disable();
1594}
1595
1596static int mce_shutdown(struct sys_device *dev)
1597{
1598	return mce_disable();
1599}
1600
1601/*
1602 * On resume clear all MCE state. Don't want to see leftovers from the BIOS.
1603 * Only one CPU is active at this time, the others get re-added later using
1604 * CPU hotplug:
1605 */
1606static int mce_resume(struct sys_device *dev)
1607{
1608	mce_init();
1609	mce_cpu_features(&current_cpu_data);
1610
1611	return 0;
1612}
1613
1614static void mce_cpu_restart(void *data)
1615{
1616	del_timer_sync(&__get_cpu_var(mce_timer));
1617	if (!mce_available(&current_cpu_data))
1618		return;
1619	mce_init();
1620	mce_init_timer();
1621}
1622
1623/* Reinit MCEs after user configuration changes */
1624static void mce_restart(void)
1625{
1626	on_each_cpu(mce_cpu_restart, NULL, 1);
1627}
1628
1629static struct sysdev_class mce_sysclass = {
1630	.suspend	= mce_suspend,
1631	.shutdown	= mce_shutdown,
1632	.resume		= mce_resume,
1633	.name		= "machinecheck",
1634};
1635
1636DEFINE_PER_CPU(struct sys_device, mce_dev);
1637
1638__cpuinitdata
1639void (*threshold_cpu_callback)(unsigned long action, unsigned int cpu);
1640
1641static struct sysdev_attribute *bank_attrs;
1642
1643static ssize_t show_bank(struct sys_device *s, struct sysdev_attribute *attr,
1644			 char *buf)
1645{
1646	u64 b = bank[attr - bank_attrs];
1647
1648	return sprintf(buf, "%llx\n", b);
1649}
1650
1651static ssize_t set_bank(struct sys_device *s, struct sysdev_attribute *attr,
1652			const char *buf, size_t size)
1653{
1654	u64 new;
1655
1656	if (strict_strtoull(buf, 0, &new) < 0)
1657		return -EINVAL;
1658
1659	bank[attr - bank_attrs] = new;
1660	mce_restart();
1661
1662	return size;
1663}
1664
1665static ssize_t
1666show_trigger(struct sys_device *s, struct sysdev_attribute *attr, char *buf)
1667{
1668	strcpy(buf, mce_helper);
1669	strcat(buf, "\n");
1670	return strlen(mce_helper) + 1;
1671}
1672
1673static ssize_t set_trigger(struct sys_device *s, struct sysdev_attribute *attr,
1674				const char *buf, size_t siz)
1675{
1676	char *p;
1677	int len;
1678
1679	strncpy(mce_helper, buf, sizeof(mce_helper));
1680	mce_helper[sizeof(mce_helper)-1] = 0;
1681	len = strlen(mce_helper);
1682	p = strchr(mce_helper, '\n');
1683
1684	if (*p)
1685		*p = 0;
1686
1687	return len;
1688}
1689
1690static ssize_t store_int_with_restart(struct sys_device *s,
1691				      struct sysdev_attribute *attr,
1692				      const char *buf, size_t size)
1693{
1694	ssize_t ret = sysdev_store_int(s, attr, buf, size);
1695	mce_restart();
1696	return ret;
1697}
1698
1699static SYSDEV_ATTR(trigger, 0644, show_trigger, set_trigger);
1700static SYSDEV_INT_ATTR(tolerant, 0644, tolerant);
1701static SYSDEV_INT_ATTR(monarch_timeout, 0644, monarch_timeout);
1702
1703static struct sysdev_ext_attribute attr_check_interval = {
1704	_SYSDEV_ATTR(check_interval, 0644, sysdev_show_int,
1705		     store_int_with_restart),
1706	&check_interval
1707};
1708
1709static struct sysdev_attribute *mce_attrs[] = {
1710	&attr_tolerant.attr, &attr_check_interval.attr, &attr_trigger,
1711	&attr_monarch_timeout.attr,
1712	NULL
1713};
1714
1715static cpumask_var_t mce_dev_initialized;
1716
1717/* Per cpu sysdev init. All of the cpus still share the same ctrl bank: */
1718static __cpuinit int mce_create_device(unsigned int cpu)
1719{
1720	int err;
1721	int i;
1722
1723	if (!mce_available(&boot_cpu_data))
1724		return -EIO;
1725
1726	memset(&per_cpu(mce_dev, cpu).kobj, 0, sizeof(struct kobject));
1727	per_cpu(mce_dev, cpu).id	= cpu;
1728	per_cpu(mce_dev, cpu).cls	= &mce_sysclass;
1729
1730	err = sysdev_register(&per_cpu(mce_dev, cpu));
1731	if (err)
1732		return err;
1733
1734	for (i = 0; mce_attrs[i]; i++) {
1735		err = sysdev_create_file(&per_cpu(mce_dev, cpu), mce_attrs[i]);
1736		if (err)
1737			goto error;
1738	}
1739	for (i = 0; i < banks; i++) {
1740		err = sysdev_create_file(&per_cpu(mce_dev, cpu),
1741					&bank_attrs[i]);
1742		if (err)
1743			goto error2;
1744	}
1745	cpumask_set_cpu(cpu, mce_dev_initialized);
1746
1747	return 0;
1748error2:
1749	while (--i >= 0)
1750		sysdev_remove_file(&per_cpu(mce_dev, cpu), &bank_attrs[i]);
1751error:
1752	while (--i >= 0)
1753		sysdev_remove_file(&per_cpu(mce_dev, cpu), mce_attrs[i]);
1754
1755	sysdev_unregister(&per_cpu(mce_dev, cpu));
1756
1757	return err;
1758}
1759
1760static __cpuinit void mce_remove_device(unsigned int cpu)
1761{
1762	int i;
1763
1764	if (!cpumask_test_cpu(cpu, mce_dev_initialized))
1765		return;
1766
1767	for (i = 0; mce_attrs[i]; i++)
1768		sysdev_remove_file(&per_cpu(mce_dev, cpu), mce_attrs[i]);
1769
1770	for (i = 0; i < banks; i++)
1771		sysdev_remove_file(&per_cpu(mce_dev, cpu), &bank_attrs[i]);
1772
1773	sysdev_unregister(&per_cpu(mce_dev, cpu));
1774	cpumask_clear_cpu(cpu, mce_dev_initialized);
1775}
1776
1777/* Make sure there are no machine checks on offlined CPUs. */
1778static void mce_disable_cpu(void *h)
1779{
1780	unsigned long action = *(unsigned long *)h;
1781	int i;
1782
1783	if (!mce_available(&current_cpu_data))
1784		return;
1785	if (!(action & CPU_TASKS_FROZEN))
1786		cmci_clear();
1787	for (i = 0; i < banks; i++) {
1788		if (!skip_bank_init(i))
1789			wrmsrl(MSR_IA32_MC0_CTL + i*4, 0);
1790	}
1791}
1792
1793static void mce_reenable_cpu(void *h)
1794{
1795	unsigned long action = *(unsigned long *)h;
1796	int i;
1797
1798	if (!mce_available(&current_cpu_data))
1799		return;
1800
1801	if (!(action & CPU_TASKS_FROZEN))
1802		cmci_reenable();
1803	for (i = 0; i < banks; i++) {
1804		if (!skip_bank_init(i))
1805			wrmsrl(MSR_IA32_MC0_CTL + i*4, bank[i]);
1806	}
1807}
1808
1809/* Get notified when a cpu comes on/off. Be hotplug friendly. */
1810static int __cpuinit
1811mce_cpu_callback(struct notifier_block *nfb, unsigned long action, void *hcpu)
1812{
1813	unsigned int cpu = (unsigned long)hcpu;
1814	struct timer_list *t = &per_cpu(mce_timer, cpu);
1815
1816	switch (action) {
1817	case CPU_ONLINE:
1818	case CPU_ONLINE_FROZEN:
1819		mce_create_device(cpu);
1820		if (threshold_cpu_callback)
1821			threshold_cpu_callback(action, cpu);
1822		break;
1823	case CPU_DEAD:
1824	case CPU_DEAD_FROZEN:
1825		if (threshold_cpu_callback)
1826			threshold_cpu_callback(action, cpu);
1827		mce_remove_device(cpu);
1828		break;
1829	case CPU_DOWN_PREPARE:
1830	case CPU_DOWN_PREPARE_FROZEN:
1831		del_timer_sync(t);
1832		smp_call_function_single(cpu, mce_disable_cpu, &action, 1);
1833		break;
1834	case CPU_DOWN_FAILED:
1835	case CPU_DOWN_FAILED_FROZEN:
1836		t->expires = round_jiffies(jiffies +
1837						__get_cpu_var(next_interval));
1838		add_timer_on(t, cpu);
1839		smp_call_function_single(cpu, mce_reenable_cpu, &action, 1);
1840		break;
1841	case CPU_POST_DEAD:
1842		/* intentionally ignoring frozen here */
1843		cmci_rediscover(cpu);
1844		break;
1845	}
1846	return NOTIFY_OK;
1847}
1848
1849static struct notifier_block mce_cpu_notifier __cpuinitdata = {
1850	.notifier_call = mce_cpu_callback,
1851};
1852
1853static __init int mce_init_banks(void)
1854{
1855	int i;
1856
1857	bank_attrs = kzalloc(sizeof(struct sysdev_attribute) * banks,
1858				GFP_KERNEL);
1859	if (!bank_attrs)
1860		return -ENOMEM;
1861
1862	for (i = 0; i < banks; i++) {
1863		struct sysdev_attribute *a = &bank_attrs[i];
1864
1865		a->attr.name	= kasprintf(GFP_KERNEL, "bank%d", i);
1866		if (!a->attr.name)
1867			goto nomem;
1868
1869		a->attr.mode	= 0644;
1870		a->show		= show_bank;
1871		a->store	= set_bank;
1872	}
1873	return 0;
1874
1875nomem:
1876	while (--i >= 0)
1877		kfree(bank_attrs[i].attr.name);
1878	kfree(bank_attrs);
1879	bank_attrs = NULL;
1880
1881	return -ENOMEM;
1882}
1883
1884static __init int mce_init_device(void)
1885{
1886	int err;
1887	int i = 0;
1888
1889	if (!mce_available(&boot_cpu_data))
1890		return -EIO;
1891
1892	alloc_cpumask_var(&mce_dev_initialized, GFP_KERNEL);
1893
1894	err = mce_init_banks();
1895	if (err)
1896		return err;
1897
1898	err = sysdev_class_register(&mce_sysclass);
1899	if (err)
1900		return err;
1901
1902	for_each_online_cpu(i) {
1903		err = mce_create_device(i);
1904		if (err)
1905			return err;
1906	}
1907
1908	register_hotcpu_notifier(&mce_cpu_notifier);
1909	misc_register(&mce_log_device);
1910
1911	return err;
1912}
1913
1914device_initcall(mce_init_device);
1915
1916#else /* CONFIG_X86_OLD_MCE: */
1917
1918int nr_mce_banks;
1919EXPORT_SYMBOL_GPL(nr_mce_banks);	/* non-fatal.o */
1920
1921/* This has to be run for each processor */
1922void mcheck_init(struct cpuinfo_x86 *c)
1923{
1924	if (mce_disabled == 1)
1925		return;
1926
1927	switch (c->x86_vendor) {
1928	case X86_VENDOR_AMD:
1929		amd_mcheck_init(c);
1930		break;
1931
1932	case X86_VENDOR_INTEL:
1933		if (c->x86 == 5)
1934			intel_p5_mcheck_init(c);
1935		if (c->x86 == 6)
1936			intel_p6_mcheck_init(c);
1937		if (c->x86 == 15)
1938			intel_p4_mcheck_init(c);
1939		break;
1940
1941	case X86_VENDOR_CENTAUR:
1942		if (c->x86 == 5)
1943			winchip_mcheck_init(c);
1944		break;
1945
1946	default:
1947		break;
1948	}
1949	printk(KERN_INFO "mce: CPU supports %d MCE banks\n", nr_mce_banks);
1950}
1951
1952static int __init mcheck_enable(char *str)
1953{
1954	mce_disabled = -1;
1955	return 1;
1956}
1957
1958__setup("mce", mcheck_enable);
1959
1960#endif /* CONFIG_X86_OLD_MCE */
1961
1962/*
1963 * Old style boot options parsing. Only for compatibility.
1964 */
1965static int __init mcheck_disable(char *str)
1966{
1967	mce_disabled = 1;
1968	return 1;
1969}
1970__setup("nomce", mcheck_disable);
1971