mce.c revision 33edbf02a92771fa2a81e41084a44ba874e3a5a5
1/*
2 * Machine check handler.
3 *
4 * K8 parts Copyright 2002,2003 Andi Kleen, SuSE Labs.
5 * Rest from unknown author(s).
6 * 2004 Andi Kleen. Rewrote most of it.
7 * Copyright 2008 Intel Corporation
8 * Author: Andi Kleen
9 */
10#include <linux/thread_info.h>
11#include <linux/capability.h>
12#include <linux/miscdevice.h>
13#include <linux/interrupt.h>
14#include <linux/ratelimit.h>
15#include <linux/kallsyms.h>
16#include <linux/rcupdate.h>
17#include <linux/kobject.h>
18#include <linux/uaccess.h>
19#include <linux/kdebug.h>
20#include <linux/kernel.h>
21#include <linux/percpu.h>
22#include <linux/string.h>
23#include <linux/sysdev.h>
24#include <linux/delay.h>
25#include <linux/ctype.h>
26#include <linux/sched.h>
27#include <linux/sysfs.h>
28#include <linux/types.h>
29#include <linux/init.h>
30#include <linux/kmod.h>
31#include <linux/poll.h>
32#include <linux/nmi.h>
33#include <linux/cpu.h>
34#include <linux/smp.h>
35#include <linux/fs.h>
36#include <linux/mm.h>
37
38#include <asm/processor.h>
39#include <asm/hw_irq.h>
40#include <asm/apic.h>
41#include <asm/idle.h>
42#include <asm/ipi.h>
43#include <asm/mce.h>
44#include <asm/msr.h>
45
46#include "mce-internal.h"
47#include "mce.h"
48
49/* Handle unconfigured int18 (should never happen) */
50static void unexpected_machine_check(struct pt_regs *regs, long error_code)
51{
52	printk(KERN_ERR "CPU#%d: Unexpected int18 (Machine Check).\n",
53	       smp_processor_id());
54}
55
56/* Call the installed machine check handler for this CPU setup. */
57void (*machine_check_vector)(struct pt_regs *, long error_code) =
58						unexpected_machine_check;
59
60int				mce_disabled;
61
62#ifdef CONFIG_X86_NEW_MCE
63
64#define MISC_MCELOG_MINOR	227
65
66#define SPINUNIT 100	/* 100ns */
67
68atomic_t mce_entry;
69
70DEFINE_PER_CPU(unsigned, mce_exception_count);
71
72/*
73 * Tolerant levels:
74 *   0: always panic on uncorrected errors, log corrected errors
75 *   1: panic or SIGBUS on uncorrected errors, log corrected errors
76 *   2: SIGBUS or log uncorrected errors (if possible), log corrected errors
77 *   3: never panic or SIGBUS, log all errors (for testing only)
78 */
79static int			tolerant = 1;
80static int			banks;
81static u64			*bank;
82static unsigned long		notify_user;
83static int			rip_msr;
84static int			mce_bootlog = -1;
85static int			monarch_timeout = -1;
86static int			mce_panic_timeout;
87static int			mce_dont_log_ce;
88int				mce_cmci_disabled;
89int				mce_ignore_ce;
90int				mce_ser;
91
92static char			trigger[128];
93static char			*trigger_argv[2] = { trigger, NULL };
94
95static unsigned long		dont_init_banks;
96
97static DECLARE_WAIT_QUEUE_HEAD(mce_wait);
98static DEFINE_PER_CPU(struct mce, mces_seen);
99static int			cpu_missing;
100
101
102/* MCA banks polled by the period polling timer for corrected events */
103DEFINE_PER_CPU(mce_banks_t, mce_poll_banks) = {
104	[0 ... BITS_TO_LONGS(MAX_NR_BANKS)-1] = ~0UL
105};
106
107static inline int skip_bank_init(int i)
108{
109	return i < BITS_PER_LONG && test_bit(i, &dont_init_banks);
110}
111
112static DEFINE_PER_CPU(struct work_struct, mce_work);
113
114/* Do initial initialization of a struct mce */
115void mce_setup(struct mce *m)
116{
117	memset(m, 0, sizeof(struct mce));
118	m->cpu = m->extcpu = smp_processor_id();
119	rdtscll(m->tsc);
120	/* We hope get_seconds stays lockless */
121	m->time = get_seconds();
122	m->cpuvendor = boot_cpu_data.x86_vendor;
123	m->cpuid = cpuid_eax(1);
124#ifdef CONFIG_SMP
125	m->socketid = cpu_data(m->extcpu).phys_proc_id;
126#endif
127	m->apicid = cpu_data(m->extcpu).initial_apicid;
128	rdmsrl(MSR_IA32_MCG_CAP, m->mcgcap);
129}
130
131DEFINE_PER_CPU(struct mce, injectm);
132EXPORT_PER_CPU_SYMBOL_GPL(injectm);
133
134/*
135 * Lockless MCE logging infrastructure.
136 * This avoids deadlocks on printk locks without having to break locks. Also
137 * separate MCEs from kernel messages to avoid bogus bug reports.
138 */
139
140static struct mce_log mcelog = {
141	.signature	= MCE_LOG_SIGNATURE,
142	.len		= MCE_LOG_LEN,
143	.recordlen	= sizeof(struct mce),
144};
145
146void mce_log(struct mce *mce)
147{
148	unsigned next, entry;
149
150	mce->finished = 0;
151	wmb();
152	for (;;) {
153		entry = rcu_dereference(mcelog.next);
154		for (;;) {
155			/*
156			 * When the buffer fills up discard new entries.
157			 * Assume that the earlier errors are the more
158			 * interesting ones:
159			 */
160			if (entry >= MCE_LOG_LEN) {
161				set_bit(MCE_OVERFLOW,
162					(unsigned long *)&mcelog.flags);
163				return;
164			}
165			/* Old left over entry. Skip: */
166			if (mcelog.entry[entry].finished) {
167				entry++;
168				continue;
169			}
170			break;
171		}
172		smp_rmb();
173		next = entry + 1;
174		if (cmpxchg(&mcelog.next, entry, next) == entry)
175			break;
176	}
177	memcpy(mcelog.entry + entry, mce, sizeof(struct mce));
178	wmb();
179	mcelog.entry[entry].finished = 1;
180	wmb();
181
182	mce->finished = 1;
183	set_bit(0, &notify_user);
184}
185
186static void print_mce(struct mce *m)
187{
188	printk(KERN_EMERG
189	       "CPU %d: Machine Check Exception: %16Lx Bank %d: %016Lx\n",
190	       m->extcpu, m->mcgstatus, m->bank, m->status);
191	if (m->ip) {
192		printk(KERN_EMERG "RIP%s %02x:<%016Lx> ",
193		       !(m->mcgstatus & MCG_STATUS_EIPV) ? " !INEXACT!" : "",
194		       m->cs, m->ip);
195		if (m->cs == __KERNEL_CS)
196			print_symbol("{%s}", m->ip);
197		printk("\n");
198	}
199	printk(KERN_EMERG "TSC %llx ", m->tsc);
200	if (m->addr)
201		printk("ADDR %llx ", m->addr);
202	if (m->misc)
203		printk("MISC %llx ", m->misc);
204	printk("\n");
205	printk(KERN_EMERG "PROCESSOR %u:%x TIME %llu SOCKET %u APIC %x\n",
206			m->cpuvendor, m->cpuid, m->time, m->socketid,
207			m->apicid);
208}
209
210static void print_mce_head(void)
211{
212	printk(KERN_EMERG "\n" KERN_EMERG "HARDWARE ERROR\n");
213}
214
215static void print_mce_tail(void)
216{
217	printk(KERN_EMERG "This is not a software problem!\n"
218	       KERN_EMERG "Run through mcelog --ascii to decode and contact your hardware vendor\n");
219}
220
221#define PANIC_TIMEOUT 5 /* 5 seconds */
222
223static atomic_t mce_paniced;
224
225/* Panic in progress. Enable interrupts and wait for final IPI */
226static void wait_for_panic(void)
227{
228	long timeout = PANIC_TIMEOUT*USEC_PER_SEC;
229	preempt_disable();
230	local_irq_enable();
231	while (timeout-- > 0)
232		udelay(1);
233	if (panic_timeout == 0)
234		panic_timeout = mce_panic_timeout;
235	panic("Panicing machine check CPU died");
236}
237
238static void mce_panic(char *msg, struct mce *final, char *exp)
239{
240	int i;
241
242	/*
243	 * Make sure only one CPU runs in machine check panic
244	 */
245	if (atomic_add_return(1, &mce_paniced) > 1)
246		wait_for_panic();
247	barrier();
248
249	bust_spinlocks(1);
250	console_verbose();
251	print_mce_head();
252	/* First print corrected ones that are still unlogged */
253	for (i = 0; i < MCE_LOG_LEN; i++) {
254		struct mce *m = &mcelog.entry[i];
255		if (!(m->status & MCI_STATUS_VAL))
256			continue;
257		if (!(m->status & MCI_STATUS_UC))
258			print_mce(m);
259	}
260	/* Now print uncorrected but with the final one last */
261	for (i = 0; i < MCE_LOG_LEN; i++) {
262		struct mce *m = &mcelog.entry[i];
263		if (!(m->status & MCI_STATUS_VAL))
264			continue;
265		if (!(m->status & MCI_STATUS_UC))
266			continue;
267		if (!final || memcmp(m, final, sizeof(struct mce)))
268			print_mce(m);
269	}
270	if (final)
271		print_mce(final);
272	if (cpu_missing)
273		printk(KERN_EMERG "Some CPUs didn't answer in synchronization\n");
274	print_mce_tail();
275	if (exp)
276		printk(KERN_EMERG "Machine check: %s\n", exp);
277	if (panic_timeout == 0)
278		panic_timeout = mce_panic_timeout;
279	panic(msg);
280}
281
282/* Support code for software error injection */
283
284static int msr_to_offset(u32 msr)
285{
286	unsigned bank = __get_cpu_var(injectm.bank);
287	if (msr == rip_msr)
288		return offsetof(struct mce, ip);
289	if (msr == MSR_IA32_MC0_STATUS + bank*4)
290		return offsetof(struct mce, status);
291	if (msr == MSR_IA32_MC0_ADDR + bank*4)
292		return offsetof(struct mce, addr);
293	if (msr == MSR_IA32_MC0_MISC + bank*4)
294		return offsetof(struct mce, misc);
295	if (msr == MSR_IA32_MCG_STATUS)
296		return offsetof(struct mce, mcgstatus);
297	return -1;
298}
299
300/* MSR access wrappers used for error injection */
301static u64 mce_rdmsrl(u32 msr)
302{
303	u64 v;
304	if (__get_cpu_var(injectm).finished) {
305		int offset = msr_to_offset(msr);
306		if (offset < 0)
307			return 0;
308		return *(u64 *)((char *)&__get_cpu_var(injectm) + offset);
309	}
310	rdmsrl(msr, v);
311	return v;
312}
313
314static void mce_wrmsrl(u32 msr, u64 v)
315{
316	if (__get_cpu_var(injectm).finished) {
317		int offset = msr_to_offset(msr);
318		if (offset >= 0)
319			*(u64 *)((char *)&__get_cpu_var(injectm) + offset) = v;
320		return;
321	}
322	wrmsrl(msr, v);
323}
324
325/*
326 * Simple lockless ring to communicate PFNs from the exception handler with the
327 * process context work function. This is vastly simplified because there's
328 * only a single reader and a single writer.
329 */
330#define MCE_RING_SIZE 16	/* we use one entry less */
331
332struct mce_ring {
333	unsigned short start;
334	unsigned short end;
335	unsigned long ring[MCE_RING_SIZE];
336};
337static DEFINE_PER_CPU(struct mce_ring, mce_ring);
338
339/* Runs with CPU affinity in workqueue */
340static int mce_ring_empty(void)
341{
342	struct mce_ring *r = &__get_cpu_var(mce_ring);
343
344	return r->start == r->end;
345}
346
347static int mce_ring_get(unsigned long *pfn)
348{
349	struct mce_ring *r;
350	int ret = 0;
351
352	*pfn = 0;
353	get_cpu();
354	r = &__get_cpu_var(mce_ring);
355	if (r->start == r->end)
356		goto out;
357	*pfn = r->ring[r->start];
358	r->start = (r->start + 1) % MCE_RING_SIZE;
359	ret = 1;
360out:
361	put_cpu();
362	return ret;
363}
364
365/* Always runs in MCE context with preempt off */
366static int mce_ring_add(unsigned long pfn)
367{
368	struct mce_ring *r = &__get_cpu_var(mce_ring);
369	unsigned next;
370
371	next = (r->end + 1) % MCE_RING_SIZE;
372	if (next == r->start)
373		return -1;
374	r->ring[r->end] = pfn;
375	wmb();
376	r->end = next;
377	return 0;
378}
379
380int mce_available(struct cpuinfo_x86 *c)
381{
382	if (mce_disabled)
383		return 0;
384	return cpu_has(c, X86_FEATURE_MCE) && cpu_has(c, X86_FEATURE_MCA);
385}
386
387static void mce_schedule_work(void)
388{
389	if (!mce_ring_empty()) {
390		struct work_struct *work = &__get_cpu_var(mce_work);
391		if (!work_pending(work))
392			schedule_work(work);
393	}
394}
395
396/*
397 * Get the address of the instruction at the time of the machine check
398 * error.
399 */
400static inline void mce_get_rip(struct mce *m, struct pt_regs *regs)
401{
402
403	if (regs && (m->mcgstatus & (MCG_STATUS_RIPV|MCG_STATUS_EIPV))) {
404		m->ip = regs->ip;
405		m->cs = regs->cs;
406	} else {
407		m->ip = 0;
408		m->cs = 0;
409	}
410	if (rip_msr)
411		m->ip = mce_rdmsrl(rip_msr);
412}
413
414#ifdef CONFIG_X86_LOCAL_APIC
415/*
416 * Called after interrupts have been reenabled again
417 * when a MCE happened during an interrupts off region
418 * in the kernel.
419 */
420asmlinkage void smp_mce_self_interrupt(struct pt_regs *regs)
421{
422	ack_APIC_irq();
423	exit_idle();
424	irq_enter();
425	mce_notify_irq();
426	mce_schedule_work();
427	irq_exit();
428}
429#endif
430
431static void mce_report_event(struct pt_regs *regs)
432{
433	if (regs->flags & (X86_VM_MASK|X86_EFLAGS_IF)) {
434		mce_notify_irq();
435		/*
436		 * Triggering the work queue here is just an insurance
437		 * policy in case the syscall exit notify handler
438		 * doesn't run soon enough or ends up running on the
439		 * wrong CPU (can happen when audit sleeps)
440		 */
441		mce_schedule_work();
442		return;
443	}
444
445#ifdef CONFIG_X86_LOCAL_APIC
446	/*
447	 * Without APIC do not notify. The event will be picked
448	 * up eventually.
449	 */
450	if (!cpu_has_apic)
451		return;
452
453	/*
454	 * When interrupts are disabled we cannot use
455	 * kernel services safely. Trigger an self interrupt
456	 * through the APIC to instead do the notification
457	 * after interrupts are reenabled again.
458	 */
459	apic->send_IPI_self(MCE_SELF_VECTOR);
460
461	/*
462	 * Wait for idle afterwards again so that we don't leave the
463	 * APIC in a non idle state because the normal APIC writes
464	 * cannot exclude us.
465	 */
466	apic_wait_icr_idle();
467#endif
468}
469
470DEFINE_PER_CPU(unsigned, mce_poll_count);
471
472/*
473 * Poll for corrected events or events that happened before reset.
474 * Those are just logged through /dev/mcelog.
475 *
476 * This is executed in standard interrupt context.
477 *
478 * Note: spec recommends to panic for fatal unsignalled
479 * errors here. However this would be quite problematic --
480 * we would need to reimplement the Monarch handling and
481 * it would mess up the exclusion between exception handler
482 * and poll hander -- * so we skip this for now.
483 * These cases should not happen anyways, or only when the CPU
484 * is already totally * confused. In this case it's likely it will
485 * not fully execute the machine check handler either.
486 */
487void machine_check_poll(enum mcp_flags flags, mce_banks_t *b)
488{
489	struct mce m;
490	int i;
491
492	__get_cpu_var(mce_poll_count)++;
493
494	mce_setup(&m);
495
496	m.mcgstatus = mce_rdmsrl(MSR_IA32_MCG_STATUS);
497	for (i = 0; i < banks; i++) {
498		if (!bank[i] || !test_bit(i, *b))
499			continue;
500
501		m.misc = 0;
502		m.addr = 0;
503		m.bank = i;
504		m.tsc = 0;
505
506		barrier();
507		m.status = mce_rdmsrl(MSR_IA32_MC0_STATUS + i*4);
508		if (!(m.status & MCI_STATUS_VAL))
509			continue;
510
511		/*
512		 * Uncorrected or signalled events are handled by the exception
513		 * handler when it is enabled, so don't process those here.
514		 *
515		 * TBD do the same check for MCI_STATUS_EN here?
516		 */
517		if (!(flags & MCP_UC) &&
518		    (m.status & (mce_ser ? MCI_STATUS_S : MCI_STATUS_UC)))
519			continue;
520
521		if (m.status & MCI_STATUS_MISCV)
522			m.misc = mce_rdmsrl(MSR_IA32_MC0_MISC + i*4);
523		if (m.status & MCI_STATUS_ADDRV)
524			m.addr = mce_rdmsrl(MSR_IA32_MC0_ADDR + i*4);
525
526		if (!(flags & MCP_TIMESTAMP))
527			m.tsc = 0;
528		/*
529		 * Don't get the IP here because it's unlikely to
530		 * have anything to do with the actual error location.
531		 */
532		if (!(flags & MCP_DONTLOG) && !mce_dont_log_ce) {
533			mce_log(&m);
534			add_taint(TAINT_MACHINE_CHECK);
535		}
536
537		/*
538		 * Clear state for this bank.
539		 */
540		mce_wrmsrl(MSR_IA32_MC0_STATUS+4*i, 0);
541	}
542
543	/*
544	 * Don't clear MCG_STATUS here because it's only defined for
545	 * exceptions.
546	 */
547
548	sync_core();
549}
550EXPORT_SYMBOL_GPL(machine_check_poll);
551
552/*
553 * Do a quick check if any of the events requires a panic.
554 * This decides if we keep the events around or clear them.
555 */
556static int mce_no_way_out(struct mce *m, char **msg)
557{
558	int i;
559
560	for (i = 0; i < banks; i++) {
561		m->status = mce_rdmsrl(MSR_IA32_MC0_STATUS + i*4);
562		if (mce_severity(m, tolerant, msg) >= MCE_PANIC_SEVERITY)
563			return 1;
564	}
565	return 0;
566}
567
568/*
569 * Variable to establish order between CPUs while scanning.
570 * Each CPU spins initially until executing is equal its number.
571 */
572static atomic_t mce_executing;
573
574/*
575 * Defines order of CPUs on entry. First CPU becomes Monarch.
576 */
577static atomic_t mce_callin;
578
579/*
580 * Check if a timeout waiting for other CPUs happened.
581 */
582static int mce_timed_out(u64 *t)
583{
584	/*
585	 * The others already did panic for some reason.
586	 * Bail out like in a timeout.
587	 * rmb() to tell the compiler that system_state
588	 * might have been modified by someone else.
589	 */
590	rmb();
591	if (atomic_read(&mce_paniced))
592		wait_for_panic();
593	if (!monarch_timeout)
594		goto out;
595	if ((s64)*t < SPINUNIT) {
596		/* CHECKME: Make panic default for 1 too? */
597		if (tolerant < 1)
598			mce_panic("Timeout synchronizing machine check over CPUs",
599				  NULL, NULL);
600		cpu_missing = 1;
601		return 1;
602	}
603	*t -= SPINUNIT;
604out:
605	touch_nmi_watchdog();
606	return 0;
607}
608
609/*
610 * The Monarch's reign.  The Monarch is the CPU who entered
611 * the machine check handler first. It waits for the others to
612 * raise the exception too and then grades them. When any
613 * error is fatal panic. Only then let the others continue.
614 *
615 * The other CPUs entering the MCE handler will be controlled by the
616 * Monarch. They are called Subjects.
617 *
618 * This way we prevent any potential data corruption in a unrecoverable case
619 * and also makes sure always all CPU's errors are examined.
620 *
621 * Also this detects the case of an machine check event coming from outer
622 * space (not detected by any CPUs) In this case some external agent wants
623 * us to shut down, so panic too.
624 *
625 * The other CPUs might still decide to panic if the handler happens
626 * in a unrecoverable place, but in this case the system is in a semi-stable
627 * state and won't corrupt anything by itself. It's ok to let the others
628 * continue for a bit first.
629 *
630 * All the spin loops have timeouts; when a timeout happens a CPU
631 * typically elects itself to be Monarch.
632 */
633static void mce_reign(void)
634{
635	int cpu;
636	struct mce *m = NULL;
637	int global_worst = 0;
638	char *msg = NULL;
639	char *nmsg = NULL;
640
641	/*
642	 * This CPU is the Monarch and the other CPUs have run
643	 * through their handlers.
644	 * Grade the severity of the errors of all the CPUs.
645	 */
646	for_each_possible_cpu(cpu) {
647		int severity = mce_severity(&per_cpu(mces_seen, cpu), tolerant,
648					    &nmsg);
649		if (severity > global_worst) {
650			msg = nmsg;
651			global_worst = severity;
652			m = &per_cpu(mces_seen, cpu);
653		}
654	}
655
656	/*
657	 * Cannot recover? Panic here then.
658	 * This dumps all the mces in the log buffer and stops the
659	 * other CPUs.
660	 */
661	if (m && global_worst >= MCE_PANIC_SEVERITY && tolerant < 3)
662		mce_panic("Fatal Machine check", m, msg);
663
664	/*
665	 * For UC somewhere we let the CPU who detects it handle it.
666	 * Also must let continue the others, otherwise the handling
667	 * CPU could deadlock on a lock.
668	 */
669
670	/*
671	 * No machine check event found. Must be some external
672	 * source or one CPU is hung. Panic.
673	 */
674	if (!m && tolerant < 3)
675		mce_panic("Machine check from unknown source", NULL, NULL);
676
677	/*
678	 * Now clear all the mces_seen so that they don't reappear on
679	 * the next mce.
680	 */
681	for_each_possible_cpu(cpu)
682		memset(&per_cpu(mces_seen, cpu), 0, sizeof(struct mce));
683}
684
685static atomic_t global_nwo;
686
687/*
688 * Start of Monarch synchronization. This waits until all CPUs have
689 * entered the exception handler and then determines if any of them
690 * saw a fatal event that requires panic. Then it executes them
691 * in the entry order.
692 * TBD double check parallel CPU hotunplug
693 */
694static int mce_start(int no_way_out, int *order)
695{
696	int nwo;
697	int cpus = num_online_cpus();
698	u64 timeout = (u64)monarch_timeout * NSEC_PER_USEC;
699
700	if (!timeout) {
701		*order = -1;
702		return no_way_out;
703	}
704
705	atomic_add(no_way_out, &global_nwo);
706	/*
707	 * global_nwo should be updated before mce_callin
708	 */
709	smp_wmb();
710	*order = atomic_add_return(1, &mce_callin);
711
712	/*
713	 * Wait for everyone.
714	 */
715	while (atomic_read(&mce_callin) != cpus) {
716		if (mce_timed_out(&timeout)) {
717			atomic_set(&global_nwo, 0);
718			*order = -1;
719			return no_way_out;
720		}
721		ndelay(SPINUNIT);
722	}
723
724	/*
725	 * mce_callin should be read before global_nwo
726	 */
727	smp_rmb();
728	/*
729	 * Cache the global no_way_out state.
730	 */
731	nwo = atomic_read(&global_nwo);
732
733	/*
734	 * Monarch starts executing now, the others wait.
735	 */
736	if (*order == 1) {
737		atomic_set(&mce_executing, 1);
738		return nwo;
739	}
740
741	/*
742	 * Now start the scanning loop one by one
743	 * in the original callin order.
744	 * This way when there are any shared banks it will
745	 * be only seen by one CPU before cleared, avoiding duplicates.
746	 */
747	while (atomic_read(&mce_executing) < *order) {
748		if (mce_timed_out(&timeout)) {
749			atomic_set(&global_nwo, 0);
750			*order = -1;
751			return no_way_out;
752		}
753		ndelay(SPINUNIT);
754	}
755	return nwo;
756}
757
758/*
759 * Synchronize between CPUs after main scanning loop.
760 * This invokes the bulk of the Monarch processing.
761 */
762static int mce_end(int order)
763{
764	int ret = -1;
765	u64 timeout = (u64)monarch_timeout * NSEC_PER_USEC;
766
767	if (!timeout)
768		goto reset;
769	if (order < 0)
770		goto reset;
771
772	/*
773	 * Allow others to run.
774	 */
775	atomic_inc(&mce_executing);
776
777	if (order == 1) {
778		/* CHECKME: Can this race with a parallel hotplug? */
779		int cpus = num_online_cpus();
780
781		/*
782		 * Monarch: Wait for everyone to go through their scanning
783		 * loops.
784		 */
785		while (atomic_read(&mce_executing) <= cpus) {
786			if (mce_timed_out(&timeout))
787				goto reset;
788			ndelay(SPINUNIT);
789		}
790
791		mce_reign();
792		barrier();
793		ret = 0;
794	} else {
795		/*
796		 * Subject: Wait for Monarch to finish.
797		 */
798		while (atomic_read(&mce_executing) != 0) {
799			if (mce_timed_out(&timeout))
800				goto reset;
801			ndelay(SPINUNIT);
802		}
803
804		/*
805		 * Don't reset anything. That's done by the Monarch.
806		 */
807		return 0;
808	}
809
810	/*
811	 * Reset all global state.
812	 */
813reset:
814	atomic_set(&global_nwo, 0);
815	atomic_set(&mce_callin, 0);
816	barrier();
817
818	/*
819	 * Let others run again.
820	 */
821	atomic_set(&mce_executing, 0);
822	return ret;
823}
824
825/*
826 * Check if the address reported by the CPU is in a format we can parse.
827 * It would be possible to add code for most other cases, but all would
828 * be somewhat complicated (e.g. segment offset would require an instruction
829 * parser). So only support physical addresses upto page granuality for now.
830 */
831static int mce_usable_address(struct mce *m)
832{
833	if (!(m->status & MCI_STATUS_MISCV) || !(m->status & MCI_STATUS_ADDRV))
834		return 0;
835	if ((m->misc & 0x3f) > PAGE_SHIFT)
836		return 0;
837	if (((m->misc >> 6) & 7) != MCM_ADDR_PHYS)
838		return 0;
839	return 1;
840}
841
842static void mce_clear_state(unsigned long *toclear)
843{
844	int i;
845
846	for (i = 0; i < banks; i++) {
847		if (test_bit(i, toclear))
848			mce_wrmsrl(MSR_IA32_MC0_STATUS+4*i, 0);
849	}
850}
851
852/*
853 * The actual machine check handler. This only handles real
854 * exceptions when something got corrupted coming in through int 18.
855 *
856 * This is executed in NMI context not subject to normal locking rules. This
857 * implies that most kernel services cannot be safely used. Don't even
858 * think about putting a printk in there!
859 *
860 * On Intel systems this is entered on all CPUs in parallel through
861 * MCE broadcast. However some CPUs might be broken beyond repair,
862 * so be always careful when synchronizing with others.
863 */
864void do_machine_check(struct pt_regs *regs, long error_code)
865{
866	struct mce m, *final;
867	int i;
868	int worst = 0;
869	int severity;
870	/*
871	 * Establish sequential order between the CPUs entering the machine
872	 * check handler.
873	 */
874	int order = -1;
875
876	/*
877	 * If no_way_out gets set, there is no safe way to recover from this
878	 * MCE.  If tolerant is cranked up, we'll try anyway.
879	 */
880	int no_way_out = 0;
881	/*
882	 * If kill_it gets set, there might be a way to recover from this
883	 * error.
884	 */
885	int kill_it = 0;
886	DECLARE_BITMAP(toclear, MAX_NR_BANKS);
887	char *msg = "Unknown";
888
889	atomic_inc(&mce_entry);
890
891	__get_cpu_var(mce_exception_count)++;
892
893	if (notify_die(DIE_NMI, "machine check", regs, error_code,
894			   18, SIGKILL) == NOTIFY_STOP)
895		goto out;
896	if (!banks)
897		goto out;
898
899	mce_setup(&m);
900
901	m.mcgstatus = mce_rdmsrl(MSR_IA32_MCG_STATUS);
902	no_way_out = mce_no_way_out(&m, &msg);
903
904	final = &__get_cpu_var(mces_seen);
905	*final = m;
906
907	barrier();
908
909	/*
910	 * When no restart IP must always kill or panic.
911	 */
912	if (!(m.mcgstatus & MCG_STATUS_RIPV))
913		kill_it = 1;
914
915	/*
916	 * Go through all the banks in exclusion of the other CPUs.
917	 * This way we don't report duplicated events on shared banks
918	 * because the first one to see it will clear it.
919	 */
920	no_way_out = mce_start(no_way_out, &order);
921	for (i = 0; i < banks; i++) {
922		__clear_bit(i, toclear);
923		if (!bank[i])
924			continue;
925
926		m.misc = 0;
927		m.addr = 0;
928		m.bank = i;
929
930		m.status = mce_rdmsrl(MSR_IA32_MC0_STATUS + i*4);
931		if ((m.status & MCI_STATUS_VAL) == 0)
932			continue;
933
934		/*
935		 * Non uncorrected or non signaled errors are handled by
936		 * machine_check_poll. Leave them alone, unless this panics.
937		 */
938		if (!(m.status & (mce_ser ? MCI_STATUS_S : MCI_STATUS_UC)) &&
939			!no_way_out)
940			continue;
941
942		/*
943		 * Set taint even when machine check was not enabled.
944		 */
945		add_taint(TAINT_MACHINE_CHECK);
946
947		severity = mce_severity(&m, tolerant, NULL);
948
949		/*
950		 * When machine check was for corrected handler don't touch,
951		 * unless we're panicing.
952		 */
953		if (severity == MCE_KEEP_SEVERITY && !no_way_out)
954			continue;
955		__set_bit(i, toclear);
956		if (severity == MCE_NO_SEVERITY) {
957			/*
958			 * Machine check event was not enabled. Clear, but
959			 * ignore.
960			 */
961			continue;
962		}
963
964		/*
965		 * Kill on action required.
966		 */
967		if (severity == MCE_AR_SEVERITY)
968			kill_it = 1;
969
970		if (m.status & MCI_STATUS_MISCV)
971			m.misc = mce_rdmsrl(MSR_IA32_MC0_MISC + i*4);
972		if (m.status & MCI_STATUS_ADDRV)
973			m.addr = mce_rdmsrl(MSR_IA32_MC0_ADDR + i*4);
974
975		/*
976		 * Action optional error. Queue address for later processing.
977		 * When the ring overflows we just ignore the AO error.
978		 * RED-PEN add some logging mechanism when
979		 * usable_address or mce_add_ring fails.
980		 * RED-PEN don't ignore overflow for tolerant == 0
981		 */
982		if (severity == MCE_AO_SEVERITY && mce_usable_address(&m))
983			mce_ring_add(m.addr >> PAGE_SHIFT);
984
985		mce_get_rip(&m, regs);
986		mce_log(&m);
987
988		if (severity > worst) {
989			*final = m;
990			worst = severity;
991		}
992	}
993
994	if (!no_way_out)
995		mce_clear_state(toclear);
996
997	/*
998	 * Do most of the synchronization with other CPUs.
999	 * When there's any problem use only local no_way_out state.
1000	 */
1001	if (mce_end(order) < 0)
1002		no_way_out = worst >= MCE_PANIC_SEVERITY;
1003
1004	/*
1005	 * If we have decided that we just CAN'T continue, and the user
1006	 * has not set tolerant to an insane level, give up and die.
1007	 *
1008	 * This is mainly used in the case when the system doesn't
1009	 * support MCE broadcasting or it has been disabled.
1010	 */
1011	if (no_way_out && tolerant < 3)
1012		mce_panic("Fatal machine check on current CPU", final, msg);
1013
1014	/*
1015	 * If the error seems to be unrecoverable, something should be
1016	 * done.  Try to kill as little as possible.  If we can kill just
1017	 * one task, do that.  If the user has set the tolerance very
1018	 * high, don't try to do anything at all.
1019	 */
1020
1021	if (kill_it && tolerant < 3)
1022		force_sig(SIGBUS, current);
1023
1024	/* notify userspace ASAP */
1025	set_thread_flag(TIF_MCE_NOTIFY);
1026
1027	if (worst > 0)
1028		mce_report_event(regs);
1029	mce_wrmsrl(MSR_IA32_MCG_STATUS, 0);
1030out:
1031	atomic_dec(&mce_entry);
1032	sync_core();
1033}
1034EXPORT_SYMBOL_GPL(do_machine_check);
1035
1036/* dummy to break dependency. actual code is in mm/memory-failure.c */
1037void __attribute__((weak)) memory_failure(unsigned long pfn, int vector)
1038{
1039	printk(KERN_ERR "Action optional memory failure at %lx ignored\n", pfn);
1040}
1041
1042/*
1043 * Called after mce notification in process context. This code
1044 * is allowed to sleep. Call the high level VM handler to process
1045 * any corrupted pages.
1046 * Assume that the work queue code only calls this one at a time
1047 * per CPU.
1048 * Note we don't disable preemption, so this code might run on the wrong
1049 * CPU. In this case the event is picked up by the scheduled work queue.
1050 * This is merely a fast path to expedite processing in some common
1051 * cases.
1052 */
1053void mce_notify_process(void)
1054{
1055	unsigned long pfn;
1056	mce_notify_irq();
1057	while (mce_ring_get(&pfn))
1058		memory_failure(pfn, MCE_VECTOR);
1059}
1060
1061static void mce_process_work(struct work_struct *dummy)
1062{
1063	mce_notify_process();
1064}
1065
1066#ifdef CONFIG_X86_MCE_INTEL
1067/***
1068 * mce_log_therm_throt_event - Logs the thermal throttling event to mcelog
1069 * @cpu: The CPU on which the event occurred.
1070 * @status: Event status information
1071 *
1072 * This function should be called by the thermal interrupt after the
1073 * event has been processed and the decision was made to log the event
1074 * further.
1075 *
1076 * The status parameter will be saved to the 'status' field of 'struct mce'
1077 * and historically has been the register value of the
1078 * MSR_IA32_THERMAL_STATUS (Intel) msr.
1079 */
1080void mce_log_therm_throt_event(__u64 status)
1081{
1082	struct mce m;
1083
1084	mce_setup(&m);
1085	m.bank = MCE_THERMAL_BANK;
1086	m.status = status;
1087	mce_log(&m);
1088}
1089#endif /* CONFIG_X86_MCE_INTEL */
1090
1091/*
1092 * Periodic polling timer for "silent" machine check errors.  If the
1093 * poller finds an MCE, poll 2x faster.  When the poller finds no more
1094 * errors, poll 2x slower (up to check_interval seconds).
1095 */
1096static int check_interval = 5 * 60; /* 5 minutes */
1097
1098static DEFINE_PER_CPU(int, next_interval); /* in jiffies */
1099static DEFINE_PER_CPU(struct timer_list, mce_timer);
1100
1101static void mcheck_timer(unsigned long data)
1102{
1103	struct timer_list *t = &per_cpu(mce_timer, data);
1104	int *n;
1105
1106	WARN_ON(smp_processor_id() != data);
1107
1108	if (mce_available(&current_cpu_data)) {
1109		machine_check_poll(MCP_TIMESTAMP,
1110				&__get_cpu_var(mce_poll_banks));
1111	}
1112
1113	/*
1114	 * Alert userspace if needed.  If we logged an MCE, reduce the
1115	 * polling interval, otherwise increase the polling interval.
1116	 */
1117	n = &__get_cpu_var(next_interval);
1118	if (mce_notify_irq())
1119		*n = max(*n/2, HZ/100);
1120	else
1121		*n = min(*n*2, (int)round_jiffies_relative(check_interval*HZ));
1122
1123	t->expires = jiffies + *n;
1124	add_timer(t);
1125}
1126
1127static void mce_do_trigger(struct work_struct *work)
1128{
1129	call_usermodehelper(trigger, trigger_argv, NULL, UMH_NO_WAIT);
1130}
1131
1132static DECLARE_WORK(mce_trigger_work, mce_do_trigger);
1133
1134/*
1135 * Notify the user(s) about new machine check events.
1136 * Can be called from interrupt context, but not from machine check/NMI
1137 * context.
1138 */
1139int mce_notify_irq(void)
1140{
1141	/* Not more than two messages every minute */
1142	static DEFINE_RATELIMIT_STATE(ratelimit, 60*HZ, 2);
1143
1144	clear_thread_flag(TIF_MCE_NOTIFY);
1145
1146	if (test_and_clear_bit(0, &notify_user)) {
1147		wake_up_interruptible(&mce_wait);
1148
1149		/*
1150		 * There is no risk of missing notifications because
1151		 * work_pending is always cleared before the function is
1152		 * executed.
1153		 */
1154		if (trigger[0] && !work_pending(&mce_trigger_work))
1155			schedule_work(&mce_trigger_work);
1156
1157		if (__ratelimit(&ratelimit))
1158			printk(KERN_INFO "Machine check events logged\n");
1159
1160		return 1;
1161	}
1162	return 0;
1163}
1164EXPORT_SYMBOL_GPL(mce_notify_irq);
1165
1166/*
1167 * Initialize Machine Checks for a CPU.
1168 */
1169static int mce_cap_init(void)
1170{
1171	unsigned b;
1172	u64 cap;
1173
1174	rdmsrl(MSR_IA32_MCG_CAP, cap);
1175
1176	b = cap & MCG_BANKCNT_MASK;
1177	printk(KERN_INFO "mce: CPU supports %d MCE banks\n", b);
1178
1179	if (b > MAX_NR_BANKS) {
1180		printk(KERN_WARNING
1181		       "MCE: Using only %u machine check banks out of %u\n",
1182			MAX_NR_BANKS, b);
1183		b = MAX_NR_BANKS;
1184	}
1185
1186	/* Don't support asymmetric configurations today */
1187	WARN_ON(banks != 0 && b != banks);
1188	banks = b;
1189	if (!bank) {
1190		bank = kmalloc(banks * sizeof(u64), GFP_KERNEL);
1191		if (!bank)
1192			return -ENOMEM;
1193		memset(bank, 0xff, banks * sizeof(u64));
1194	}
1195
1196	/* Use accurate RIP reporting if available. */
1197	if ((cap & MCG_EXT_P) && MCG_EXT_CNT(cap) >= 9)
1198		rip_msr = MSR_IA32_MCG_EIP;
1199
1200	if (cap & MCG_SER_P)
1201		mce_ser = 1;
1202
1203	return 0;
1204}
1205
1206static void mce_init(void)
1207{
1208	mce_banks_t all_banks;
1209	u64 cap;
1210	int i;
1211
1212	/*
1213	 * Log the machine checks left over from the previous reset.
1214	 */
1215	bitmap_fill(all_banks, MAX_NR_BANKS);
1216	machine_check_poll(MCP_UC|(!mce_bootlog ? MCP_DONTLOG : 0), &all_banks);
1217
1218	set_in_cr4(X86_CR4_MCE);
1219
1220	rdmsrl(MSR_IA32_MCG_CAP, cap);
1221	if (cap & MCG_CTL_P)
1222		wrmsr(MSR_IA32_MCG_CTL, 0xffffffff, 0xffffffff);
1223
1224	for (i = 0; i < banks; i++) {
1225		if (skip_bank_init(i))
1226			continue;
1227		wrmsrl(MSR_IA32_MC0_CTL+4*i, bank[i]);
1228		wrmsrl(MSR_IA32_MC0_STATUS+4*i, 0);
1229	}
1230}
1231
1232/* Add per CPU specific workarounds here */
1233static void mce_cpu_quirks(struct cpuinfo_x86 *c)
1234{
1235	/* This should be disabled by the BIOS, but isn't always */
1236	if (c->x86_vendor == X86_VENDOR_AMD) {
1237		if (c->x86 == 15 && banks > 4) {
1238			/*
1239			 * disable GART TBL walk error reporting, which
1240			 * trips off incorrectly with the IOMMU & 3ware
1241			 * & Cerberus:
1242			 */
1243			clear_bit(10, (unsigned long *)&bank[4]);
1244		}
1245		if (c->x86 <= 17 && mce_bootlog < 0) {
1246			/*
1247			 * Lots of broken BIOS around that don't clear them
1248			 * by default and leave crap in there. Don't log:
1249			 */
1250			mce_bootlog = 0;
1251		}
1252		/*
1253		 * Various K7s with broken bank 0 around. Always disable
1254		 * by default.
1255		 */
1256		 if (c->x86 == 6)
1257			bank[0] = 0;
1258	}
1259
1260	if (c->x86_vendor == X86_VENDOR_INTEL) {
1261		/*
1262		 * SDM documents that on family 6 bank 0 should not be written
1263		 * because it aliases to another special BIOS controlled
1264		 * register.
1265		 * But it's not aliased anymore on model 0x1a+
1266		 * Don't ignore bank 0 completely because there could be a
1267		 * valid event later, merely don't write CTL0.
1268		 */
1269
1270		if (c->x86 == 6 && c->x86_model < 0x1A)
1271			__set_bit(0, &dont_init_banks);
1272
1273		/*
1274		 * All newer Intel systems support MCE broadcasting. Enable
1275		 * synchronization with a one second timeout.
1276		 */
1277		if ((c->x86 > 6 || (c->x86 == 6 && c->x86_model >= 0xe)) &&
1278			monarch_timeout < 0)
1279			monarch_timeout = USEC_PER_SEC;
1280	}
1281	if (monarch_timeout < 0)
1282		monarch_timeout = 0;
1283	if (mce_bootlog != 0)
1284		mce_panic_timeout = 30;
1285}
1286
1287static void __cpuinit mce_ancient_init(struct cpuinfo_x86 *c)
1288{
1289	if (c->x86 != 5)
1290		return;
1291	switch (c->x86_vendor) {
1292	case X86_VENDOR_INTEL:
1293		if (mce_p5_enabled())
1294			intel_p5_mcheck_init(c);
1295		break;
1296	case X86_VENDOR_CENTAUR:
1297		winchip_mcheck_init(c);
1298		break;
1299	}
1300}
1301
1302static void mce_cpu_features(struct cpuinfo_x86 *c)
1303{
1304	switch (c->x86_vendor) {
1305	case X86_VENDOR_INTEL:
1306		mce_intel_feature_init(c);
1307		break;
1308	case X86_VENDOR_AMD:
1309		mce_amd_feature_init(c);
1310		break;
1311	default:
1312		break;
1313	}
1314}
1315
1316static void mce_init_timer(void)
1317{
1318	struct timer_list *t = &__get_cpu_var(mce_timer);
1319	int *n = &__get_cpu_var(next_interval);
1320
1321	if (mce_ignore_ce)
1322		return;
1323
1324	*n = check_interval * HZ;
1325	if (!*n)
1326		return;
1327	setup_timer(t, mcheck_timer, smp_processor_id());
1328	t->expires = round_jiffies(jiffies + *n);
1329	add_timer(t);
1330}
1331
1332/*
1333 * Called for each booted CPU to set up machine checks.
1334 * Must be called with preempt off:
1335 */
1336void __cpuinit mcheck_init(struct cpuinfo_x86 *c)
1337{
1338	if (mce_disabled)
1339		return;
1340
1341	mce_ancient_init(c);
1342
1343	if (!mce_available(c))
1344		return;
1345
1346	if (mce_cap_init() < 0) {
1347		mce_disabled = 1;
1348		return;
1349	}
1350	mce_cpu_quirks(c);
1351
1352	machine_check_vector = do_machine_check;
1353
1354	mce_init();
1355	mce_cpu_features(c);
1356	mce_init_timer();
1357	INIT_WORK(&__get_cpu_var(mce_work), mce_process_work);
1358}
1359
1360/*
1361 * Character device to read and clear the MCE log.
1362 */
1363
1364static DEFINE_SPINLOCK(mce_state_lock);
1365static int		open_count;		/* #times opened */
1366static int		open_exclu;		/* already open exclusive? */
1367
1368static int mce_open(struct inode *inode, struct file *file)
1369{
1370	spin_lock(&mce_state_lock);
1371
1372	if (open_exclu || (open_count && (file->f_flags & O_EXCL))) {
1373		spin_unlock(&mce_state_lock);
1374
1375		return -EBUSY;
1376	}
1377
1378	if (file->f_flags & O_EXCL)
1379		open_exclu = 1;
1380	open_count++;
1381
1382	spin_unlock(&mce_state_lock);
1383
1384	return nonseekable_open(inode, file);
1385}
1386
1387static int mce_release(struct inode *inode, struct file *file)
1388{
1389	spin_lock(&mce_state_lock);
1390
1391	open_count--;
1392	open_exclu = 0;
1393
1394	spin_unlock(&mce_state_lock);
1395
1396	return 0;
1397}
1398
1399static void collect_tscs(void *data)
1400{
1401	unsigned long *cpu_tsc = (unsigned long *)data;
1402
1403	rdtscll(cpu_tsc[smp_processor_id()]);
1404}
1405
1406static DEFINE_MUTEX(mce_read_mutex);
1407
1408static ssize_t mce_read(struct file *filp, char __user *ubuf, size_t usize,
1409			loff_t *off)
1410{
1411	char __user *buf = ubuf;
1412	unsigned long *cpu_tsc;
1413	unsigned prev, next;
1414	int i, err;
1415
1416	cpu_tsc = kmalloc(nr_cpu_ids * sizeof(long), GFP_KERNEL);
1417	if (!cpu_tsc)
1418		return -ENOMEM;
1419
1420	mutex_lock(&mce_read_mutex);
1421	next = rcu_dereference(mcelog.next);
1422
1423	/* Only supports full reads right now */
1424	if (*off != 0 || usize < MCE_LOG_LEN*sizeof(struct mce)) {
1425		mutex_unlock(&mce_read_mutex);
1426		kfree(cpu_tsc);
1427
1428		return -EINVAL;
1429	}
1430
1431	err = 0;
1432	prev = 0;
1433	do {
1434		for (i = prev; i < next; i++) {
1435			unsigned long start = jiffies;
1436
1437			while (!mcelog.entry[i].finished) {
1438				if (time_after_eq(jiffies, start + 2)) {
1439					memset(mcelog.entry + i, 0,
1440					       sizeof(struct mce));
1441					goto timeout;
1442				}
1443				cpu_relax();
1444			}
1445			smp_rmb();
1446			err |= copy_to_user(buf, mcelog.entry + i,
1447					    sizeof(struct mce));
1448			buf += sizeof(struct mce);
1449timeout:
1450			;
1451		}
1452
1453		memset(mcelog.entry + prev, 0,
1454		       (next - prev) * sizeof(struct mce));
1455		prev = next;
1456		next = cmpxchg(&mcelog.next, prev, 0);
1457	} while (next != prev);
1458
1459	synchronize_sched();
1460
1461	/*
1462	 * Collect entries that were still getting written before the
1463	 * synchronize.
1464	 */
1465	on_each_cpu(collect_tscs, cpu_tsc, 1);
1466
1467	for (i = next; i < MCE_LOG_LEN; i++) {
1468		if (mcelog.entry[i].finished &&
1469		    mcelog.entry[i].tsc < cpu_tsc[mcelog.entry[i].cpu]) {
1470			err |= copy_to_user(buf, mcelog.entry+i,
1471					    sizeof(struct mce));
1472			smp_rmb();
1473			buf += sizeof(struct mce);
1474			memset(&mcelog.entry[i], 0, sizeof(struct mce));
1475		}
1476	}
1477	mutex_unlock(&mce_read_mutex);
1478	kfree(cpu_tsc);
1479
1480	return err ? -EFAULT : buf - ubuf;
1481}
1482
1483static unsigned int mce_poll(struct file *file, poll_table *wait)
1484{
1485	poll_wait(file, &mce_wait, wait);
1486	if (rcu_dereference(mcelog.next))
1487		return POLLIN | POLLRDNORM;
1488	return 0;
1489}
1490
1491static long mce_ioctl(struct file *f, unsigned int cmd, unsigned long arg)
1492{
1493	int __user *p = (int __user *)arg;
1494
1495	if (!capable(CAP_SYS_ADMIN))
1496		return -EPERM;
1497
1498	switch (cmd) {
1499	case MCE_GET_RECORD_LEN:
1500		return put_user(sizeof(struct mce), p);
1501	case MCE_GET_LOG_LEN:
1502		return put_user(MCE_LOG_LEN, p);
1503	case MCE_GETCLEAR_FLAGS: {
1504		unsigned flags;
1505
1506		do {
1507			flags = mcelog.flags;
1508		} while (cmpxchg(&mcelog.flags, flags, 0) != flags);
1509
1510		return put_user(flags, p);
1511	}
1512	default:
1513		return -ENOTTY;
1514	}
1515}
1516
1517/* Modified in mce-inject.c, so not static or const */
1518struct file_operations mce_chrdev_ops = {
1519	.open			= mce_open,
1520	.release		= mce_release,
1521	.read			= mce_read,
1522	.poll			= mce_poll,
1523	.unlocked_ioctl		= mce_ioctl,
1524};
1525EXPORT_SYMBOL_GPL(mce_chrdev_ops);
1526
1527static struct miscdevice mce_log_device = {
1528	MISC_MCELOG_MINOR,
1529	"mcelog",
1530	&mce_chrdev_ops,
1531};
1532
1533/*
1534 * mce=off Disables machine check
1535 * mce=no_cmci Disables CMCI
1536 * mce=dont_log_ce Clears corrected events silently, no log created for CEs.
1537 * mce=ignore_ce Disables polling and CMCI, corrected events are not cleared.
1538 * mce=TOLERANCELEVEL[,monarchtimeout] (number, see above)
1539 *	monarchtimeout is how long to wait for other CPUs on machine
1540 *	check, or 0 to not wait
1541 * mce=bootlog Log MCEs from before booting. Disabled by default on AMD.
1542 * mce=nobootlog Don't log MCEs from before booting.
1543 */
1544static int __init mcheck_enable(char *str)
1545{
1546	if (*str == 0)
1547		enable_p5_mce();
1548	if (*str == '=')
1549		str++;
1550	if (!strcmp(str, "off"))
1551		mce_disabled = 1;
1552	else if (!strcmp(str, "no_cmci"))
1553		mce_cmci_disabled = 1;
1554	else if (!strcmp(str, "dont_log_ce"))
1555		mce_dont_log_ce = 1;
1556	else if (!strcmp(str, "ignore_ce"))
1557		mce_ignore_ce = 1;
1558	else if (!strcmp(str, "bootlog") || !strcmp(str, "nobootlog"))
1559		mce_bootlog = (str[0] == 'b');
1560	else if (isdigit(str[0])) {
1561		get_option(&str, &tolerant);
1562		if (*str == ',') {
1563			++str;
1564			get_option(&str, &monarch_timeout);
1565		}
1566	} else {
1567		printk(KERN_INFO "mce argument %s ignored. Please use /sys\n",
1568		       str);
1569		return 0;
1570	}
1571	return 1;
1572}
1573__setup("mce", mcheck_enable);
1574
1575/*
1576 * Sysfs support
1577 */
1578
1579/*
1580 * Disable machine checks on suspend and shutdown. We can't really handle
1581 * them later.
1582 */
1583static int mce_disable(void)
1584{
1585	int i;
1586
1587	for (i = 0; i < banks; i++) {
1588		if (!skip_bank_init(i))
1589			wrmsrl(MSR_IA32_MC0_CTL + i*4, 0);
1590	}
1591	return 0;
1592}
1593
1594static int mce_suspend(struct sys_device *dev, pm_message_t state)
1595{
1596	return mce_disable();
1597}
1598
1599static int mce_shutdown(struct sys_device *dev)
1600{
1601	return mce_disable();
1602}
1603
1604/*
1605 * On resume clear all MCE state. Don't want to see leftovers from the BIOS.
1606 * Only one CPU is active at this time, the others get re-added later using
1607 * CPU hotplug:
1608 */
1609static int mce_resume(struct sys_device *dev)
1610{
1611	mce_init();
1612	mce_cpu_features(&current_cpu_data);
1613
1614	return 0;
1615}
1616
1617static void mce_cpu_restart(void *data)
1618{
1619	del_timer_sync(&__get_cpu_var(mce_timer));
1620	if (!mce_available(&current_cpu_data))
1621		return;
1622	mce_init();
1623	mce_init_timer();
1624}
1625
1626/* Reinit MCEs after user configuration changes */
1627static void mce_restart(void)
1628{
1629	on_each_cpu(mce_cpu_restart, NULL, 1);
1630}
1631
1632static struct sysdev_class mce_sysclass = {
1633	.suspend	= mce_suspend,
1634	.shutdown	= mce_shutdown,
1635	.resume		= mce_resume,
1636	.name		= "machinecheck",
1637};
1638
1639DEFINE_PER_CPU(struct sys_device, mce_dev);
1640
1641__cpuinitdata
1642void (*threshold_cpu_callback)(unsigned long action, unsigned int cpu);
1643
1644static struct sysdev_attribute *bank_attrs;
1645
1646static ssize_t show_bank(struct sys_device *s, struct sysdev_attribute *attr,
1647			 char *buf)
1648{
1649	u64 b = bank[attr - bank_attrs];
1650
1651	return sprintf(buf, "%llx\n", b);
1652}
1653
1654static ssize_t set_bank(struct sys_device *s, struct sysdev_attribute *attr,
1655			const char *buf, size_t size)
1656{
1657	u64 new;
1658
1659	if (strict_strtoull(buf, 0, &new) < 0)
1660		return -EINVAL;
1661
1662	bank[attr - bank_attrs] = new;
1663	mce_restart();
1664
1665	return size;
1666}
1667
1668static ssize_t
1669show_trigger(struct sys_device *s, struct sysdev_attribute *attr, char *buf)
1670{
1671	strcpy(buf, trigger);
1672	strcat(buf, "\n");
1673	return strlen(trigger) + 1;
1674}
1675
1676static ssize_t set_trigger(struct sys_device *s, struct sysdev_attribute *attr,
1677				const char *buf, size_t siz)
1678{
1679	char *p;
1680	int len;
1681
1682	strncpy(trigger, buf, sizeof(trigger));
1683	trigger[sizeof(trigger)-1] = 0;
1684	len = strlen(trigger);
1685	p = strchr(trigger, '\n');
1686
1687	if (*p)
1688		*p = 0;
1689
1690	return len;
1691}
1692
1693static ssize_t store_int_with_restart(struct sys_device *s,
1694				      struct sysdev_attribute *attr,
1695				      const char *buf, size_t size)
1696{
1697	ssize_t ret = sysdev_store_int(s, attr, buf, size);
1698	mce_restart();
1699	return ret;
1700}
1701
1702static SYSDEV_ATTR(trigger, 0644, show_trigger, set_trigger);
1703static SYSDEV_INT_ATTR(tolerant, 0644, tolerant);
1704static SYSDEV_INT_ATTR(monarch_timeout, 0644, monarch_timeout);
1705
1706static struct sysdev_ext_attribute attr_check_interval = {
1707	_SYSDEV_ATTR(check_interval, 0644, sysdev_show_int,
1708		     store_int_with_restart),
1709	&check_interval
1710};
1711
1712static struct sysdev_attribute *mce_attrs[] = {
1713	&attr_tolerant.attr, &attr_check_interval.attr, &attr_trigger,
1714	&attr_monarch_timeout.attr,
1715	NULL
1716};
1717
1718static cpumask_var_t mce_dev_initialized;
1719
1720/* Per cpu sysdev init. All of the cpus still share the same ctrl bank: */
1721static __cpuinit int mce_create_device(unsigned int cpu)
1722{
1723	int err;
1724	int i;
1725
1726	if (!mce_available(&boot_cpu_data))
1727		return -EIO;
1728
1729	memset(&per_cpu(mce_dev, cpu).kobj, 0, sizeof(struct kobject));
1730	per_cpu(mce_dev, cpu).id	= cpu;
1731	per_cpu(mce_dev, cpu).cls	= &mce_sysclass;
1732
1733	err = sysdev_register(&per_cpu(mce_dev, cpu));
1734	if (err)
1735		return err;
1736
1737	for (i = 0; mce_attrs[i]; i++) {
1738		err = sysdev_create_file(&per_cpu(mce_dev, cpu), mce_attrs[i]);
1739		if (err)
1740			goto error;
1741	}
1742	for (i = 0; i < banks; i++) {
1743		err = sysdev_create_file(&per_cpu(mce_dev, cpu),
1744					&bank_attrs[i]);
1745		if (err)
1746			goto error2;
1747	}
1748	cpumask_set_cpu(cpu, mce_dev_initialized);
1749
1750	return 0;
1751error2:
1752	while (--i >= 0)
1753		sysdev_remove_file(&per_cpu(mce_dev, cpu), &bank_attrs[i]);
1754error:
1755	while (--i >= 0)
1756		sysdev_remove_file(&per_cpu(mce_dev, cpu), mce_attrs[i]);
1757
1758	sysdev_unregister(&per_cpu(mce_dev, cpu));
1759
1760	return err;
1761}
1762
1763static __cpuinit void mce_remove_device(unsigned int cpu)
1764{
1765	int i;
1766
1767	if (!cpumask_test_cpu(cpu, mce_dev_initialized))
1768		return;
1769
1770	for (i = 0; mce_attrs[i]; i++)
1771		sysdev_remove_file(&per_cpu(mce_dev, cpu), mce_attrs[i]);
1772
1773	for (i = 0; i < banks; i++)
1774		sysdev_remove_file(&per_cpu(mce_dev, cpu), &bank_attrs[i]);
1775
1776	sysdev_unregister(&per_cpu(mce_dev, cpu));
1777	cpumask_clear_cpu(cpu, mce_dev_initialized);
1778}
1779
1780/* Make sure there are no machine checks on offlined CPUs. */
1781static void mce_disable_cpu(void *h)
1782{
1783	unsigned long action = *(unsigned long *)h;
1784	int i;
1785
1786	if (!mce_available(&current_cpu_data))
1787		return;
1788	if (!(action & CPU_TASKS_FROZEN))
1789		cmci_clear();
1790	for (i = 0; i < banks; i++) {
1791		if (!skip_bank_init(i))
1792			wrmsrl(MSR_IA32_MC0_CTL + i*4, 0);
1793	}
1794}
1795
1796static void mce_reenable_cpu(void *h)
1797{
1798	unsigned long action = *(unsigned long *)h;
1799	int i;
1800
1801	if (!mce_available(&current_cpu_data))
1802		return;
1803
1804	if (!(action & CPU_TASKS_FROZEN))
1805		cmci_reenable();
1806	for (i = 0; i < banks; i++) {
1807		if (!skip_bank_init(i))
1808			wrmsrl(MSR_IA32_MC0_CTL + i*4, bank[i]);
1809	}
1810}
1811
1812/* Get notified when a cpu comes on/off. Be hotplug friendly. */
1813static int __cpuinit
1814mce_cpu_callback(struct notifier_block *nfb, unsigned long action, void *hcpu)
1815{
1816	unsigned int cpu = (unsigned long)hcpu;
1817	struct timer_list *t = &per_cpu(mce_timer, cpu);
1818
1819	switch (action) {
1820	case CPU_ONLINE:
1821	case CPU_ONLINE_FROZEN:
1822		mce_create_device(cpu);
1823		if (threshold_cpu_callback)
1824			threshold_cpu_callback(action, cpu);
1825		break;
1826	case CPU_DEAD:
1827	case CPU_DEAD_FROZEN:
1828		if (threshold_cpu_callback)
1829			threshold_cpu_callback(action, cpu);
1830		mce_remove_device(cpu);
1831		break;
1832	case CPU_DOWN_PREPARE:
1833	case CPU_DOWN_PREPARE_FROZEN:
1834		del_timer_sync(t);
1835		smp_call_function_single(cpu, mce_disable_cpu, &action, 1);
1836		break;
1837	case CPU_DOWN_FAILED:
1838	case CPU_DOWN_FAILED_FROZEN:
1839		t->expires = round_jiffies(jiffies +
1840						__get_cpu_var(next_interval));
1841		add_timer_on(t, cpu);
1842		smp_call_function_single(cpu, mce_reenable_cpu, &action, 1);
1843		break;
1844	case CPU_POST_DEAD:
1845		/* intentionally ignoring frozen here */
1846		cmci_rediscover(cpu);
1847		break;
1848	}
1849	return NOTIFY_OK;
1850}
1851
1852static struct notifier_block mce_cpu_notifier __cpuinitdata = {
1853	.notifier_call = mce_cpu_callback,
1854};
1855
1856static __init int mce_init_banks(void)
1857{
1858	int i;
1859
1860	bank_attrs = kzalloc(sizeof(struct sysdev_attribute) * banks,
1861				GFP_KERNEL);
1862	if (!bank_attrs)
1863		return -ENOMEM;
1864
1865	for (i = 0; i < banks; i++) {
1866		struct sysdev_attribute *a = &bank_attrs[i];
1867
1868		a->attr.name	= kasprintf(GFP_KERNEL, "bank%d", i);
1869		if (!a->attr.name)
1870			goto nomem;
1871
1872		a->attr.mode	= 0644;
1873		a->show		= show_bank;
1874		a->store	= set_bank;
1875	}
1876	return 0;
1877
1878nomem:
1879	while (--i >= 0)
1880		kfree(bank_attrs[i].attr.name);
1881	kfree(bank_attrs);
1882	bank_attrs = NULL;
1883
1884	return -ENOMEM;
1885}
1886
1887static __init int mce_init_device(void)
1888{
1889	int err;
1890	int i = 0;
1891
1892	if (!mce_available(&boot_cpu_data))
1893		return -EIO;
1894
1895	alloc_cpumask_var(&mce_dev_initialized, GFP_KERNEL);
1896
1897	err = mce_init_banks();
1898	if (err)
1899		return err;
1900
1901	err = sysdev_class_register(&mce_sysclass);
1902	if (err)
1903		return err;
1904
1905	for_each_online_cpu(i) {
1906		err = mce_create_device(i);
1907		if (err)
1908			return err;
1909	}
1910
1911	register_hotcpu_notifier(&mce_cpu_notifier);
1912	misc_register(&mce_log_device);
1913
1914	return err;
1915}
1916
1917device_initcall(mce_init_device);
1918
1919#else /* CONFIG_X86_OLD_MCE: */
1920
1921int nr_mce_banks;
1922EXPORT_SYMBOL_GPL(nr_mce_banks);	/* non-fatal.o */
1923
1924/* This has to be run for each processor */
1925void mcheck_init(struct cpuinfo_x86 *c)
1926{
1927	if (mce_disabled == 1)
1928		return;
1929
1930	switch (c->x86_vendor) {
1931	case X86_VENDOR_AMD:
1932		amd_mcheck_init(c);
1933		break;
1934
1935	case X86_VENDOR_INTEL:
1936		if (c->x86 == 5)
1937			intel_p5_mcheck_init(c);
1938		if (c->x86 == 6)
1939			intel_p6_mcheck_init(c);
1940		if (c->x86 == 15)
1941			intel_p4_mcheck_init(c);
1942		break;
1943
1944	case X86_VENDOR_CENTAUR:
1945		if (c->x86 == 5)
1946			winchip_mcheck_init(c);
1947		break;
1948
1949	default:
1950		break;
1951	}
1952	printk(KERN_INFO "mce: CPU supports %d MCE banks\n", nr_mce_banks);
1953}
1954
1955static int __init mcheck_enable(char *str)
1956{
1957	mce_disabled = -1;
1958	return 1;
1959}
1960
1961__setup("mce", mcheck_enable);
1962
1963#endif /* CONFIG_X86_OLD_MCE */
1964
1965/*
1966 * Old style boot options parsing. Only for compatibility.
1967 */
1968static int __init mcheck_disable(char *str)
1969{
1970	mce_disabled = 1;
1971	return 1;
1972}
1973__setup("nomce", mcheck_disable);
1974