mce.c revision 69c60c88eeb364ebf58432f9bc38033522d58767
1/*
2 * Machine check handler.
3 *
4 * K8 parts Copyright 2002,2003 Andi Kleen, SuSE Labs.
5 * Rest from unknown author(s).
6 * 2004 Andi Kleen. Rewrote most of it.
7 * Copyright 2008 Intel Corporation
8 * Author: Andi Kleen
9 */
10#include <linux/thread_info.h>
11#include <linux/capability.h>
12#include <linux/miscdevice.h>
13#include <linux/ratelimit.h>
14#include <linux/kallsyms.h>
15#include <linux/rcupdate.h>
16#include <linux/kobject.h>
17#include <linux/uaccess.h>
18#include <linux/kdebug.h>
19#include <linux/kernel.h>
20#include <linux/percpu.h>
21#include <linux/string.h>
22#include <linux/sysdev.h>
23#include <linux/syscore_ops.h>
24#include <linux/delay.h>
25#include <linux/ctype.h>
26#include <linux/sched.h>
27#include <linux/sysfs.h>
28#include <linux/types.h>
29#include <linux/slab.h>
30#include <linux/init.h>
31#include <linux/kmod.h>
32#include <linux/poll.h>
33#include <linux/nmi.h>
34#include <linux/cpu.h>
35#include <linux/smp.h>
36#include <linux/fs.h>
37#include <linux/mm.h>
38#include <linux/debugfs.h>
39#include <linux/edac_mce.h>
40#include <linux/irq_work.h>
41#include <linux/export.h>
42
43#include <asm/processor.h>
44#include <asm/mce.h>
45#include <asm/msr.h>
46
47#include "mce-internal.h"
48
49static DEFINE_MUTEX(mce_chrdev_read_mutex);
50
51#define rcu_dereference_check_mce(p) \
52	rcu_dereference_index_check((p), \
53			      rcu_read_lock_sched_held() || \
54			      lockdep_is_held(&mce_chrdev_read_mutex))
55
56#define CREATE_TRACE_POINTS
57#include <trace/events/mce.h>
58
59int mce_disabled __read_mostly;
60
61#define MISC_MCELOG_MINOR	227
62
63#define SPINUNIT 100	/* 100ns */
64
65atomic_t mce_entry;
66
67DEFINE_PER_CPU(unsigned, mce_exception_count);
68
69/*
70 * Tolerant levels:
71 *   0: always panic on uncorrected errors, log corrected errors
72 *   1: panic or SIGBUS on uncorrected errors, log corrected errors
73 *   2: SIGBUS or log uncorrected errors (if possible), log corrected errors
74 *   3: never panic or SIGBUS, log all errors (for testing only)
75 */
76static int			tolerant		__read_mostly = 1;
77static int			banks			__read_mostly;
78static int			rip_msr			__read_mostly;
79static int			mce_bootlog		__read_mostly = -1;
80static int			monarch_timeout		__read_mostly = -1;
81static int			mce_panic_timeout	__read_mostly;
82static int			mce_dont_log_ce		__read_mostly;
83int				mce_cmci_disabled	__read_mostly;
84int				mce_ignore_ce		__read_mostly;
85int				mce_ser			__read_mostly;
86
87struct mce_bank                *mce_banks		__read_mostly;
88
89/* User mode helper program triggered by machine check event */
90static unsigned long		mce_need_notify;
91static char			mce_helper[128];
92static char			*mce_helper_argv[2] = { mce_helper, NULL };
93
94static DECLARE_WAIT_QUEUE_HEAD(mce_chrdev_wait);
95
96static DEFINE_PER_CPU(struct mce, mces_seen);
97static int			cpu_missing;
98
99/*
100 * CPU/chipset specific EDAC code can register a notifier call here to print
101 * MCE errors in a human-readable form.
102 */
103ATOMIC_NOTIFIER_HEAD(x86_mce_decoder_chain);
104EXPORT_SYMBOL_GPL(x86_mce_decoder_chain);
105
106/* MCA banks polled by the period polling timer for corrected events */
107DEFINE_PER_CPU(mce_banks_t, mce_poll_banks) = {
108	[0 ... BITS_TO_LONGS(MAX_NR_BANKS)-1] = ~0UL
109};
110
111static DEFINE_PER_CPU(struct work_struct, mce_work);
112
113/* Do initial initialization of a struct mce */
114void mce_setup(struct mce *m)
115{
116	memset(m, 0, sizeof(struct mce));
117	m->cpu = m->extcpu = smp_processor_id();
118	rdtscll(m->tsc);
119	/* We hope get_seconds stays lockless */
120	m->time = get_seconds();
121	m->cpuvendor = boot_cpu_data.x86_vendor;
122	m->cpuid = cpuid_eax(1);
123#ifdef CONFIG_SMP
124	m->socketid = cpu_data(m->extcpu).phys_proc_id;
125#endif
126	m->apicid = cpu_data(m->extcpu).initial_apicid;
127	rdmsrl(MSR_IA32_MCG_CAP, m->mcgcap);
128}
129
130DEFINE_PER_CPU(struct mce, injectm);
131EXPORT_PER_CPU_SYMBOL_GPL(injectm);
132
133/*
134 * Lockless MCE logging infrastructure.
135 * This avoids deadlocks on printk locks without having to break locks. Also
136 * separate MCEs from kernel messages to avoid bogus bug reports.
137 */
138
139static struct mce_log mcelog = {
140	.signature	= MCE_LOG_SIGNATURE,
141	.len		= MCE_LOG_LEN,
142	.recordlen	= sizeof(struct mce),
143};
144
145void mce_log(struct mce *mce)
146{
147	unsigned next, entry;
148
149	/* Emit the trace record: */
150	trace_mce_record(mce);
151
152	mce->finished = 0;
153	wmb();
154	for (;;) {
155		entry = rcu_dereference_check_mce(mcelog.next);
156		for (;;) {
157			/*
158			 * If edac_mce is enabled, it will check the error type
159			 * and will process it, if it is a known error.
160			 * Otherwise, the error will be sent through mcelog
161			 * interface
162			 */
163			if (edac_mce_parse(mce))
164				return;
165
166			/*
167			 * When the buffer fills up discard new entries.
168			 * Assume that the earlier errors are the more
169			 * interesting ones:
170			 */
171			if (entry >= MCE_LOG_LEN) {
172				set_bit(MCE_OVERFLOW,
173					(unsigned long *)&mcelog.flags);
174				return;
175			}
176			/* Old left over entry. Skip: */
177			if (mcelog.entry[entry].finished) {
178				entry++;
179				continue;
180			}
181			break;
182		}
183		smp_rmb();
184		next = entry + 1;
185		if (cmpxchg(&mcelog.next, entry, next) == entry)
186			break;
187	}
188	memcpy(mcelog.entry + entry, mce, sizeof(struct mce));
189	wmb();
190	mcelog.entry[entry].finished = 1;
191	wmb();
192
193	mce->finished = 1;
194	set_bit(0, &mce_need_notify);
195}
196
197static void print_mce(struct mce *m)
198{
199	int ret = 0;
200
201	pr_emerg(HW_ERR "CPU %d: Machine Check Exception: %Lx Bank %d: %016Lx\n",
202	       m->extcpu, m->mcgstatus, m->bank, m->status);
203
204	if (m->ip) {
205		pr_emerg(HW_ERR "RIP%s %02x:<%016Lx> ",
206			!(m->mcgstatus & MCG_STATUS_EIPV) ? " !INEXACT!" : "",
207				m->cs, m->ip);
208
209		if (m->cs == __KERNEL_CS)
210			print_symbol("{%s}", m->ip);
211		pr_cont("\n");
212	}
213
214	pr_emerg(HW_ERR "TSC %llx ", m->tsc);
215	if (m->addr)
216		pr_cont("ADDR %llx ", m->addr);
217	if (m->misc)
218		pr_cont("MISC %llx ", m->misc);
219
220	pr_cont("\n");
221	/*
222	 * Note this output is parsed by external tools and old fields
223	 * should not be changed.
224	 */
225	pr_emerg(HW_ERR "PROCESSOR %u:%x TIME %llu SOCKET %u APIC %x microcode %x\n",
226		m->cpuvendor, m->cpuid, m->time, m->socketid, m->apicid,
227		cpu_data(m->extcpu).microcode);
228
229	/*
230	 * Print out human-readable details about the MCE error,
231	 * (if the CPU has an implementation for that)
232	 */
233	ret = atomic_notifier_call_chain(&x86_mce_decoder_chain, 0, m);
234	if (ret == NOTIFY_STOP)
235		return;
236
237	pr_emerg_ratelimited(HW_ERR "Run the above through 'mcelog --ascii'\n");
238}
239
240#define PANIC_TIMEOUT 5 /* 5 seconds */
241
242static atomic_t mce_paniced;
243
244static int fake_panic;
245static atomic_t mce_fake_paniced;
246
247/* Panic in progress. Enable interrupts and wait for final IPI */
248static void wait_for_panic(void)
249{
250	long timeout = PANIC_TIMEOUT*USEC_PER_SEC;
251
252	preempt_disable();
253	local_irq_enable();
254	while (timeout-- > 0)
255		udelay(1);
256	if (panic_timeout == 0)
257		panic_timeout = mce_panic_timeout;
258	panic("Panicing machine check CPU died");
259}
260
261static void mce_panic(char *msg, struct mce *final, char *exp)
262{
263	int i, apei_err = 0;
264
265	if (!fake_panic) {
266		/*
267		 * Make sure only one CPU runs in machine check panic
268		 */
269		if (atomic_inc_return(&mce_paniced) > 1)
270			wait_for_panic();
271		barrier();
272
273		bust_spinlocks(1);
274		console_verbose();
275	} else {
276		/* Don't log too much for fake panic */
277		if (atomic_inc_return(&mce_fake_paniced) > 1)
278			return;
279	}
280	/* First print corrected ones that are still unlogged */
281	for (i = 0; i < MCE_LOG_LEN; i++) {
282		struct mce *m = &mcelog.entry[i];
283		if (!(m->status & MCI_STATUS_VAL))
284			continue;
285		if (!(m->status & MCI_STATUS_UC)) {
286			print_mce(m);
287			if (!apei_err)
288				apei_err = apei_write_mce(m);
289		}
290	}
291	/* Now print uncorrected but with the final one last */
292	for (i = 0; i < MCE_LOG_LEN; i++) {
293		struct mce *m = &mcelog.entry[i];
294		if (!(m->status & MCI_STATUS_VAL))
295			continue;
296		if (!(m->status & MCI_STATUS_UC))
297			continue;
298		if (!final || memcmp(m, final, sizeof(struct mce))) {
299			print_mce(m);
300			if (!apei_err)
301				apei_err = apei_write_mce(m);
302		}
303	}
304	if (final) {
305		print_mce(final);
306		if (!apei_err)
307			apei_err = apei_write_mce(final);
308	}
309	if (cpu_missing)
310		pr_emerg(HW_ERR "Some CPUs didn't answer in synchronization\n");
311	if (exp)
312		pr_emerg(HW_ERR "Machine check: %s\n", exp);
313	if (!fake_panic) {
314		if (panic_timeout == 0)
315			panic_timeout = mce_panic_timeout;
316		panic(msg);
317	} else
318		pr_emerg(HW_ERR "Fake kernel panic: %s\n", msg);
319}
320
321/* Support code for software error injection */
322
323static int msr_to_offset(u32 msr)
324{
325	unsigned bank = __this_cpu_read(injectm.bank);
326
327	if (msr == rip_msr)
328		return offsetof(struct mce, ip);
329	if (msr == MSR_IA32_MCx_STATUS(bank))
330		return offsetof(struct mce, status);
331	if (msr == MSR_IA32_MCx_ADDR(bank))
332		return offsetof(struct mce, addr);
333	if (msr == MSR_IA32_MCx_MISC(bank))
334		return offsetof(struct mce, misc);
335	if (msr == MSR_IA32_MCG_STATUS)
336		return offsetof(struct mce, mcgstatus);
337	return -1;
338}
339
340/* MSR access wrappers used for error injection */
341static u64 mce_rdmsrl(u32 msr)
342{
343	u64 v;
344
345	if (__this_cpu_read(injectm.finished)) {
346		int offset = msr_to_offset(msr);
347
348		if (offset < 0)
349			return 0;
350		return *(u64 *)((char *)&__get_cpu_var(injectm) + offset);
351	}
352
353	if (rdmsrl_safe(msr, &v)) {
354		WARN_ONCE(1, "mce: Unable to read msr %d!\n", msr);
355		/*
356		 * Return zero in case the access faulted. This should
357		 * not happen normally but can happen if the CPU does
358		 * something weird, or if the code is buggy.
359		 */
360		v = 0;
361	}
362
363	return v;
364}
365
366static void mce_wrmsrl(u32 msr, u64 v)
367{
368	if (__this_cpu_read(injectm.finished)) {
369		int offset = msr_to_offset(msr);
370
371		if (offset >= 0)
372			*(u64 *)((char *)&__get_cpu_var(injectm) + offset) = v;
373		return;
374	}
375	wrmsrl(msr, v);
376}
377
378/*
379 * Collect all global (w.r.t. this processor) status about this machine
380 * check into our "mce" struct so that we can use it later to assess
381 * the severity of the problem as we read per-bank specific details.
382 */
383static inline void mce_gather_info(struct mce *m, struct pt_regs *regs)
384{
385	mce_setup(m);
386
387	m->mcgstatus = mce_rdmsrl(MSR_IA32_MCG_STATUS);
388	if (regs) {
389		/*
390		 * Get the address of the instruction at the time of
391		 * the machine check error.
392		 */
393		if (m->mcgstatus & (MCG_STATUS_RIPV|MCG_STATUS_EIPV)) {
394			m->ip = regs->ip;
395			m->cs = regs->cs;
396		}
397		/* Use accurate RIP reporting if available. */
398		if (rip_msr)
399			m->ip = mce_rdmsrl(rip_msr);
400	}
401}
402
403/*
404 * Simple lockless ring to communicate PFNs from the exception handler with the
405 * process context work function. This is vastly simplified because there's
406 * only a single reader and a single writer.
407 */
408#define MCE_RING_SIZE 16	/* we use one entry less */
409
410struct mce_ring {
411	unsigned short start;
412	unsigned short end;
413	unsigned long ring[MCE_RING_SIZE];
414};
415static DEFINE_PER_CPU(struct mce_ring, mce_ring);
416
417/* Runs with CPU affinity in workqueue */
418static int mce_ring_empty(void)
419{
420	struct mce_ring *r = &__get_cpu_var(mce_ring);
421
422	return r->start == r->end;
423}
424
425static int mce_ring_get(unsigned long *pfn)
426{
427	struct mce_ring *r;
428	int ret = 0;
429
430	*pfn = 0;
431	get_cpu();
432	r = &__get_cpu_var(mce_ring);
433	if (r->start == r->end)
434		goto out;
435	*pfn = r->ring[r->start];
436	r->start = (r->start + 1) % MCE_RING_SIZE;
437	ret = 1;
438out:
439	put_cpu();
440	return ret;
441}
442
443/* Always runs in MCE context with preempt off */
444static int mce_ring_add(unsigned long pfn)
445{
446	struct mce_ring *r = &__get_cpu_var(mce_ring);
447	unsigned next;
448
449	next = (r->end + 1) % MCE_RING_SIZE;
450	if (next == r->start)
451		return -1;
452	r->ring[r->end] = pfn;
453	wmb();
454	r->end = next;
455	return 0;
456}
457
458int mce_available(struct cpuinfo_x86 *c)
459{
460	if (mce_disabled)
461		return 0;
462	return cpu_has(c, X86_FEATURE_MCE) && cpu_has(c, X86_FEATURE_MCA);
463}
464
465static void mce_schedule_work(void)
466{
467	if (!mce_ring_empty()) {
468		struct work_struct *work = &__get_cpu_var(mce_work);
469		if (!work_pending(work))
470			schedule_work(work);
471	}
472}
473
474DEFINE_PER_CPU(struct irq_work, mce_irq_work);
475
476static void mce_irq_work_cb(struct irq_work *entry)
477{
478	mce_notify_irq();
479	mce_schedule_work();
480}
481
482static void mce_report_event(struct pt_regs *regs)
483{
484	if (regs->flags & (X86_VM_MASK|X86_EFLAGS_IF)) {
485		mce_notify_irq();
486		/*
487		 * Triggering the work queue here is just an insurance
488		 * policy in case the syscall exit notify handler
489		 * doesn't run soon enough or ends up running on the
490		 * wrong CPU (can happen when audit sleeps)
491		 */
492		mce_schedule_work();
493		return;
494	}
495
496	irq_work_queue(&__get_cpu_var(mce_irq_work));
497}
498
499DEFINE_PER_CPU(unsigned, mce_poll_count);
500
501/*
502 * Poll for corrected events or events that happened before reset.
503 * Those are just logged through /dev/mcelog.
504 *
505 * This is executed in standard interrupt context.
506 *
507 * Note: spec recommends to panic for fatal unsignalled
508 * errors here. However this would be quite problematic --
509 * we would need to reimplement the Monarch handling and
510 * it would mess up the exclusion between exception handler
511 * and poll hander -- * so we skip this for now.
512 * These cases should not happen anyways, or only when the CPU
513 * is already totally * confused. In this case it's likely it will
514 * not fully execute the machine check handler either.
515 */
516void machine_check_poll(enum mcp_flags flags, mce_banks_t *b)
517{
518	struct mce m;
519	int i;
520
521	percpu_inc(mce_poll_count);
522
523	mce_gather_info(&m, NULL);
524
525	for (i = 0; i < banks; i++) {
526		if (!mce_banks[i].ctl || !test_bit(i, *b))
527			continue;
528
529		m.misc = 0;
530		m.addr = 0;
531		m.bank = i;
532		m.tsc = 0;
533
534		barrier();
535		m.status = mce_rdmsrl(MSR_IA32_MCx_STATUS(i));
536		if (!(m.status & MCI_STATUS_VAL))
537			continue;
538
539		/*
540		 * Uncorrected or signalled events are handled by the exception
541		 * handler when it is enabled, so don't process those here.
542		 *
543		 * TBD do the same check for MCI_STATUS_EN here?
544		 */
545		if (!(flags & MCP_UC) &&
546		    (m.status & (mce_ser ? MCI_STATUS_S : MCI_STATUS_UC)))
547			continue;
548
549		if (m.status & MCI_STATUS_MISCV)
550			m.misc = mce_rdmsrl(MSR_IA32_MCx_MISC(i));
551		if (m.status & MCI_STATUS_ADDRV)
552			m.addr = mce_rdmsrl(MSR_IA32_MCx_ADDR(i));
553
554		if (!(flags & MCP_TIMESTAMP))
555			m.tsc = 0;
556		/*
557		 * Don't get the IP here because it's unlikely to
558		 * have anything to do with the actual error location.
559		 */
560		if (!(flags & MCP_DONTLOG) && !mce_dont_log_ce) {
561			mce_log(&m);
562			atomic_notifier_call_chain(&x86_mce_decoder_chain, 0, &m);
563		}
564
565		/*
566		 * Clear state for this bank.
567		 */
568		mce_wrmsrl(MSR_IA32_MCx_STATUS(i), 0);
569	}
570
571	/*
572	 * Don't clear MCG_STATUS here because it's only defined for
573	 * exceptions.
574	 */
575
576	sync_core();
577}
578EXPORT_SYMBOL_GPL(machine_check_poll);
579
580/*
581 * Do a quick check if any of the events requires a panic.
582 * This decides if we keep the events around or clear them.
583 */
584static int mce_no_way_out(struct mce *m, char **msg)
585{
586	int i;
587
588	for (i = 0; i < banks; i++) {
589		m->status = mce_rdmsrl(MSR_IA32_MCx_STATUS(i));
590		if (mce_severity(m, tolerant, msg) >= MCE_PANIC_SEVERITY)
591			return 1;
592	}
593	return 0;
594}
595
596/*
597 * Variable to establish order between CPUs while scanning.
598 * Each CPU spins initially until executing is equal its number.
599 */
600static atomic_t mce_executing;
601
602/*
603 * Defines order of CPUs on entry. First CPU becomes Monarch.
604 */
605static atomic_t mce_callin;
606
607/*
608 * Check if a timeout waiting for other CPUs happened.
609 */
610static int mce_timed_out(u64 *t)
611{
612	/*
613	 * The others already did panic for some reason.
614	 * Bail out like in a timeout.
615	 * rmb() to tell the compiler that system_state
616	 * might have been modified by someone else.
617	 */
618	rmb();
619	if (atomic_read(&mce_paniced))
620		wait_for_panic();
621	if (!monarch_timeout)
622		goto out;
623	if ((s64)*t < SPINUNIT) {
624		/* CHECKME: Make panic default for 1 too? */
625		if (tolerant < 1)
626			mce_panic("Timeout synchronizing machine check over CPUs",
627				  NULL, NULL);
628		cpu_missing = 1;
629		return 1;
630	}
631	*t -= SPINUNIT;
632out:
633	touch_nmi_watchdog();
634	return 0;
635}
636
637/*
638 * The Monarch's reign.  The Monarch is the CPU who entered
639 * the machine check handler first. It waits for the others to
640 * raise the exception too and then grades them. When any
641 * error is fatal panic. Only then let the others continue.
642 *
643 * The other CPUs entering the MCE handler will be controlled by the
644 * Monarch. They are called Subjects.
645 *
646 * This way we prevent any potential data corruption in a unrecoverable case
647 * and also makes sure always all CPU's errors are examined.
648 *
649 * Also this detects the case of a machine check event coming from outer
650 * space (not detected by any CPUs) In this case some external agent wants
651 * us to shut down, so panic too.
652 *
653 * The other CPUs might still decide to panic if the handler happens
654 * in a unrecoverable place, but in this case the system is in a semi-stable
655 * state and won't corrupt anything by itself. It's ok to let the others
656 * continue for a bit first.
657 *
658 * All the spin loops have timeouts; when a timeout happens a CPU
659 * typically elects itself to be Monarch.
660 */
661static void mce_reign(void)
662{
663	int cpu;
664	struct mce *m = NULL;
665	int global_worst = 0;
666	char *msg = NULL;
667	char *nmsg = NULL;
668
669	/*
670	 * This CPU is the Monarch and the other CPUs have run
671	 * through their handlers.
672	 * Grade the severity of the errors of all the CPUs.
673	 */
674	for_each_possible_cpu(cpu) {
675		int severity = mce_severity(&per_cpu(mces_seen, cpu), tolerant,
676					    &nmsg);
677		if (severity > global_worst) {
678			msg = nmsg;
679			global_worst = severity;
680			m = &per_cpu(mces_seen, cpu);
681		}
682	}
683
684	/*
685	 * Cannot recover? Panic here then.
686	 * This dumps all the mces in the log buffer and stops the
687	 * other CPUs.
688	 */
689	if (m && global_worst >= MCE_PANIC_SEVERITY && tolerant < 3)
690		mce_panic("Fatal Machine check", m, msg);
691
692	/*
693	 * For UC somewhere we let the CPU who detects it handle it.
694	 * Also must let continue the others, otherwise the handling
695	 * CPU could deadlock on a lock.
696	 */
697
698	/*
699	 * No machine check event found. Must be some external
700	 * source or one CPU is hung. Panic.
701	 */
702	if (global_worst <= MCE_KEEP_SEVERITY && tolerant < 3)
703		mce_panic("Machine check from unknown source", NULL, NULL);
704
705	/*
706	 * Now clear all the mces_seen so that they don't reappear on
707	 * the next mce.
708	 */
709	for_each_possible_cpu(cpu)
710		memset(&per_cpu(mces_seen, cpu), 0, sizeof(struct mce));
711}
712
713static atomic_t global_nwo;
714
715/*
716 * Start of Monarch synchronization. This waits until all CPUs have
717 * entered the exception handler and then determines if any of them
718 * saw a fatal event that requires panic. Then it executes them
719 * in the entry order.
720 * TBD double check parallel CPU hotunplug
721 */
722static int mce_start(int *no_way_out)
723{
724	int order;
725	int cpus = num_online_cpus();
726	u64 timeout = (u64)monarch_timeout * NSEC_PER_USEC;
727
728	if (!timeout)
729		return -1;
730
731	atomic_add(*no_way_out, &global_nwo);
732	/*
733	 * global_nwo should be updated before mce_callin
734	 */
735	smp_wmb();
736	order = atomic_inc_return(&mce_callin);
737
738	/*
739	 * Wait for everyone.
740	 */
741	while (atomic_read(&mce_callin) != cpus) {
742		if (mce_timed_out(&timeout)) {
743			atomic_set(&global_nwo, 0);
744			return -1;
745		}
746		ndelay(SPINUNIT);
747	}
748
749	/*
750	 * mce_callin should be read before global_nwo
751	 */
752	smp_rmb();
753
754	if (order == 1) {
755		/*
756		 * Monarch: Starts executing now, the others wait.
757		 */
758		atomic_set(&mce_executing, 1);
759	} else {
760		/*
761		 * Subject: Now start the scanning loop one by one in
762		 * the original callin order.
763		 * This way when there are any shared banks it will be
764		 * only seen by one CPU before cleared, avoiding duplicates.
765		 */
766		while (atomic_read(&mce_executing) < order) {
767			if (mce_timed_out(&timeout)) {
768				atomic_set(&global_nwo, 0);
769				return -1;
770			}
771			ndelay(SPINUNIT);
772		}
773	}
774
775	/*
776	 * Cache the global no_way_out state.
777	 */
778	*no_way_out = atomic_read(&global_nwo);
779
780	return order;
781}
782
783/*
784 * Synchronize between CPUs after main scanning loop.
785 * This invokes the bulk of the Monarch processing.
786 */
787static int mce_end(int order)
788{
789	int ret = -1;
790	u64 timeout = (u64)monarch_timeout * NSEC_PER_USEC;
791
792	if (!timeout)
793		goto reset;
794	if (order < 0)
795		goto reset;
796
797	/*
798	 * Allow others to run.
799	 */
800	atomic_inc(&mce_executing);
801
802	if (order == 1) {
803		/* CHECKME: Can this race with a parallel hotplug? */
804		int cpus = num_online_cpus();
805
806		/*
807		 * Monarch: Wait for everyone to go through their scanning
808		 * loops.
809		 */
810		while (atomic_read(&mce_executing) <= cpus) {
811			if (mce_timed_out(&timeout))
812				goto reset;
813			ndelay(SPINUNIT);
814		}
815
816		mce_reign();
817		barrier();
818		ret = 0;
819	} else {
820		/*
821		 * Subject: Wait for Monarch to finish.
822		 */
823		while (atomic_read(&mce_executing) != 0) {
824			if (mce_timed_out(&timeout))
825				goto reset;
826			ndelay(SPINUNIT);
827		}
828
829		/*
830		 * Don't reset anything. That's done by the Monarch.
831		 */
832		return 0;
833	}
834
835	/*
836	 * Reset all global state.
837	 */
838reset:
839	atomic_set(&global_nwo, 0);
840	atomic_set(&mce_callin, 0);
841	barrier();
842
843	/*
844	 * Let others run again.
845	 */
846	atomic_set(&mce_executing, 0);
847	return ret;
848}
849
850/*
851 * Check if the address reported by the CPU is in a format we can parse.
852 * It would be possible to add code for most other cases, but all would
853 * be somewhat complicated (e.g. segment offset would require an instruction
854 * parser). So only support physical addresses up to page granuality for now.
855 */
856static int mce_usable_address(struct mce *m)
857{
858	if (!(m->status & MCI_STATUS_MISCV) || !(m->status & MCI_STATUS_ADDRV))
859		return 0;
860	if (MCI_MISC_ADDR_LSB(m->misc) > PAGE_SHIFT)
861		return 0;
862	if (MCI_MISC_ADDR_MODE(m->misc) != MCI_MISC_ADDR_PHYS)
863		return 0;
864	return 1;
865}
866
867static void mce_clear_state(unsigned long *toclear)
868{
869	int i;
870
871	for (i = 0; i < banks; i++) {
872		if (test_bit(i, toclear))
873			mce_wrmsrl(MSR_IA32_MCx_STATUS(i), 0);
874	}
875}
876
877/*
878 * The actual machine check handler. This only handles real
879 * exceptions when something got corrupted coming in through int 18.
880 *
881 * This is executed in NMI context not subject to normal locking rules. This
882 * implies that most kernel services cannot be safely used. Don't even
883 * think about putting a printk in there!
884 *
885 * On Intel systems this is entered on all CPUs in parallel through
886 * MCE broadcast. However some CPUs might be broken beyond repair,
887 * so be always careful when synchronizing with others.
888 */
889void do_machine_check(struct pt_regs *regs, long error_code)
890{
891	struct mce m, *final;
892	int i;
893	int worst = 0;
894	int severity;
895	/*
896	 * Establish sequential order between the CPUs entering the machine
897	 * check handler.
898	 */
899	int order;
900	/*
901	 * If no_way_out gets set, there is no safe way to recover from this
902	 * MCE.  If tolerant is cranked up, we'll try anyway.
903	 */
904	int no_way_out = 0;
905	/*
906	 * If kill_it gets set, there might be a way to recover from this
907	 * error.
908	 */
909	int kill_it = 0;
910	DECLARE_BITMAP(toclear, MAX_NR_BANKS);
911	char *msg = "Unknown";
912
913	atomic_inc(&mce_entry);
914
915	percpu_inc(mce_exception_count);
916
917	if (!banks)
918		goto out;
919
920	mce_gather_info(&m, regs);
921
922	final = &__get_cpu_var(mces_seen);
923	*final = m;
924
925	no_way_out = mce_no_way_out(&m, &msg);
926
927	barrier();
928
929	/*
930	 * When no restart IP must always kill or panic.
931	 */
932	if (!(m.mcgstatus & MCG_STATUS_RIPV))
933		kill_it = 1;
934
935	/*
936	 * Go through all the banks in exclusion of the other CPUs.
937	 * This way we don't report duplicated events on shared banks
938	 * because the first one to see it will clear it.
939	 */
940	order = mce_start(&no_way_out);
941	for (i = 0; i < banks; i++) {
942		__clear_bit(i, toclear);
943		if (!mce_banks[i].ctl)
944			continue;
945
946		m.misc = 0;
947		m.addr = 0;
948		m.bank = i;
949
950		m.status = mce_rdmsrl(MSR_IA32_MCx_STATUS(i));
951		if ((m.status & MCI_STATUS_VAL) == 0)
952			continue;
953
954		/*
955		 * Non uncorrected or non signaled errors are handled by
956		 * machine_check_poll. Leave them alone, unless this panics.
957		 */
958		if (!(m.status & (mce_ser ? MCI_STATUS_S : MCI_STATUS_UC)) &&
959			!no_way_out)
960			continue;
961
962		/*
963		 * Set taint even when machine check was not enabled.
964		 */
965		add_taint(TAINT_MACHINE_CHECK);
966
967		severity = mce_severity(&m, tolerant, NULL);
968
969		/*
970		 * When machine check was for corrected handler don't touch,
971		 * unless we're panicing.
972		 */
973		if (severity == MCE_KEEP_SEVERITY && !no_way_out)
974			continue;
975		__set_bit(i, toclear);
976		if (severity == MCE_NO_SEVERITY) {
977			/*
978			 * Machine check event was not enabled. Clear, but
979			 * ignore.
980			 */
981			continue;
982		}
983
984		/*
985		 * Kill on action required.
986		 */
987		if (severity == MCE_AR_SEVERITY)
988			kill_it = 1;
989
990		if (m.status & MCI_STATUS_MISCV)
991			m.misc = mce_rdmsrl(MSR_IA32_MCx_MISC(i));
992		if (m.status & MCI_STATUS_ADDRV)
993			m.addr = mce_rdmsrl(MSR_IA32_MCx_ADDR(i));
994
995		/*
996		 * Action optional error. Queue address for later processing.
997		 * When the ring overflows we just ignore the AO error.
998		 * RED-PEN add some logging mechanism when
999		 * usable_address or mce_add_ring fails.
1000		 * RED-PEN don't ignore overflow for tolerant == 0
1001		 */
1002		if (severity == MCE_AO_SEVERITY && mce_usable_address(&m))
1003			mce_ring_add(m.addr >> PAGE_SHIFT);
1004
1005		mce_log(&m);
1006
1007		if (severity > worst) {
1008			*final = m;
1009			worst = severity;
1010		}
1011	}
1012
1013	if (!no_way_out)
1014		mce_clear_state(toclear);
1015
1016	/*
1017	 * Do most of the synchronization with other CPUs.
1018	 * When there's any problem use only local no_way_out state.
1019	 */
1020	if (mce_end(order) < 0)
1021		no_way_out = worst >= MCE_PANIC_SEVERITY;
1022
1023	/*
1024	 * If we have decided that we just CAN'T continue, and the user
1025	 * has not set tolerant to an insane level, give up and die.
1026	 *
1027	 * This is mainly used in the case when the system doesn't
1028	 * support MCE broadcasting or it has been disabled.
1029	 */
1030	if (no_way_out && tolerant < 3)
1031		mce_panic("Fatal machine check on current CPU", final, msg);
1032
1033	/*
1034	 * If the error seems to be unrecoverable, something should be
1035	 * done.  Try to kill as little as possible.  If we can kill just
1036	 * one task, do that.  If the user has set the tolerance very
1037	 * high, don't try to do anything at all.
1038	 */
1039
1040	if (kill_it && tolerant < 3)
1041		force_sig(SIGBUS, current);
1042
1043	/* notify userspace ASAP */
1044	set_thread_flag(TIF_MCE_NOTIFY);
1045
1046	if (worst > 0)
1047		mce_report_event(regs);
1048	mce_wrmsrl(MSR_IA32_MCG_STATUS, 0);
1049out:
1050	atomic_dec(&mce_entry);
1051	sync_core();
1052}
1053EXPORT_SYMBOL_GPL(do_machine_check);
1054
1055/* dummy to break dependency. actual code is in mm/memory-failure.c */
1056void __attribute__((weak)) memory_failure(unsigned long pfn, int vector)
1057{
1058	printk(KERN_ERR "Action optional memory failure at %lx ignored\n", pfn);
1059}
1060
1061/*
1062 * Called after mce notification in process context. This code
1063 * is allowed to sleep. Call the high level VM handler to process
1064 * any corrupted pages.
1065 * Assume that the work queue code only calls this one at a time
1066 * per CPU.
1067 * Note we don't disable preemption, so this code might run on the wrong
1068 * CPU. In this case the event is picked up by the scheduled work queue.
1069 * This is merely a fast path to expedite processing in some common
1070 * cases.
1071 */
1072void mce_notify_process(void)
1073{
1074	unsigned long pfn;
1075	mce_notify_irq();
1076	while (mce_ring_get(&pfn))
1077		memory_failure(pfn, MCE_VECTOR);
1078}
1079
1080static void mce_process_work(struct work_struct *dummy)
1081{
1082	mce_notify_process();
1083}
1084
1085#ifdef CONFIG_X86_MCE_INTEL
1086/***
1087 * mce_log_therm_throt_event - Logs the thermal throttling event to mcelog
1088 * @cpu: The CPU on which the event occurred.
1089 * @status: Event status information
1090 *
1091 * This function should be called by the thermal interrupt after the
1092 * event has been processed and the decision was made to log the event
1093 * further.
1094 *
1095 * The status parameter will be saved to the 'status' field of 'struct mce'
1096 * and historically has been the register value of the
1097 * MSR_IA32_THERMAL_STATUS (Intel) msr.
1098 */
1099void mce_log_therm_throt_event(__u64 status)
1100{
1101	struct mce m;
1102
1103	mce_setup(&m);
1104	m.bank = MCE_THERMAL_BANK;
1105	m.status = status;
1106	mce_log(&m);
1107}
1108#endif /* CONFIG_X86_MCE_INTEL */
1109
1110/*
1111 * Periodic polling timer for "silent" machine check errors.  If the
1112 * poller finds an MCE, poll 2x faster.  When the poller finds no more
1113 * errors, poll 2x slower (up to check_interval seconds).
1114 */
1115static int check_interval = 5 * 60; /* 5 minutes */
1116
1117static DEFINE_PER_CPU(int, mce_next_interval); /* in jiffies */
1118static DEFINE_PER_CPU(struct timer_list, mce_timer);
1119
1120static void mce_start_timer(unsigned long data)
1121{
1122	struct timer_list *t = &per_cpu(mce_timer, data);
1123	int *n;
1124
1125	WARN_ON(smp_processor_id() != data);
1126
1127	if (mce_available(__this_cpu_ptr(&cpu_info))) {
1128		machine_check_poll(MCP_TIMESTAMP,
1129				&__get_cpu_var(mce_poll_banks));
1130	}
1131
1132	/*
1133	 * Alert userspace if needed.  If we logged an MCE, reduce the
1134	 * polling interval, otherwise increase the polling interval.
1135	 */
1136	n = &__get_cpu_var(mce_next_interval);
1137	if (mce_notify_irq())
1138		*n = max(*n/2, HZ/100);
1139	else
1140		*n = min(*n*2, (int)round_jiffies_relative(check_interval*HZ));
1141
1142	t->expires = jiffies + *n;
1143	add_timer_on(t, smp_processor_id());
1144}
1145
1146/* Must not be called in IRQ context where del_timer_sync() can deadlock */
1147static void mce_timer_delete_all(void)
1148{
1149	int cpu;
1150
1151	for_each_online_cpu(cpu)
1152		del_timer_sync(&per_cpu(mce_timer, cpu));
1153}
1154
1155static void mce_do_trigger(struct work_struct *work)
1156{
1157	call_usermodehelper(mce_helper, mce_helper_argv, NULL, UMH_NO_WAIT);
1158}
1159
1160static DECLARE_WORK(mce_trigger_work, mce_do_trigger);
1161
1162/*
1163 * Notify the user(s) about new machine check events.
1164 * Can be called from interrupt context, but not from machine check/NMI
1165 * context.
1166 */
1167int mce_notify_irq(void)
1168{
1169	/* Not more than two messages every minute */
1170	static DEFINE_RATELIMIT_STATE(ratelimit, 60*HZ, 2);
1171
1172	clear_thread_flag(TIF_MCE_NOTIFY);
1173
1174	if (test_and_clear_bit(0, &mce_need_notify)) {
1175		/* wake processes polling /dev/mcelog */
1176		wake_up_interruptible(&mce_chrdev_wait);
1177
1178		/*
1179		 * There is no risk of missing notifications because
1180		 * work_pending is always cleared before the function is
1181		 * executed.
1182		 */
1183		if (mce_helper[0] && !work_pending(&mce_trigger_work))
1184			schedule_work(&mce_trigger_work);
1185
1186		if (__ratelimit(&ratelimit))
1187			pr_info(HW_ERR "Machine check events logged\n");
1188
1189		return 1;
1190	}
1191	return 0;
1192}
1193EXPORT_SYMBOL_GPL(mce_notify_irq);
1194
1195static int __cpuinit __mcheck_cpu_mce_banks_init(void)
1196{
1197	int i;
1198
1199	mce_banks = kzalloc(banks * sizeof(struct mce_bank), GFP_KERNEL);
1200	if (!mce_banks)
1201		return -ENOMEM;
1202	for (i = 0; i < banks; i++) {
1203		struct mce_bank *b = &mce_banks[i];
1204
1205		b->ctl = -1ULL;
1206		b->init = 1;
1207	}
1208	return 0;
1209}
1210
1211/*
1212 * Initialize Machine Checks for a CPU.
1213 */
1214static int __cpuinit __mcheck_cpu_cap_init(void)
1215{
1216	unsigned b;
1217	u64 cap;
1218
1219	rdmsrl(MSR_IA32_MCG_CAP, cap);
1220
1221	b = cap & MCG_BANKCNT_MASK;
1222	if (!banks)
1223		printk(KERN_INFO "mce: CPU supports %d MCE banks\n", b);
1224
1225	if (b > MAX_NR_BANKS) {
1226		printk(KERN_WARNING
1227		       "MCE: Using only %u machine check banks out of %u\n",
1228			MAX_NR_BANKS, b);
1229		b = MAX_NR_BANKS;
1230	}
1231
1232	/* Don't support asymmetric configurations today */
1233	WARN_ON(banks != 0 && b != banks);
1234	banks = b;
1235	if (!mce_banks) {
1236		int err = __mcheck_cpu_mce_banks_init();
1237
1238		if (err)
1239			return err;
1240	}
1241
1242	/* Use accurate RIP reporting if available. */
1243	if ((cap & MCG_EXT_P) && MCG_EXT_CNT(cap) >= 9)
1244		rip_msr = MSR_IA32_MCG_EIP;
1245
1246	if (cap & MCG_SER_P)
1247		mce_ser = 1;
1248
1249	return 0;
1250}
1251
1252static void __mcheck_cpu_init_generic(void)
1253{
1254	mce_banks_t all_banks;
1255	u64 cap;
1256	int i;
1257
1258	/*
1259	 * Log the machine checks left over from the previous reset.
1260	 */
1261	bitmap_fill(all_banks, MAX_NR_BANKS);
1262	machine_check_poll(MCP_UC|(!mce_bootlog ? MCP_DONTLOG : 0), &all_banks);
1263
1264	set_in_cr4(X86_CR4_MCE);
1265
1266	rdmsrl(MSR_IA32_MCG_CAP, cap);
1267	if (cap & MCG_CTL_P)
1268		wrmsr(MSR_IA32_MCG_CTL, 0xffffffff, 0xffffffff);
1269
1270	for (i = 0; i < banks; i++) {
1271		struct mce_bank *b = &mce_banks[i];
1272
1273		if (!b->init)
1274			continue;
1275		wrmsrl(MSR_IA32_MCx_CTL(i), b->ctl);
1276		wrmsrl(MSR_IA32_MCx_STATUS(i), 0);
1277	}
1278}
1279
1280/* Add per CPU specific workarounds here */
1281static int __cpuinit __mcheck_cpu_apply_quirks(struct cpuinfo_x86 *c)
1282{
1283	if (c->x86_vendor == X86_VENDOR_UNKNOWN) {
1284		pr_info("MCE: unknown CPU type - not enabling MCE support.\n");
1285		return -EOPNOTSUPP;
1286	}
1287
1288	/* This should be disabled by the BIOS, but isn't always */
1289	if (c->x86_vendor == X86_VENDOR_AMD) {
1290		if (c->x86 == 15 && banks > 4) {
1291			/*
1292			 * disable GART TBL walk error reporting, which
1293			 * trips off incorrectly with the IOMMU & 3ware
1294			 * & Cerberus:
1295			 */
1296			clear_bit(10, (unsigned long *)&mce_banks[4].ctl);
1297		}
1298		if (c->x86 <= 17 && mce_bootlog < 0) {
1299			/*
1300			 * Lots of broken BIOS around that don't clear them
1301			 * by default and leave crap in there. Don't log:
1302			 */
1303			mce_bootlog = 0;
1304		}
1305		/*
1306		 * Various K7s with broken bank 0 around. Always disable
1307		 * by default.
1308		 */
1309		 if (c->x86 == 6 && banks > 0)
1310			mce_banks[0].ctl = 0;
1311	}
1312
1313	if (c->x86_vendor == X86_VENDOR_INTEL) {
1314		/*
1315		 * SDM documents that on family 6 bank 0 should not be written
1316		 * because it aliases to another special BIOS controlled
1317		 * register.
1318		 * But it's not aliased anymore on model 0x1a+
1319		 * Don't ignore bank 0 completely because there could be a
1320		 * valid event later, merely don't write CTL0.
1321		 */
1322
1323		if (c->x86 == 6 && c->x86_model < 0x1A && banks > 0)
1324			mce_banks[0].init = 0;
1325
1326		/*
1327		 * All newer Intel systems support MCE broadcasting. Enable
1328		 * synchronization with a one second timeout.
1329		 */
1330		if ((c->x86 > 6 || (c->x86 == 6 && c->x86_model >= 0xe)) &&
1331			monarch_timeout < 0)
1332			monarch_timeout = USEC_PER_SEC;
1333
1334		/*
1335		 * There are also broken BIOSes on some Pentium M and
1336		 * earlier systems:
1337		 */
1338		if (c->x86 == 6 && c->x86_model <= 13 && mce_bootlog < 0)
1339			mce_bootlog = 0;
1340	}
1341	if (monarch_timeout < 0)
1342		monarch_timeout = 0;
1343	if (mce_bootlog != 0)
1344		mce_panic_timeout = 30;
1345
1346	return 0;
1347}
1348
1349static int __cpuinit __mcheck_cpu_ancient_init(struct cpuinfo_x86 *c)
1350{
1351	if (c->x86 != 5)
1352		return 0;
1353
1354	switch (c->x86_vendor) {
1355	case X86_VENDOR_INTEL:
1356		intel_p5_mcheck_init(c);
1357		return 1;
1358		break;
1359	case X86_VENDOR_CENTAUR:
1360		winchip_mcheck_init(c);
1361		return 1;
1362		break;
1363	}
1364
1365	return 0;
1366}
1367
1368static void __mcheck_cpu_init_vendor(struct cpuinfo_x86 *c)
1369{
1370	switch (c->x86_vendor) {
1371	case X86_VENDOR_INTEL:
1372		mce_intel_feature_init(c);
1373		break;
1374	case X86_VENDOR_AMD:
1375		mce_amd_feature_init(c);
1376		break;
1377	default:
1378		break;
1379	}
1380}
1381
1382static void __mcheck_cpu_init_timer(void)
1383{
1384	struct timer_list *t = &__get_cpu_var(mce_timer);
1385	int *n = &__get_cpu_var(mce_next_interval);
1386
1387	setup_timer(t, mce_start_timer, smp_processor_id());
1388
1389	if (mce_ignore_ce)
1390		return;
1391
1392	*n = check_interval * HZ;
1393	if (!*n)
1394		return;
1395	t->expires = round_jiffies(jiffies + *n);
1396	add_timer_on(t, smp_processor_id());
1397}
1398
1399/* Handle unconfigured int18 (should never happen) */
1400static void unexpected_machine_check(struct pt_regs *regs, long error_code)
1401{
1402	printk(KERN_ERR "CPU#%d: Unexpected int18 (Machine Check).\n",
1403	       smp_processor_id());
1404}
1405
1406/* Call the installed machine check handler for this CPU setup. */
1407void (*machine_check_vector)(struct pt_regs *, long error_code) =
1408						unexpected_machine_check;
1409
1410/*
1411 * Called for each booted CPU to set up machine checks.
1412 * Must be called with preempt off:
1413 */
1414void __cpuinit mcheck_cpu_init(struct cpuinfo_x86 *c)
1415{
1416	if (mce_disabled)
1417		return;
1418
1419	if (__mcheck_cpu_ancient_init(c))
1420		return;
1421
1422	if (!mce_available(c))
1423		return;
1424
1425	if (__mcheck_cpu_cap_init() < 0 || __mcheck_cpu_apply_quirks(c) < 0) {
1426		mce_disabled = 1;
1427		return;
1428	}
1429
1430	machine_check_vector = do_machine_check;
1431
1432	__mcheck_cpu_init_generic();
1433	__mcheck_cpu_init_vendor(c);
1434	__mcheck_cpu_init_timer();
1435	INIT_WORK(&__get_cpu_var(mce_work), mce_process_work);
1436	init_irq_work(&__get_cpu_var(mce_irq_work), &mce_irq_work_cb);
1437}
1438
1439/*
1440 * mce_chrdev: Character device /dev/mcelog to read and clear the MCE log.
1441 */
1442
1443static DEFINE_SPINLOCK(mce_chrdev_state_lock);
1444static int mce_chrdev_open_count;	/* #times opened */
1445static int mce_chrdev_open_exclu;	/* already open exclusive? */
1446
1447static int mce_chrdev_open(struct inode *inode, struct file *file)
1448{
1449	spin_lock(&mce_chrdev_state_lock);
1450
1451	if (mce_chrdev_open_exclu ||
1452	    (mce_chrdev_open_count && (file->f_flags & O_EXCL))) {
1453		spin_unlock(&mce_chrdev_state_lock);
1454
1455		return -EBUSY;
1456	}
1457
1458	if (file->f_flags & O_EXCL)
1459		mce_chrdev_open_exclu = 1;
1460	mce_chrdev_open_count++;
1461
1462	spin_unlock(&mce_chrdev_state_lock);
1463
1464	return nonseekable_open(inode, file);
1465}
1466
1467static int mce_chrdev_release(struct inode *inode, struct file *file)
1468{
1469	spin_lock(&mce_chrdev_state_lock);
1470
1471	mce_chrdev_open_count--;
1472	mce_chrdev_open_exclu = 0;
1473
1474	spin_unlock(&mce_chrdev_state_lock);
1475
1476	return 0;
1477}
1478
1479static void collect_tscs(void *data)
1480{
1481	unsigned long *cpu_tsc = (unsigned long *)data;
1482
1483	rdtscll(cpu_tsc[smp_processor_id()]);
1484}
1485
1486static int mce_apei_read_done;
1487
1488/* Collect MCE record of previous boot in persistent storage via APEI ERST. */
1489static int __mce_read_apei(char __user **ubuf, size_t usize)
1490{
1491	int rc;
1492	u64 record_id;
1493	struct mce m;
1494
1495	if (usize < sizeof(struct mce))
1496		return -EINVAL;
1497
1498	rc = apei_read_mce(&m, &record_id);
1499	/* Error or no more MCE record */
1500	if (rc <= 0) {
1501		mce_apei_read_done = 1;
1502		return rc;
1503	}
1504	rc = -EFAULT;
1505	if (copy_to_user(*ubuf, &m, sizeof(struct mce)))
1506		return rc;
1507	/*
1508	 * In fact, we should have cleared the record after that has
1509	 * been flushed to the disk or sent to network in
1510	 * /sbin/mcelog, but we have no interface to support that now,
1511	 * so just clear it to avoid duplication.
1512	 */
1513	rc = apei_clear_mce(record_id);
1514	if (rc) {
1515		mce_apei_read_done = 1;
1516		return rc;
1517	}
1518	*ubuf += sizeof(struct mce);
1519
1520	return 0;
1521}
1522
1523static ssize_t mce_chrdev_read(struct file *filp, char __user *ubuf,
1524				size_t usize, loff_t *off)
1525{
1526	char __user *buf = ubuf;
1527	unsigned long *cpu_tsc;
1528	unsigned prev, next;
1529	int i, err;
1530
1531	cpu_tsc = kmalloc(nr_cpu_ids * sizeof(long), GFP_KERNEL);
1532	if (!cpu_tsc)
1533		return -ENOMEM;
1534
1535	mutex_lock(&mce_chrdev_read_mutex);
1536
1537	if (!mce_apei_read_done) {
1538		err = __mce_read_apei(&buf, usize);
1539		if (err || buf != ubuf)
1540			goto out;
1541	}
1542
1543	next = rcu_dereference_check_mce(mcelog.next);
1544
1545	/* Only supports full reads right now */
1546	err = -EINVAL;
1547	if (*off != 0 || usize < MCE_LOG_LEN*sizeof(struct mce))
1548		goto out;
1549
1550	err = 0;
1551	prev = 0;
1552	do {
1553		for (i = prev; i < next; i++) {
1554			unsigned long start = jiffies;
1555			struct mce *m = &mcelog.entry[i];
1556
1557			while (!m->finished) {
1558				if (time_after_eq(jiffies, start + 2)) {
1559					memset(m, 0, sizeof(*m));
1560					goto timeout;
1561				}
1562				cpu_relax();
1563			}
1564			smp_rmb();
1565			err |= copy_to_user(buf, m, sizeof(*m));
1566			buf += sizeof(*m);
1567timeout:
1568			;
1569		}
1570
1571		memset(mcelog.entry + prev, 0,
1572		       (next - prev) * sizeof(struct mce));
1573		prev = next;
1574		next = cmpxchg(&mcelog.next, prev, 0);
1575	} while (next != prev);
1576
1577	synchronize_sched();
1578
1579	/*
1580	 * Collect entries that were still getting written before the
1581	 * synchronize.
1582	 */
1583	on_each_cpu(collect_tscs, cpu_tsc, 1);
1584
1585	for (i = next; i < MCE_LOG_LEN; i++) {
1586		struct mce *m = &mcelog.entry[i];
1587
1588		if (m->finished && m->tsc < cpu_tsc[m->cpu]) {
1589			err |= copy_to_user(buf, m, sizeof(*m));
1590			smp_rmb();
1591			buf += sizeof(*m);
1592			memset(m, 0, sizeof(*m));
1593		}
1594	}
1595
1596	if (err)
1597		err = -EFAULT;
1598
1599out:
1600	mutex_unlock(&mce_chrdev_read_mutex);
1601	kfree(cpu_tsc);
1602
1603	return err ? err : buf - ubuf;
1604}
1605
1606static unsigned int mce_chrdev_poll(struct file *file, poll_table *wait)
1607{
1608	poll_wait(file, &mce_chrdev_wait, wait);
1609	if (rcu_access_index(mcelog.next))
1610		return POLLIN | POLLRDNORM;
1611	if (!mce_apei_read_done && apei_check_mce())
1612		return POLLIN | POLLRDNORM;
1613	return 0;
1614}
1615
1616static long mce_chrdev_ioctl(struct file *f, unsigned int cmd,
1617				unsigned long arg)
1618{
1619	int __user *p = (int __user *)arg;
1620
1621	if (!capable(CAP_SYS_ADMIN))
1622		return -EPERM;
1623
1624	switch (cmd) {
1625	case MCE_GET_RECORD_LEN:
1626		return put_user(sizeof(struct mce), p);
1627	case MCE_GET_LOG_LEN:
1628		return put_user(MCE_LOG_LEN, p);
1629	case MCE_GETCLEAR_FLAGS: {
1630		unsigned flags;
1631
1632		do {
1633			flags = mcelog.flags;
1634		} while (cmpxchg(&mcelog.flags, flags, 0) != flags);
1635
1636		return put_user(flags, p);
1637	}
1638	default:
1639		return -ENOTTY;
1640	}
1641}
1642
1643/* Modified in mce-inject.c, so not static or const */
1644struct file_operations mce_chrdev_ops = {
1645	.open			= mce_chrdev_open,
1646	.release		= mce_chrdev_release,
1647	.read			= mce_chrdev_read,
1648	.poll			= mce_chrdev_poll,
1649	.unlocked_ioctl		= mce_chrdev_ioctl,
1650	.llseek			= no_llseek,
1651};
1652EXPORT_SYMBOL_GPL(mce_chrdev_ops);
1653
1654static struct miscdevice mce_chrdev_device = {
1655	MISC_MCELOG_MINOR,
1656	"mcelog",
1657	&mce_chrdev_ops,
1658};
1659
1660/*
1661 * mce=off Disables machine check
1662 * mce=no_cmci Disables CMCI
1663 * mce=dont_log_ce Clears corrected events silently, no log created for CEs.
1664 * mce=ignore_ce Disables polling and CMCI, corrected events are not cleared.
1665 * mce=TOLERANCELEVEL[,monarchtimeout] (number, see above)
1666 *	monarchtimeout is how long to wait for other CPUs on machine
1667 *	check, or 0 to not wait
1668 * mce=bootlog Log MCEs from before booting. Disabled by default on AMD.
1669 * mce=nobootlog Don't log MCEs from before booting.
1670 */
1671static int __init mcheck_enable(char *str)
1672{
1673	if (*str == 0) {
1674		enable_p5_mce();
1675		return 1;
1676	}
1677	if (*str == '=')
1678		str++;
1679	if (!strcmp(str, "off"))
1680		mce_disabled = 1;
1681	else if (!strcmp(str, "no_cmci"))
1682		mce_cmci_disabled = 1;
1683	else if (!strcmp(str, "dont_log_ce"))
1684		mce_dont_log_ce = 1;
1685	else if (!strcmp(str, "ignore_ce"))
1686		mce_ignore_ce = 1;
1687	else if (!strcmp(str, "bootlog") || !strcmp(str, "nobootlog"))
1688		mce_bootlog = (str[0] == 'b');
1689	else if (isdigit(str[0])) {
1690		get_option(&str, &tolerant);
1691		if (*str == ',') {
1692			++str;
1693			get_option(&str, &monarch_timeout);
1694		}
1695	} else {
1696		printk(KERN_INFO "mce argument %s ignored. Please use /sys\n",
1697		       str);
1698		return 0;
1699	}
1700	return 1;
1701}
1702__setup("mce", mcheck_enable);
1703
1704int __init mcheck_init(void)
1705{
1706	mcheck_intel_therm_init();
1707
1708	return 0;
1709}
1710
1711/*
1712 * mce_syscore: PM support
1713 */
1714
1715/*
1716 * Disable machine checks on suspend and shutdown. We can't really handle
1717 * them later.
1718 */
1719static int mce_disable_error_reporting(void)
1720{
1721	int i;
1722
1723	for (i = 0; i < banks; i++) {
1724		struct mce_bank *b = &mce_banks[i];
1725
1726		if (b->init)
1727			wrmsrl(MSR_IA32_MCx_CTL(i), 0);
1728	}
1729	return 0;
1730}
1731
1732static int mce_syscore_suspend(void)
1733{
1734	return mce_disable_error_reporting();
1735}
1736
1737static void mce_syscore_shutdown(void)
1738{
1739	mce_disable_error_reporting();
1740}
1741
1742/*
1743 * On resume clear all MCE state. Don't want to see leftovers from the BIOS.
1744 * Only one CPU is active at this time, the others get re-added later using
1745 * CPU hotplug:
1746 */
1747static void mce_syscore_resume(void)
1748{
1749	__mcheck_cpu_init_generic();
1750	__mcheck_cpu_init_vendor(__this_cpu_ptr(&cpu_info));
1751}
1752
1753static struct syscore_ops mce_syscore_ops = {
1754	.suspend	= mce_syscore_suspend,
1755	.shutdown	= mce_syscore_shutdown,
1756	.resume		= mce_syscore_resume,
1757};
1758
1759/*
1760 * mce_sysdev: Sysfs support
1761 */
1762
1763static void mce_cpu_restart(void *data)
1764{
1765	if (!mce_available(__this_cpu_ptr(&cpu_info)))
1766		return;
1767	__mcheck_cpu_init_generic();
1768	__mcheck_cpu_init_timer();
1769}
1770
1771/* Reinit MCEs after user configuration changes */
1772static void mce_restart(void)
1773{
1774	mce_timer_delete_all();
1775	on_each_cpu(mce_cpu_restart, NULL, 1);
1776}
1777
1778/* Toggle features for corrected errors */
1779static void mce_disable_cmci(void *data)
1780{
1781	if (!mce_available(__this_cpu_ptr(&cpu_info)))
1782		return;
1783	cmci_clear();
1784}
1785
1786static void mce_enable_ce(void *all)
1787{
1788	if (!mce_available(__this_cpu_ptr(&cpu_info)))
1789		return;
1790	cmci_reenable();
1791	cmci_recheck();
1792	if (all)
1793		__mcheck_cpu_init_timer();
1794}
1795
1796static struct sysdev_class mce_sysdev_class = {
1797	.name		= "machinecheck",
1798};
1799
1800DEFINE_PER_CPU(struct sys_device, mce_sysdev);
1801
1802__cpuinitdata
1803void (*threshold_cpu_callback)(unsigned long action, unsigned int cpu);
1804
1805static inline struct mce_bank *attr_to_bank(struct sysdev_attribute *attr)
1806{
1807	return container_of(attr, struct mce_bank, attr);
1808}
1809
1810static ssize_t show_bank(struct sys_device *s, struct sysdev_attribute *attr,
1811			 char *buf)
1812{
1813	return sprintf(buf, "%llx\n", attr_to_bank(attr)->ctl);
1814}
1815
1816static ssize_t set_bank(struct sys_device *s, struct sysdev_attribute *attr,
1817			const char *buf, size_t size)
1818{
1819	u64 new;
1820
1821	if (strict_strtoull(buf, 0, &new) < 0)
1822		return -EINVAL;
1823
1824	attr_to_bank(attr)->ctl = new;
1825	mce_restart();
1826
1827	return size;
1828}
1829
1830static ssize_t
1831show_trigger(struct sys_device *s, struct sysdev_attribute *attr, char *buf)
1832{
1833	strcpy(buf, mce_helper);
1834	strcat(buf, "\n");
1835	return strlen(mce_helper) + 1;
1836}
1837
1838static ssize_t set_trigger(struct sys_device *s, struct sysdev_attribute *attr,
1839				const char *buf, size_t siz)
1840{
1841	char *p;
1842
1843	strncpy(mce_helper, buf, sizeof(mce_helper));
1844	mce_helper[sizeof(mce_helper)-1] = 0;
1845	p = strchr(mce_helper, '\n');
1846
1847	if (p)
1848		*p = 0;
1849
1850	return strlen(mce_helper) + !!p;
1851}
1852
1853static ssize_t set_ignore_ce(struct sys_device *s,
1854			     struct sysdev_attribute *attr,
1855			     const char *buf, size_t size)
1856{
1857	u64 new;
1858
1859	if (strict_strtoull(buf, 0, &new) < 0)
1860		return -EINVAL;
1861
1862	if (mce_ignore_ce ^ !!new) {
1863		if (new) {
1864			/* disable ce features */
1865			mce_timer_delete_all();
1866			on_each_cpu(mce_disable_cmci, NULL, 1);
1867			mce_ignore_ce = 1;
1868		} else {
1869			/* enable ce features */
1870			mce_ignore_ce = 0;
1871			on_each_cpu(mce_enable_ce, (void *)1, 1);
1872		}
1873	}
1874	return size;
1875}
1876
1877static ssize_t set_cmci_disabled(struct sys_device *s,
1878				 struct sysdev_attribute *attr,
1879				 const char *buf, size_t size)
1880{
1881	u64 new;
1882
1883	if (strict_strtoull(buf, 0, &new) < 0)
1884		return -EINVAL;
1885
1886	if (mce_cmci_disabled ^ !!new) {
1887		if (new) {
1888			/* disable cmci */
1889			on_each_cpu(mce_disable_cmci, NULL, 1);
1890			mce_cmci_disabled = 1;
1891		} else {
1892			/* enable cmci */
1893			mce_cmci_disabled = 0;
1894			on_each_cpu(mce_enable_ce, NULL, 1);
1895		}
1896	}
1897	return size;
1898}
1899
1900static ssize_t store_int_with_restart(struct sys_device *s,
1901				      struct sysdev_attribute *attr,
1902				      const char *buf, size_t size)
1903{
1904	ssize_t ret = sysdev_store_int(s, attr, buf, size);
1905	mce_restart();
1906	return ret;
1907}
1908
1909static SYSDEV_ATTR(trigger, 0644, show_trigger, set_trigger);
1910static SYSDEV_INT_ATTR(tolerant, 0644, tolerant);
1911static SYSDEV_INT_ATTR(monarch_timeout, 0644, monarch_timeout);
1912static SYSDEV_INT_ATTR(dont_log_ce, 0644, mce_dont_log_ce);
1913
1914static struct sysdev_ext_attribute attr_check_interval = {
1915	_SYSDEV_ATTR(check_interval, 0644, sysdev_show_int,
1916		     store_int_with_restart),
1917	&check_interval
1918};
1919
1920static struct sysdev_ext_attribute attr_ignore_ce = {
1921	_SYSDEV_ATTR(ignore_ce, 0644, sysdev_show_int, set_ignore_ce),
1922	&mce_ignore_ce
1923};
1924
1925static struct sysdev_ext_attribute attr_cmci_disabled = {
1926	_SYSDEV_ATTR(cmci_disabled, 0644, sysdev_show_int, set_cmci_disabled),
1927	&mce_cmci_disabled
1928};
1929
1930static struct sysdev_attribute *mce_sysdev_attrs[] = {
1931	&attr_tolerant.attr,
1932	&attr_check_interval.attr,
1933	&attr_trigger,
1934	&attr_monarch_timeout.attr,
1935	&attr_dont_log_ce.attr,
1936	&attr_ignore_ce.attr,
1937	&attr_cmci_disabled.attr,
1938	NULL
1939};
1940
1941static cpumask_var_t mce_sysdev_initialized;
1942
1943/* Per cpu sysdev init. All of the cpus still share the same ctrl bank: */
1944static __cpuinit int mce_sysdev_create(unsigned int cpu)
1945{
1946	struct sys_device *sysdev = &per_cpu(mce_sysdev, cpu);
1947	int err;
1948	int i, j;
1949
1950	if (!mce_available(&boot_cpu_data))
1951		return -EIO;
1952
1953	memset(&sysdev->kobj, 0, sizeof(struct kobject));
1954	sysdev->id  = cpu;
1955	sysdev->cls = &mce_sysdev_class;
1956
1957	err = sysdev_register(sysdev);
1958	if (err)
1959		return err;
1960
1961	for (i = 0; mce_sysdev_attrs[i]; i++) {
1962		err = sysdev_create_file(sysdev, mce_sysdev_attrs[i]);
1963		if (err)
1964			goto error;
1965	}
1966	for (j = 0; j < banks; j++) {
1967		err = sysdev_create_file(sysdev, &mce_banks[j].attr);
1968		if (err)
1969			goto error2;
1970	}
1971	cpumask_set_cpu(cpu, mce_sysdev_initialized);
1972
1973	return 0;
1974error2:
1975	while (--j >= 0)
1976		sysdev_remove_file(sysdev, &mce_banks[j].attr);
1977error:
1978	while (--i >= 0)
1979		sysdev_remove_file(sysdev, mce_sysdev_attrs[i]);
1980
1981	sysdev_unregister(sysdev);
1982
1983	return err;
1984}
1985
1986static __cpuinit void mce_sysdev_remove(unsigned int cpu)
1987{
1988	struct sys_device *sysdev = &per_cpu(mce_sysdev, cpu);
1989	int i;
1990
1991	if (!cpumask_test_cpu(cpu, mce_sysdev_initialized))
1992		return;
1993
1994	for (i = 0; mce_sysdev_attrs[i]; i++)
1995		sysdev_remove_file(sysdev, mce_sysdev_attrs[i]);
1996
1997	for (i = 0; i < banks; i++)
1998		sysdev_remove_file(sysdev, &mce_banks[i].attr);
1999
2000	sysdev_unregister(sysdev);
2001	cpumask_clear_cpu(cpu, mce_sysdev_initialized);
2002}
2003
2004/* Make sure there are no machine checks on offlined CPUs. */
2005static void __cpuinit mce_disable_cpu(void *h)
2006{
2007	unsigned long action = *(unsigned long *)h;
2008	int i;
2009
2010	if (!mce_available(__this_cpu_ptr(&cpu_info)))
2011		return;
2012
2013	if (!(action & CPU_TASKS_FROZEN))
2014		cmci_clear();
2015	for (i = 0; i < banks; i++) {
2016		struct mce_bank *b = &mce_banks[i];
2017
2018		if (b->init)
2019			wrmsrl(MSR_IA32_MCx_CTL(i), 0);
2020	}
2021}
2022
2023static void __cpuinit mce_reenable_cpu(void *h)
2024{
2025	unsigned long action = *(unsigned long *)h;
2026	int i;
2027
2028	if (!mce_available(__this_cpu_ptr(&cpu_info)))
2029		return;
2030
2031	if (!(action & CPU_TASKS_FROZEN))
2032		cmci_reenable();
2033	for (i = 0; i < banks; i++) {
2034		struct mce_bank *b = &mce_banks[i];
2035
2036		if (b->init)
2037			wrmsrl(MSR_IA32_MCx_CTL(i), b->ctl);
2038	}
2039}
2040
2041/* Get notified when a cpu comes on/off. Be hotplug friendly. */
2042static int __cpuinit
2043mce_cpu_callback(struct notifier_block *nfb, unsigned long action, void *hcpu)
2044{
2045	unsigned int cpu = (unsigned long)hcpu;
2046	struct timer_list *t = &per_cpu(mce_timer, cpu);
2047
2048	switch (action) {
2049	case CPU_ONLINE:
2050	case CPU_ONLINE_FROZEN:
2051		mce_sysdev_create(cpu);
2052		if (threshold_cpu_callback)
2053			threshold_cpu_callback(action, cpu);
2054		break;
2055	case CPU_DEAD:
2056	case CPU_DEAD_FROZEN:
2057		if (threshold_cpu_callback)
2058			threshold_cpu_callback(action, cpu);
2059		mce_sysdev_remove(cpu);
2060		break;
2061	case CPU_DOWN_PREPARE:
2062	case CPU_DOWN_PREPARE_FROZEN:
2063		del_timer_sync(t);
2064		smp_call_function_single(cpu, mce_disable_cpu, &action, 1);
2065		break;
2066	case CPU_DOWN_FAILED:
2067	case CPU_DOWN_FAILED_FROZEN:
2068		if (!mce_ignore_ce && check_interval) {
2069			t->expires = round_jiffies(jiffies +
2070					   __get_cpu_var(mce_next_interval));
2071			add_timer_on(t, cpu);
2072		}
2073		smp_call_function_single(cpu, mce_reenable_cpu, &action, 1);
2074		break;
2075	case CPU_POST_DEAD:
2076		/* intentionally ignoring frozen here */
2077		cmci_rediscover(cpu);
2078		break;
2079	}
2080	return NOTIFY_OK;
2081}
2082
2083static struct notifier_block mce_cpu_notifier __cpuinitdata = {
2084	.notifier_call = mce_cpu_callback,
2085};
2086
2087static __init void mce_init_banks(void)
2088{
2089	int i;
2090
2091	for (i = 0; i < banks; i++) {
2092		struct mce_bank *b = &mce_banks[i];
2093		struct sysdev_attribute *a = &b->attr;
2094
2095		sysfs_attr_init(&a->attr);
2096		a->attr.name	= b->attrname;
2097		snprintf(b->attrname, ATTR_LEN, "bank%d", i);
2098
2099		a->attr.mode	= 0644;
2100		a->show		= show_bank;
2101		a->store	= set_bank;
2102	}
2103}
2104
2105static __init int mcheck_init_device(void)
2106{
2107	int err;
2108	int i = 0;
2109
2110	if (!mce_available(&boot_cpu_data))
2111		return -EIO;
2112
2113	zalloc_cpumask_var(&mce_sysdev_initialized, GFP_KERNEL);
2114
2115	mce_init_banks();
2116
2117	err = sysdev_class_register(&mce_sysdev_class);
2118	if (err)
2119		return err;
2120
2121	for_each_online_cpu(i) {
2122		err = mce_sysdev_create(i);
2123		if (err)
2124			return err;
2125	}
2126
2127	register_syscore_ops(&mce_syscore_ops);
2128	register_hotcpu_notifier(&mce_cpu_notifier);
2129
2130	/* register character device /dev/mcelog */
2131	misc_register(&mce_chrdev_device);
2132
2133	return err;
2134}
2135device_initcall(mcheck_init_device);
2136
2137/*
2138 * Old style boot options parsing. Only for compatibility.
2139 */
2140static int __init mcheck_disable(char *str)
2141{
2142	mce_disabled = 1;
2143	return 1;
2144}
2145__setup("nomce", mcheck_disable);
2146
2147#ifdef CONFIG_DEBUG_FS
2148struct dentry *mce_get_debugfs_dir(void)
2149{
2150	static struct dentry *dmce;
2151
2152	if (!dmce)
2153		dmce = debugfs_create_dir("mce", NULL);
2154
2155	return dmce;
2156}
2157
2158static void mce_reset(void)
2159{
2160	cpu_missing = 0;
2161	atomic_set(&mce_fake_paniced, 0);
2162	atomic_set(&mce_executing, 0);
2163	atomic_set(&mce_callin, 0);
2164	atomic_set(&global_nwo, 0);
2165}
2166
2167static int fake_panic_get(void *data, u64 *val)
2168{
2169	*val = fake_panic;
2170	return 0;
2171}
2172
2173static int fake_panic_set(void *data, u64 val)
2174{
2175	mce_reset();
2176	fake_panic = val;
2177	return 0;
2178}
2179
2180DEFINE_SIMPLE_ATTRIBUTE(fake_panic_fops, fake_panic_get,
2181			fake_panic_set, "%llu\n");
2182
2183static int __init mcheck_debugfs_init(void)
2184{
2185	struct dentry *dmce, *ffake_panic;
2186
2187	dmce = mce_get_debugfs_dir();
2188	if (!dmce)
2189		return -ENOMEM;
2190	ffake_panic = debugfs_create_file("fake_panic", 0444, dmce, NULL,
2191					  &fake_panic_fops);
2192	if (!ffake_panic)
2193		return -ENOMEM;
2194
2195	return 0;
2196}
2197late_initcall(mcheck_debugfs_init);
2198#endif
2199