mce.c revision 881e23e56764808e7ab1ed73b5d8a6700042ea38
1/*
2 * Machine check handler.
3 *
4 * K8 parts Copyright 2002,2003 Andi Kleen, SuSE Labs.
5 * Rest from unknown author(s).
6 * 2004 Andi Kleen. Rewrote most of it.
7 * Copyright 2008 Intel Corporation
8 * Author: Andi Kleen
9 */
10#include <linux/thread_info.h>
11#include <linux/capability.h>
12#include <linux/miscdevice.h>
13#include <linux/ratelimit.h>
14#include <linux/kallsyms.h>
15#include <linux/rcupdate.h>
16#include <linux/kobject.h>
17#include <linux/uaccess.h>
18#include <linux/kdebug.h>
19#include <linux/kernel.h>
20#include <linux/percpu.h>
21#include <linux/string.h>
22#include <linux/sysdev.h>
23#include <linux/syscore_ops.h>
24#include <linux/delay.h>
25#include <linux/ctype.h>
26#include <linux/sched.h>
27#include <linux/sysfs.h>
28#include <linux/types.h>
29#include <linux/slab.h>
30#include <linux/init.h>
31#include <linux/kmod.h>
32#include <linux/poll.h>
33#include <linux/nmi.h>
34#include <linux/cpu.h>
35#include <linux/smp.h>
36#include <linux/fs.h>
37#include <linux/mm.h>
38#include <linux/debugfs.h>
39#include <linux/edac_mce.h>
40#include <linux/irq_work.h>
41
42#include <asm/processor.h>
43#include <asm/mce.h>
44#include <asm/msr.h>
45
46#include "mce-internal.h"
47
48static DEFINE_MUTEX(mce_chrdev_read_mutex);
49
50#define rcu_dereference_check_mce(p) \
51	rcu_dereference_index_check((p), \
52			      rcu_read_lock_sched_held() || \
53			      lockdep_is_held(&mce_chrdev_read_mutex))
54
55#define CREATE_TRACE_POINTS
56#include <trace/events/mce.h>
57
58int mce_disabled __read_mostly;
59
60#define MISC_MCELOG_MINOR	227
61
62#define SPINUNIT 100	/* 100ns */
63
64atomic_t mce_entry;
65
66DEFINE_PER_CPU(unsigned, mce_exception_count);
67
68/*
69 * Tolerant levels:
70 *   0: always panic on uncorrected errors, log corrected errors
71 *   1: panic or SIGBUS on uncorrected errors, log corrected errors
72 *   2: SIGBUS or log uncorrected errors (if possible), log corrected errors
73 *   3: never panic or SIGBUS, log all errors (for testing only)
74 */
75static int			tolerant		__read_mostly = 1;
76static int			banks			__read_mostly;
77static int			rip_msr			__read_mostly;
78static int			mce_bootlog		__read_mostly = -1;
79static int			monarch_timeout		__read_mostly = -1;
80static int			mce_panic_timeout	__read_mostly;
81static int			mce_dont_log_ce		__read_mostly;
82int				mce_cmci_disabled	__read_mostly;
83int				mce_ignore_ce		__read_mostly;
84int				mce_ser			__read_mostly;
85
86struct mce_bank                *mce_banks		__read_mostly;
87
88/* User mode helper program triggered by machine check event */
89static unsigned long		mce_need_notify;
90static char			mce_helper[128];
91static char			*mce_helper_argv[2] = { mce_helper, NULL };
92
93static DECLARE_WAIT_QUEUE_HEAD(mce_chrdev_wait);
94
95static DEFINE_PER_CPU(struct mce, mces_seen);
96static int			cpu_missing;
97
98/*
99 * CPU/chipset specific EDAC code can register a notifier call here to print
100 * MCE errors in a human-readable form.
101 */
102ATOMIC_NOTIFIER_HEAD(x86_mce_decoder_chain);
103EXPORT_SYMBOL_GPL(x86_mce_decoder_chain);
104
105/* MCA banks polled by the period polling timer for corrected events */
106DEFINE_PER_CPU(mce_banks_t, mce_poll_banks) = {
107	[0 ... BITS_TO_LONGS(MAX_NR_BANKS)-1] = ~0UL
108};
109
110static DEFINE_PER_CPU(struct work_struct, mce_work);
111
112/* Do initial initialization of a struct mce */
113void mce_setup(struct mce *m)
114{
115	memset(m, 0, sizeof(struct mce));
116	m->cpu = m->extcpu = smp_processor_id();
117	rdtscll(m->tsc);
118	/* We hope get_seconds stays lockless */
119	m->time = get_seconds();
120	m->cpuvendor = boot_cpu_data.x86_vendor;
121	m->cpuid = cpuid_eax(1);
122#ifdef CONFIG_SMP
123	m->socketid = cpu_data(m->extcpu).phys_proc_id;
124#endif
125	m->apicid = cpu_data(m->extcpu).initial_apicid;
126	rdmsrl(MSR_IA32_MCG_CAP, m->mcgcap);
127}
128
129DEFINE_PER_CPU(struct mce, injectm);
130EXPORT_PER_CPU_SYMBOL_GPL(injectm);
131
132/*
133 * Lockless MCE logging infrastructure.
134 * This avoids deadlocks on printk locks without having to break locks. Also
135 * separate MCEs from kernel messages to avoid bogus bug reports.
136 */
137
138static struct mce_log mcelog = {
139	.signature	= MCE_LOG_SIGNATURE,
140	.len		= MCE_LOG_LEN,
141	.recordlen	= sizeof(struct mce),
142};
143
144void mce_log(struct mce *mce)
145{
146	unsigned next, entry;
147
148	/* Emit the trace record: */
149	trace_mce_record(mce);
150
151	mce->finished = 0;
152	wmb();
153	for (;;) {
154		entry = rcu_dereference_check_mce(mcelog.next);
155		for (;;) {
156			/*
157			 * If edac_mce is enabled, it will check the error type
158			 * and will process it, if it is a known error.
159			 * Otherwise, the error will be sent through mcelog
160			 * interface
161			 */
162			if (edac_mce_parse(mce))
163				return;
164
165			/*
166			 * When the buffer fills up discard new entries.
167			 * Assume that the earlier errors are the more
168			 * interesting ones:
169			 */
170			if (entry >= MCE_LOG_LEN) {
171				set_bit(MCE_OVERFLOW,
172					(unsigned long *)&mcelog.flags);
173				return;
174			}
175			/* Old left over entry. Skip: */
176			if (mcelog.entry[entry].finished) {
177				entry++;
178				continue;
179			}
180			break;
181		}
182		smp_rmb();
183		next = entry + 1;
184		if (cmpxchg(&mcelog.next, entry, next) == entry)
185			break;
186	}
187	memcpy(mcelog.entry + entry, mce, sizeof(struct mce));
188	wmb();
189	mcelog.entry[entry].finished = 1;
190	wmb();
191
192	mce->finished = 1;
193	set_bit(0, &mce_need_notify);
194}
195
196static void print_mce(struct mce *m)
197{
198	int ret = 0;
199
200	pr_emerg(HW_ERR "CPU %d: Machine Check Exception: %Lx Bank %d: %016Lx\n",
201	       m->extcpu, m->mcgstatus, m->bank, m->status);
202
203	if (m->ip) {
204		pr_emerg(HW_ERR "RIP%s %02x:<%016Lx> ",
205			!(m->mcgstatus & MCG_STATUS_EIPV) ? " !INEXACT!" : "",
206				m->cs, m->ip);
207
208		if (m->cs == __KERNEL_CS)
209			print_symbol("{%s}", m->ip);
210		pr_cont("\n");
211	}
212
213	pr_emerg(HW_ERR "TSC %llx ", m->tsc);
214	if (m->addr)
215		pr_cont("ADDR %llx ", m->addr);
216	if (m->misc)
217		pr_cont("MISC %llx ", m->misc);
218
219	pr_cont("\n");
220	/*
221	 * Note this output is parsed by external tools and old fields
222	 * should not be changed.
223	 */
224	pr_emerg(HW_ERR "PROCESSOR %u:%x TIME %llu SOCKET %u APIC %x microcode %x\n",
225		m->cpuvendor, m->cpuid, m->time, m->socketid, m->apicid,
226		cpu_data(m->extcpu).microcode);
227
228	/*
229	 * Print out human-readable details about the MCE error,
230	 * (if the CPU has an implementation for that)
231	 */
232	ret = atomic_notifier_call_chain(&x86_mce_decoder_chain, 0, m);
233	if (ret == NOTIFY_STOP)
234		return;
235
236	pr_emerg_ratelimited(HW_ERR "Run the above through 'mcelog --ascii'\n");
237}
238
239#define PANIC_TIMEOUT 5 /* 5 seconds */
240
241static atomic_t mce_paniced;
242
243static int fake_panic;
244static atomic_t mce_fake_paniced;
245
246/* Panic in progress. Enable interrupts and wait for final IPI */
247static void wait_for_panic(void)
248{
249	long timeout = PANIC_TIMEOUT*USEC_PER_SEC;
250
251	preempt_disable();
252	local_irq_enable();
253	while (timeout-- > 0)
254		udelay(1);
255	if (panic_timeout == 0)
256		panic_timeout = mce_panic_timeout;
257	panic("Panicing machine check CPU died");
258}
259
260static void mce_panic(char *msg, struct mce *final, char *exp)
261{
262	int i, apei_err = 0;
263
264	if (!fake_panic) {
265		/*
266		 * Make sure only one CPU runs in machine check panic
267		 */
268		if (atomic_inc_return(&mce_paniced) > 1)
269			wait_for_panic();
270		barrier();
271
272		bust_spinlocks(1);
273		console_verbose();
274	} else {
275		/* Don't log too much for fake panic */
276		if (atomic_inc_return(&mce_fake_paniced) > 1)
277			return;
278	}
279	/* First print corrected ones that are still unlogged */
280	for (i = 0; i < MCE_LOG_LEN; i++) {
281		struct mce *m = &mcelog.entry[i];
282		if (!(m->status & MCI_STATUS_VAL))
283			continue;
284		if (!(m->status & MCI_STATUS_UC)) {
285			print_mce(m);
286			if (!apei_err)
287				apei_err = apei_write_mce(m);
288		}
289	}
290	/* Now print uncorrected but with the final one last */
291	for (i = 0; i < MCE_LOG_LEN; i++) {
292		struct mce *m = &mcelog.entry[i];
293		if (!(m->status & MCI_STATUS_VAL))
294			continue;
295		if (!(m->status & MCI_STATUS_UC))
296			continue;
297		if (!final || memcmp(m, final, sizeof(struct mce))) {
298			print_mce(m);
299			if (!apei_err)
300				apei_err = apei_write_mce(m);
301		}
302	}
303	if (final) {
304		print_mce(final);
305		if (!apei_err)
306			apei_err = apei_write_mce(final);
307	}
308	if (cpu_missing)
309		pr_emerg(HW_ERR "Some CPUs didn't answer in synchronization\n");
310	if (exp)
311		pr_emerg(HW_ERR "Machine check: %s\n", exp);
312	if (!fake_panic) {
313		if (panic_timeout == 0)
314			panic_timeout = mce_panic_timeout;
315		panic(msg);
316	} else
317		pr_emerg(HW_ERR "Fake kernel panic: %s\n", msg);
318}
319
320/* Support code for software error injection */
321
322static int msr_to_offset(u32 msr)
323{
324	unsigned bank = __this_cpu_read(injectm.bank);
325
326	if (msr == rip_msr)
327		return offsetof(struct mce, ip);
328	if (msr == MSR_IA32_MCx_STATUS(bank))
329		return offsetof(struct mce, status);
330	if (msr == MSR_IA32_MCx_ADDR(bank))
331		return offsetof(struct mce, addr);
332	if (msr == MSR_IA32_MCx_MISC(bank))
333		return offsetof(struct mce, misc);
334	if (msr == MSR_IA32_MCG_STATUS)
335		return offsetof(struct mce, mcgstatus);
336	return -1;
337}
338
339/* MSR access wrappers used for error injection */
340static u64 mce_rdmsrl(u32 msr)
341{
342	u64 v;
343
344	if (__this_cpu_read(injectm.finished)) {
345		int offset = msr_to_offset(msr);
346
347		if (offset < 0)
348			return 0;
349		return *(u64 *)((char *)&__get_cpu_var(injectm) + offset);
350	}
351
352	if (rdmsrl_safe(msr, &v)) {
353		WARN_ONCE(1, "mce: Unable to read msr %d!\n", msr);
354		/*
355		 * Return zero in case the access faulted. This should
356		 * not happen normally but can happen if the CPU does
357		 * something weird, or if the code is buggy.
358		 */
359		v = 0;
360	}
361
362	return v;
363}
364
365static void mce_wrmsrl(u32 msr, u64 v)
366{
367	if (__this_cpu_read(injectm.finished)) {
368		int offset = msr_to_offset(msr);
369
370		if (offset >= 0)
371			*(u64 *)((char *)&__get_cpu_var(injectm) + offset) = v;
372		return;
373	}
374	wrmsrl(msr, v);
375}
376
377/*
378 * Collect all global (w.r.t. this processor) status about this machine
379 * check into our "mce" struct so that we can use it later to assess
380 * the severity of the problem as we read per-bank specific details.
381 */
382static inline void mce_gather_info(struct mce *m, struct pt_regs *regs)
383{
384	mce_setup(m);
385
386	m->mcgstatus = mce_rdmsrl(MSR_IA32_MCG_STATUS);
387	if (regs) {
388		/*
389		 * Get the address of the instruction at the time of
390		 * the machine check error.
391		 */
392		if (m->mcgstatus & (MCG_STATUS_RIPV|MCG_STATUS_EIPV)) {
393			m->ip = regs->ip;
394			m->cs = regs->cs;
395		}
396		/* Use accurate RIP reporting if available. */
397		if (rip_msr)
398			m->ip = mce_rdmsrl(rip_msr);
399	}
400}
401
402/*
403 * Simple lockless ring to communicate PFNs from the exception handler with the
404 * process context work function. This is vastly simplified because there's
405 * only a single reader and a single writer.
406 */
407#define MCE_RING_SIZE 16	/* we use one entry less */
408
409struct mce_ring {
410	unsigned short start;
411	unsigned short end;
412	unsigned long ring[MCE_RING_SIZE];
413};
414static DEFINE_PER_CPU(struct mce_ring, mce_ring);
415
416/* Runs with CPU affinity in workqueue */
417static int mce_ring_empty(void)
418{
419	struct mce_ring *r = &__get_cpu_var(mce_ring);
420
421	return r->start == r->end;
422}
423
424static int mce_ring_get(unsigned long *pfn)
425{
426	struct mce_ring *r;
427	int ret = 0;
428
429	*pfn = 0;
430	get_cpu();
431	r = &__get_cpu_var(mce_ring);
432	if (r->start == r->end)
433		goto out;
434	*pfn = r->ring[r->start];
435	r->start = (r->start + 1) % MCE_RING_SIZE;
436	ret = 1;
437out:
438	put_cpu();
439	return ret;
440}
441
442/* Always runs in MCE context with preempt off */
443static int mce_ring_add(unsigned long pfn)
444{
445	struct mce_ring *r = &__get_cpu_var(mce_ring);
446	unsigned next;
447
448	next = (r->end + 1) % MCE_RING_SIZE;
449	if (next == r->start)
450		return -1;
451	r->ring[r->end] = pfn;
452	wmb();
453	r->end = next;
454	return 0;
455}
456
457int mce_available(struct cpuinfo_x86 *c)
458{
459	if (mce_disabled)
460		return 0;
461	return cpu_has(c, X86_FEATURE_MCE) && cpu_has(c, X86_FEATURE_MCA);
462}
463
464static void mce_schedule_work(void)
465{
466	if (!mce_ring_empty()) {
467		struct work_struct *work = &__get_cpu_var(mce_work);
468		if (!work_pending(work))
469			schedule_work(work);
470	}
471}
472
473DEFINE_PER_CPU(struct irq_work, mce_irq_work);
474
475static void mce_irq_work_cb(struct irq_work *entry)
476{
477	mce_notify_irq();
478	mce_schedule_work();
479}
480
481static void mce_report_event(struct pt_regs *regs)
482{
483	if (regs->flags & (X86_VM_MASK|X86_EFLAGS_IF)) {
484		mce_notify_irq();
485		/*
486		 * Triggering the work queue here is just an insurance
487		 * policy in case the syscall exit notify handler
488		 * doesn't run soon enough or ends up running on the
489		 * wrong CPU (can happen when audit sleeps)
490		 */
491		mce_schedule_work();
492		return;
493	}
494
495	irq_work_queue(&__get_cpu_var(mce_irq_work));
496}
497
498DEFINE_PER_CPU(unsigned, mce_poll_count);
499
500/*
501 * Poll for corrected events or events that happened before reset.
502 * Those are just logged through /dev/mcelog.
503 *
504 * This is executed in standard interrupt context.
505 *
506 * Note: spec recommends to panic for fatal unsignalled
507 * errors here. However this would be quite problematic --
508 * we would need to reimplement the Monarch handling and
509 * it would mess up the exclusion between exception handler
510 * and poll hander -- * so we skip this for now.
511 * These cases should not happen anyways, or only when the CPU
512 * is already totally * confused. In this case it's likely it will
513 * not fully execute the machine check handler either.
514 */
515void machine_check_poll(enum mcp_flags flags, mce_banks_t *b)
516{
517	struct mce m;
518	int i;
519
520	percpu_inc(mce_poll_count);
521
522	mce_gather_info(&m, NULL);
523
524	for (i = 0; i < banks; i++) {
525		if (!mce_banks[i].ctl || !test_bit(i, *b))
526			continue;
527
528		m.misc = 0;
529		m.addr = 0;
530		m.bank = i;
531		m.tsc = 0;
532
533		barrier();
534		m.status = mce_rdmsrl(MSR_IA32_MCx_STATUS(i));
535		if (!(m.status & MCI_STATUS_VAL))
536			continue;
537
538		/*
539		 * Uncorrected or signalled events are handled by the exception
540		 * handler when it is enabled, so don't process those here.
541		 *
542		 * TBD do the same check for MCI_STATUS_EN here?
543		 */
544		if (!(flags & MCP_UC) &&
545		    (m.status & (mce_ser ? MCI_STATUS_S : MCI_STATUS_UC)))
546			continue;
547
548		if (m.status & MCI_STATUS_MISCV)
549			m.misc = mce_rdmsrl(MSR_IA32_MCx_MISC(i));
550		if (m.status & MCI_STATUS_ADDRV)
551			m.addr = mce_rdmsrl(MSR_IA32_MCx_ADDR(i));
552
553		if (!(flags & MCP_TIMESTAMP))
554			m.tsc = 0;
555		/*
556		 * Don't get the IP here because it's unlikely to
557		 * have anything to do with the actual error location.
558		 */
559		if (!(flags & MCP_DONTLOG) && !mce_dont_log_ce) {
560			mce_log(&m);
561			atomic_notifier_call_chain(&x86_mce_decoder_chain, 0, &m);
562		}
563
564		/*
565		 * Clear state for this bank.
566		 */
567		mce_wrmsrl(MSR_IA32_MCx_STATUS(i), 0);
568	}
569
570	/*
571	 * Don't clear MCG_STATUS here because it's only defined for
572	 * exceptions.
573	 */
574
575	sync_core();
576}
577EXPORT_SYMBOL_GPL(machine_check_poll);
578
579/*
580 * Do a quick check if any of the events requires a panic.
581 * This decides if we keep the events around or clear them.
582 */
583static int mce_no_way_out(struct mce *m, char **msg)
584{
585	int i;
586
587	for (i = 0; i < banks; i++) {
588		m->status = mce_rdmsrl(MSR_IA32_MCx_STATUS(i));
589		if (mce_severity(m, tolerant, msg) >= MCE_PANIC_SEVERITY)
590			return 1;
591	}
592	return 0;
593}
594
595/*
596 * Variable to establish order between CPUs while scanning.
597 * Each CPU spins initially until executing is equal its number.
598 */
599static atomic_t mce_executing;
600
601/*
602 * Defines order of CPUs on entry. First CPU becomes Monarch.
603 */
604static atomic_t mce_callin;
605
606/*
607 * Check if a timeout waiting for other CPUs happened.
608 */
609static int mce_timed_out(u64 *t)
610{
611	/*
612	 * The others already did panic for some reason.
613	 * Bail out like in a timeout.
614	 * rmb() to tell the compiler that system_state
615	 * might have been modified by someone else.
616	 */
617	rmb();
618	if (atomic_read(&mce_paniced))
619		wait_for_panic();
620	if (!monarch_timeout)
621		goto out;
622	if ((s64)*t < SPINUNIT) {
623		/* CHECKME: Make panic default for 1 too? */
624		if (tolerant < 1)
625			mce_panic("Timeout synchronizing machine check over CPUs",
626				  NULL, NULL);
627		cpu_missing = 1;
628		return 1;
629	}
630	*t -= SPINUNIT;
631out:
632	touch_nmi_watchdog();
633	return 0;
634}
635
636/*
637 * The Monarch's reign.  The Monarch is the CPU who entered
638 * the machine check handler first. It waits for the others to
639 * raise the exception too and then grades them. When any
640 * error is fatal panic. Only then let the others continue.
641 *
642 * The other CPUs entering the MCE handler will be controlled by the
643 * Monarch. They are called Subjects.
644 *
645 * This way we prevent any potential data corruption in a unrecoverable case
646 * and also makes sure always all CPU's errors are examined.
647 *
648 * Also this detects the case of a machine check event coming from outer
649 * space (not detected by any CPUs) In this case some external agent wants
650 * us to shut down, so panic too.
651 *
652 * The other CPUs might still decide to panic if the handler happens
653 * in a unrecoverable place, but in this case the system is in a semi-stable
654 * state and won't corrupt anything by itself. It's ok to let the others
655 * continue for a bit first.
656 *
657 * All the spin loops have timeouts; when a timeout happens a CPU
658 * typically elects itself to be Monarch.
659 */
660static void mce_reign(void)
661{
662	int cpu;
663	struct mce *m = NULL;
664	int global_worst = 0;
665	char *msg = NULL;
666	char *nmsg = NULL;
667
668	/*
669	 * This CPU is the Monarch and the other CPUs have run
670	 * through their handlers.
671	 * Grade the severity of the errors of all the CPUs.
672	 */
673	for_each_possible_cpu(cpu) {
674		int severity = mce_severity(&per_cpu(mces_seen, cpu), tolerant,
675					    &nmsg);
676		if (severity > global_worst) {
677			msg = nmsg;
678			global_worst = severity;
679			m = &per_cpu(mces_seen, cpu);
680		}
681	}
682
683	/*
684	 * Cannot recover? Panic here then.
685	 * This dumps all the mces in the log buffer and stops the
686	 * other CPUs.
687	 */
688	if (m && global_worst >= MCE_PANIC_SEVERITY && tolerant < 3)
689		mce_panic("Fatal Machine check", m, msg);
690
691	/*
692	 * For UC somewhere we let the CPU who detects it handle it.
693	 * Also must let continue the others, otherwise the handling
694	 * CPU could deadlock on a lock.
695	 */
696
697	/*
698	 * No machine check event found. Must be some external
699	 * source or one CPU is hung. Panic.
700	 */
701	if (global_worst <= MCE_KEEP_SEVERITY && tolerant < 3)
702		mce_panic("Machine check from unknown source", NULL, NULL);
703
704	/*
705	 * Now clear all the mces_seen so that they don't reappear on
706	 * the next mce.
707	 */
708	for_each_possible_cpu(cpu)
709		memset(&per_cpu(mces_seen, cpu), 0, sizeof(struct mce));
710}
711
712static atomic_t global_nwo;
713
714/*
715 * Start of Monarch synchronization. This waits until all CPUs have
716 * entered the exception handler and then determines if any of them
717 * saw a fatal event that requires panic. Then it executes them
718 * in the entry order.
719 * TBD double check parallel CPU hotunplug
720 */
721static int mce_start(int *no_way_out)
722{
723	int order;
724	int cpus = num_online_cpus();
725	u64 timeout = (u64)monarch_timeout * NSEC_PER_USEC;
726
727	if (!timeout)
728		return -1;
729
730	atomic_add(*no_way_out, &global_nwo);
731	/*
732	 * global_nwo should be updated before mce_callin
733	 */
734	smp_wmb();
735	order = atomic_inc_return(&mce_callin);
736
737	/*
738	 * Wait for everyone.
739	 */
740	while (atomic_read(&mce_callin) != cpus) {
741		if (mce_timed_out(&timeout)) {
742			atomic_set(&global_nwo, 0);
743			return -1;
744		}
745		ndelay(SPINUNIT);
746	}
747
748	/*
749	 * mce_callin should be read before global_nwo
750	 */
751	smp_rmb();
752
753	if (order == 1) {
754		/*
755		 * Monarch: Starts executing now, the others wait.
756		 */
757		atomic_set(&mce_executing, 1);
758	} else {
759		/*
760		 * Subject: Now start the scanning loop one by one in
761		 * the original callin order.
762		 * This way when there are any shared banks it will be
763		 * only seen by one CPU before cleared, avoiding duplicates.
764		 */
765		while (atomic_read(&mce_executing) < order) {
766			if (mce_timed_out(&timeout)) {
767				atomic_set(&global_nwo, 0);
768				return -1;
769			}
770			ndelay(SPINUNIT);
771		}
772	}
773
774	/*
775	 * Cache the global no_way_out state.
776	 */
777	*no_way_out = atomic_read(&global_nwo);
778
779	return order;
780}
781
782/*
783 * Synchronize between CPUs after main scanning loop.
784 * This invokes the bulk of the Monarch processing.
785 */
786static int mce_end(int order)
787{
788	int ret = -1;
789	u64 timeout = (u64)monarch_timeout * NSEC_PER_USEC;
790
791	if (!timeout)
792		goto reset;
793	if (order < 0)
794		goto reset;
795
796	/*
797	 * Allow others to run.
798	 */
799	atomic_inc(&mce_executing);
800
801	if (order == 1) {
802		/* CHECKME: Can this race with a parallel hotplug? */
803		int cpus = num_online_cpus();
804
805		/*
806		 * Monarch: Wait for everyone to go through their scanning
807		 * loops.
808		 */
809		while (atomic_read(&mce_executing) <= cpus) {
810			if (mce_timed_out(&timeout))
811				goto reset;
812			ndelay(SPINUNIT);
813		}
814
815		mce_reign();
816		barrier();
817		ret = 0;
818	} else {
819		/*
820		 * Subject: Wait for Monarch to finish.
821		 */
822		while (atomic_read(&mce_executing) != 0) {
823			if (mce_timed_out(&timeout))
824				goto reset;
825			ndelay(SPINUNIT);
826		}
827
828		/*
829		 * Don't reset anything. That's done by the Monarch.
830		 */
831		return 0;
832	}
833
834	/*
835	 * Reset all global state.
836	 */
837reset:
838	atomic_set(&global_nwo, 0);
839	atomic_set(&mce_callin, 0);
840	barrier();
841
842	/*
843	 * Let others run again.
844	 */
845	atomic_set(&mce_executing, 0);
846	return ret;
847}
848
849/*
850 * Check if the address reported by the CPU is in a format we can parse.
851 * It would be possible to add code for most other cases, but all would
852 * be somewhat complicated (e.g. segment offset would require an instruction
853 * parser). So only support physical addresses up to page granuality for now.
854 */
855static int mce_usable_address(struct mce *m)
856{
857	if (!(m->status & MCI_STATUS_MISCV) || !(m->status & MCI_STATUS_ADDRV))
858		return 0;
859	if (MCI_MISC_ADDR_LSB(m->misc) > PAGE_SHIFT)
860		return 0;
861	if (MCI_MISC_ADDR_MODE(m->misc) != MCI_MISC_ADDR_PHYS)
862		return 0;
863	return 1;
864}
865
866static void mce_clear_state(unsigned long *toclear)
867{
868	int i;
869
870	for (i = 0; i < banks; i++) {
871		if (test_bit(i, toclear))
872			mce_wrmsrl(MSR_IA32_MCx_STATUS(i), 0);
873	}
874}
875
876/*
877 * The actual machine check handler. This only handles real
878 * exceptions when something got corrupted coming in through int 18.
879 *
880 * This is executed in NMI context not subject to normal locking rules. This
881 * implies that most kernel services cannot be safely used. Don't even
882 * think about putting a printk in there!
883 *
884 * On Intel systems this is entered on all CPUs in parallel through
885 * MCE broadcast. However some CPUs might be broken beyond repair,
886 * so be always careful when synchronizing with others.
887 */
888void do_machine_check(struct pt_regs *regs, long error_code)
889{
890	struct mce m, *final;
891	int i;
892	int worst = 0;
893	int severity;
894	/*
895	 * Establish sequential order between the CPUs entering the machine
896	 * check handler.
897	 */
898	int order;
899	/*
900	 * If no_way_out gets set, there is no safe way to recover from this
901	 * MCE.  If tolerant is cranked up, we'll try anyway.
902	 */
903	int no_way_out = 0;
904	/*
905	 * If kill_it gets set, there might be a way to recover from this
906	 * error.
907	 */
908	int kill_it = 0;
909	DECLARE_BITMAP(toclear, MAX_NR_BANKS);
910	char *msg = "Unknown";
911
912	atomic_inc(&mce_entry);
913
914	percpu_inc(mce_exception_count);
915
916	if (notify_die(DIE_NMI, "machine check", regs, error_code,
917			   18, SIGKILL) == NOTIFY_STOP)
918		goto out;
919	if (!banks)
920		goto out;
921
922	mce_gather_info(&m, regs);
923
924	final = &__get_cpu_var(mces_seen);
925	*final = m;
926
927	no_way_out = mce_no_way_out(&m, &msg);
928
929	barrier();
930
931	/*
932	 * When no restart IP must always kill or panic.
933	 */
934	if (!(m.mcgstatus & MCG_STATUS_RIPV))
935		kill_it = 1;
936
937	/*
938	 * Go through all the banks in exclusion of the other CPUs.
939	 * This way we don't report duplicated events on shared banks
940	 * because the first one to see it will clear it.
941	 */
942	order = mce_start(&no_way_out);
943	for (i = 0; i < banks; i++) {
944		__clear_bit(i, toclear);
945		if (!mce_banks[i].ctl)
946			continue;
947
948		m.misc = 0;
949		m.addr = 0;
950		m.bank = i;
951
952		m.status = mce_rdmsrl(MSR_IA32_MCx_STATUS(i));
953		if ((m.status & MCI_STATUS_VAL) == 0)
954			continue;
955
956		/*
957		 * Non uncorrected or non signaled errors are handled by
958		 * machine_check_poll. Leave them alone, unless this panics.
959		 */
960		if (!(m.status & (mce_ser ? MCI_STATUS_S : MCI_STATUS_UC)) &&
961			!no_way_out)
962			continue;
963
964		/*
965		 * Set taint even when machine check was not enabled.
966		 */
967		add_taint(TAINT_MACHINE_CHECK);
968
969		severity = mce_severity(&m, tolerant, NULL);
970
971		/*
972		 * When machine check was for corrected handler don't touch,
973		 * unless we're panicing.
974		 */
975		if (severity == MCE_KEEP_SEVERITY && !no_way_out)
976			continue;
977		__set_bit(i, toclear);
978		if (severity == MCE_NO_SEVERITY) {
979			/*
980			 * Machine check event was not enabled. Clear, but
981			 * ignore.
982			 */
983			continue;
984		}
985
986		/*
987		 * Kill on action required.
988		 */
989		if (severity == MCE_AR_SEVERITY)
990			kill_it = 1;
991
992		if (m.status & MCI_STATUS_MISCV)
993			m.misc = mce_rdmsrl(MSR_IA32_MCx_MISC(i));
994		if (m.status & MCI_STATUS_ADDRV)
995			m.addr = mce_rdmsrl(MSR_IA32_MCx_ADDR(i));
996
997		/*
998		 * Action optional error. Queue address for later processing.
999		 * When the ring overflows we just ignore the AO error.
1000		 * RED-PEN add some logging mechanism when
1001		 * usable_address or mce_add_ring fails.
1002		 * RED-PEN don't ignore overflow for tolerant == 0
1003		 */
1004		if (severity == MCE_AO_SEVERITY && mce_usable_address(&m))
1005			mce_ring_add(m.addr >> PAGE_SHIFT);
1006
1007		mce_log(&m);
1008
1009		if (severity > worst) {
1010			*final = m;
1011			worst = severity;
1012		}
1013	}
1014
1015	if (!no_way_out)
1016		mce_clear_state(toclear);
1017
1018	/*
1019	 * Do most of the synchronization with other CPUs.
1020	 * When there's any problem use only local no_way_out state.
1021	 */
1022	if (mce_end(order) < 0)
1023		no_way_out = worst >= MCE_PANIC_SEVERITY;
1024
1025	/*
1026	 * If we have decided that we just CAN'T continue, and the user
1027	 * has not set tolerant to an insane level, give up and die.
1028	 *
1029	 * This is mainly used in the case when the system doesn't
1030	 * support MCE broadcasting or it has been disabled.
1031	 */
1032	if (no_way_out && tolerant < 3)
1033		mce_panic("Fatal machine check on current CPU", final, msg);
1034
1035	/*
1036	 * If the error seems to be unrecoverable, something should be
1037	 * done.  Try to kill as little as possible.  If we can kill just
1038	 * one task, do that.  If the user has set the tolerance very
1039	 * high, don't try to do anything at all.
1040	 */
1041
1042	if (kill_it && tolerant < 3)
1043		force_sig(SIGBUS, current);
1044
1045	/* notify userspace ASAP */
1046	set_thread_flag(TIF_MCE_NOTIFY);
1047
1048	if (worst > 0)
1049		mce_report_event(regs);
1050	mce_wrmsrl(MSR_IA32_MCG_STATUS, 0);
1051out:
1052	atomic_dec(&mce_entry);
1053	sync_core();
1054}
1055EXPORT_SYMBOL_GPL(do_machine_check);
1056
1057/* dummy to break dependency. actual code is in mm/memory-failure.c */
1058void __attribute__((weak)) memory_failure(unsigned long pfn, int vector)
1059{
1060	printk(KERN_ERR "Action optional memory failure at %lx ignored\n", pfn);
1061}
1062
1063/*
1064 * Called after mce notification in process context. This code
1065 * is allowed to sleep. Call the high level VM handler to process
1066 * any corrupted pages.
1067 * Assume that the work queue code only calls this one at a time
1068 * per CPU.
1069 * Note we don't disable preemption, so this code might run on the wrong
1070 * CPU. In this case the event is picked up by the scheduled work queue.
1071 * This is merely a fast path to expedite processing in some common
1072 * cases.
1073 */
1074void mce_notify_process(void)
1075{
1076	unsigned long pfn;
1077	mce_notify_irq();
1078	while (mce_ring_get(&pfn))
1079		memory_failure(pfn, MCE_VECTOR);
1080}
1081
1082static void mce_process_work(struct work_struct *dummy)
1083{
1084	mce_notify_process();
1085}
1086
1087#ifdef CONFIG_X86_MCE_INTEL
1088/***
1089 * mce_log_therm_throt_event - Logs the thermal throttling event to mcelog
1090 * @cpu: The CPU on which the event occurred.
1091 * @status: Event status information
1092 *
1093 * This function should be called by the thermal interrupt after the
1094 * event has been processed and the decision was made to log the event
1095 * further.
1096 *
1097 * The status parameter will be saved to the 'status' field of 'struct mce'
1098 * and historically has been the register value of the
1099 * MSR_IA32_THERMAL_STATUS (Intel) msr.
1100 */
1101void mce_log_therm_throt_event(__u64 status)
1102{
1103	struct mce m;
1104
1105	mce_setup(&m);
1106	m.bank = MCE_THERMAL_BANK;
1107	m.status = status;
1108	mce_log(&m);
1109}
1110#endif /* CONFIG_X86_MCE_INTEL */
1111
1112/*
1113 * Periodic polling timer for "silent" machine check errors.  If the
1114 * poller finds an MCE, poll 2x faster.  When the poller finds no more
1115 * errors, poll 2x slower (up to check_interval seconds).
1116 */
1117static int check_interval = 5 * 60; /* 5 minutes */
1118
1119static DEFINE_PER_CPU(int, mce_next_interval); /* in jiffies */
1120static DEFINE_PER_CPU(struct timer_list, mce_timer);
1121
1122static void mce_start_timer(unsigned long data)
1123{
1124	struct timer_list *t = &per_cpu(mce_timer, data);
1125	int *n;
1126
1127	WARN_ON(smp_processor_id() != data);
1128
1129	if (mce_available(__this_cpu_ptr(&cpu_info))) {
1130		machine_check_poll(MCP_TIMESTAMP,
1131				&__get_cpu_var(mce_poll_banks));
1132	}
1133
1134	/*
1135	 * Alert userspace if needed.  If we logged an MCE, reduce the
1136	 * polling interval, otherwise increase the polling interval.
1137	 */
1138	n = &__get_cpu_var(mce_next_interval);
1139	if (mce_notify_irq())
1140		*n = max(*n/2, HZ/100);
1141	else
1142		*n = min(*n*2, (int)round_jiffies_relative(check_interval*HZ));
1143
1144	t->expires = jiffies + *n;
1145	add_timer_on(t, smp_processor_id());
1146}
1147
1148static void mce_do_trigger(struct work_struct *work)
1149{
1150	call_usermodehelper(mce_helper, mce_helper_argv, NULL, UMH_NO_WAIT);
1151}
1152
1153static DECLARE_WORK(mce_trigger_work, mce_do_trigger);
1154
1155/*
1156 * Notify the user(s) about new machine check events.
1157 * Can be called from interrupt context, but not from machine check/NMI
1158 * context.
1159 */
1160int mce_notify_irq(void)
1161{
1162	/* Not more than two messages every minute */
1163	static DEFINE_RATELIMIT_STATE(ratelimit, 60*HZ, 2);
1164
1165	clear_thread_flag(TIF_MCE_NOTIFY);
1166
1167	if (test_and_clear_bit(0, &mce_need_notify)) {
1168		/* wake processes polling /dev/mcelog */
1169		wake_up_interruptible(&mce_chrdev_wait);
1170
1171		/*
1172		 * There is no risk of missing notifications because
1173		 * work_pending is always cleared before the function is
1174		 * executed.
1175		 */
1176		if (mce_helper[0] && !work_pending(&mce_trigger_work))
1177			schedule_work(&mce_trigger_work);
1178
1179		if (__ratelimit(&ratelimit))
1180			pr_info(HW_ERR "Machine check events logged\n");
1181
1182		return 1;
1183	}
1184	return 0;
1185}
1186EXPORT_SYMBOL_GPL(mce_notify_irq);
1187
1188static int __cpuinit __mcheck_cpu_mce_banks_init(void)
1189{
1190	int i;
1191
1192	mce_banks = kzalloc(banks * sizeof(struct mce_bank), GFP_KERNEL);
1193	if (!mce_banks)
1194		return -ENOMEM;
1195	for (i = 0; i < banks; i++) {
1196		struct mce_bank *b = &mce_banks[i];
1197
1198		b->ctl = -1ULL;
1199		b->init = 1;
1200	}
1201	return 0;
1202}
1203
1204/*
1205 * Initialize Machine Checks for a CPU.
1206 */
1207static int __cpuinit __mcheck_cpu_cap_init(void)
1208{
1209	unsigned b;
1210	u64 cap;
1211
1212	rdmsrl(MSR_IA32_MCG_CAP, cap);
1213
1214	b = cap & MCG_BANKCNT_MASK;
1215	if (!banks)
1216		printk(KERN_INFO "mce: CPU supports %d MCE banks\n", b);
1217
1218	if (b > MAX_NR_BANKS) {
1219		printk(KERN_WARNING
1220		       "MCE: Using only %u machine check banks out of %u\n",
1221			MAX_NR_BANKS, b);
1222		b = MAX_NR_BANKS;
1223	}
1224
1225	/* Don't support asymmetric configurations today */
1226	WARN_ON(banks != 0 && b != banks);
1227	banks = b;
1228	if (!mce_banks) {
1229		int err = __mcheck_cpu_mce_banks_init();
1230
1231		if (err)
1232			return err;
1233	}
1234
1235	/* Use accurate RIP reporting if available. */
1236	if ((cap & MCG_EXT_P) && MCG_EXT_CNT(cap) >= 9)
1237		rip_msr = MSR_IA32_MCG_EIP;
1238
1239	if (cap & MCG_SER_P)
1240		mce_ser = 1;
1241
1242	return 0;
1243}
1244
1245static void __mcheck_cpu_init_generic(void)
1246{
1247	mce_banks_t all_banks;
1248	u64 cap;
1249	int i;
1250
1251	/*
1252	 * Log the machine checks left over from the previous reset.
1253	 */
1254	bitmap_fill(all_banks, MAX_NR_BANKS);
1255	machine_check_poll(MCP_UC|(!mce_bootlog ? MCP_DONTLOG : 0), &all_banks);
1256
1257	set_in_cr4(X86_CR4_MCE);
1258
1259	rdmsrl(MSR_IA32_MCG_CAP, cap);
1260	if (cap & MCG_CTL_P)
1261		wrmsr(MSR_IA32_MCG_CTL, 0xffffffff, 0xffffffff);
1262
1263	for (i = 0; i < banks; i++) {
1264		struct mce_bank *b = &mce_banks[i];
1265
1266		if (!b->init)
1267			continue;
1268		wrmsrl(MSR_IA32_MCx_CTL(i), b->ctl);
1269		wrmsrl(MSR_IA32_MCx_STATUS(i), 0);
1270	}
1271}
1272
1273/* Add per CPU specific workarounds here */
1274static int __cpuinit __mcheck_cpu_apply_quirks(struct cpuinfo_x86 *c)
1275{
1276	if (c->x86_vendor == X86_VENDOR_UNKNOWN) {
1277		pr_info("MCE: unknown CPU type - not enabling MCE support.\n");
1278		return -EOPNOTSUPP;
1279	}
1280
1281	/* This should be disabled by the BIOS, but isn't always */
1282	if (c->x86_vendor == X86_VENDOR_AMD) {
1283		if (c->x86 == 15 && banks > 4) {
1284			/*
1285			 * disable GART TBL walk error reporting, which
1286			 * trips off incorrectly with the IOMMU & 3ware
1287			 * & Cerberus:
1288			 */
1289			clear_bit(10, (unsigned long *)&mce_banks[4].ctl);
1290		}
1291		if (c->x86 <= 17 && mce_bootlog < 0) {
1292			/*
1293			 * Lots of broken BIOS around that don't clear them
1294			 * by default and leave crap in there. Don't log:
1295			 */
1296			mce_bootlog = 0;
1297		}
1298		/*
1299		 * Various K7s with broken bank 0 around. Always disable
1300		 * by default.
1301		 */
1302		 if (c->x86 == 6 && banks > 0)
1303			mce_banks[0].ctl = 0;
1304	}
1305
1306	if (c->x86_vendor == X86_VENDOR_INTEL) {
1307		/*
1308		 * SDM documents that on family 6 bank 0 should not be written
1309		 * because it aliases to another special BIOS controlled
1310		 * register.
1311		 * But it's not aliased anymore on model 0x1a+
1312		 * Don't ignore bank 0 completely because there could be a
1313		 * valid event later, merely don't write CTL0.
1314		 */
1315
1316		if (c->x86 == 6 && c->x86_model < 0x1A && banks > 0)
1317			mce_banks[0].init = 0;
1318
1319		/*
1320		 * All newer Intel systems support MCE broadcasting. Enable
1321		 * synchronization with a one second timeout.
1322		 */
1323		if ((c->x86 > 6 || (c->x86 == 6 && c->x86_model >= 0xe)) &&
1324			monarch_timeout < 0)
1325			monarch_timeout = USEC_PER_SEC;
1326
1327		/*
1328		 * There are also broken BIOSes on some Pentium M and
1329		 * earlier systems:
1330		 */
1331		if (c->x86 == 6 && c->x86_model <= 13 && mce_bootlog < 0)
1332			mce_bootlog = 0;
1333	}
1334	if (monarch_timeout < 0)
1335		monarch_timeout = 0;
1336	if (mce_bootlog != 0)
1337		mce_panic_timeout = 30;
1338
1339	return 0;
1340}
1341
1342static int __cpuinit __mcheck_cpu_ancient_init(struct cpuinfo_x86 *c)
1343{
1344	if (c->x86 != 5)
1345		return 0;
1346
1347	switch (c->x86_vendor) {
1348	case X86_VENDOR_INTEL:
1349		intel_p5_mcheck_init(c);
1350		return 1;
1351		break;
1352	case X86_VENDOR_CENTAUR:
1353		winchip_mcheck_init(c);
1354		return 1;
1355		break;
1356	}
1357
1358	return 0;
1359}
1360
1361static void __mcheck_cpu_init_vendor(struct cpuinfo_x86 *c)
1362{
1363	switch (c->x86_vendor) {
1364	case X86_VENDOR_INTEL:
1365		mce_intel_feature_init(c);
1366		break;
1367	case X86_VENDOR_AMD:
1368		mce_amd_feature_init(c);
1369		break;
1370	default:
1371		break;
1372	}
1373}
1374
1375static void __mcheck_cpu_init_timer(void)
1376{
1377	struct timer_list *t = &__get_cpu_var(mce_timer);
1378	int *n = &__get_cpu_var(mce_next_interval);
1379
1380	setup_timer(t, mce_start_timer, smp_processor_id());
1381
1382	if (mce_ignore_ce)
1383		return;
1384
1385	*n = check_interval * HZ;
1386	if (!*n)
1387		return;
1388	t->expires = round_jiffies(jiffies + *n);
1389	add_timer_on(t, smp_processor_id());
1390}
1391
1392/* Handle unconfigured int18 (should never happen) */
1393static void unexpected_machine_check(struct pt_regs *regs, long error_code)
1394{
1395	printk(KERN_ERR "CPU#%d: Unexpected int18 (Machine Check).\n",
1396	       smp_processor_id());
1397}
1398
1399/* Call the installed machine check handler for this CPU setup. */
1400void (*machine_check_vector)(struct pt_regs *, long error_code) =
1401						unexpected_machine_check;
1402
1403/*
1404 * Called for each booted CPU to set up machine checks.
1405 * Must be called with preempt off:
1406 */
1407void __cpuinit mcheck_cpu_init(struct cpuinfo_x86 *c)
1408{
1409	if (mce_disabled)
1410		return;
1411
1412	if (__mcheck_cpu_ancient_init(c))
1413		return;
1414
1415	if (!mce_available(c))
1416		return;
1417
1418	if (__mcheck_cpu_cap_init() < 0 || __mcheck_cpu_apply_quirks(c) < 0) {
1419		mce_disabled = 1;
1420		return;
1421	}
1422
1423	machine_check_vector = do_machine_check;
1424
1425	__mcheck_cpu_init_generic();
1426	__mcheck_cpu_init_vendor(c);
1427	__mcheck_cpu_init_timer();
1428	INIT_WORK(&__get_cpu_var(mce_work), mce_process_work);
1429	init_irq_work(&__get_cpu_var(mce_irq_work), &mce_irq_work_cb);
1430}
1431
1432/*
1433 * mce_chrdev: Character device /dev/mcelog to read and clear the MCE log.
1434 */
1435
1436static DEFINE_SPINLOCK(mce_chrdev_state_lock);
1437static int mce_chrdev_open_count;	/* #times opened */
1438static int mce_chrdev_open_exclu;	/* already open exclusive? */
1439
1440static int mce_chrdev_open(struct inode *inode, struct file *file)
1441{
1442	spin_lock(&mce_chrdev_state_lock);
1443
1444	if (mce_chrdev_open_exclu ||
1445	    (mce_chrdev_open_count && (file->f_flags & O_EXCL))) {
1446		spin_unlock(&mce_chrdev_state_lock);
1447
1448		return -EBUSY;
1449	}
1450
1451	if (file->f_flags & O_EXCL)
1452		mce_chrdev_open_exclu = 1;
1453	mce_chrdev_open_count++;
1454
1455	spin_unlock(&mce_chrdev_state_lock);
1456
1457	return nonseekable_open(inode, file);
1458}
1459
1460static int mce_chrdev_release(struct inode *inode, struct file *file)
1461{
1462	spin_lock(&mce_chrdev_state_lock);
1463
1464	mce_chrdev_open_count--;
1465	mce_chrdev_open_exclu = 0;
1466
1467	spin_unlock(&mce_chrdev_state_lock);
1468
1469	return 0;
1470}
1471
1472static void collect_tscs(void *data)
1473{
1474	unsigned long *cpu_tsc = (unsigned long *)data;
1475
1476	rdtscll(cpu_tsc[smp_processor_id()]);
1477}
1478
1479static int mce_apei_read_done;
1480
1481/* Collect MCE record of previous boot in persistent storage via APEI ERST. */
1482static int __mce_read_apei(char __user **ubuf, size_t usize)
1483{
1484	int rc;
1485	u64 record_id;
1486	struct mce m;
1487
1488	if (usize < sizeof(struct mce))
1489		return -EINVAL;
1490
1491	rc = apei_read_mce(&m, &record_id);
1492	/* Error or no more MCE record */
1493	if (rc <= 0) {
1494		mce_apei_read_done = 1;
1495		return rc;
1496	}
1497	rc = -EFAULT;
1498	if (copy_to_user(*ubuf, &m, sizeof(struct mce)))
1499		return rc;
1500	/*
1501	 * In fact, we should have cleared the record after that has
1502	 * been flushed to the disk or sent to network in
1503	 * /sbin/mcelog, but we have no interface to support that now,
1504	 * so just clear it to avoid duplication.
1505	 */
1506	rc = apei_clear_mce(record_id);
1507	if (rc) {
1508		mce_apei_read_done = 1;
1509		return rc;
1510	}
1511	*ubuf += sizeof(struct mce);
1512
1513	return 0;
1514}
1515
1516static ssize_t mce_chrdev_read(struct file *filp, char __user *ubuf,
1517				size_t usize, loff_t *off)
1518{
1519	char __user *buf = ubuf;
1520	unsigned long *cpu_tsc;
1521	unsigned prev, next;
1522	int i, err;
1523
1524	cpu_tsc = kmalloc(nr_cpu_ids * sizeof(long), GFP_KERNEL);
1525	if (!cpu_tsc)
1526		return -ENOMEM;
1527
1528	mutex_lock(&mce_chrdev_read_mutex);
1529
1530	if (!mce_apei_read_done) {
1531		err = __mce_read_apei(&buf, usize);
1532		if (err || buf != ubuf)
1533			goto out;
1534	}
1535
1536	next = rcu_dereference_check_mce(mcelog.next);
1537
1538	/* Only supports full reads right now */
1539	err = -EINVAL;
1540	if (*off != 0 || usize < MCE_LOG_LEN*sizeof(struct mce))
1541		goto out;
1542
1543	err = 0;
1544	prev = 0;
1545	do {
1546		for (i = prev; i < next; i++) {
1547			unsigned long start = jiffies;
1548			struct mce *m = &mcelog.entry[i];
1549
1550			while (!m->finished) {
1551				if (time_after_eq(jiffies, start + 2)) {
1552					memset(m, 0, sizeof(*m));
1553					goto timeout;
1554				}
1555				cpu_relax();
1556			}
1557			smp_rmb();
1558			err |= copy_to_user(buf, m, sizeof(*m));
1559			buf += sizeof(*m);
1560timeout:
1561			;
1562		}
1563
1564		memset(mcelog.entry + prev, 0,
1565		       (next - prev) * sizeof(struct mce));
1566		prev = next;
1567		next = cmpxchg(&mcelog.next, prev, 0);
1568	} while (next != prev);
1569
1570	synchronize_sched();
1571
1572	/*
1573	 * Collect entries that were still getting written before the
1574	 * synchronize.
1575	 */
1576	on_each_cpu(collect_tscs, cpu_tsc, 1);
1577
1578	for (i = next; i < MCE_LOG_LEN; i++) {
1579		struct mce *m = &mcelog.entry[i];
1580
1581		if (m->finished && m->tsc < cpu_tsc[m->cpu]) {
1582			err |= copy_to_user(buf, m, sizeof(*m));
1583			smp_rmb();
1584			buf += sizeof(*m);
1585			memset(m, 0, sizeof(*m));
1586		}
1587	}
1588
1589	if (err)
1590		err = -EFAULT;
1591
1592out:
1593	mutex_unlock(&mce_chrdev_read_mutex);
1594	kfree(cpu_tsc);
1595
1596	return err ? err : buf - ubuf;
1597}
1598
1599static unsigned int mce_chrdev_poll(struct file *file, poll_table *wait)
1600{
1601	poll_wait(file, &mce_chrdev_wait, wait);
1602	if (rcu_access_index(mcelog.next))
1603		return POLLIN | POLLRDNORM;
1604	if (!mce_apei_read_done && apei_check_mce())
1605		return POLLIN | POLLRDNORM;
1606	return 0;
1607}
1608
1609static long mce_chrdev_ioctl(struct file *f, unsigned int cmd,
1610				unsigned long arg)
1611{
1612	int __user *p = (int __user *)arg;
1613
1614	if (!capable(CAP_SYS_ADMIN))
1615		return -EPERM;
1616
1617	switch (cmd) {
1618	case MCE_GET_RECORD_LEN:
1619		return put_user(sizeof(struct mce), p);
1620	case MCE_GET_LOG_LEN:
1621		return put_user(MCE_LOG_LEN, p);
1622	case MCE_GETCLEAR_FLAGS: {
1623		unsigned flags;
1624
1625		do {
1626			flags = mcelog.flags;
1627		} while (cmpxchg(&mcelog.flags, flags, 0) != flags);
1628
1629		return put_user(flags, p);
1630	}
1631	default:
1632		return -ENOTTY;
1633	}
1634}
1635
1636/* Modified in mce-inject.c, so not static or const */
1637struct file_operations mce_chrdev_ops = {
1638	.open			= mce_chrdev_open,
1639	.release		= mce_chrdev_release,
1640	.read			= mce_chrdev_read,
1641	.poll			= mce_chrdev_poll,
1642	.unlocked_ioctl		= mce_chrdev_ioctl,
1643	.llseek			= no_llseek,
1644};
1645EXPORT_SYMBOL_GPL(mce_chrdev_ops);
1646
1647static struct miscdevice mce_chrdev_device = {
1648	MISC_MCELOG_MINOR,
1649	"mcelog",
1650	&mce_chrdev_ops,
1651};
1652
1653/*
1654 * mce=off Disables machine check
1655 * mce=no_cmci Disables CMCI
1656 * mce=dont_log_ce Clears corrected events silently, no log created for CEs.
1657 * mce=ignore_ce Disables polling and CMCI, corrected events are not cleared.
1658 * mce=TOLERANCELEVEL[,monarchtimeout] (number, see above)
1659 *	monarchtimeout is how long to wait for other CPUs on machine
1660 *	check, or 0 to not wait
1661 * mce=bootlog Log MCEs from before booting. Disabled by default on AMD.
1662 * mce=nobootlog Don't log MCEs from before booting.
1663 */
1664static int __init mcheck_enable(char *str)
1665{
1666	if (*str == 0) {
1667		enable_p5_mce();
1668		return 1;
1669	}
1670	if (*str == '=')
1671		str++;
1672	if (!strcmp(str, "off"))
1673		mce_disabled = 1;
1674	else if (!strcmp(str, "no_cmci"))
1675		mce_cmci_disabled = 1;
1676	else if (!strcmp(str, "dont_log_ce"))
1677		mce_dont_log_ce = 1;
1678	else if (!strcmp(str, "ignore_ce"))
1679		mce_ignore_ce = 1;
1680	else if (!strcmp(str, "bootlog") || !strcmp(str, "nobootlog"))
1681		mce_bootlog = (str[0] == 'b');
1682	else if (isdigit(str[0])) {
1683		get_option(&str, &tolerant);
1684		if (*str == ',') {
1685			++str;
1686			get_option(&str, &monarch_timeout);
1687		}
1688	} else {
1689		printk(KERN_INFO "mce argument %s ignored. Please use /sys\n",
1690		       str);
1691		return 0;
1692	}
1693	return 1;
1694}
1695__setup("mce", mcheck_enable);
1696
1697int __init mcheck_init(void)
1698{
1699	mcheck_intel_therm_init();
1700
1701	return 0;
1702}
1703
1704/*
1705 * mce_syscore: PM support
1706 */
1707
1708/*
1709 * Disable machine checks on suspend and shutdown. We can't really handle
1710 * them later.
1711 */
1712static int mce_disable_error_reporting(void)
1713{
1714	int i;
1715
1716	for (i = 0; i < banks; i++) {
1717		struct mce_bank *b = &mce_banks[i];
1718
1719		if (b->init)
1720			wrmsrl(MSR_IA32_MCx_CTL(i), 0);
1721	}
1722	return 0;
1723}
1724
1725static int mce_syscore_suspend(void)
1726{
1727	return mce_disable_error_reporting();
1728}
1729
1730static void mce_syscore_shutdown(void)
1731{
1732	mce_disable_error_reporting();
1733}
1734
1735/*
1736 * On resume clear all MCE state. Don't want to see leftovers from the BIOS.
1737 * Only one CPU is active at this time, the others get re-added later using
1738 * CPU hotplug:
1739 */
1740static void mce_syscore_resume(void)
1741{
1742	__mcheck_cpu_init_generic();
1743	__mcheck_cpu_init_vendor(__this_cpu_ptr(&cpu_info));
1744}
1745
1746static struct syscore_ops mce_syscore_ops = {
1747	.suspend	= mce_syscore_suspend,
1748	.shutdown	= mce_syscore_shutdown,
1749	.resume		= mce_syscore_resume,
1750};
1751
1752/*
1753 * mce_sysdev: Sysfs support
1754 */
1755
1756static void mce_cpu_restart(void *data)
1757{
1758	del_timer_sync(&__get_cpu_var(mce_timer));
1759	if (!mce_available(__this_cpu_ptr(&cpu_info)))
1760		return;
1761	__mcheck_cpu_init_generic();
1762	__mcheck_cpu_init_timer();
1763}
1764
1765/* Reinit MCEs after user configuration changes */
1766static void mce_restart(void)
1767{
1768	on_each_cpu(mce_cpu_restart, NULL, 1);
1769}
1770
1771/* Toggle features for corrected errors */
1772static void mce_disable_ce(void *all)
1773{
1774	if (!mce_available(__this_cpu_ptr(&cpu_info)))
1775		return;
1776	if (all)
1777		del_timer_sync(&__get_cpu_var(mce_timer));
1778	cmci_clear();
1779}
1780
1781static void mce_enable_ce(void *all)
1782{
1783	if (!mce_available(__this_cpu_ptr(&cpu_info)))
1784		return;
1785	cmci_reenable();
1786	cmci_recheck();
1787	if (all)
1788		__mcheck_cpu_init_timer();
1789}
1790
1791static struct sysdev_class mce_sysdev_class = {
1792	.name		= "machinecheck",
1793};
1794
1795DEFINE_PER_CPU(struct sys_device, mce_sysdev);
1796
1797__cpuinitdata
1798void (*threshold_cpu_callback)(unsigned long action, unsigned int cpu);
1799
1800static inline struct mce_bank *attr_to_bank(struct sysdev_attribute *attr)
1801{
1802	return container_of(attr, struct mce_bank, attr);
1803}
1804
1805static ssize_t show_bank(struct sys_device *s, struct sysdev_attribute *attr,
1806			 char *buf)
1807{
1808	return sprintf(buf, "%llx\n", attr_to_bank(attr)->ctl);
1809}
1810
1811static ssize_t set_bank(struct sys_device *s, struct sysdev_attribute *attr,
1812			const char *buf, size_t size)
1813{
1814	u64 new;
1815
1816	if (strict_strtoull(buf, 0, &new) < 0)
1817		return -EINVAL;
1818
1819	attr_to_bank(attr)->ctl = new;
1820	mce_restart();
1821
1822	return size;
1823}
1824
1825static ssize_t
1826show_trigger(struct sys_device *s, struct sysdev_attribute *attr, char *buf)
1827{
1828	strcpy(buf, mce_helper);
1829	strcat(buf, "\n");
1830	return strlen(mce_helper) + 1;
1831}
1832
1833static ssize_t set_trigger(struct sys_device *s, struct sysdev_attribute *attr,
1834				const char *buf, size_t siz)
1835{
1836	char *p;
1837
1838	strncpy(mce_helper, buf, sizeof(mce_helper));
1839	mce_helper[sizeof(mce_helper)-1] = 0;
1840	p = strchr(mce_helper, '\n');
1841
1842	if (p)
1843		*p = 0;
1844
1845	return strlen(mce_helper) + !!p;
1846}
1847
1848static ssize_t set_ignore_ce(struct sys_device *s,
1849			     struct sysdev_attribute *attr,
1850			     const char *buf, size_t size)
1851{
1852	u64 new;
1853
1854	if (strict_strtoull(buf, 0, &new) < 0)
1855		return -EINVAL;
1856
1857	if (mce_ignore_ce ^ !!new) {
1858		if (new) {
1859			/* disable ce features */
1860			on_each_cpu(mce_disable_ce, (void *)1, 1);
1861			mce_ignore_ce = 1;
1862		} else {
1863			/* enable ce features */
1864			mce_ignore_ce = 0;
1865			on_each_cpu(mce_enable_ce, (void *)1, 1);
1866		}
1867	}
1868	return size;
1869}
1870
1871static ssize_t set_cmci_disabled(struct sys_device *s,
1872				 struct sysdev_attribute *attr,
1873				 const char *buf, size_t size)
1874{
1875	u64 new;
1876
1877	if (strict_strtoull(buf, 0, &new) < 0)
1878		return -EINVAL;
1879
1880	if (mce_cmci_disabled ^ !!new) {
1881		if (new) {
1882			/* disable cmci */
1883			on_each_cpu(mce_disable_ce, NULL, 1);
1884			mce_cmci_disabled = 1;
1885		} else {
1886			/* enable cmci */
1887			mce_cmci_disabled = 0;
1888			on_each_cpu(mce_enable_ce, NULL, 1);
1889		}
1890	}
1891	return size;
1892}
1893
1894static ssize_t store_int_with_restart(struct sys_device *s,
1895				      struct sysdev_attribute *attr,
1896				      const char *buf, size_t size)
1897{
1898	ssize_t ret = sysdev_store_int(s, attr, buf, size);
1899	mce_restart();
1900	return ret;
1901}
1902
1903static SYSDEV_ATTR(trigger, 0644, show_trigger, set_trigger);
1904static SYSDEV_INT_ATTR(tolerant, 0644, tolerant);
1905static SYSDEV_INT_ATTR(monarch_timeout, 0644, monarch_timeout);
1906static SYSDEV_INT_ATTR(dont_log_ce, 0644, mce_dont_log_ce);
1907
1908static struct sysdev_ext_attribute attr_check_interval = {
1909	_SYSDEV_ATTR(check_interval, 0644, sysdev_show_int,
1910		     store_int_with_restart),
1911	&check_interval
1912};
1913
1914static struct sysdev_ext_attribute attr_ignore_ce = {
1915	_SYSDEV_ATTR(ignore_ce, 0644, sysdev_show_int, set_ignore_ce),
1916	&mce_ignore_ce
1917};
1918
1919static struct sysdev_ext_attribute attr_cmci_disabled = {
1920	_SYSDEV_ATTR(cmci_disabled, 0644, sysdev_show_int, set_cmci_disabled),
1921	&mce_cmci_disabled
1922};
1923
1924static struct sysdev_attribute *mce_sysdev_attrs[] = {
1925	&attr_tolerant.attr,
1926	&attr_check_interval.attr,
1927	&attr_trigger,
1928	&attr_monarch_timeout.attr,
1929	&attr_dont_log_ce.attr,
1930	&attr_ignore_ce.attr,
1931	&attr_cmci_disabled.attr,
1932	NULL
1933};
1934
1935static cpumask_var_t mce_sysdev_initialized;
1936
1937/* Per cpu sysdev init. All of the cpus still share the same ctrl bank: */
1938static __cpuinit int mce_sysdev_create(unsigned int cpu)
1939{
1940	struct sys_device *sysdev = &per_cpu(mce_sysdev, cpu);
1941	int err;
1942	int i, j;
1943
1944	if (!mce_available(&boot_cpu_data))
1945		return -EIO;
1946
1947	memset(&sysdev->kobj, 0, sizeof(struct kobject));
1948	sysdev->id  = cpu;
1949	sysdev->cls = &mce_sysdev_class;
1950
1951	err = sysdev_register(sysdev);
1952	if (err)
1953		return err;
1954
1955	for (i = 0; mce_sysdev_attrs[i]; i++) {
1956		err = sysdev_create_file(sysdev, mce_sysdev_attrs[i]);
1957		if (err)
1958			goto error;
1959	}
1960	for (j = 0; j < banks; j++) {
1961		err = sysdev_create_file(sysdev, &mce_banks[j].attr);
1962		if (err)
1963			goto error2;
1964	}
1965	cpumask_set_cpu(cpu, mce_sysdev_initialized);
1966
1967	return 0;
1968error2:
1969	while (--j >= 0)
1970		sysdev_remove_file(sysdev, &mce_banks[j].attr);
1971error:
1972	while (--i >= 0)
1973		sysdev_remove_file(sysdev, mce_sysdev_attrs[i]);
1974
1975	sysdev_unregister(sysdev);
1976
1977	return err;
1978}
1979
1980static __cpuinit void mce_sysdev_remove(unsigned int cpu)
1981{
1982	struct sys_device *sysdev = &per_cpu(mce_sysdev, cpu);
1983	int i;
1984
1985	if (!cpumask_test_cpu(cpu, mce_sysdev_initialized))
1986		return;
1987
1988	for (i = 0; mce_sysdev_attrs[i]; i++)
1989		sysdev_remove_file(sysdev, mce_sysdev_attrs[i]);
1990
1991	for (i = 0; i < banks; i++)
1992		sysdev_remove_file(sysdev, &mce_banks[i].attr);
1993
1994	sysdev_unregister(sysdev);
1995	cpumask_clear_cpu(cpu, mce_sysdev_initialized);
1996}
1997
1998/* Make sure there are no machine checks on offlined CPUs. */
1999static void __cpuinit mce_disable_cpu(void *h)
2000{
2001	unsigned long action = *(unsigned long *)h;
2002	int i;
2003
2004	if (!mce_available(__this_cpu_ptr(&cpu_info)))
2005		return;
2006
2007	if (!(action & CPU_TASKS_FROZEN))
2008		cmci_clear();
2009	for (i = 0; i < banks; i++) {
2010		struct mce_bank *b = &mce_banks[i];
2011
2012		if (b->init)
2013			wrmsrl(MSR_IA32_MCx_CTL(i), 0);
2014	}
2015}
2016
2017static void __cpuinit mce_reenable_cpu(void *h)
2018{
2019	unsigned long action = *(unsigned long *)h;
2020	int i;
2021
2022	if (!mce_available(__this_cpu_ptr(&cpu_info)))
2023		return;
2024
2025	if (!(action & CPU_TASKS_FROZEN))
2026		cmci_reenable();
2027	for (i = 0; i < banks; i++) {
2028		struct mce_bank *b = &mce_banks[i];
2029
2030		if (b->init)
2031			wrmsrl(MSR_IA32_MCx_CTL(i), b->ctl);
2032	}
2033}
2034
2035/* Get notified when a cpu comes on/off. Be hotplug friendly. */
2036static int __cpuinit
2037mce_cpu_callback(struct notifier_block *nfb, unsigned long action, void *hcpu)
2038{
2039	unsigned int cpu = (unsigned long)hcpu;
2040	struct timer_list *t = &per_cpu(mce_timer, cpu);
2041
2042	switch (action) {
2043	case CPU_ONLINE:
2044	case CPU_ONLINE_FROZEN:
2045		mce_sysdev_create(cpu);
2046		if (threshold_cpu_callback)
2047			threshold_cpu_callback(action, cpu);
2048		break;
2049	case CPU_DEAD:
2050	case CPU_DEAD_FROZEN:
2051		if (threshold_cpu_callback)
2052			threshold_cpu_callback(action, cpu);
2053		mce_sysdev_remove(cpu);
2054		break;
2055	case CPU_DOWN_PREPARE:
2056	case CPU_DOWN_PREPARE_FROZEN:
2057		del_timer_sync(t);
2058		smp_call_function_single(cpu, mce_disable_cpu, &action, 1);
2059		break;
2060	case CPU_DOWN_FAILED:
2061	case CPU_DOWN_FAILED_FROZEN:
2062		if (!mce_ignore_ce && check_interval) {
2063			t->expires = round_jiffies(jiffies +
2064					   __get_cpu_var(mce_next_interval));
2065			add_timer_on(t, cpu);
2066		}
2067		smp_call_function_single(cpu, mce_reenable_cpu, &action, 1);
2068		break;
2069	case CPU_POST_DEAD:
2070		/* intentionally ignoring frozen here */
2071		cmci_rediscover(cpu);
2072		break;
2073	}
2074	return NOTIFY_OK;
2075}
2076
2077static struct notifier_block mce_cpu_notifier __cpuinitdata = {
2078	.notifier_call = mce_cpu_callback,
2079};
2080
2081static __init void mce_init_banks(void)
2082{
2083	int i;
2084
2085	for (i = 0; i < banks; i++) {
2086		struct mce_bank *b = &mce_banks[i];
2087		struct sysdev_attribute *a = &b->attr;
2088
2089		sysfs_attr_init(&a->attr);
2090		a->attr.name	= b->attrname;
2091		snprintf(b->attrname, ATTR_LEN, "bank%d", i);
2092
2093		a->attr.mode	= 0644;
2094		a->show		= show_bank;
2095		a->store	= set_bank;
2096	}
2097}
2098
2099static __init int mcheck_init_device(void)
2100{
2101	int err;
2102	int i = 0;
2103
2104	if (!mce_available(&boot_cpu_data))
2105		return -EIO;
2106
2107	zalloc_cpumask_var(&mce_sysdev_initialized, GFP_KERNEL);
2108
2109	mce_init_banks();
2110
2111	err = sysdev_class_register(&mce_sysdev_class);
2112	if (err)
2113		return err;
2114
2115	for_each_online_cpu(i) {
2116		err = mce_sysdev_create(i);
2117		if (err)
2118			return err;
2119	}
2120
2121	register_syscore_ops(&mce_syscore_ops);
2122	register_hotcpu_notifier(&mce_cpu_notifier);
2123
2124	/* register character device /dev/mcelog */
2125	misc_register(&mce_chrdev_device);
2126
2127	return err;
2128}
2129device_initcall(mcheck_init_device);
2130
2131/*
2132 * Old style boot options parsing. Only for compatibility.
2133 */
2134static int __init mcheck_disable(char *str)
2135{
2136	mce_disabled = 1;
2137	return 1;
2138}
2139__setup("nomce", mcheck_disable);
2140
2141#ifdef CONFIG_DEBUG_FS
2142struct dentry *mce_get_debugfs_dir(void)
2143{
2144	static struct dentry *dmce;
2145
2146	if (!dmce)
2147		dmce = debugfs_create_dir("mce", NULL);
2148
2149	return dmce;
2150}
2151
2152static void mce_reset(void)
2153{
2154	cpu_missing = 0;
2155	atomic_set(&mce_fake_paniced, 0);
2156	atomic_set(&mce_executing, 0);
2157	atomic_set(&mce_callin, 0);
2158	atomic_set(&global_nwo, 0);
2159}
2160
2161static int fake_panic_get(void *data, u64 *val)
2162{
2163	*val = fake_panic;
2164	return 0;
2165}
2166
2167static int fake_panic_set(void *data, u64 val)
2168{
2169	mce_reset();
2170	fake_panic = val;
2171	return 0;
2172}
2173
2174DEFINE_SIMPLE_ATTRIBUTE(fake_panic_fops, fake_panic_get,
2175			fake_panic_set, "%llu\n");
2176
2177static int __init mcheck_debugfs_init(void)
2178{
2179	struct dentry *dmce, *ffake_panic;
2180
2181	dmce = mce_get_debugfs_dir();
2182	if (!dmce)
2183		return -ENOMEM;
2184	ffake_panic = debugfs_create_file("fake_panic", 0444, dmce, NULL,
2185					  &fake_panic_fops);
2186	if (!ffake_panic)
2187		return -ENOMEM;
2188
2189	return 0;
2190}
2191late_initcall(mcheck_debugfs_init);
2192#endif
2193