mce.c revision 80f033610fb968e75f5d470233d8d0260d7a72ed
1/*
2 * Machine check handler.
3 *
4 * K8 parts Copyright 2002,2003 Andi Kleen, SuSE Labs.
5 * Rest from unknown author(s).
6 * 2004 Andi Kleen. Rewrote most of it.
7 * Copyright 2008 Intel Corporation
8 * Author: Andi Kleen
9 */
10#include <linux/thread_info.h>
11#include <linux/capability.h>
12#include <linux/miscdevice.h>
13#include <linux/ratelimit.h>
14#include <linux/kallsyms.h>
15#include <linux/rcupdate.h>
16#include <linux/kobject.h>
17#include <linux/uaccess.h>
18#include <linux/kdebug.h>
19#include <linux/kernel.h>
20#include <linux/percpu.h>
21#include <linux/string.h>
22#include <linux/device.h>
23#include <linux/syscore_ops.h>
24#include <linux/delay.h>
25#include <linux/ctype.h>
26#include <linux/sched.h>
27#include <linux/sysfs.h>
28#include <linux/types.h>
29#include <linux/slab.h>
30#include <linux/init.h>
31#include <linux/kmod.h>
32#include <linux/poll.h>
33#include <linux/nmi.h>
34#include <linux/cpu.h>
35#include <linux/smp.h>
36#include <linux/fs.h>
37#include <linux/mm.h>
38#include <linux/debugfs.h>
39#include <linux/irq_work.h>
40#include <linux/export.h>
41
42#include <asm/processor.h>
43#include <asm/mce.h>
44#include <asm/msr.h>
45
46#include "mce-internal.h"
47
48static DEFINE_MUTEX(mce_chrdev_read_mutex);
49
50#define rcu_dereference_check_mce(p) \
51	rcu_dereference_index_check((p), \
52			      rcu_read_lock_sched_held() || \
53			      lockdep_is_held(&mce_chrdev_read_mutex))
54
55#define CREATE_TRACE_POINTS
56#include <trace/events/mce.h>
57
58int mce_disabled __read_mostly;
59
60#define MISC_MCELOG_MINOR	227
61
62#define SPINUNIT 100	/* 100ns */
63
64atomic_t mce_entry;
65
66DEFINE_PER_CPU(unsigned, mce_exception_count);
67
68/*
69 * Tolerant levels:
70 *   0: always panic on uncorrected errors, log corrected errors
71 *   1: panic or SIGBUS on uncorrected errors, log corrected errors
72 *   2: SIGBUS or log uncorrected errors (if possible), log corrected errors
73 *   3: never panic or SIGBUS, log all errors (for testing only)
74 */
75static int			tolerant		__read_mostly = 1;
76static int			banks			__read_mostly;
77static int			rip_msr			__read_mostly;
78static int			mce_bootlog		__read_mostly = -1;
79static int			monarch_timeout		__read_mostly = -1;
80static int			mce_panic_timeout	__read_mostly;
81static int			mce_dont_log_ce		__read_mostly;
82int				mce_cmci_disabled	__read_mostly;
83int				mce_ignore_ce		__read_mostly;
84int				mce_ser			__read_mostly;
85
86struct mce_bank                *mce_banks		__read_mostly;
87
88/* User mode helper program triggered by machine check event */
89static unsigned long		mce_need_notify;
90static char			mce_helper[128];
91static char			*mce_helper_argv[2] = { mce_helper, NULL };
92
93static DECLARE_WAIT_QUEUE_HEAD(mce_chrdev_wait);
94
95static DEFINE_PER_CPU(struct mce, mces_seen);
96static int			cpu_missing;
97
98/* MCA banks polled by the period polling timer for corrected events */
99DEFINE_PER_CPU(mce_banks_t, mce_poll_banks) = {
100	[0 ... BITS_TO_LONGS(MAX_NR_BANKS)-1] = ~0UL
101};
102
103static DEFINE_PER_CPU(struct work_struct, mce_work);
104
105/*
106 * CPU/chipset specific EDAC code can register a notifier call here to print
107 * MCE errors in a human-readable form.
108 */
109ATOMIC_NOTIFIER_HEAD(x86_mce_decoder_chain);
110
111/* Do initial initialization of a struct mce */
112void mce_setup(struct mce *m)
113{
114	memset(m, 0, sizeof(struct mce));
115	m->cpu = m->extcpu = smp_processor_id();
116	rdtscll(m->tsc);
117	/* We hope get_seconds stays lockless */
118	m->time = get_seconds();
119	m->cpuvendor = boot_cpu_data.x86_vendor;
120	m->cpuid = cpuid_eax(1);
121	m->socketid = cpu_data(m->extcpu).phys_proc_id;
122	m->apicid = cpu_data(m->extcpu).initial_apicid;
123	rdmsrl(MSR_IA32_MCG_CAP, m->mcgcap);
124}
125
126DEFINE_PER_CPU(struct mce, injectm);
127EXPORT_PER_CPU_SYMBOL_GPL(injectm);
128
129/*
130 * Lockless MCE logging infrastructure.
131 * This avoids deadlocks on printk locks without having to break locks. Also
132 * separate MCEs from kernel messages to avoid bogus bug reports.
133 */
134
135static struct mce_log mcelog = {
136	.signature	= MCE_LOG_SIGNATURE,
137	.len		= MCE_LOG_LEN,
138	.recordlen	= sizeof(struct mce),
139};
140
141void mce_log(struct mce *mce)
142{
143	unsigned next, entry;
144	int ret = 0;
145
146	/* Emit the trace record: */
147	trace_mce_record(mce);
148
149	ret = atomic_notifier_call_chain(&x86_mce_decoder_chain, 0, mce);
150	if (ret == NOTIFY_STOP)
151		return;
152
153	mce->finished = 0;
154	wmb();
155	for (;;) {
156		entry = rcu_dereference_check_mce(mcelog.next);
157		for (;;) {
158
159			/*
160			 * When the buffer fills up discard new entries.
161			 * Assume that the earlier errors are the more
162			 * interesting ones:
163			 */
164			if (entry >= MCE_LOG_LEN) {
165				set_bit(MCE_OVERFLOW,
166					(unsigned long *)&mcelog.flags);
167				return;
168			}
169			/* Old left over entry. Skip: */
170			if (mcelog.entry[entry].finished) {
171				entry++;
172				continue;
173			}
174			break;
175		}
176		smp_rmb();
177		next = entry + 1;
178		if (cmpxchg(&mcelog.next, entry, next) == entry)
179			break;
180	}
181	memcpy(mcelog.entry + entry, mce, sizeof(struct mce));
182	wmb();
183	mcelog.entry[entry].finished = 1;
184	wmb();
185
186	mce->finished = 1;
187	set_bit(0, &mce_need_notify);
188}
189
190static void drain_mcelog_buffer(void)
191{
192	unsigned int next, i, prev = 0;
193
194	next = ACCESS_ONCE(mcelog.next);
195
196	do {
197		struct mce *m;
198
199		/* drain what was logged during boot */
200		for (i = prev; i < next; i++) {
201			unsigned long start = jiffies;
202			unsigned retries = 1;
203
204			m = &mcelog.entry[i];
205
206			while (!m->finished) {
207				if (time_after_eq(jiffies, start + 2*retries))
208					retries++;
209
210				cpu_relax();
211
212				if (!m->finished && retries >= 4) {
213					pr_err("MCE: skipping error being logged currently!\n");
214					break;
215				}
216			}
217			smp_rmb();
218			atomic_notifier_call_chain(&x86_mce_decoder_chain, 0, m);
219		}
220
221		memset(mcelog.entry + prev, 0, (next - prev) * sizeof(*m));
222		prev = next;
223		next = cmpxchg(&mcelog.next, prev, 0);
224	} while (next != prev);
225}
226
227
228void mce_register_decode_chain(struct notifier_block *nb)
229{
230	atomic_notifier_chain_register(&x86_mce_decoder_chain, nb);
231	drain_mcelog_buffer();
232}
233EXPORT_SYMBOL_GPL(mce_register_decode_chain);
234
235void mce_unregister_decode_chain(struct notifier_block *nb)
236{
237	atomic_notifier_chain_unregister(&x86_mce_decoder_chain, nb);
238}
239EXPORT_SYMBOL_GPL(mce_unregister_decode_chain);
240
241static void print_mce(struct mce *m)
242{
243	int ret = 0;
244
245	pr_emerg(HW_ERR "CPU %d: Machine Check Exception: %Lx Bank %d: %016Lx\n",
246	       m->extcpu, m->mcgstatus, m->bank, m->status);
247
248	if (m->ip) {
249		pr_emerg(HW_ERR "RIP%s %02x:<%016Lx> ",
250			!(m->mcgstatus & MCG_STATUS_EIPV) ? " !INEXACT!" : "",
251				m->cs, m->ip);
252
253		if (m->cs == __KERNEL_CS)
254			print_symbol("{%s}", m->ip);
255		pr_cont("\n");
256	}
257
258	pr_emerg(HW_ERR "TSC %llx ", m->tsc);
259	if (m->addr)
260		pr_cont("ADDR %llx ", m->addr);
261	if (m->misc)
262		pr_cont("MISC %llx ", m->misc);
263
264	pr_cont("\n");
265	/*
266	 * Note this output is parsed by external tools and old fields
267	 * should not be changed.
268	 */
269	pr_emerg(HW_ERR "PROCESSOR %u:%x TIME %llu SOCKET %u APIC %x microcode %x\n",
270		m->cpuvendor, m->cpuid, m->time, m->socketid, m->apicid,
271		cpu_data(m->extcpu).microcode);
272
273	/*
274	 * Print out human-readable details about the MCE error,
275	 * (if the CPU has an implementation for that)
276	 */
277	ret = atomic_notifier_call_chain(&x86_mce_decoder_chain, 0, m);
278	if (ret == NOTIFY_STOP)
279		return;
280
281	pr_emerg_ratelimited(HW_ERR "Run the above through 'mcelog --ascii'\n");
282}
283
284#define PANIC_TIMEOUT 5 /* 5 seconds */
285
286static atomic_t mce_paniced;
287
288static int fake_panic;
289static atomic_t mce_fake_paniced;
290
291/* Panic in progress. Enable interrupts and wait for final IPI */
292static void wait_for_panic(void)
293{
294	long timeout = PANIC_TIMEOUT*USEC_PER_SEC;
295
296	preempt_disable();
297	local_irq_enable();
298	while (timeout-- > 0)
299		udelay(1);
300	if (panic_timeout == 0)
301		panic_timeout = mce_panic_timeout;
302	panic("Panicing machine check CPU died");
303}
304
305static void mce_panic(char *msg, struct mce *final, char *exp)
306{
307	int i, apei_err = 0;
308
309	if (!fake_panic) {
310		/*
311		 * Make sure only one CPU runs in machine check panic
312		 */
313		if (atomic_inc_return(&mce_paniced) > 1)
314			wait_for_panic();
315		barrier();
316
317		bust_spinlocks(1);
318		console_verbose();
319	} else {
320		/* Don't log too much for fake panic */
321		if (atomic_inc_return(&mce_fake_paniced) > 1)
322			return;
323	}
324	/* First print corrected ones that are still unlogged */
325	for (i = 0; i < MCE_LOG_LEN; i++) {
326		struct mce *m = &mcelog.entry[i];
327		if (!(m->status & MCI_STATUS_VAL))
328			continue;
329		if (!(m->status & MCI_STATUS_UC)) {
330			print_mce(m);
331			if (!apei_err)
332				apei_err = apei_write_mce(m);
333		}
334	}
335	/* Now print uncorrected but with the final one last */
336	for (i = 0; i < MCE_LOG_LEN; i++) {
337		struct mce *m = &mcelog.entry[i];
338		if (!(m->status & MCI_STATUS_VAL))
339			continue;
340		if (!(m->status & MCI_STATUS_UC))
341			continue;
342		if (!final || memcmp(m, final, sizeof(struct mce))) {
343			print_mce(m);
344			if (!apei_err)
345				apei_err = apei_write_mce(m);
346		}
347	}
348	if (final) {
349		print_mce(final);
350		if (!apei_err)
351			apei_err = apei_write_mce(final);
352	}
353	if (cpu_missing)
354		pr_emerg(HW_ERR "Some CPUs didn't answer in synchronization\n");
355	if (exp)
356		pr_emerg(HW_ERR "Machine check: %s\n", exp);
357	if (!fake_panic) {
358		if (panic_timeout == 0)
359			panic_timeout = mce_panic_timeout;
360		panic(msg);
361	} else
362		pr_emerg(HW_ERR "Fake kernel panic: %s\n", msg);
363}
364
365/* Support code for software error injection */
366
367static int msr_to_offset(u32 msr)
368{
369	unsigned bank = __this_cpu_read(injectm.bank);
370
371	if (msr == rip_msr)
372		return offsetof(struct mce, ip);
373	if (msr == MSR_IA32_MCx_STATUS(bank))
374		return offsetof(struct mce, status);
375	if (msr == MSR_IA32_MCx_ADDR(bank))
376		return offsetof(struct mce, addr);
377	if (msr == MSR_IA32_MCx_MISC(bank))
378		return offsetof(struct mce, misc);
379	if (msr == MSR_IA32_MCG_STATUS)
380		return offsetof(struct mce, mcgstatus);
381	return -1;
382}
383
384/* MSR access wrappers used for error injection */
385static u64 mce_rdmsrl(u32 msr)
386{
387	u64 v;
388
389	if (__this_cpu_read(injectm.finished)) {
390		int offset = msr_to_offset(msr);
391
392		if (offset < 0)
393			return 0;
394		return *(u64 *)((char *)&__get_cpu_var(injectm) + offset);
395	}
396
397	if (rdmsrl_safe(msr, &v)) {
398		WARN_ONCE(1, "mce: Unable to read msr %d!\n", msr);
399		/*
400		 * Return zero in case the access faulted. This should
401		 * not happen normally but can happen if the CPU does
402		 * something weird, or if the code is buggy.
403		 */
404		v = 0;
405	}
406
407	return v;
408}
409
410static void mce_wrmsrl(u32 msr, u64 v)
411{
412	if (__this_cpu_read(injectm.finished)) {
413		int offset = msr_to_offset(msr);
414
415		if (offset >= 0)
416			*(u64 *)((char *)&__get_cpu_var(injectm) + offset) = v;
417		return;
418	}
419	wrmsrl(msr, v);
420}
421
422/*
423 * Collect all global (w.r.t. this processor) status about this machine
424 * check into our "mce" struct so that we can use it later to assess
425 * the severity of the problem as we read per-bank specific details.
426 */
427static inline void mce_gather_info(struct mce *m, struct pt_regs *regs)
428{
429	mce_setup(m);
430
431	m->mcgstatus = mce_rdmsrl(MSR_IA32_MCG_STATUS);
432	if (regs) {
433		/*
434		 * Get the address of the instruction at the time of
435		 * the machine check error.
436		 */
437		if (m->mcgstatus & (MCG_STATUS_RIPV|MCG_STATUS_EIPV)) {
438			m->ip = regs->ip;
439			m->cs = regs->cs;
440		}
441		/* Use accurate RIP reporting if available. */
442		if (rip_msr)
443			m->ip = mce_rdmsrl(rip_msr);
444	}
445}
446
447/*
448 * Simple lockless ring to communicate PFNs from the exception handler with the
449 * process context work function. This is vastly simplified because there's
450 * only a single reader and a single writer.
451 */
452#define MCE_RING_SIZE 16	/* we use one entry less */
453
454struct mce_ring {
455	unsigned short start;
456	unsigned short end;
457	unsigned long ring[MCE_RING_SIZE];
458};
459static DEFINE_PER_CPU(struct mce_ring, mce_ring);
460
461/* Runs with CPU affinity in workqueue */
462static int mce_ring_empty(void)
463{
464	struct mce_ring *r = &__get_cpu_var(mce_ring);
465
466	return r->start == r->end;
467}
468
469static int mce_ring_get(unsigned long *pfn)
470{
471	struct mce_ring *r;
472	int ret = 0;
473
474	*pfn = 0;
475	get_cpu();
476	r = &__get_cpu_var(mce_ring);
477	if (r->start == r->end)
478		goto out;
479	*pfn = r->ring[r->start];
480	r->start = (r->start + 1) % MCE_RING_SIZE;
481	ret = 1;
482out:
483	put_cpu();
484	return ret;
485}
486
487/* Always runs in MCE context with preempt off */
488static int mce_ring_add(unsigned long pfn)
489{
490	struct mce_ring *r = &__get_cpu_var(mce_ring);
491	unsigned next;
492
493	next = (r->end + 1) % MCE_RING_SIZE;
494	if (next == r->start)
495		return -1;
496	r->ring[r->end] = pfn;
497	wmb();
498	r->end = next;
499	return 0;
500}
501
502int mce_available(struct cpuinfo_x86 *c)
503{
504	if (mce_disabled)
505		return 0;
506	return cpu_has(c, X86_FEATURE_MCE) && cpu_has(c, X86_FEATURE_MCA);
507}
508
509static void mce_schedule_work(void)
510{
511	if (!mce_ring_empty()) {
512		struct work_struct *work = &__get_cpu_var(mce_work);
513		if (!work_pending(work))
514			schedule_work(work);
515	}
516}
517
518DEFINE_PER_CPU(struct irq_work, mce_irq_work);
519
520static void mce_irq_work_cb(struct irq_work *entry)
521{
522	mce_notify_irq();
523	mce_schedule_work();
524}
525
526static void mce_report_event(struct pt_regs *regs)
527{
528	if (regs->flags & (X86_VM_MASK|X86_EFLAGS_IF)) {
529		mce_notify_irq();
530		/*
531		 * Triggering the work queue here is just an insurance
532		 * policy in case the syscall exit notify handler
533		 * doesn't run soon enough or ends up running on the
534		 * wrong CPU (can happen when audit sleeps)
535		 */
536		mce_schedule_work();
537		return;
538	}
539
540	irq_work_queue(&__get_cpu_var(mce_irq_work));
541}
542
543/*
544 * Read ADDR and MISC registers.
545 */
546static void mce_read_aux(struct mce *m, int i)
547{
548	if (m->status & MCI_STATUS_MISCV)
549		m->misc = mce_rdmsrl(MSR_IA32_MCx_MISC(i));
550	if (m->status & MCI_STATUS_ADDRV) {
551		m->addr = mce_rdmsrl(MSR_IA32_MCx_ADDR(i));
552
553		/*
554		 * Mask the reported address by the reported granularity.
555		 */
556		if (mce_ser && (m->status & MCI_STATUS_MISCV)) {
557			u8 shift = MCI_MISC_ADDR_LSB(m->misc);
558			m->addr >>= shift;
559			m->addr <<= shift;
560		}
561	}
562}
563
564DEFINE_PER_CPU(unsigned, mce_poll_count);
565
566/*
567 * Poll for corrected events or events that happened before reset.
568 * Those are just logged through /dev/mcelog.
569 *
570 * This is executed in standard interrupt context.
571 *
572 * Note: spec recommends to panic for fatal unsignalled
573 * errors here. However this would be quite problematic --
574 * we would need to reimplement the Monarch handling and
575 * it would mess up the exclusion between exception handler
576 * and poll hander -- * so we skip this for now.
577 * These cases should not happen anyways, or only when the CPU
578 * is already totally * confused. In this case it's likely it will
579 * not fully execute the machine check handler either.
580 */
581void machine_check_poll(enum mcp_flags flags, mce_banks_t *b)
582{
583	struct mce m;
584	int i;
585
586	percpu_inc(mce_poll_count);
587
588	mce_gather_info(&m, NULL);
589
590	for (i = 0; i < banks; i++) {
591		if (!mce_banks[i].ctl || !test_bit(i, *b))
592			continue;
593
594		m.misc = 0;
595		m.addr = 0;
596		m.bank = i;
597		m.tsc = 0;
598
599		barrier();
600		m.status = mce_rdmsrl(MSR_IA32_MCx_STATUS(i));
601		if (!(m.status & MCI_STATUS_VAL))
602			continue;
603
604		/*
605		 * Uncorrected or signalled events are handled by the exception
606		 * handler when it is enabled, so don't process those here.
607		 *
608		 * TBD do the same check for MCI_STATUS_EN here?
609		 */
610		if (!(flags & MCP_UC) &&
611		    (m.status & (mce_ser ? MCI_STATUS_S : MCI_STATUS_UC)))
612			continue;
613
614		mce_read_aux(&m, i);
615
616		if (!(flags & MCP_TIMESTAMP))
617			m.tsc = 0;
618		/*
619		 * Don't get the IP here because it's unlikely to
620		 * have anything to do with the actual error location.
621		 */
622		if (!(flags & MCP_DONTLOG) && !mce_dont_log_ce)
623			mce_log(&m);
624
625		/*
626		 * Clear state for this bank.
627		 */
628		mce_wrmsrl(MSR_IA32_MCx_STATUS(i), 0);
629	}
630
631	/*
632	 * Don't clear MCG_STATUS here because it's only defined for
633	 * exceptions.
634	 */
635
636	sync_core();
637}
638EXPORT_SYMBOL_GPL(machine_check_poll);
639
640/*
641 * Do a quick check if any of the events requires a panic.
642 * This decides if we keep the events around or clear them.
643 */
644static int mce_no_way_out(struct mce *m, char **msg)
645{
646	int i;
647
648	for (i = 0; i < banks; i++) {
649		m->status = mce_rdmsrl(MSR_IA32_MCx_STATUS(i));
650		if (mce_severity(m, tolerant, msg) >= MCE_PANIC_SEVERITY)
651			return 1;
652	}
653	return 0;
654}
655
656/*
657 * Variable to establish order between CPUs while scanning.
658 * Each CPU spins initially until executing is equal its number.
659 */
660static atomic_t mce_executing;
661
662/*
663 * Defines order of CPUs on entry. First CPU becomes Monarch.
664 */
665static atomic_t mce_callin;
666
667/*
668 * Check if a timeout waiting for other CPUs happened.
669 */
670static int mce_timed_out(u64 *t)
671{
672	/*
673	 * The others already did panic for some reason.
674	 * Bail out like in a timeout.
675	 * rmb() to tell the compiler that system_state
676	 * might have been modified by someone else.
677	 */
678	rmb();
679	if (atomic_read(&mce_paniced))
680		wait_for_panic();
681	if (!monarch_timeout)
682		goto out;
683	if ((s64)*t < SPINUNIT) {
684		/* CHECKME: Make panic default for 1 too? */
685		if (tolerant < 1)
686			mce_panic("Timeout synchronizing machine check over CPUs",
687				  NULL, NULL);
688		cpu_missing = 1;
689		return 1;
690	}
691	*t -= SPINUNIT;
692out:
693	touch_nmi_watchdog();
694	return 0;
695}
696
697/*
698 * The Monarch's reign.  The Monarch is the CPU who entered
699 * the machine check handler first. It waits for the others to
700 * raise the exception too and then grades them. When any
701 * error is fatal panic. Only then let the others continue.
702 *
703 * The other CPUs entering the MCE handler will be controlled by the
704 * Monarch. They are called Subjects.
705 *
706 * This way we prevent any potential data corruption in a unrecoverable case
707 * and also makes sure always all CPU's errors are examined.
708 *
709 * Also this detects the case of a machine check event coming from outer
710 * space (not detected by any CPUs) In this case some external agent wants
711 * us to shut down, so panic too.
712 *
713 * The other CPUs might still decide to panic if the handler happens
714 * in a unrecoverable place, but in this case the system is in a semi-stable
715 * state and won't corrupt anything by itself. It's ok to let the others
716 * continue for a bit first.
717 *
718 * All the spin loops have timeouts; when a timeout happens a CPU
719 * typically elects itself to be Monarch.
720 */
721static void mce_reign(void)
722{
723	int cpu;
724	struct mce *m = NULL;
725	int global_worst = 0;
726	char *msg = NULL;
727	char *nmsg = NULL;
728
729	/*
730	 * This CPU is the Monarch and the other CPUs have run
731	 * through their handlers.
732	 * Grade the severity of the errors of all the CPUs.
733	 */
734	for_each_possible_cpu(cpu) {
735		int severity = mce_severity(&per_cpu(mces_seen, cpu), tolerant,
736					    &nmsg);
737		if (severity > global_worst) {
738			msg = nmsg;
739			global_worst = severity;
740			m = &per_cpu(mces_seen, cpu);
741		}
742	}
743
744	/*
745	 * Cannot recover? Panic here then.
746	 * This dumps all the mces in the log buffer and stops the
747	 * other CPUs.
748	 */
749	if (m && global_worst >= MCE_PANIC_SEVERITY && tolerant < 3)
750		mce_panic("Fatal Machine check", m, msg);
751
752	/*
753	 * For UC somewhere we let the CPU who detects it handle it.
754	 * Also must let continue the others, otherwise the handling
755	 * CPU could deadlock on a lock.
756	 */
757
758	/*
759	 * No machine check event found. Must be some external
760	 * source or one CPU is hung. Panic.
761	 */
762	if (global_worst <= MCE_KEEP_SEVERITY && tolerant < 3)
763		mce_panic("Machine check from unknown source", NULL, NULL);
764
765	/*
766	 * Now clear all the mces_seen so that they don't reappear on
767	 * the next mce.
768	 */
769	for_each_possible_cpu(cpu)
770		memset(&per_cpu(mces_seen, cpu), 0, sizeof(struct mce));
771}
772
773static atomic_t global_nwo;
774
775/*
776 * Start of Monarch synchronization. This waits until all CPUs have
777 * entered the exception handler and then determines if any of them
778 * saw a fatal event that requires panic. Then it executes them
779 * in the entry order.
780 * TBD double check parallel CPU hotunplug
781 */
782static int mce_start(int *no_way_out)
783{
784	int order;
785	int cpus = num_online_cpus();
786	u64 timeout = (u64)monarch_timeout * NSEC_PER_USEC;
787
788	if (!timeout)
789		return -1;
790
791	atomic_add(*no_way_out, &global_nwo);
792	/*
793	 * global_nwo should be updated before mce_callin
794	 */
795	smp_wmb();
796	order = atomic_inc_return(&mce_callin);
797
798	/*
799	 * Wait for everyone.
800	 */
801	while (atomic_read(&mce_callin) != cpus) {
802		if (mce_timed_out(&timeout)) {
803			atomic_set(&global_nwo, 0);
804			return -1;
805		}
806		ndelay(SPINUNIT);
807	}
808
809	/*
810	 * mce_callin should be read before global_nwo
811	 */
812	smp_rmb();
813
814	if (order == 1) {
815		/*
816		 * Monarch: Starts executing now, the others wait.
817		 */
818		atomic_set(&mce_executing, 1);
819	} else {
820		/*
821		 * Subject: Now start the scanning loop one by one in
822		 * the original callin order.
823		 * This way when there are any shared banks it will be
824		 * only seen by one CPU before cleared, avoiding duplicates.
825		 */
826		while (atomic_read(&mce_executing) < order) {
827			if (mce_timed_out(&timeout)) {
828				atomic_set(&global_nwo, 0);
829				return -1;
830			}
831			ndelay(SPINUNIT);
832		}
833	}
834
835	/*
836	 * Cache the global no_way_out state.
837	 */
838	*no_way_out = atomic_read(&global_nwo);
839
840	return order;
841}
842
843/*
844 * Synchronize between CPUs after main scanning loop.
845 * This invokes the bulk of the Monarch processing.
846 */
847static int mce_end(int order)
848{
849	int ret = -1;
850	u64 timeout = (u64)monarch_timeout * NSEC_PER_USEC;
851
852	if (!timeout)
853		goto reset;
854	if (order < 0)
855		goto reset;
856
857	/*
858	 * Allow others to run.
859	 */
860	atomic_inc(&mce_executing);
861
862	if (order == 1) {
863		/* CHECKME: Can this race with a parallel hotplug? */
864		int cpus = num_online_cpus();
865
866		/*
867		 * Monarch: Wait for everyone to go through their scanning
868		 * loops.
869		 */
870		while (atomic_read(&mce_executing) <= cpus) {
871			if (mce_timed_out(&timeout))
872				goto reset;
873			ndelay(SPINUNIT);
874		}
875
876		mce_reign();
877		barrier();
878		ret = 0;
879	} else {
880		/*
881		 * Subject: Wait for Monarch to finish.
882		 */
883		while (atomic_read(&mce_executing) != 0) {
884			if (mce_timed_out(&timeout))
885				goto reset;
886			ndelay(SPINUNIT);
887		}
888
889		/*
890		 * Don't reset anything. That's done by the Monarch.
891		 */
892		return 0;
893	}
894
895	/*
896	 * Reset all global state.
897	 */
898reset:
899	atomic_set(&global_nwo, 0);
900	atomic_set(&mce_callin, 0);
901	barrier();
902
903	/*
904	 * Let others run again.
905	 */
906	atomic_set(&mce_executing, 0);
907	return ret;
908}
909
910/*
911 * Check if the address reported by the CPU is in a format we can parse.
912 * It would be possible to add code for most other cases, but all would
913 * be somewhat complicated (e.g. segment offset would require an instruction
914 * parser). So only support physical addresses up to page granuality for now.
915 */
916static int mce_usable_address(struct mce *m)
917{
918	if (!(m->status & MCI_STATUS_MISCV) || !(m->status & MCI_STATUS_ADDRV))
919		return 0;
920	if (MCI_MISC_ADDR_LSB(m->misc) > PAGE_SHIFT)
921		return 0;
922	if (MCI_MISC_ADDR_MODE(m->misc) != MCI_MISC_ADDR_PHYS)
923		return 0;
924	return 1;
925}
926
927static void mce_clear_state(unsigned long *toclear)
928{
929	int i;
930
931	for (i = 0; i < banks; i++) {
932		if (test_bit(i, toclear))
933			mce_wrmsrl(MSR_IA32_MCx_STATUS(i), 0);
934	}
935}
936
937/*
938 * Need to save faulting physical address associated with a process
939 * in the machine check handler some place where we can grab it back
940 * later in mce_notify_process()
941 */
942#define	MCE_INFO_MAX	16
943
944struct mce_info {
945	atomic_t		inuse;
946	struct task_struct	*t;
947	__u64			paddr;
948} mce_info[MCE_INFO_MAX];
949
950static void mce_save_info(__u64 addr)
951{
952	struct mce_info *mi;
953
954	for (mi = mce_info; mi < &mce_info[MCE_INFO_MAX]; mi++) {
955		if (atomic_cmpxchg(&mi->inuse, 0, 1) == 0) {
956			mi->t = current;
957			mi->paddr = addr;
958			return;
959		}
960	}
961
962	mce_panic("Too many concurrent recoverable errors", NULL, NULL);
963}
964
965static struct mce_info *mce_find_info(void)
966{
967	struct mce_info *mi;
968
969	for (mi = mce_info; mi < &mce_info[MCE_INFO_MAX]; mi++)
970		if (atomic_read(&mi->inuse) && mi->t == current)
971			return mi;
972	return NULL;
973}
974
975static void mce_clear_info(struct mce_info *mi)
976{
977	atomic_set(&mi->inuse, 0);
978}
979
980/*
981 * The actual machine check handler. This only handles real
982 * exceptions when something got corrupted coming in through int 18.
983 *
984 * This is executed in NMI context not subject to normal locking rules. This
985 * implies that most kernel services cannot be safely used. Don't even
986 * think about putting a printk in there!
987 *
988 * On Intel systems this is entered on all CPUs in parallel through
989 * MCE broadcast. However some CPUs might be broken beyond repair,
990 * so be always careful when synchronizing with others.
991 */
992void do_machine_check(struct pt_regs *regs, long error_code)
993{
994	struct mce m, *final;
995	int i;
996	int worst = 0;
997	int severity;
998	/*
999	 * Establish sequential order between the CPUs entering the machine
1000	 * check handler.
1001	 */
1002	int order;
1003	/*
1004	 * If no_way_out gets set, there is no safe way to recover from this
1005	 * MCE.  If tolerant is cranked up, we'll try anyway.
1006	 */
1007	int no_way_out = 0;
1008	/*
1009	 * If kill_it gets set, there might be a way to recover from this
1010	 * error.
1011	 */
1012	int kill_it = 0;
1013	DECLARE_BITMAP(toclear, MAX_NR_BANKS);
1014	char *msg = "Unknown";
1015
1016	atomic_inc(&mce_entry);
1017
1018	percpu_inc(mce_exception_count);
1019
1020	if (!banks)
1021		goto out;
1022
1023	mce_gather_info(&m, regs);
1024
1025	final = &__get_cpu_var(mces_seen);
1026	*final = m;
1027
1028	no_way_out = mce_no_way_out(&m, &msg);
1029
1030	barrier();
1031
1032	/*
1033	 * When no restart IP might need to kill or panic.
1034	 * Assume the worst for now, but if we find the
1035	 * severity is MCE_AR_SEVERITY we have other options.
1036	 */
1037	if (!(m.mcgstatus & MCG_STATUS_RIPV))
1038		kill_it = 1;
1039
1040	/*
1041	 * Go through all the banks in exclusion of the other CPUs.
1042	 * This way we don't report duplicated events on shared banks
1043	 * because the first one to see it will clear it.
1044	 */
1045	order = mce_start(&no_way_out);
1046	for (i = 0; i < banks; i++) {
1047		__clear_bit(i, toclear);
1048		if (!mce_banks[i].ctl)
1049			continue;
1050
1051		m.misc = 0;
1052		m.addr = 0;
1053		m.bank = i;
1054
1055		m.status = mce_rdmsrl(MSR_IA32_MCx_STATUS(i));
1056		if ((m.status & MCI_STATUS_VAL) == 0)
1057			continue;
1058
1059		/*
1060		 * Non uncorrected or non signaled errors are handled by
1061		 * machine_check_poll. Leave them alone, unless this panics.
1062		 */
1063		if (!(m.status & (mce_ser ? MCI_STATUS_S : MCI_STATUS_UC)) &&
1064			!no_way_out)
1065			continue;
1066
1067		/*
1068		 * Set taint even when machine check was not enabled.
1069		 */
1070		add_taint(TAINT_MACHINE_CHECK);
1071
1072		severity = mce_severity(&m, tolerant, NULL);
1073
1074		/*
1075		 * When machine check was for corrected handler don't touch,
1076		 * unless we're panicing.
1077		 */
1078		if (severity == MCE_KEEP_SEVERITY && !no_way_out)
1079			continue;
1080		__set_bit(i, toclear);
1081		if (severity == MCE_NO_SEVERITY) {
1082			/*
1083			 * Machine check event was not enabled. Clear, but
1084			 * ignore.
1085			 */
1086			continue;
1087		}
1088
1089		mce_read_aux(&m, i);
1090
1091		/*
1092		 * Action optional error. Queue address for later processing.
1093		 * When the ring overflows we just ignore the AO error.
1094		 * RED-PEN add some logging mechanism when
1095		 * usable_address or mce_add_ring fails.
1096		 * RED-PEN don't ignore overflow for tolerant == 0
1097		 */
1098		if (severity == MCE_AO_SEVERITY && mce_usable_address(&m))
1099			mce_ring_add(m.addr >> PAGE_SHIFT);
1100
1101		mce_log(&m);
1102
1103		if (severity > worst) {
1104			*final = m;
1105			worst = severity;
1106		}
1107	}
1108
1109	/* mce_clear_state will clear *final, save locally for use later */
1110	m = *final;
1111
1112	if (!no_way_out)
1113		mce_clear_state(toclear);
1114
1115	/*
1116	 * Do most of the synchronization with other CPUs.
1117	 * When there's any problem use only local no_way_out state.
1118	 */
1119	if (mce_end(order) < 0)
1120		no_way_out = worst >= MCE_PANIC_SEVERITY;
1121
1122	/*
1123	 * At insane "tolerant" levels we take no action. Otherwise
1124	 * we only die if we have no other choice. For less serious
1125	 * issues we try to recover, or limit damage to the current
1126	 * process.
1127	 */
1128	if (tolerant < 3) {
1129		if (no_way_out)
1130			mce_panic("Fatal machine check on current CPU", &m, msg);
1131		if (worst == MCE_AR_SEVERITY) {
1132			/* schedule action before return to userland */
1133			mce_save_info(m.addr);
1134			set_thread_flag(TIF_MCE_NOTIFY);
1135		} else if (kill_it) {
1136			force_sig(SIGBUS, current);
1137		}
1138	}
1139
1140	if (worst > 0)
1141		mce_report_event(regs);
1142	mce_wrmsrl(MSR_IA32_MCG_STATUS, 0);
1143out:
1144	atomic_dec(&mce_entry);
1145	sync_core();
1146}
1147EXPORT_SYMBOL_GPL(do_machine_check);
1148
1149#ifndef CONFIG_MEMORY_FAILURE
1150int memory_failure(unsigned long pfn, int vector, int flags)
1151{
1152	/* mce_severity() should not hand us an ACTION_REQUIRED error */
1153	BUG_ON(flags & MF_ACTION_REQUIRED);
1154	printk(KERN_ERR "Uncorrected memory error in page 0x%lx ignored\n"
1155		"Rebuild kernel with CONFIG_MEMORY_FAILURE=y for smarter handling\n", pfn);
1156
1157	return 0;
1158}
1159#endif
1160
1161/*
1162 * Called in process context that interrupted by MCE and marked with
1163 * TIF_MCE_NOTIFY, just before returning to erroneous userland.
1164 * This code is allowed to sleep.
1165 * Attempt possible recovery such as calling the high level VM handler to
1166 * process any corrupted pages, and kill/signal current process if required.
1167 * Action required errors are handled here.
1168 */
1169void mce_notify_process(void)
1170{
1171	unsigned long pfn;
1172	struct mce_info *mi = mce_find_info();
1173
1174	if (!mi)
1175		mce_panic("Lost physical address for unconsumed uncorrectable error", NULL, NULL);
1176	pfn = mi->paddr >> PAGE_SHIFT;
1177
1178	clear_thread_flag(TIF_MCE_NOTIFY);
1179
1180	pr_err("Uncorrected hardware memory error in user-access at %llx",
1181		 mi->paddr);
1182	if (memory_failure(pfn, MCE_VECTOR, MF_ACTION_REQUIRED) < 0) {
1183		pr_err("Memory error not recovered");
1184		force_sig(SIGBUS, current);
1185	}
1186	mce_clear_info(mi);
1187}
1188
1189/*
1190 * Action optional processing happens here (picking up
1191 * from the list of faulting pages that do_machine_check()
1192 * placed into the "ring").
1193 */
1194static void mce_process_work(struct work_struct *dummy)
1195{
1196	unsigned long pfn;
1197
1198	while (mce_ring_get(&pfn))
1199		memory_failure(pfn, MCE_VECTOR, 0);
1200}
1201
1202#ifdef CONFIG_X86_MCE_INTEL
1203/***
1204 * mce_log_therm_throt_event - Logs the thermal throttling event to mcelog
1205 * @cpu: The CPU on which the event occurred.
1206 * @status: Event status information
1207 *
1208 * This function should be called by the thermal interrupt after the
1209 * event has been processed and the decision was made to log the event
1210 * further.
1211 *
1212 * The status parameter will be saved to the 'status' field of 'struct mce'
1213 * and historically has been the register value of the
1214 * MSR_IA32_THERMAL_STATUS (Intel) msr.
1215 */
1216void mce_log_therm_throt_event(__u64 status)
1217{
1218	struct mce m;
1219
1220	mce_setup(&m);
1221	m.bank = MCE_THERMAL_BANK;
1222	m.status = status;
1223	mce_log(&m);
1224}
1225#endif /* CONFIG_X86_MCE_INTEL */
1226
1227/*
1228 * Periodic polling timer for "silent" machine check errors.  If the
1229 * poller finds an MCE, poll 2x faster.  When the poller finds no more
1230 * errors, poll 2x slower (up to check_interval seconds).
1231 */
1232static int check_interval = 5 * 60; /* 5 minutes */
1233
1234static DEFINE_PER_CPU(int, mce_next_interval); /* in jiffies */
1235static DEFINE_PER_CPU(struct timer_list, mce_timer);
1236
1237static void mce_start_timer(unsigned long data)
1238{
1239	struct timer_list *t = &per_cpu(mce_timer, data);
1240	int *n;
1241
1242	WARN_ON(smp_processor_id() != data);
1243
1244	if (mce_available(__this_cpu_ptr(&cpu_info))) {
1245		machine_check_poll(MCP_TIMESTAMP,
1246				&__get_cpu_var(mce_poll_banks));
1247	}
1248
1249	/*
1250	 * Alert userspace if needed.  If we logged an MCE, reduce the
1251	 * polling interval, otherwise increase the polling interval.
1252	 */
1253	n = &__get_cpu_var(mce_next_interval);
1254	if (mce_notify_irq())
1255		*n = max(*n/2, HZ/100);
1256	else
1257		*n = min(*n*2, (int)round_jiffies_relative(check_interval*HZ));
1258
1259	t->expires = jiffies + *n;
1260	add_timer_on(t, smp_processor_id());
1261}
1262
1263/* Must not be called in IRQ context where del_timer_sync() can deadlock */
1264static void mce_timer_delete_all(void)
1265{
1266	int cpu;
1267
1268	for_each_online_cpu(cpu)
1269		del_timer_sync(&per_cpu(mce_timer, cpu));
1270}
1271
1272static void mce_do_trigger(struct work_struct *work)
1273{
1274	call_usermodehelper(mce_helper, mce_helper_argv, NULL, UMH_NO_WAIT);
1275}
1276
1277static DECLARE_WORK(mce_trigger_work, mce_do_trigger);
1278
1279/*
1280 * Notify the user(s) about new machine check events.
1281 * Can be called from interrupt context, but not from machine check/NMI
1282 * context.
1283 */
1284int mce_notify_irq(void)
1285{
1286	/* Not more than two messages every minute */
1287	static DEFINE_RATELIMIT_STATE(ratelimit, 60*HZ, 2);
1288
1289	if (test_and_clear_bit(0, &mce_need_notify)) {
1290		/* wake processes polling /dev/mcelog */
1291		wake_up_interruptible(&mce_chrdev_wait);
1292
1293		/*
1294		 * There is no risk of missing notifications because
1295		 * work_pending is always cleared before the function is
1296		 * executed.
1297		 */
1298		if (mce_helper[0] && !work_pending(&mce_trigger_work))
1299			schedule_work(&mce_trigger_work);
1300
1301		if (__ratelimit(&ratelimit))
1302			pr_info(HW_ERR "Machine check events logged\n");
1303
1304		return 1;
1305	}
1306	return 0;
1307}
1308EXPORT_SYMBOL_GPL(mce_notify_irq);
1309
1310static int __cpuinit __mcheck_cpu_mce_banks_init(void)
1311{
1312	int i;
1313
1314	mce_banks = kzalloc(banks * sizeof(struct mce_bank), GFP_KERNEL);
1315	if (!mce_banks)
1316		return -ENOMEM;
1317	for (i = 0; i < banks; i++) {
1318		struct mce_bank *b = &mce_banks[i];
1319
1320		b->ctl = -1ULL;
1321		b->init = 1;
1322	}
1323	return 0;
1324}
1325
1326/*
1327 * Initialize Machine Checks for a CPU.
1328 */
1329static int __cpuinit __mcheck_cpu_cap_init(void)
1330{
1331	unsigned b;
1332	u64 cap;
1333
1334	rdmsrl(MSR_IA32_MCG_CAP, cap);
1335
1336	b = cap & MCG_BANKCNT_MASK;
1337	if (!banks)
1338		printk(KERN_INFO "mce: CPU supports %d MCE banks\n", b);
1339
1340	if (b > MAX_NR_BANKS) {
1341		printk(KERN_WARNING
1342		       "MCE: Using only %u machine check banks out of %u\n",
1343			MAX_NR_BANKS, b);
1344		b = MAX_NR_BANKS;
1345	}
1346
1347	/* Don't support asymmetric configurations today */
1348	WARN_ON(banks != 0 && b != banks);
1349	banks = b;
1350	if (!mce_banks) {
1351		int err = __mcheck_cpu_mce_banks_init();
1352
1353		if (err)
1354			return err;
1355	}
1356
1357	/* Use accurate RIP reporting if available. */
1358	if ((cap & MCG_EXT_P) && MCG_EXT_CNT(cap) >= 9)
1359		rip_msr = MSR_IA32_MCG_EIP;
1360
1361	if (cap & MCG_SER_P)
1362		mce_ser = 1;
1363
1364	return 0;
1365}
1366
1367static void __mcheck_cpu_init_generic(void)
1368{
1369	mce_banks_t all_banks;
1370	u64 cap;
1371	int i;
1372
1373	/*
1374	 * Log the machine checks left over from the previous reset.
1375	 */
1376	bitmap_fill(all_banks, MAX_NR_BANKS);
1377	machine_check_poll(MCP_UC|(!mce_bootlog ? MCP_DONTLOG : 0), &all_banks);
1378
1379	set_in_cr4(X86_CR4_MCE);
1380
1381	rdmsrl(MSR_IA32_MCG_CAP, cap);
1382	if (cap & MCG_CTL_P)
1383		wrmsr(MSR_IA32_MCG_CTL, 0xffffffff, 0xffffffff);
1384
1385	for (i = 0; i < banks; i++) {
1386		struct mce_bank *b = &mce_banks[i];
1387
1388		if (!b->init)
1389			continue;
1390		wrmsrl(MSR_IA32_MCx_CTL(i), b->ctl);
1391		wrmsrl(MSR_IA32_MCx_STATUS(i), 0);
1392	}
1393}
1394
1395/* Add per CPU specific workarounds here */
1396static int __cpuinit __mcheck_cpu_apply_quirks(struct cpuinfo_x86 *c)
1397{
1398	if (c->x86_vendor == X86_VENDOR_UNKNOWN) {
1399		pr_info("MCE: unknown CPU type - not enabling MCE support.\n");
1400		return -EOPNOTSUPP;
1401	}
1402
1403	/* This should be disabled by the BIOS, but isn't always */
1404	if (c->x86_vendor == X86_VENDOR_AMD) {
1405		if (c->x86 == 15 && banks > 4) {
1406			/*
1407			 * disable GART TBL walk error reporting, which
1408			 * trips off incorrectly with the IOMMU & 3ware
1409			 * & Cerberus:
1410			 */
1411			clear_bit(10, (unsigned long *)&mce_banks[4].ctl);
1412		}
1413		if (c->x86 <= 17 && mce_bootlog < 0) {
1414			/*
1415			 * Lots of broken BIOS around that don't clear them
1416			 * by default and leave crap in there. Don't log:
1417			 */
1418			mce_bootlog = 0;
1419		}
1420		/*
1421		 * Various K7s with broken bank 0 around. Always disable
1422		 * by default.
1423		 */
1424		 if (c->x86 == 6 && banks > 0)
1425			mce_banks[0].ctl = 0;
1426
1427		 /*
1428		  * Turn off MC4_MISC thresholding banks on those models since
1429		  * they're not supported there.
1430		  */
1431		 if (c->x86 == 0x15 &&
1432		     (c->x86_model >= 0x10 && c->x86_model <= 0x1f)) {
1433			 int i;
1434			 u64 val, hwcr;
1435			 bool need_toggle;
1436			 u32 msrs[] = {
1437				0x00000413, /* MC4_MISC0 */
1438				0xc0000408, /* MC4_MISC1 */
1439			 };
1440
1441			 rdmsrl(MSR_K7_HWCR, hwcr);
1442
1443			 /* McStatusWrEn has to be set */
1444			 need_toggle = !(hwcr & BIT(18));
1445
1446			 if (need_toggle)
1447				 wrmsrl(MSR_K7_HWCR, hwcr | BIT(18));
1448
1449			 for (i = 0; i < ARRAY_SIZE(msrs); i++) {
1450				 rdmsrl(msrs[i], val);
1451
1452				 /* CntP bit set? */
1453				 if (val & BIT_64(62)) {
1454					val &= ~BIT_64(62);
1455					wrmsrl(msrs[i], val);
1456				 }
1457			 }
1458
1459			 /* restore old settings */
1460			 if (need_toggle)
1461				 wrmsrl(MSR_K7_HWCR, hwcr);
1462		 }
1463	}
1464
1465	if (c->x86_vendor == X86_VENDOR_INTEL) {
1466		/*
1467		 * SDM documents that on family 6 bank 0 should not be written
1468		 * because it aliases to another special BIOS controlled
1469		 * register.
1470		 * But it's not aliased anymore on model 0x1a+
1471		 * Don't ignore bank 0 completely because there could be a
1472		 * valid event later, merely don't write CTL0.
1473		 */
1474
1475		if (c->x86 == 6 && c->x86_model < 0x1A && banks > 0)
1476			mce_banks[0].init = 0;
1477
1478		/*
1479		 * All newer Intel systems support MCE broadcasting. Enable
1480		 * synchronization with a one second timeout.
1481		 */
1482		if ((c->x86 > 6 || (c->x86 == 6 && c->x86_model >= 0xe)) &&
1483			monarch_timeout < 0)
1484			monarch_timeout = USEC_PER_SEC;
1485
1486		/*
1487		 * There are also broken BIOSes on some Pentium M and
1488		 * earlier systems:
1489		 */
1490		if (c->x86 == 6 && c->x86_model <= 13 && mce_bootlog < 0)
1491			mce_bootlog = 0;
1492	}
1493	if (monarch_timeout < 0)
1494		monarch_timeout = 0;
1495	if (mce_bootlog != 0)
1496		mce_panic_timeout = 30;
1497
1498	return 0;
1499}
1500
1501static int __cpuinit __mcheck_cpu_ancient_init(struct cpuinfo_x86 *c)
1502{
1503	if (c->x86 != 5)
1504		return 0;
1505
1506	switch (c->x86_vendor) {
1507	case X86_VENDOR_INTEL:
1508		intel_p5_mcheck_init(c);
1509		return 1;
1510		break;
1511	case X86_VENDOR_CENTAUR:
1512		winchip_mcheck_init(c);
1513		return 1;
1514		break;
1515	}
1516
1517	return 0;
1518}
1519
1520static void __mcheck_cpu_init_vendor(struct cpuinfo_x86 *c)
1521{
1522	switch (c->x86_vendor) {
1523	case X86_VENDOR_INTEL:
1524		mce_intel_feature_init(c);
1525		break;
1526	case X86_VENDOR_AMD:
1527		mce_amd_feature_init(c);
1528		break;
1529	default:
1530		break;
1531	}
1532}
1533
1534static void __mcheck_cpu_init_timer(void)
1535{
1536	struct timer_list *t = &__get_cpu_var(mce_timer);
1537	int *n = &__get_cpu_var(mce_next_interval);
1538
1539	setup_timer(t, mce_start_timer, smp_processor_id());
1540
1541	if (mce_ignore_ce)
1542		return;
1543
1544	*n = check_interval * HZ;
1545	if (!*n)
1546		return;
1547	t->expires = round_jiffies(jiffies + *n);
1548	add_timer_on(t, smp_processor_id());
1549}
1550
1551/* Handle unconfigured int18 (should never happen) */
1552static void unexpected_machine_check(struct pt_regs *regs, long error_code)
1553{
1554	printk(KERN_ERR "CPU#%d: Unexpected int18 (Machine Check).\n",
1555	       smp_processor_id());
1556}
1557
1558/* Call the installed machine check handler for this CPU setup. */
1559void (*machine_check_vector)(struct pt_regs *, long error_code) =
1560						unexpected_machine_check;
1561
1562/*
1563 * Called for each booted CPU to set up machine checks.
1564 * Must be called with preempt off:
1565 */
1566void __cpuinit mcheck_cpu_init(struct cpuinfo_x86 *c)
1567{
1568	if (mce_disabled)
1569		return;
1570
1571	if (__mcheck_cpu_ancient_init(c))
1572		return;
1573
1574	if (!mce_available(c))
1575		return;
1576
1577	if (__mcheck_cpu_cap_init() < 0 || __mcheck_cpu_apply_quirks(c) < 0) {
1578		mce_disabled = 1;
1579		return;
1580	}
1581
1582	machine_check_vector = do_machine_check;
1583
1584	__mcheck_cpu_init_generic();
1585	__mcheck_cpu_init_vendor(c);
1586	__mcheck_cpu_init_timer();
1587	INIT_WORK(&__get_cpu_var(mce_work), mce_process_work);
1588	init_irq_work(&__get_cpu_var(mce_irq_work), &mce_irq_work_cb);
1589}
1590
1591/*
1592 * mce_chrdev: Character device /dev/mcelog to read and clear the MCE log.
1593 */
1594
1595static DEFINE_SPINLOCK(mce_chrdev_state_lock);
1596static int mce_chrdev_open_count;	/* #times opened */
1597static int mce_chrdev_open_exclu;	/* already open exclusive? */
1598
1599static int mce_chrdev_open(struct inode *inode, struct file *file)
1600{
1601	spin_lock(&mce_chrdev_state_lock);
1602
1603	if (mce_chrdev_open_exclu ||
1604	    (mce_chrdev_open_count && (file->f_flags & O_EXCL))) {
1605		spin_unlock(&mce_chrdev_state_lock);
1606
1607		return -EBUSY;
1608	}
1609
1610	if (file->f_flags & O_EXCL)
1611		mce_chrdev_open_exclu = 1;
1612	mce_chrdev_open_count++;
1613
1614	spin_unlock(&mce_chrdev_state_lock);
1615
1616	return nonseekable_open(inode, file);
1617}
1618
1619static int mce_chrdev_release(struct inode *inode, struct file *file)
1620{
1621	spin_lock(&mce_chrdev_state_lock);
1622
1623	mce_chrdev_open_count--;
1624	mce_chrdev_open_exclu = 0;
1625
1626	spin_unlock(&mce_chrdev_state_lock);
1627
1628	return 0;
1629}
1630
1631static void collect_tscs(void *data)
1632{
1633	unsigned long *cpu_tsc = (unsigned long *)data;
1634
1635	rdtscll(cpu_tsc[smp_processor_id()]);
1636}
1637
1638static int mce_apei_read_done;
1639
1640/* Collect MCE record of previous boot in persistent storage via APEI ERST. */
1641static int __mce_read_apei(char __user **ubuf, size_t usize)
1642{
1643	int rc;
1644	u64 record_id;
1645	struct mce m;
1646
1647	if (usize < sizeof(struct mce))
1648		return -EINVAL;
1649
1650	rc = apei_read_mce(&m, &record_id);
1651	/* Error or no more MCE record */
1652	if (rc <= 0) {
1653		mce_apei_read_done = 1;
1654		/*
1655		 * When ERST is disabled, mce_chrdev_read() should return
1656		 * "no record" instead of "no device."
1657		 */
1658		if (rc == -ENODEV)
1659			return 0;
1660		return rc;
1661	}
1662	rc = -EFAULT;
1663	if (copy_to_user(*ubuf, &m, sizeof(struct mce)))
1664		return rc;
1665	/*
1666	 * In fact, we should have cleared the record after that has
1667	 * been flushed to the disk or sent to network in
1668	 * /sbin/mcelog, but we have no interface to support that now,
1669	 * so just clear it to avoid duplication.
1670	 */
1671	rc = apei_clear_mce(record_id);
1672	if (rc) {
1673		mce_apei_read_done = 1;
1674		return rc;
1675	}
1676	*ubuf += sizeof(struct mce);
1677
1678	return 0;
1679}
1680
1681static ssize_t mce_chrdev_read(struct file *filp, char __user *ubuf,
1682				size_t usize, loff_t *off)
1683{
1684	char __user *buf = ubuf;
1685	unsigned long *cpu_tsc;
1686	unsigned prev, next;
1687	int i, err;
1688
1689	cpu_tsc = kmalloc(nr_cpu_ids * sizeof(long), GFP_KERNEL);
1690	if (!cpu_tsc)
1691		return -ENOMEM;
1692
1693	mutex_lock(&mce_chrdev_read_mutex);
1694
1695	if (!mce_apei_read_done) {
1696		err = __mce_read_apei(&buf, usize);
1697		if (err || buf != ubuf)
1698			goto out;
1699	}
1700
1701	next = rcu_dereference_check_mce(mcelog.next);
1702
1703	/* Only supports full reads right now */
1704	err = -EINVAL;
1705	if (*off != 0 || usize < MCE_LOG_LEN*sizeof(struct mce))
1706		goto out;
1707
1708	err = 0;
1709	prev = 0;
1710	do {
1711		for (i = prev; i < next; i++) {
1712			unsigned long start = jiffies;
1713			struct mce *m = &mcelog.entry[i];
1714
1715			while (!m->finished) {
1716				if (time_after_eq(jiffies, start + 2)) {
1717					memset(m, 0, sizeof(*m));
1718					goto timeout;
1719				}
1720				cpu_relax();
1721			}
1722			smp_rmb();
1723			err |= copy_to_user(buf, m, sizeof(*m));
1724			buf += sizeof(*m);
1725timeout:
1726			;
1727		}
1728
1729		memset(mcelog.entry + prev, 0,
1730		       (next - prev) * sizeof(struct mce));
1731		prev = next;
1732		next = cmpxchg(&mcelog.next, prev, 0);
1733	} while (next != prev);
1734
1735	synchronize_sched();
1736
1737	/*
1738	 * Collect entries that were still getting written before the
1739	 * synchronize.
1740	 */
1741	on_each_cpu(collect_tscs, cpu_tsc, 1);
1742
1743	for (i = next; i < MCE_LOG_LEN; i++) {
1744		struct mce *m = &mcelog.entry[i];
1745
1746		if (m->finished && m->tsc < cpu_tsc[m->cpu]) {
1747			err |= copy_to_user(buf, m, sizeof(*m));
1748			smp_rmb();
1749			buf += sizeof(*m);
1750			memset(m, 0, sizeof(*m));
1751		}
1752	}
1753
1754	if (err)
1755		err = -EFAULT;
1756
1757out:
1758	mutex_unlock(&mce_chrdev_read_mutex);
1759	kfree(cpu_tsc);
1760
1761	return err ? err : buf - ubuf;
1762}
1763
1764static unsigned int mce_chrdev_poll(struct file *file, poll_table *wait)
1765{
1766	poll_wait(file, &mce_chrdev_wait, wait);
1767	if (rcu_access_index(mcelog.next))
1768		return POLLIN | POLLRDNORM;
1769	if (!mce_apei_read_done && apei_check_mce())
1770		return POLLIN | POLLRDNORM;
1771	return 0;
1772}
1773
1774static long mce_chrdev_ioctl(struct file *f, unsigned int cmd,
1775				unsigned long arg)
1776{
1777	int __user *p = (int __user *)arg;
1778
1779	if (!capable(CAP_SYS_ADMIN))
1780		return -EPERM;
1781
1782	switch (cmd) {
1783	case MCE_GET_RECORD_LEN:
1784		return put_user(sizeof(struct mce), p);
1785	case MCE_GET_LOG_LEN:
1786		return put_user(MCE_LOG_LEN, p);
1787	case MCE_GETCLEAR_FLAGS: {
1788		unsigned flags;
1789
1790		do {
1791			flags = mcelog.flags;
1792		} while (cmpxchg(&mcelog.flags, flags, 0) != flags);
1793
1794		return put_user(flags, p);
1795	}
1796	default:
1797		return -ENOTTY;
1798	}
1799}
1800
1801static ssize_t (*mce_write)(struct file *filp, const char __user *ubuf,
1802			    size_t usize, loff_t *off);
1803
1804void register_mce_write_callback(ssize_t (*fn)(struct file *filp,
1805			     const char __user *ubuf,
1806			     size_t usize, loff_t *off))
1807{
1808	mce_write = fn;
1809}
1810EXPORT_SYMBOL_GPL(register_mce_write_callback);
1811
1812ssize_t mce_chrdev_write(struct file *filp, const char __user *ubuf,
1813			 size_t usize, loff_t *off)
1814{
1815	if (mce_write)
1816		return mce_write(filp, ubuf, usize, off);
1817	else
1818		return -EINVAL;
1819}
1820
1821static const struct file_operations mce_chrdev_ops = {
1822	.open			= mce_chrdev_open,
1823	.release		= mce_chrdev_release,
1824	.read			= mce_chrdev_read,
1825	.write			= mce_chrdev_write,
1826	.poll			= mce_chrdev_poll,
1827	.unlocked_ioctl		= mce_chrdev_ioctl,
1828	.llseek			= no_llseek,
1829};
1830
1831static struct miscdevice mce_chrdev_device = {
1832	MISC_MCELOG_MINOR,
1833	"mcelog",
1834	&mce_chrdev_ops,
1835};
1836
1837/*
1838 * mce=off Disables machine check
1839 * mce=no_cmci Disables CMCI
1840 * mce=dont_log_ce Clears corrected events silently, no log created for CEs.
1841 * mce=ignore_ce Disables polling and CMCI, corrected events are not cleared.
1842 * mce=TOLERANCELEVEL[,monarchtimeout] (number, see above)
1843 *	monarchtimeout is how long to wait for other CPUs on machine
1844 *	check, or 0 to not wait
1845 * mce=bootlog Log MCEs from before booting. Disabled by default on AMD.
1846 * mce=nobootlog Don't log MCEs from before booting.
1847 */
1848static int __init mcheck_enable(char *str)
1849{
1850	if (*str == 0) {
1851		enable_p5_mce();
1852		return 1;
1853	}
1854	if (*str == '=')
1855		str++;
1856	if (!strcmp(str, "off"))
1857		mce_disabled = 1;
1858	else if (!strcmp(str, "no_cmci"))
1859		mce_cmci_disabled = 1;
1860	else if (!strcmp(str, "dont_log_ce"))
1861		mce_dont_log_ce = 1;
1862	else if (!strcmp(str, "ignore_ce"))
1863		mce_ignore_ce = 1;
1864	else if (!strcmp(str, "bootlog") || !strcmp(str, "nobootlog"))
1865		mce_bootlog = (str[0] == 'b');
1866	else if (isdigit(str[0])) {
1867		get_option(&str, &tolerant);
1868		if (*str == ',') {
1869			++str;
1870			get_option(&str, &monarch_timeout);
1871		}
1872	} else {
1873		printk(KERN_INFO "mce argument %s ignored. Please use /sys\n",
1874		       str);
1875		return 0;
1876	}
1877	return 1;
1878}
1879__setup("mce", mcheck_enable);
1880
1881int __init mcheck_init(void)
1882{
1883	mcheck_intel_therm_init();
1884
1885	return 0;
1886}
1887
1888/*
1889 * mce_syscore: PM support
1890 */
1891
1892/*
1893 * Disable machine checks on suspend and shutdown. We can't really handle
1894 * them later.
1895 */
1896static int mce_disable_error_reporting(void)
1897{
1898	int i;
1899
1900	for (i = 0; i < banks; i++) {
1901		struct mce_bank *b = &mce_banks[i];
1902
1903		if (b->init)
1904			wrmsrl(MSR_IA32_MCx_CTL(i), 0);
1905	}
1906	return 0;
1907}
1908
1909static int mce_syscore_suspend(void)
1910{
1911	return mce_disable_error_reporting();
1912}
1913
1914static void mce_syscore_shutdown(void)
1915{
1916	mce_disable_error_reporting();
1917}
1918
1919/*
1920 * On resume clear all MCE state. Don't want to see leftovers from the BIOS.
1921 * Only one CPU is active at this time, the others get re-added later using
1922 * CPU hotplug:
1923 */
1924static void mce_syscore_resume(void)
1925{
1926	__mcheck_cpu_init_generic();
1927	__mcheck_cpu_init_vendor(__this_cpu_ptr(&cpu_info));
1928}
1929
1930static struct syscore_ops mce_syscore_ops = {
1931	.suspend	= mce_syscore_suspend,
1932	.shutdown	= mce_syscore_shutdown,
1933	.resume		= mce_syscore_resume,
1934};
1935
1936/*
1937 * mce_device: Sysfs support
1938 */
1939
1940static void mce_cpu_restart(void *data)
1941{
1942	if (!mce_available(__this_cpu_ptr(&cpu_info)))
1943		return;
1944	__mcheck_cpu_init_generic();
1945	__mcheck_cpu_init_timer();
1946}
1947
1948/* Reinit MCEs after user configuration changes */
1949static void mce_restart(void)
1950{
1951	mce_timer_delete_all();
1952	on_each_cpu(mce_cpu_restart, NULL, 1);
1953}
1954
1955/* Toggle features for corrected errors */
1956static void mce_disable_cmci(void *data)
1957{
1958	if (!mce_available(__this_cpu_ptr(&cpu_info)))
1959		return;
1960	cmci_clear();
1961}
1962
1963static void mce_enable_ce(void *all)
1964{
1965	if (!mce_available(__this_cpu_ptr(&cpu_info)))
1966		return;
1967	cmci_reenable();
1968	cmci_recheck();
1969	if (all)
1970		__mcheck_cpu_init_timer();
1971}
1972
1973static struct bus_type mce_subsys = {
1974	.name		= "machinecheck",
1975	.dev_name	= "machinecheck",
1976};
1977
1978DEFINE_PER_CPU(struct device *, mce_device);
1979
1980__cpuinitdata
1981void (*threshold_cpu_callback)(unsigned long action, unsigned int cpu);
1982
1983static inline struct mce_bank *attr_to_bank(struct device_attribute *attr)
1984{
1985	return container_of(attr, struct mce_bank, attr);
1986}
1987
1988static ssize_t show_bank(struct device *s, struct device_attribute *attr,
1989			 char *buf)
1990{
1991	return sprintf(buf, "%llx\n", attr_to_bank(attr)->ctl);
1992}
1993
1994static ssize_t set_bank(struct device *s, struct device_attribute *attr,
1995			const char *buf, size_t size)
1996{
1997	u64 new;
1998
1999	if (strict_strtoull(buf, 0, &new) < 0)
2000		return -EINVAL;
2001
2002	attr_to_bank(attr)->ctl = new;
2003	mce_restart();
2004
2005	return size;
2006}
2007
2008static ssize_t
2009show_trigger(struct device *s, struct device_attribute *attr, char *buf)
2010{
2011	strcpy(buf, mce_helper);
2012	strcat(buf, "\n");
2013	return strlen(mce_helper) + 1;
2014}
2015
2016static ssize_t set_trigger(struct device *s, struct device_attribute *attr,
2017				const char *buf, size_t siz)
2018{
2019	char *p;
2020
2021	strncpy(mce_helper, buf, sizeof(mce_helper));
2022	mce_helper[sizeof(mce_helper)-1] = 0;
2023	p = strchr(mce_helper, '\n');
2024
2025	if (p)
2026		*p = 0;
2027
2028	return strlen(mce_helper) + !!p;
2029}
2030
2031static ssize_t set_ignore_ce(struct device *s,
2032			     struct device_attribute *attr,
2033			     const char *buf, size_t size)
2034{
2035	u64 new;
2036
2037	if (strict_strtoull(buf, 0, &new) < 0)
2038		return -EINVAL;
2039
2040	if (mce_ignore_ce ^ !!new) {
2041		if (new) {
2042			/* disable ce features */
2043			mce_timer_delete_all();
2044			on_each_cpu(mce_disable_cmci, NULL, 1);
2045			mce_ignore_ce = 1;
2046		} else {
2047			/* enable ce features */
2048			mce_ignore_ce = 0;
2049			on_each_cpu(mce_enable_ce, (void *)1, 1);
2050		}
2051	}
2052	return size;
2053}
2054
2055static ssize_t set_cmci_disabled(struct device *s,
2056				 struct device_attribute *attr,
2057				 const char *buf, size_t size)
2058{
2059	u64 new;
2060
2061	if (strict_strtoull(buf, 0, &new) < 0)
2062		return -EINVAL;
2063
2064	if (mce_cmci_disabled ^ !!new) {
2065		if (new) {
2066			/* disable cmci */
2067			on_each_cpu(mce_disable_cmci, NULL, 1);
2068			mce_cmci_disabled = 1;
2069		} else {
2070			/* enable cmci */
2071			mce_cmci_disabled = 0;
2072			on_each_cpu(mce_enable_ce, NULL, 1);
2073		}
2074	}
2075	return size;
2076}
2077
2078static ssize_t store_int_with_restart(struct device *s,
2079				      struct device_attribute *attr,
2080				      const char *buf, size_t size)
2081{
2082	ssize_t ret = device_store_int(s, attr, buf, size);
2083	mce_restart();
2084	return ret;
2085}
2086
2087static DEVICE_ATTR(trigger, 0644, show_trigger, set_trigger);
2088static DEVICE_INT_ATTR(tolerant, 0644, tolerant);
2089static DEVICE_INT_ATTR(monarch_timeout, 0644, monarch_timeout);
2090static DEVICE_INT_ATTR(dont_log_ce, 0644, mce_dont_log_ce);
2091
2092static struct dev_ext_attribute dev_attr_check_interval = {
2093	__ATTR(check_interval, 0644, device_show_int, store_int_with_restart),
2094	&check_interval
2095};
2096
2097static struct dev_ext_attribute dev_attr_ignore_ce = {
2098	__ATTR(ignore_ce, 0644, device_show_int, set_ignore_ce),
2099	&mce_ignore_ce
2100};
2101
2102static struct dev_ext_attribute dev_attr_cmci_disabled = {
2103	__ATTR(cmci_disabled, 0644, device_show_int, set_cmci_disabled),
2104	&mce_cmci_disabled
2105};
2106
2107static struct device_attribute *mce_device_attrs[] = {
2108	&dev_attr_tolerant.attr,
2109	&dev_attr_check_interval.attr,
2110	&dev_attr_trigger,
2111	&dev_attr_monarch_timeout.attr,
2112	&dev_attr_dont_log_ce.attr,
2113	&dev_attr_ignore_ce.attr,
2114	&dev_attr_cmci_disabled.attr,
2115	NULL
2116};
2117
2118static cpumask_var_t mce_device_initialized;
2119
2120static void mce_device_release(struct device *dev)
2121{
2122	kfree(dev);
2123}
2124
2125/* Per cpu device init. All of the cpus still share the same ctrl bank: */
2126static __cpuinit int mce_device_create(unsigned int cpu)
2127{
2128	struct device *dev;
2129	int err;
2130	int i, j;
2131
2132	if (!mce_available(&boot_cpu_data))
2133		return -EIO;
2134
2135	dev = kzalloc(sizeof *dev, GFP_KERNEL);
2136	if (!dev)
2137		return -ENOMEM;
2138	dev->id  = cpu;
2139	dev->bus = &mce_subsys;
2140	dev->release = &mce_device_release;
2141
2142	err = device_register(dev);
2143	if (err)
2144		return err;
2145
2146	for (i = 0; mce_device_attrs[i]; i++) {
2147		err = device_create_file(dev, mce_device_attrs[i]);
2148		if (err)
2149			goto error;
2150	}
2151	for (j = 0; j < banks; j++) {
2152		err = device_create_file(dev, &mce_banks[j].attr);
2153		if (err)
2154			goto error2;
2155	}
2156	cpumask_set_cpu(cpu, mce_device_initialized);
2157	per_cpu(mce_device, cpu) = dev;
2158
2159	return 0;
2160error2:
2161	while (--j >= 0)
2162		device_remove_file(dev, &mce_banks[j].attr);
2163error:
2164	while (--i >= 0)
2165		device_remove_file(dev, mce_device_attrs[i]);
2166
2167	device_unregister(dev);
2168
2169	return err;
2170}
2171
2172static __cpuinit void mce_device_remove(unsigned int cpu)
2173{
2174	struct device *dev = per_cpu(mce_device, cpu);
2175	int i;
2176
2177	if (!cpumask_test_cpu(cpu, mce_device_initialized))
2178		return;
2179
2180	for (i = 0; mce_device_attrs[i]; i++)
2181		device_remove_file(dev, mce_device_attrs[i]);
2182
2183	for (i = 0; i < banks; i++)
2184		device_remove_file(dev, &mce_banks[i].attr);
2185
2186	device_unregister(dev);
2187	cpumask_clear_cpu(cpu, mce_device_initialized);
2188	per_cpu(mce_device, cpu) = NULL;
2189}
2190
2191/* Make sure there are no machine checks on offlined CPUs. */
2192static void __cpuinit mce_disable_cpu(void *h)
2193{
2194	unsigned long action = *(unsigned long *)h;
2195	int i;
2196
2197	if (!mce_available(__this_cpu_ptr(&cpu_info)))
2198		return;
2199
2200	if (!(action & CPU_TASKS_FROZEN))
2201		cmci_clear();
2202	for (i = 0; i < banks; i++) {
2203		struct mce_bank *b = &mce_banks[i];
2204
2205		if (b->init)
2206			wrmsrl(MSR_IA32_MCx_CTL(i), 0);
2207	}
2208}
2209
2210static void __cpuinit mce_reenable_cpu(void *h)
2211{
2212	unsigned long action = *(unsigned long *)h;
2213	int i;
2214
2215	if (!mce_available(__this_cpu_ptr(&cpu_info)))
2216		return;
2217
2218	if (!(action & CPU_TASKS_FROZEN))
2219		cmci_reenable();
2220	for (i = 0; i < banks; i++) {
2221		struct mce_bank *b = &mce_banks[i];
2222
2223		if (b->init)
2224			wrmsrl(MSR_IA32_MCx_CTL(i), b->ctl);
2225	}
2226}
2227
2228/* Get notified when a cpu comes on/off. Be hotplug friendly. */
2229static int __cpuinit
2230mce_cpu_callback(struct notifier_block *nfb, unsigned long action, void *hcpu)
2231{
2232	unsigned int cpu = (unsigned long)hcpu;
2233	struct timer_list *t = &per_cpu(mce_timer, cpu);
2234
2235	switch (action) {
2236	case CPU_ONLINE:
2237	case CPU_ONLINE_FROZEN:
2238		mce_device_create(cpu);
2239		if (threshold_cpu_callback)
2240			threshold_cpu_callback(action, cpu);
2241		break;
2242	case CPU_DEAD:
2243	case CPU_DEAD_FROZEN:
2244		if (threshold_cpu_callback)
2245			threshold_cpu_callback(action, cpu);
2246		mce_device_remove(cpu);
2247		break;
2248	case CPU_DOWN_PREPARE:
2249	case CPU_DOWN_PREPARE_FROZEN:
2250		del_timer_sync(t);
2251		smp_call_function_single(cpu, mce_disable_cpu, &action, 1);
2252		break;
2253	case CPU_DOWN_FAILED:
2254	case CPU_DOWN_FAILED_FROZEN:
2255		if (!mce_ignore_ce && check_interval) {
2256			t->expires = round_jiffies(jiffies +
2257					   __get_cpu_var(mce_next_interval));
2258			add_timer_on(t, cpu);
2259		}
2260		smp_call_function_single(cpu, mce_reenable_cpu, &action, 1);
2261		break;
2262	case CPU_POST_DEAD:
2263		/* intentionally ignoring frozen here */
2264		cmci_rediscover(cpu);
2265		break;
2266	}
2267	return NOTIFY_OK;
2268}
2269
2270static struct notifier_block mce_cpu_notifier __cpuinitdata = {
2271	.notifier_call = mce_cpu_callback,
2272};
2273
2274static __init void mce_init_banks(void)
2275{
2276	int i;
2277
2278	for (i = 0; i < banks; i++) {
2279		struct mce_bank *b = &mce_banks[i];
2280		struct device_attribute *a = &b->attr;
2281
2282		sysfs_attr_init(&a->attr);
2283		a->attr.name	= b->attrname;
2284		snprintf(b->attrname, ATTR_LEN, "bank%d", i);
2285
2286		a->attr.mode	= 0644;
2287		a->show		= show_bank;
2288		a->store	= set_bank;
2289	}
2290}
2291
2292static __init int mcheck_init_device(void)
2293{
2294	int err;
2295	int i = 0;
2296
2297	if (!mce_available(&boot_cpu_data))
2298		return -EIO;
2299
2300	zalloc_cpumask_var(&mce_device_initialized, GFP_KERNEL);
2301
2302	mce_init_banks();
2303
2304	err = subsys_system_register(&mce_subsys, NULL);
2305	if (err)
2306		return err;
2307
2308	for_each_online_cpu(i) {
2309		err = mce_device_create(i);
2310		if (err)
2311			return err;
2312	}
2313
2314	register_syscore_ops(&mce_syscore_ops);
2315	register_hotcpu_notifier(&mce_cpu_notifier);
2316
2317	/* register character device /dev/mcelog */
2318	misc_register(&mce_chrdev_device);
2319
2320	return err;
2321}
2322device_initcall(mcheck_init_device);
2323
2324/*
2325 * Old style boot options parsing. Only for compatibility.
2326 */
2327static int __init mcheck_disable(char *str)
2328{
2329	mce_disabled = 1;
2330	return 1;
2331}
2332__setup("nomce", mcheck_disable);
2333
2334#ifdef CONFIG_DEBUG_FS
2335struct dentry *mce_get_debugfs_dir(void)
2336{
2337	static struct dentry *dmce;
2338
2339	if (!dmce)
2340		dmce = debugfs_create_dir("mce", NULL);
2341
2342	return dmce;
2343}
2344
2345static void mce_reset(void)
2346{
2347	cpu_missing = 0;
2348	atomic_set(&mce_fake_paniced, 0);
2349	atomic_set(&mce_executing, 0);
2350	atomic_set(&mce_callin, 0);
2351	atomic_set(&global_nwo, 0);
2352}
2353
2354static int fake_panic_get(void *data, u64 *val)
2355{
2356	*val = fake_panic;
2357	return 0;
2358}
2359
2360static int fake_panic_set(void *data, u64 val)
2361{
2362	mce_reset();
2363	fake_panic = val;
2364	return 0;
2365}
2366
2367DEFINE_SIMPLE_ATTRIBUTE(fake_panic_fops, fake_panic_get,
2368			fake_panic_set, "%llu\n");
2369
2370static int __init mcheck_debugfs_init(void)
2371{
2372	struct dentry *dmce, *ffake_panic;
2373
2374	dmce = mce_get_debugfs_dir();
2375	if (!dmce)
2376		return -ENOMEM;
2377	ffake_panic = debugfs_create_file("fake_panic", 0444, dmce, NULL,
2378					  &fake_panic_fops);
2379	if (!ffake_panic)
2380		return -ENOMEM;
2381
2382	return 0;
2383}
2384late_initcall(mcheck_debugfs_init);
2385#endif
2386