mce.c revision 95022b8cf6ed7f3292b60c8e85fe59a12bfb1c9e
1/*
2 * Machine check handler.
3 *
4 * K8 parts Copyright 2002,2003 Andi Kleen, SuSE Labs.
5 * Rest from unknown author(s).
6 * 2004 Andi Kleen. Rewrote most of it.
7 * Copyright 2008 Intel Corporation
8 * Author: Andi Kleen
9 */
10#include <linux/thread_info.h>
11#include <linux/capability.h>
12#include <linux/miscdevice.h>
13#include <linux/ratelimit.h>
14#include <linux/kallsyms.h>
15#include <linux/rcupdate.h>
16#include <linux/kobject.h>
17#include <linux/uaccess.h>
18#include <linux/kdebug.h>
19#include <linux/kernel.h>
20#include <linux/percpu.h>
21#include <linux/string.h>
22#include <linux/device.h>
23#include <linux/syscore_ops.h>
24#include <linux/delay.h>
25#include <linux/ctype.h>
26#include <linux/sched.h>
27#include <linux/sysfs.h>
28#include <linux/types.h>
29#include <linux/slab.h>
30#include <linux/init.h>
31#include <linux/kmod.h>
32#include <linux/poll.h>
33#include <linux/nmi.h>
34#include <linux/cpu.h>
35#include <linux/smp.h>
36#include <linux/fs.h>
37#include <linux/mm.h>
38#include <linux/debugfs.h>
39#include <linux/irq_work.h>
40#include <linux/export.h>
41
42#include <asm/processor.h>
43#include <asm/mce.h>
44#include <asm/msr.h>
45
46#include "mce-internal.h"
47
48static DEFINE_MUTEX(mce_chrdev_read_mutex);
49
50#define rcu_dereference_check_mce(p) \
51	rcu_dereference_index_check((p), \
52			      rcu_read_lock_sched_held() || \
53			      lockdep_is_held(&mce_chrdev_read_mutex))
54
55#define CREATE_TRACE_POINTS
56#include <trace/events/mce.h>
57
58int mce_disabled __read_mostly;
59
60#define MISC_MCELOG_MINOR	227
61
62#define SPINUNIT 100	/* 100ns */
63
64atomic_t mce_entry;
65
66DEFINE_PER_CPU(unsigned, mce_exception_count);
67
68/*
69 * Tolerant levels:
70 *   0: always panic on uncorrected errors, log corrected errors
71 *   1: panic or SIGBUS on uncorrected errors, log corrected errors
72 *   2: SIGBUS or log uncorrected errors (if possible), log corrected errors
73 *   3: never panic or SIGBUS, log all errors (for testing only)
74 */
75static int			tolerant		__read_mostly = 1;
76static int			banks			__read_mostly;
77static int			rip_msr			__read_mostly;
78static int			mce_bootlog		__read_mostly = -1;
79static int			monarch_timeout		__read_mostly = -1;
80static int			mce_panic_timeout	__read_mostly;
81static int			mce_dont_log_ce		__read_mostly;
82int				mce_cmci_disabled	__read_mostly;
83int				mce_ignore_ce		__read_mostly;
84int				mce_ser			__read_mostly;
85
86struct mce_bank                *mce_banks		__read_mostly;
87
88/* User mode helper program triggered by machine check event */
89static unsigned long		mce_need_notify;
90static char			mce_helper[128];
91static char			*mce_helper_argv[2] = { mce_helper, NULL };
92
93static DECLARE_WAIT_QUEUE_HEAD(mce_chrdev_wait);
94
95static DEFINE_PER_CPU(struct mce, mces_seen);
96static int			cpu_missing;
97
98/* MCA banks polled by the period polling timer for corrected events */
99DEFINE_PER_CPU(mce_banks_t, mce_poll_banks) = {
100	[0 ... BITS_TO_LONGS(MAX_NR_BANKS)-1] = ~0UL
101};
102
103static DEFINE_PER_CPU(struct work_struct, mce_work);
104
105/*
106 * CPU/chipset specific EDAC code can register a notifier call here to print
107 * MCE errors in a human-readable form.
108 */
109ATOMIC_NOTIFIER_HEAD(x86_mce_decoder_chain);
110
111/* Do initial initialization of a struct mce */
112void mce_setup(struct mce *m)
113{
114	memset(m, 0, sizeof(struct mce));
115	m->cpu = m->extcpu = smp_processor_id();
116	rdtscll(m->tsc);
117	/* We hope get_seconds stays lockless */
118	m->time = get_seconds();
119	m->cpuvendor = boot_cpu_data.x86_vendor;
120	m->cpuid = cpuid_eax(1);
121	m->socketid = cpu_data(m->extcpu).phys_proc_id;
122	m->apicid = cpu_data(m->extcpu).initial_apicid;
123	rdmsrl(MSR_IA32_MCG_CAP, m->mcgcap);
124}
125
126DEFINE_PER_CPU(struct mce, injectm);
127EXPORT_PER_CPU_SYMBOL_GPL(injectm);
128
129/*
130 * Lockless MCE logging infrastructure.
131 * This avoids deadlocks on printk locks without having to break locks. Also
132 * separate MCEs from kernel messages to avoid bogus bug reports.
133 */
134
135static struct mce_log mcelog = {
136	.signature	= MCE_LOG_SIGNATURE,
137	.len		= MCE_LOG_LEN,
138	.recordlen	= sizeof(struct mce),
139};
140
141void mce_log(struct mce *mce)
142{
143	unsigned next, entry;
144	int ret = 0;
145
146	/* Emit the trace record: */
147	trace_mce_record(mce);
148
149	ret = atomic_notifier_call_chain(&x86_mce_decoder_chain, 0, mce);
150	if (ret == NOTIFY_STOP)
151		return;
152
153	mce->finished = 0;
154	wmb();
155	for (;;) {
156		entry = rcu_dereference_check_mce(mcelog.next);
157		for (;;) {
158
159			/*
160			 * When the buffer fills up discard new entries.
161			 * Assume that the earlier errors are the more
162			 * interesting ones:
163			 */
164			if (entry >= MCE_LOG_LEN) {
165				set_bit(MCE_OVERFLOW,
166					(unsigned long *)&mcelog.flags);
167				return;
168			}
169			/* Old left over entry. Skip: */
170			if (mcelog.entry[entry].finished) {
171				entry++;
172				continue;
173			}
174			break;
175		}
176		smp_rmb();
177		next = entry + 1;
178		if (cmpxchg(&mcelog.next, entry, next) == entry)
179			break;
180	}
181	memcpy(mcelog.entry + entry, mce, sizeof(struct mce));
182	wmb();
183	mcelog.entry[entry].finished = 1;
184	wmb();
185
186	mce->finished = 1;
187	set_bit(0, &mce_need_notify);
188}
189
190static void drain_mcelog_buffer(void)
191{
192	unsigned int next, i, prev = 0;
193
194	next = ACCESS_ONCE(mcelog.next);
195
196	do {
197		struct mce *m;
198
199		/* drain what was logged during boot */
200		for (i = prev; i < next; i++) {
201			unsigned long start = jiffies;
202			unsigned retries = 1;
203
204			m = &mcelog.entry[i];
205
206			while (!m->finished) {
207				if (time_after_eq(jiffies, start + 2*retries))
208					retries++;
209
210				cpu_relax();
211
212				if (!m->finished && retries >= 4) {
213					pr_err("MCE: skipping error being logged currently!\n");
214					break;
215				}
216			}
217			smp_rmb();
218			atomic_notifier_call_chain(&x86_mce_decoder_chain, 0, m);
219		}
220
221		memset(mcelog.entry + prev, 0, (next - prev) * sizeof(*m));
222		prev = next;
223		next = cmpxchg(&mcelog.next, prev, 0);
224	} while (next != prev);
225}
226
227
228void mce_register_decode_chain(struct notifier_block *nb)
229{
230	atomic_notifier_chain_register(&x86_mce_decoder_chain, nb);
231	drain_mcelog_buffer();
232}
233EXPORT_SYMBOL_GPL(mce_register_decode_chain);
234
235void mce_unregister_decode_chain(struct notifier_block *nb)
236{
237	atomic_notifier_chain_unregister(&x86_mce_decoder_chain, nb);
238}
239EXPORT_SYMBOL_GPL(mce_unregister_decode_chain);
240
241static void print_mce(struct mce *m)
242{
243	int ret = 0;
244
245	pr_emerg(HW_ERR "CPU %d: Machine Check Exception: %Lx Bank %d: %016Lx\n",
246	       m->extcpu, m->mcgstatus, m->bank, m->status);
247
248	if (m->ip) {
249		pr_emerg(HW_ERR "RIP%s %02x:<%016Lx> ",
250			!(m->mcgstatus & MCG_STATUS_EIPV) ? " !INEXACT!" : "",
251				m->cs, m->ip);
252
253		if (m->cs == __KERNEL_CS)
254			print_symbol("{%s}", m->ip);
255		pr_cont("\n");
256	}
257
258	pr_emerg(HW_ERR "TSC %llx ", m->tsc);
259	if (m->addr)
260		pr_cont("ADDR %llx ", m->addr);
261	if (m->misc)
262		pr_cont("MISC %llx ", m->misc);
263
264	pr_cont("\n");
265	/*
266	 * Note this output is parsed by external tools and old fields
267	 * should not be changed.
268	 */
269	pr_emerg(HW_ERR "PROCESSOR %u:%x TIME %llu SOCKET %u APIC %x microcode %x\n",
270		m->cpuvendor, m->cpuid, m->time, m->socketid, m->apicid,
271		cpu_data(m->extcpu).microcode);
272
273	/*
274	 * Print out human-readable details about the MCE error,
275	 * (if the CPU has an implementation for that)
276	 */
277	ret = atomic_notifier_call_chain(&x86_mce_decoder_chain, 0, m);
278	if (ret == NOTIFY_STOP)
279		return;
280
281	pr_emerg_ratelimited(HW_ERR "Run the above through 'mcelog --ascii'\n");
282}
283
284#define PANIC_TIMEOUT 5 /* 5 seconds */
285
286static atomic_t mce_paniced;
287
288static int fake_panic;
289static atomic_t mce_fake_paniced;
290
291/* Panic in progress. Enable interrupts and wait for final IPI */
292static void wait_for_panic(void)
293{
294	long timeout = PANIC_TIMEOUT*USEC_PER_SEC;
295
296	preempt_disable();
297	local_irq_enable();
298	while (timeout-- > 0)
299		udelay(1);
300	if (panic_timeout == 0)
301		panic_timeout = mce_panic_timeout;
302	panic("Panicing machine check CPU died");
303}
304
305static void mce_panic(char *msg, struct mce *final, char *exp)
306{
307	int i, apei_err = 0;
308
309	if (!fake_panic) {
310		/*
311		 * Make sure only one CPU runs in machine check panic
312		 */
313		if (atomic_inc_return(&mce_paniced) > 1)
314			wait_for_panic();
315		barrier();
316
317		bust_spinlocks(1);
318		console_verbose();
319	} else {
320		/* Don't log too much for fake panic */
321		if (atomic_inc_return(&mce_fake_paniced) > 1)
322			return;
323	}
324	/* First print corrected ones that are still unlogged */
325	for (i = 0; i < MCE_LOG_LEN; i++) {
326		struct mce *m = &mcelog.entry[i];
327		if (!(m->status & MCI_STATUS_VAL))
328			continue;
329		if (!(m->status & MCI_STATUS_UC)) {
330			print_mce(m);
331			if (!apei_err)
332				apei_err = apei_write_mce(m);
333		}
334	}
335	/* Now print uncorrected but with the final one last */
336	for (i = 0; i < MCE_LOG_LEN; i++) {
337		struct mce *m = &mcelog.entry[i];
338		if (!(m->status & MCI_STATUS_VAL))
339			continue;
340		if (!(m->status & MCI_STATUS_UC))
341			continue;
342		if (!final || memcmp(m, final, sizeof(struct mce))) {
343			print_mce(m);
344			if (!apei_err)
345				apei_err = apei_write_mce(m);
346		}
347	}
348	if (final) {
349		print_mce(final);
350		if (!apei_err)
351			apei_err = apei_write_mce(final);
352	}
353	if (cpu_missing)
354		pr_emerg(HW_ERR "Some CPUs didn't answer in synchronization\n");
355	if (exp)
356		pr_emerg(HW_ERR "Machine check: %s\n", exp);
357	if (!fake_panic) {
358		if (panic_timeout == 0)
359			panic_timeout = mce_panic_timeout;
360		panic(msg);
361	} else
362		pr_emerg(HW_ERR "Fake kernel panic: %s\n", msg);
363}
364
365/* Support code for software error injection */
366
367static int msr_to_offset(u32 msr)
368{
369	unsigned bank = __this_cpu_read(injectm.bank);
370
371	if (msr == rip_msr)
372		return offsetof(struct mce, ip);
373	if (msr == MSR_IA32_MCx_STATUS(bank))
374		return offsetof(struct mce, status);
375	if (msr == MSR_IA32_MCx_ADDR(bank))
376		return offsetof(struct mce, addr);
377	if (msr == MSR_IA32_MCx_MISC(bank))
378		return offsetof(struct mce, misc);
379	if (msr == MSR_IA32_MCG_STATUS)
380		return offsetof(struct mce, mcgstatus);
381	return -1;
382}
383
384/* MSR access wrappers used for error injection */
385static u64 mce_rdmsrl(u32 msr)
386{
387	u64 v;
388
389	if (__this_cpu_read(injectm.finished)) {
390		int offset = msr_to_offset(msr);
391
392		if (offset < 0)
393			return 0;
394		return *(u64 *)((char *)&__get_cpu_var(injectm) + offset);
395	}
396
397	if (rdmsrl_safe(msr, &v)) {
398		WARN_ONCE(1, "mce: Unable to read msr %d!\n", msr);
399		/*
400		 * Return zero in case the access faulted. This should
401		 * not happen normally but can happen if the CPU does
402		 * something weird, or if the code is buggy.
403		 */
404		v = 0;
405	}
406
407	return v;
408}
409
410static void mce_wrmsrl(u32 msr, u64 v)
411{
412	if (__this_cpu_read(injectm.finished)) {
413		int offset = msr_to_offset(msr);
414
415		if (offset >= 0)
416			*(u64 *)((char *)&__get_cpu_var(injectm) + offset) = v;
417		return;
418	}
419	wrmsrl(msr, v);
420}
421
422/*
423 * Collect all global (w.r.t. this processor) status about this machine
424 * check into our "mce" struct so that we can use it later to assess
425 * the severity of the problem as we read per-bank specific details.
426 */
427static inline void mce_gather_info(struct mce *m, struct pt_regs *regs)
428{
429	mce_setup(m);
430
431	m->mcgstatus = mce_rdmsrl(MSR_IA32_MCG_STATUS);
432	if (regs) {
433		/*
434		 * Get the address of the instruction at the time of
435		 * the machine check error.
436		 */
437		if (m->mcgstatus & (MCG_STATUS_RIPV|MCG_STATUS_EIPV)) {
438			m->ip = regs->ip;
439			m->cs = regs->cs;
440		}
441		/* Use accurate RIP reporting if available. */
442		if (rip_msr)
443			m->ip = mce_rdmsrl(rip_msr);
444	}
445}
446
447/*
448 * Simple lockless ring to communicate PFNs from the exception handler with the
449 * process context work function. This is vastly simplified because there's
450 * only a single reader and a single writer.
451 */
452#define MCE_RING_SIZE 16	/* we use one entry less */
453
454struct mce_ring {
455	unsigned short start;
456	unsigned short end;
457	unsigned long ring[MCE_RING_SIZE];
458};
459static DEFINE_PER_CPU(struct mce_ring, mce_ring);
460
461/* Runs with CPU affinity in workqueue */
462static int mce_ring_empty(void)
463{
464	struct mce_ring *r = &__get_cpu_var(mce_ring);
465
466	return r->start == r->end;
467}
468
469static int mce_ring_get(unsigned long *pfn)
470{
471	struct mce_ring *r;
472	int ret = 0;
473
474	*pfn = 0;
475	get_cpu();
476	r = &__get_cpu_var(mce_ring);
477	if (r->start == r->end)
478		goto out;
479	*pfn = r->ring[r->start];
480	r->start = (r->start + 1) % MCE_RING_SIZE;
481	ret = 1;
482out:
483	put_cpu();
484	return ret;
485}
486
487/* Always runs in MCE context with preempt off */
488static int mce_ring_add(unsigned long pfn)
489{
490	struct mce_ring *r = &__get_cpu_var(mce_ring);
491	unsigned next;
492
493	next = (r->end + 1) % MCE_RING_SIZE;
494	if (next == r->start)
495		return -1;
496	r->ring[r->end] = pfn;
497	wmb();
498	r->end = next;
499	return 0;
500}
501
502int mce_available(struct cpuinfo_x86 *c)
503{
504	if (mce_disabled)
505		return 0;
506	return cpu_has(c, X86_FEATURE_MCE) && cpu_has(c, X86_FEATURE_MCA);
507}
508
509static void mce_schedule_work(void)
510{
511	if (!mce_ring_empty()) {
512		struct work_struct *work = &__get_cpu_var(mce_work);
513		if (!work_pending(work))
514			schedule_work(work);
515	}
516}
517
518DEFINE_PER_CPU(struct irq_work, mce_irq_work);
519
520static void mce_irq_work_cb(struct irq_work *entry)
521{
522	mce_notify_irq();
523	mce_schedule_work();
524}
525
526static void mce_report_event(struct pt_regs *regs)
527{
528	if (regs->flags & (X86_VM_MASK|X86_EFLAGS_IF)) {
529		mce_notify_irq();
530		/*
531		 * Triggering the work queue here is just an insurance
532		 * policy in case the syscall exit notify handler
533		 * doesn't run soon enough or ends up running on the
534		 * wrong CPU (can happen when audit sleeps)
535		 */
536		mce_schedule_work();
537		return;
538	}
539
540	irq_work_queue(&__get_cpu_var(mce_irq_work));
541}
542
543/*
544 * Read ADDR and MISC registers.
545 */
546static void mce_read_aux(struct mce *m, int i)
547{
548	if (m->status & MCI_STATUS_MISCV)
549		m->misc = mce_rdmsrl(MSR_IA32_MCx_MISC(i));
550	if (m->status & MCI_STATUS_ADDRV) {
551		m->addr = mce_rdmsrl(MSR_IA32_MCx_ADDR(i));
552
553		/*
554		 * Mask the reported address by the reported granularity.
555		 */
556		if (mce_ser && (m->status & MCI_STATUS_MISCV)) {
557			u8 shift = MCI_MISC_ADDR_LSB(m->misc);
558			m->addr >>= shift;
559			m->addr <<= shift;
560		}
561	}
562}
563
564DEFINE_PER_CPU(unsigned, mce_poll_count);
565
566/*
567 * Poll for corrected events or events that happened before reset.
568 * Those are just logged through /dev/mcelog.
569 *
570 * This is executed in standard interrupt context.
571 *
572 * Note: spec recommends to panic for fatal unsignalled
573 * errors here. However this would be quite problematic --
574 * we would need to reimplement the Monarch handling and
575 * it would mess up the exclusion between exception handler
576 * and poll hander -- * so we skip this for now.
577 * These cases should not happen anyways, or only when the CPU
578 * is already totally * confused. In this case it's likely it will
579 * not fully execute the machine check handler either.
580 */
581void machine_check_poll(enum mcp_flags flags, mce_banks_t *b)
582{
583	struct mce m;
584	int i;
585
586	percpu_inc(mce_poll_count);
587
588	mce_gather_info(&m, NULL);
589
590	for (i = 0; i < banks; i++) {
591		if (!mce_banks[i].ctl || !test_bit(i, *b))
592			continue;
593
594		m.misc = 0;
595		m.addr = 0;
596		m.bank = i;
597		m.tsc = 0;
598
599		barrier();
600		m.status = mce_rdmsrl(MSR_IA32_MCx_STATUS(i));
601		if (!(m.status & MCI_STATUS_VAL))
602			continue;
603
604		/*
605		 * Uncorrected or signalled events are handled by the exception
606		 * handler when it is enabled, so don't process those here.
607		 *
608		 * TBD do the same check for MCI_STATUS_EN here?
609		 */
610		if (!(flags & MCP_UC) &&
611		    (m.status & (mce_ser ? MCI_STATUS_S : MCI_STATUS_UC)))
612			continue;
613
614		mce_read_aux(&m, i);
615
616		if (!(flags & MCP_TIMESTAMP))
617			m.tsc = 0;
618		/*
619		 * Don't get the IP here because it's unlikely to
620		 * have anything to do with the actual error location.
621		 */
622		if (!(flags & MCP_DONTLOG) && !mce_dont_log_ce)
623			mce_log(&m);
624
625		/*
626		 * Clear state for this bank.
627		 */
628		mce_wrmsrl(MSR_IA32_MCx_STATUS(i), 0);
629	}
630
631	/*
632	 * Don't clear MCG_STATUS here because it's only defined for
633	 * exceptions.
634	 */
635
636	sync_core();
637}
638EXPORT_SYMBOL_GPL(machine_check_poll);
639
640/*
641 * Do a quick check if any of the events requires a panic.
642 * This decides if we keep the events around or clear them.
643 */
644static int mce_no_way_out(struct mce *m, char **msg, unsigned long *validp)
645{
646	int i, ret = 0;
647
648	for (i = 0; i < banks; i++) {
649		m->status = mce_rdmsrl(MSR_IA32_MCx_STATUS(i));
650		if (m->status & MCI_STATUS_VAL)
651			__set_bit(i, validp);
652		if (mce_severity(m, tolerant, msg) >= MCE_PANIC_SEVERITY)
653			ret = 1;
654	}
655	return ret;
656}
657
658/*
659 * Variable to establish order between CPUs while scanning.
660 * Each CPU spins initially until executing is equal its number.
661 */
662static atomic_t mce_executing;
663
664/*
665 * Defines order of CPUs on entry. First CPU becomes Monarch.
666 */
667static atomic_t mce_callin;
668
669/*
670 * Check if a timeout waiting for other CPUs happened.
671 */
672static int mce_timed_out(u64 *t)
673{
674	/*
675	 * The others already did panic for some reason.
676	 * Bail out like in a timeout.
677	 * rmb() to tell the compiler that system_state
678	 * might have been modified by someone else.
679	 */
680	rmb();
681	if (atomic_read(&mce_paniced))
682		wait_for_panic();
683	if (!monarch_timeout)
684		goto out;
685	if ((s64)*t < SPINUNIT) {
686		/* CHECKME: Make panic default for 1 too? */
687		if (tolerant < 1)
688			mce_panic("Timeout synchronizing machine check over CPUs",
689				  NULL, NULL);
690		cpu_missing = 1;
691		return 1;
692	}
693	*t -= SPINUNIT;
694out:
695	touch_nmi_watchdog();
696	return 0;
697}
698
699/*
700 * The Monarch's reign.  The Monarch is the CPU who entered
701 * the machine check handler first. It waits for the others to
702 * raise the exception too and then grades them. When any
703 * error is fatal panic. Only then let the others continue.
704 *
705 * The other CPUs entering the MCE handler will be controlled by the
706 * Monarch. They are called Subjects.
707 *
708 * This way we prevent any potential data corruption in a unrecoverable case
709 * and also makes sure always all CPU's errors are examined.
710 *
711 * Also this detects the case of a machine check event coming from outer
712 * space (not detected by any CPUs) In this case some external agent wants
713 * us to shut down, so panic too.
714 *
715 * The other CPUs might still decide to panic if the handler happens
716 * in a unrecoverable place, but in this case the system is in a semi-stable
717 * state and won't corrupt anything by itself. It's ok to let the others
718 * continue for a bit first.
719 *
720 * All the spin loops have timeouts; when a timeout happens a CPU
721 * typically elects itself to be Monarch.
722 */
723static void mce_reign(void)
724{
725	int cpu;
726	struct mce *m = NULL;
727	int global_worst = 0;
728	char *msg = NULL;
729	char *nmsg = NULL;
730
731	/*
732	 * This CPU is the Monarch and the other CPUs have run
733	 * through their handlers.
734	 * Grade the severity of the errors of all the CPUs.
735	 */
736	for_each_possible_cpu(cpu) {
737		int severity = mce_severity(&per_cpu(mces_seen, cpu), tolerant,
738					    &nmsg);
739		if (severity > global_worst) {
740			msg = nmsg;
741			global_worst = severity;
742			m = &per_cpu(mces_seen, cpu);
743		}
744	}
745
746	/*
747	 * Cannot recover? Panic here then.
748	 * This dumps all the mces in the log buffer and stops the
749	 * other CPUs.
750	 */
751	if (m && global_worst >= MCE_PANIC_SEVERITY && tolerant < 3)
752		mce_panic("Fatal Machine check", m, msg);
753
754	/*
755	 * For UC somewhere we let the CPU who detects it handle it.
756	 * Also must let continue the others, otherwise the handling
757	 * CPU could deadlock on a lock.
758	 */
759
760	/*
761	 * No machine check event found. Must be some external
762	 * source or one CPU is hung. Panic.
763	 */
764	if (global_worst <= MCE_KEEP_SEVERITY && tolerant < 3)
765		mce_panic("Machine check from unknown source", NULL, NULL);
766
767	/*
768	 * Now clear all the mces_seen so that they don't reappear on
769	 * the next mce.
770	 */
771	for_each_possible_cpu(cpu)
772		memset(&per_cpu(mces_seen, cpu), 0, sizeof(struct mce));
773}
774
775static atomic_t global_nwo;
776
777/*
778 * Start of Monarch synchronization. This waits until all CPUs have
779 * entered the exception handler and then determines if any of them
780 * saw a fatal event that requires panic. Then it executes them
781 * in the entry order.
782 * TBD double check parallel CPU hotunplug
783 */
784static int mce_start(int *no_way_out)
785{
786	int order;
787	int cpus = num_online_cpus();
788	u64 timeout = (u64)monarch_timeout * NSEC_PER_USEC;
789
790	if (!timeout)
791		return -1;
792
793	atomic_add(*no_way_out, &global_nwo);
794	/*
795	 * global_nwo should be updated before mce_callin
796	 */
797	smp_wmb();
798	order = atomic_inc_return(&mce_callin);
799
800	/*
801	 * Wait for everyone.
802	 */
803	while (atomic_read(&mce_callin) != cpus) {
804		if (mce_timed_out(&timeout)) {
805			atomic_set(&global_nwo, 0);
806			return -1;
807		}
808		ndelay(SPINUNIT);
809	}
810
811	/*
812	 * mce_callin should be read before global_nwo
813	 */
814	smp_rmb();
815
816	if (order == 1) {
817		/*
818		 * Monarch: Starts executing now, the others wait.
819		 */
820		atomic_set(&mce_executing, 1);
821	} else {
822		/*
823		 * Subject: Now start the scanning loop one by one in
824		 * the original callin order.
825		 * This way when there are any shared banks it will be
826		 * only seen by one CPU before cleared, avoiding duplicates.
827		 */
828		while (atomic_read(&mce_executing) < order) {
829			if (mce_timed_out(&timeout)) {
830				atomic_set(&global_nwo, 0);
831				return -1;
832			}
833			ndelay(SPINUNIT);
834		}
835	}
836
837	/*
838	 * Cache the global no_way_out state.
839	 */
840	*no_way_out = atomic_read(&global_nwo);
841
842	return order;
843}
844
845/*
846 * Synchronize between CPUs after main scanning loop.
847 * This invokes the bulk of the Monarch processing.
848 */
849static int mce_end(int order)
850{
851	int ret = -1;
852	u64 timeout = (u64)monarch_timeout * NSEC_PER_USEC;
853
854	if (!timeout)
855		goto reset;
856	if (order < 0)
857		goto reset;
858
859	/*
860	 * Allow others to run.
861	 */
862	atomic_inc(&mce_executing);
863
864	if (order == 1) {
865		/* CHECKME: Can this race with a parallel hotplug? */
866		int cpus = num_online_cpus();
867
868		/*
869		 * Monarch: Wait for everyone to go through their scanning
870		 * loops.
871		 */
872		while (atomic_read(&mce_executing) <= cpus) {
873			if (mce_timed_out(&timeout))
874				goto reset;
875			ndelay(SPINUNIT);
876		}
877
878		mce_reign();
879		barrier();
880		ret = 0;
881	} else {
882		/*
883		 * Subject: Wait for Monarch to finish.
884		 */
885		while (atomic_read(&mce_executing) != 0) {
886			if (mce_timed_out(&timeout))
887				goto reset;
888			ndelay(SPINUNIT);
889		}
890
891		/*
892		 * Don't reset anything. That's done by the Monarch.
893		 */
894		return 0;
895	}
896
897	/*
898	 * Reset all global state.
899	 */
900reset:
901	atomic_set(&global_nwo, 0);
902	atomic_set(&mce_callin, 0);
903	barrier();
904
905	/*
906	 * Let others run again.
907	 */
908	atomic_set(&mce_executing, 0);
909	return ret;
910}
911
912/*
913 * Check if the address reported by the CPU is in a format we can parse.
914 * It would be possible to add code for most other cases, but all would
915 * be somewhat complicated (e.g. segment offset would require an instruction
916 * parser). So only support physical addresses up to page granuality for now.
917 */
918static int mce_usable_address(struct mce *m)
919{
920	if (!(m->status & MCI_STATUS_MISCV) || !(m->status & MCI_STATUS_ADDRV))
921		return 0;
922	if (MCI_MISC_ADDR_LSB(m->misc) > PAGE_SHIFT)
923		return 0;
924	if (MCI_MISC_ADDR_MODE(m->misc) != MCI_MISC_ADDR_PHYS)
925		return 0;
926	return 1;
927}
928
929static void mce_clear_state(unsigned long *toclear)
930{
931	int i;
932
933	for (i = 0; i < banks; i++) {
934		if (test_bit(i, toclear))
935			mce_wrmsrl(MSR_IA32_MCx_STATUS(i), 0);
936	}
937}
938
939/*
940 * Need to save faulting physical address associated with a process
941 * in the machine check handler some place where we can grab it back
942 * later in mce_notify_process()
943 */
944#define	MCE_INFO_MAX	16
945
946struct mce_info {
947	atomic_t		inuse;
948	struct task_struct	*t;
949	__u64			paddr;
950} mce_info[MCE_INFO_MAX];
951
952static void mce_save_info(__u64 addr)
953{
954	struct mce_info *mi;
955
956	for (mi = mce_info; mi < &mce_info[MCE_INFO_MAX]; mi++) {
957		if (atomic_cmpxchg(&mi->inuse, 0, 1) == 0) {
958			mi->t = current;
959			mi->paddr = addr;
960			return;
961		}
962	}
963
964	mce_panic("Too many concurrent recoverable errors", NULL, NULL);
965}
966
967static struct mce_info *mce_find_info(void)
968{
969	struct mce_info *mi;
970
971	for (mi = mce_info; mi < &mce_info[MCE_INFO_MAX]; mi++)
972		if (atomic_read(&mi->inuse) && mi->t == current)
973			return mi;
974	return NULL;
975}
976
977static void mce_clear_info(struct mce_info *mi)
978{
979	atomic_set(&mi->inuse, 0);
980}
981
982/*
983 * The actual machine check handler. This only handles real
984 * exceptions when something got corrupted coming in through int 18.
985 *
986 * This is executed in NMI context not subject to normal locking rules. This
987 * implies that most kernel services cannot be safely used. Don't even
988 * think about putting a printk in there!
989 *
990 * On Intel systems this is entered on all CPUs in parallel through
991 * MCE broadcast. However some CPUs might be broken beyond repair,
992 * so be always careful when synchronizing with others.
993 */
994void do_machine_check(struct pt_regs *regs, long error_code)
995{
996	struct mce m, *final;
997	int i;
998	int worst = 0;
999	int severity;
1000	/*
1001	 * Establish sequential order between the CPUs entering the machine
1002	 * check handler.
1003	 */
1004	int order;
1005	/*
1006	 * If no_way_out gets set, there is no safe way to recover from this
1007	 * MCE.  If tolerant is cranked up, we'll try anyway.
1008	 */
1009	int no_way_out = 0;
1010	/*
1011	 * If kill_it gets set, there might be a way to recover from this
1012	 * error.
1013	 */
1014	int kill_it = 0;
1015	DECLARE_BITMAP(toclear, MAX_NR_BANKS);
1016	DECLARE_BITMAP(valid_banks, MAX_NR_BANKS);
1017	char *msg = "Unknown";
1018
1019	atomic_inc(&mce_entry);
1020
1021	percpu_inc(mce_exception_count);
1022
1023	if (!banks)
1024		goto out;
1025
1026	mce_gather_info(&m, regs);
1027
1028	final = &__get_cpu_var(mces_seen);
1029	*final = m;
1030
1031	memset(valid_banks, 0, sizeof(valid_banks));
1032	no_way_out = mce_no_way_out(&m, &msg, valid_banks);
1033
1034	barrier();
1035
1036	/*
1037	 * When no restart IP might need to kill or panic.
1038	 * Assume the worst for now, but if we find the
1039	 * severity is MCE_AR_SEVERITY we have other options.
1040	 */
1041	if (!(m.mcgstatus & MCG_STATUS_RIPV))
1042		kill_it = 1;
1043
1044	/*
1045	 * Go through all the banks in exclusion of the other CPUs.
1046	 * This way we don't report duplicated events on shared banks
1047	 * because the first one to see it will clear it.
1048	 */
1049	order = mce_start(&no_way_out);
1050	for (i = 0; i < banks; i++) {
1051		__clear_bit(i, toclear);
1052		if (!test_bit(i, valid_banks))
1053			continue;
1054		if (!mce_banks[i].ctl)
1055			continue;
1056
1057		m.misc = 0;
1058		m.addr = 0;
1059		m.bank = i;
1060
1061		m.status = mce_rdmsrl(MSR_IA32_MCx_STATUS(i));
1062		if ((m.status & MCI_STATUS_VAL) == 0)
1063			continue;
1064
1065		/*
1066		 * Non uncorrected or non signaled errors are handled by
1067		 * machine_check_poll. Leave them alone, unless this panics.
1068		 */
1069		if (!(m.status & (mce_ser ? MCI_STATUS_S : MCI_STATUS_UC)) &&
1070			!no_way_out)
1071			continue;
1072
1073		/*
1074		 * Set taint even when machine check was not enabled.
1075		 */
1076		add_taint(TAINT_MACHINE_CHECK);
1077
1078		severity = mce_severity(&m, tolerant, NULL);
1079
1080		/*
1081		 * When machine check was for corrected handler don't touch,
1082		 * unless we're panicing.
1083		 */
1084		if (severity == MCE_KEEP_SEVERITY && !no_way_out)
1085			continue;
1086		__set_bit(i, toclear);
1087		if (severity == MCE_NO_SEVERITY) {
1088			/*
1089			 * Machine check event was not enabled. Clear, but
1090			 * ignore.
1091			 */
1092			continue;
1093		}
1094
1095		mce_read_aux(&m, i);
1096
1097		/*
1098		 * Action optional error. Queue address for later processing.
1099		 * When the ring overflows we just ignore the AO error.
1100		 * RED-PEN add some logging mechanism when
1101		 * usable_address or mce_add_ring fails.
1102		 * RED-PEN don't ignore overflow for tolerant == 0
1103		 */
1104		if (severity == MCE_AO_SEVERITY && mce_usable_address(&m))
1105			mce_ring_add(m.addr >> PAGE_SHIFT);
1106
1107		mce_log(&m);
1108
1109		if (severity > worst) {
1110			*final = m;
1111			worst = severity;
1112		}
1113	}
1114
1115	/* mce_clear_state will clear *final, save locally for use later */
1116	m = *final;
1117
1118	if (!no_way_out)
1119		mce_clear_state(toclear);
1120
1121	/*
1122	 * Do most of the synchronization with other CPUs.
1123	 * When there's any problem use only local no_way_out state.
1124	 */
1125	if (mce_end(order) < 0)
1126		no_way_out = worst >= MCE_PANIC_SEVERITY;
1127
1128	/*
1129	 * At insane "tolerant" levels we take no action. Otherwise
1130	 * we only die if we have no other choice. For less serious
1131	 * issues we try to recover, or limit damage to the current
1132	 * process.
1133	 */
1134	if (tolerant < 3) {
1135		if (no_way_out)
1136			mce_panic("Fatal machine check on current CPU", &m, msg);
1137		if (worst == MCE_AR_SEVERITY) {
1138			/* schedule action before return to userland */
1139			mce_save_info(m.addr);
1140			set_thread_flag(TIF_MCE_NOTIFY);
1141		} else if (kill_it) {
1142			force_sig(SIGBUS, current);
1143		}
1144	}
1145
1146	if (worst > 0)
1147		mce_report_event(regs);
1148	mce_wrmsrl(MSR_IA32_MCG_STATUS, 0);
1149out:
1150	atomic_dec(&mce_entry);
1151	sync_core();
1152}
1153EXPORT_SYMBOL_GPL(do_machine_check);
1154
1155#ifndef CONFIG_MEMORY_FAILURE
1156int memory_failure(unsigned long pfn, int vector, int flags)
1157{
1158	/* mce_severity() should not hand us an ACTION_REQUIRED error */
1159	BUG_ON(flags & MF_ACTION_REQUIRED);
1160	printk(KERN_ERR "Uncorrected memory error in page 0x%lx ignored\n"
1161		"Rebuild kernel with CONFIG_MEMORY_FAILURE=y for smarter handling\n", pfn);
1162
1163	return 0;
1164}
1165#endif
1166
1167/*
1168 * Called in process context that interrupted by MCE and marked with
1169 * TIF_MCE_NOTIFY, just before returning to erroneous userland.
1170 * This code is allowed to sleep.
1171 * Attempt possible recovery such as calling the high level VM handler to
1172 * process any corrupted pages, and kill/signal current process if required.
1173 * Action required errors are handled here.
1174 */
1175void mce_notify_process(void)
1176{
1177	unsigned long pfn;
1178	struct mce_info *mi = mce_find_info();
1179
1180	if (!mi)
1181		mce_panic("Lost physical address for unconsumed uncorrectable error", NULL, NULL);
1182	pfn = mi->paddr >> PAGE_SHIFT;
1183
1184	clear_thread_flag(TIF_MCE_NOTIFY);
1185
1186	pr_err("Uncorrected hardware memory error in user-access at %llx",
1187		 mi->paddr);
1188	if (memory_failure(pfn, MCE_VECTOR, MF_ACTION_REQUIRED) < 0) {
1189		pr_err("Memory error not recovered");
1190		force_sig(SIGBUS, current);
1191	}
1192	mce_clear_info(mi);
1193}
1194
1195/*
1196 * Action optional processing happens here (picking up
1197 * from the list of faulting pages that do_machine_check()
1198 * placed into the "ring").
1199 */
1200static void mce_process_work(struct work_struct *dummy)
1201{
1202	unsigned long pfn;
1203
1204	while (mce_ring_get(&pfn))
1205		memory_failure(pfn, MCE_VECTOR, 0);
1206}
1207
1208#ifdef CONFIG_X86_MCE_INTEL
1209/***
1210 * mce_log_therm_throt_event - Logs the thermal throttling event to mcelog
1211 * @cpu: The CPU on which the event occurred.
1212 * @status: Event status information
1213 *
1214 * This function should be called by the thermal interrupt after the
1215 * event has been processed and the decision was made to log the event
1216 * further.
1217 *
1218 * The status parameter will be saved to the 'status' field of 'struct mce'
1219 * and historically has been the register value of the
1220 * MSR_IA32_THERMAL_STATUS (Intel) msr.
1221 */
1222void mce_log_therm_throt_event(__u64 status)
1223{
1224	struct mce m;
1225
1226	mce_setup(&m);
1227	m.bank = MCE_THERMAL_BANK;
1228	m.status = status;
1229	mce_log(&m);
1230}
1231#endif /* CONFIG_X86_MCE_INTEL */
1232
1233/*
1234 * Periodic polling timer for "silent" machine check errors.  If the
1235 * poller finds an MCE, poll 2x faster.  When the poller finds no more
1236 * errors, poll 2x slower (up to check_interval seconds).
1237 */
1238static int check_interval = 5 * 60; /* 5 minutes */
1239
1240static DEFINE_PER_CPU(int, mce_next_interval); /* in jiffies */
1241static DEFINE_PER_CPU(struct timer_list, mce_timer);
1242
1243static void mce_start_timer(unsigned long data)
1244{
1245	struct timer_list *t = &per_cpu(mce_timer, data);
1246	int *n;
1247
1248	WARN_ON(smp_processor_id() != data);
1249
1250	if (mce_available(__this_cpu_ptr(&cpu_info))) {
1251		machine_check_poll(MCP_TIMESTAMP,
1252				&__get_cpu_var(mce_poll_banks));
1253	}
1254
1255	/*
1256	 * Alert userspace if needed.  If we logged an MCE, reduce the
1257	 * polling interval, otherwise increase the polling interval.
1258	 */
1259	n = &__get_cpu_var(mce_next_interval);
1260	if (mce_notify_irq())
1261		*n = max(*n/2, HZ/100);
1262	else
1263		*n = min(*n*2, (int)round_jiffies_relative(check_interval*HZ));
1264
1265	t->expires = jiffies + *n;
1266	add_timer_on(t, smp_processor_id());
1267}
1268
1269/* Must not be called in IRQ context where del_timer_sync() can deadlock */
1270static void mce_timer_delete_all(void)
1271{
1272	int cpu;
1273
1274	for_each_online_cpu(cpu)
1275		del_timer_sync(&per_cpu(mce_timer, cpu));
1276}
1277
1278static void mce_do_trigger(struct work_struct *work)
1279{
1280	call_usermodehelper(mce_helper, mce_helper_argv, NULL, UMH_NO_WAIT);
1281}
1282
1283static DECLARE_WORK(mce_trigger_work, mce_do_trigger);
1284
1285/*
1286 * Notify the user(s) about new machine check events.
1287 * Can be called from interrupt context, but not from machine check/NMI
1288 * context.
1289 */
1290int mce_notify_irq(void)
1291{
1292	/* Not more than two messages every minute */
1293	static DEFINE_RATELIMIT_STATE(ratelimit, 60*HZ, 2);
1294
1295	if (test_and_clear_bit(0, &mce_need_notify)) {
1296		/* wake processes polling /dev/mcelog */
1297		wake_up_interruptible(&mce_chrdev_wait);
1298
1299		/*
1300		 * There is no risk of missing notifications because
1301		 * work_pending is always cleared before the function is
1302		 * executed.
1303		 */
1304		if (mce_helper[0] && !work_pending(&mce_trigger_work))
1305			schedule_work(&mce_trigger_work);
1306
1307		if (__ratelimit(&ratelimit))
1308			pr_info(HW_ERR "Machine check events logged\n");
1309
1310		return 1;
1311	}
1312	return 0;
1313}
1314EXPORT_SYMBOL_GPL(mce_notify_irq);
1315
1316static int __cpuinit __mcheck_cpu_mce_banks_init(void)
1317{
1318	int i;
1319
1320	mce_banks = kzalloc(banks * sizeof(struct mce_bank), GFP_KERNEL);
1321	if (!mce_banks)
1322		return -ENOMEM;
1323	for (i = 0; i < banks; i++) {
1324		struct mce_bank *b = &mce_banks[i];
1325
1326		b->ctl = -1ULL;
1327		b->init = 1;
1328	}
1329	return 0;
1330}
1331
1332/*
1333 * Initialize Machine Checks for a CPU.
1334 */
1335static int __cpuinit __mcheck_cpu_cap_init(void)
1336{
1337	unsigned b;
1338	u64 cap;
1339
1340	rdmsrl(MSR_IA32_MCG_CAP, cap);
1341
1342	b = cap & MCG_BANKCNT_MASK;
1343	if (!banks)
1344		printk(KERN_INFO "mce: CPU supports %d MCE banks\n", b);
1345
1346	if (b > MAX_NR_BANKS) {
1347		printk(KERN_WARNING
1348		       "MCE: Using only %u machine check banks out of %u\n",
1349			MAX_NR_BANKS, b);
1350		b = MAX_NR_BANKS;
1351	}
1352
1353	/* Don't support asymmetric configurations today */
1354	WARN_ON(banks != 0 && b != banks);
1355	banks = b;
1356	if (!mce_banks) {
1357		int err = __mcheck_cpu_mce_banks_init();
1358
1359		if (err)
1360			return err;
1361	}
1362
1363	/* Use accurate RIP reporting if available. */
1364	if ((cap & MCG_EXT_P) && MCG_EXT_CNT(cap) >= 9)
1365		rip_msr = MSR_IA32_MCG_EIP;
1366
1367	if (cap & MCG_SER_P)
1368		mce_ser = 1;
1369
1370	return 0;
1371}
1372
1373static void __mcheck_cpu_init_generic(void)
1374{
1375	mce_banks_t all_banks;
1376	u64 cap;
1377	int i;
1378
1379	/*
1380	 * Log the machine checks left over from the previous reset.
1381	 */
1382	bitmap_fill(all_banks, MAX_NR_BANKS);
1383	machine_check_poll(MCP_UC|(!mce_bootlog ? MCP_DONTLOG : 0), &all_banks);
1384
1385	set_in_cr4(X86_CR4_MCE);
1386
1387	rdmsrl(MSR_IA32_MCG_CAP, cap);
1388	if (cap & MCG_CTL_P)
1389		wrmsr(MSR_IA32_MCG_CTL, 0xffffffff, 0xffffffff);
1390
1391	for (i = 0; i < banks; i++) {
1392		struct mce_bank *b = &mce_banks[i];
1393
1394		if (!b->init)
1395			continue;
1396		wrmsrl(MSR_IA32_MCx_CTL(i), b->ctl);
1397		wrmsrl(MSR_IA32_MCx_STATUS(i), 0);
1398	}
1399}
1400
1401/* Add per CPU specific workarounds here */
1402static int __cpuinit __mcheck_cpu_apply_quirks(struct cpuinfo_x86 *c)
1403{
1404	if (c->x86_vendor == X86_VENDOR_UNKNOWN) {
1405		pr_info("MCE: unknown CPU type - not enabling MCE support.\n");
1406		return -EOPNOTSUPP;
1407	}
1408
1409	/* This should be disabled by the BIOS, but isn't always */
1410	if (c->x86_vendor == X86_VENDOR_AMD) {
1411		if (c->x86 == 15 && banks > 4) {
1412			/*
1413			 * disable GART TBL walk error reporting, which
1414			 * trips off incorrectly with the IOMMU & 3ware
1415			 * & Cerberus:
1416			 */
1417			clear_bit(10, (unsigned long *)&mce_banks[4].ctl);
1418		}
1419		if (c->x86 <= 17 && mce_bootlog < 0) {
1420			/*
1421			 * Lots of broken BIOS around that don't clear them
1422			 * by default and leave crap in there. Don't log:
1423			 */
1424			mce_bootlog = 0;
1425		}
1426		/*
1427		 * Various K7s with broken bank 0 around. Always disable
1428		 * by default.
1429		 */
1430		 if (c->x86 == 6 && banks > 0)
1431			mce_banks[0].ctl = 0;
1432	}
1433
1434	if (c->x86_vendor == X86_VENDOR_INTEL) {
1435		/*
1436		 * SDM documents that on family 6 bank 0 should not be written
1437		 * because it aliases to another special BIOS controlled
1438		 * register.
1439		 * But it's not aliased anymore on model 0x1a+
1440		 * Don't ignore bank 0 completely because there could be a
1441		 * valid event later, merely don't write CTL0.
1442		 */
1443
1444		if (c->x86 == 6 && c->x86_model < 0x1A && banks > 0)
1445			mce_banks[0].init = 0;
1446
1447		/*
1448		 * All newer Intel systems support MCE broadcasting. Enable
1449		 * synchronization with a one second timeout.
1450		 */
1451		if ((c->x86 > 6 || (c->x86 == 6 && c->x86_model >= 0xe)) &&
1452			monarch_timeout < 0)
1453			monarch_timeout = USEC_PER_SEC;
1454
1455		/*
1456		 * There are also broken BIOSes on some Pentium M and
1457		 * earlier systems:
1458		 */
1459		if (c->x86 == 6 && c->x86_model <= 13 && mce_bootlog < 0)
1460			mce_bootlog = 0;
1461	}
1462	if (monarch_timeout < 0)
1463		monarch_timeout = 0;
1464	if (mce_bootlog != 0)
1465		mce_panic_timeout = 30;
1466
1467	return 0;
1468}
1469
1470static int __cpuinit __mcheck_cpu_ancient_init(struct cpuinfo_x86 *c)
1471{
1472	if (c->x86 != 5)
1473		return 0;
1474
1475	switch (c->x86_vendor) {
1476	case X86_VENDOR_INTEL:
1477		intel_p5_mcheck_init(c);
1478		return 1;
1479		break;
1480	case X86_VENDOR_CENTAUR:
1481		winchip_mcheck_init(c);
1482		return 1;
1483		break;
1484	}
1485
1486	return 0;
1487}
1488
1489static void __mcheck_cpu_init_vendor(struct cpuinfo_x86 *c)
1490{
1491	switch (c->x86_vendor) {
1492	case X86_VENDOR_INTEL:
1493		mce_intel_feature_init(c);
1494		break;
1495	case X86_VENDOR_AMD:
1496		mce_amd_feature_init(c);
1497		break;
1498	default:
1499		break;
1500	}
1501}
1502
1503static void __mcheck_cpu_init_timer(void)
1504{
1505	struct timer_list *t = &__get_cpu_var(mce_timer);
1506	int *n = &__get_cpu_var(mce_next_interval);
1507
1508	setup_timer(t, mce_start_timer, smp_processor_id());
1509
1510	if (mce_ignore_ce)
1511		return;
1512
1513	*n = check_interval * HZ;
1514	if (!*n)
1515		return;
1516	t->expires = round_jiffies(jiffies + *n);
1517	add_timer_on(t, smp_processor_id());
1518}
1519
1520/* Handle unconfigured int18 (should never happen) */
1521static void unexpected_machine_check(struct pt_regs *regs, long error_code)
1522{
1523	printk(KERN_ERR "CPU#%d: Unexpected int18 (Machine Check).\n",
1524	       smp_processor_id());
1525}
1526
1527/* Call the installed machine check handler for this CPU setup. */
1528void (*machine_check_vector)(struct pt_regs *, long error_code) =
1529						unexpected_machine_check;
1530
1531/*
1532 * Called for each booted CPU to set up machine checks.
1533 * Must be called with preempt off:
1534 */
1535void __cpuinit mcheck_cpu_init(struct cpuinfo_x86 *c)
1536{
1537	if (mce_disabled)
1538		return;
1539
1540	if (__mcheck_cpu_ancient_init(c))
1541		return;
1542
1543	if (!mce_available(c))
1544		return;
1545
1546	if (__mcheck_cpu_cap_init() < 0 || __mcheck_cpu_apply_quirks(c) < 0) {
1547		mce_disabled = 1;
1548		return;
1549	}
1550
1551	machine_check_vector = do_machine_check;
1552
1553	__mcheck_cpu_init_generic();
1554	__mcheck_cpu_init_vendor(c);
1555	__mcheck_cpu_init_timer();
1556	INIT_WORK(&__get_cpu_var(mce_work), mce_process_work);
1557	init_irq_work(&__get_cpu_var(mce_irq_work), &mce_irq_work_cb);
1558}
1559
1560/*
1561 * mce_chrdev: Character device /dev/mcelog to read and clear the MCE log.
1562 */
1563
1564static DEFINE_SPINLOCK(mce_chrdev_state_lock);
1565static int mce_chrdev_open_count;	/* #times opened */
1566static int mce_chrdev_open_exclu;	/* already open exclusive? */
1567
1568static int mce_chrdev_open(struct inode *inode, struct file *file)
1569{
1570	spin_lock(&mce_chrdev_state_lock);
1571
1572	if (mce_chrdev_open_exclu ||
1573	    (mce_chrdev_open_count && (file->f_flags & O_EXCL))) {
1574		spin_unlock(&mce_chrdev_state_lock);
1575
1576		return -EBUSY;
1577	}
1578
1579	if (file->f_flags & O_EXCL)
1580		mce_chrdev_open_exclu = 1;
1581	mce_chrdev_open_count++;
1582
1583	spin_unlock(&mce_chrdev_state_lock);
1584
1585	return nonseekable_open(inode, file);
1586}
1587
1588static int mce_chrdev_release(struct inode *inode, struct file *file)
1589{
1590	spin_lock(&mce_chrdev_state_lock);
1591
1592	mce_chrdev_open_count--;
1593	mce_chrdev_open_exclu = 0;
1594
1595	spin_unlock(&mce_chrdev_state_lock);
1596
1597	return 0;
1598}
1599
1600static void collect_tscs(void *data)
1601{
1602	unsigned long *cpu_tsc = (unsigned long *)data;
1603
1604	rdtscll(cpu_tsc[smp_processor_id()]);
1605}
1606
1607static int mce_apei_read_done;
1608
1609/* Collect MCE record of previous boot in persistent storage via APEI ERST. */
1610static int __mce_read_apei(char __user **ubuf, size_t usize)
1611{
1612	int rc;
1613	u64 record_id;
1614	struct mce m;
1615
1616	if (usize < sizeof(struct mce))
1617		return -EINVAL;
1618
1619	rc = apei_read_mce(&m, &record_id);
1620	/* Error or no more MCE record */
1621	if (rc <= 0) {
1622		mce_apei_read_done = 1;
1623		/*
1624		 * When ERST is disabled, mce_chrdev_read() should return
1625		 * "no record" instead of "no device."
1626		 */
1627		if (rc == -ENODEV)
1628			return 0;
1629		return rc;
1630	}
1631	rc = -EFAULT;
1632	if (copy_to_user(*ubuf, &m, sizeof(struct mce)))
1633		return rc;
1634	/*
1635	 * In fact, we should have cleared the record after that has
1636	 * been flushed to the disk or sent to network in
1637	 * /sbin/mcelog, but we have no interface to support that now,
1638	 * so just clear it to avoid duplication.
1639	 */
1640	rc = apei_clear_mce(record_id);
1641	if (rc) {
1642		mce_apei_read_done = 1;
1643		return rc;
1644	}
1645	*ubuf += sizeof(struct mce);
1646
1647	return 0;
1648}
1649
1650static ssize_t mce_chrdev_read(struct file *filp, char __user *ubuf,
1651				size_t usize, loff_t *off)
1652{
1653	char __user *buf = ubuf;
1654	unsigned long *cpu_tsc;
1655	unsigned prev, next;
1656	int i, err;
1657
1658	cpu_tsc = kmalloc(nr_cpu_ids * sizeof(long), GFP_KERNEL);
1659	if (!cpu_tsc)
1660		return -ENOMEM;
1661
1662	mutex_lock(&mce_chrdev_read_mutex);
1663
1664	if (!mce_apei_read_done) {
1665		err = __mce_read_apei(&buf, usize);
1666		if (err || buf != ubuf)
1667			goto out;
1668	}
1669
1670	next = rcu_dereference_check_mce(mcelog.next);
1671
1672	/* Only supports full reads right now */
1673	err = -EINVAL;
1674	if (*off != 0 || usize < MCE_LOG_LEN*sizeof(struct mce))
1675		goto out;
1676
1677	err = 0;
1678	prev = 0;
1679	do {
1680		for (i = prev; i < next; i++) {
1681			unsigned long start = jiffies;
1682			struct mce *m = &mcelog.entry[i];
1683
1684			while (!m->finished) {
1685				if (time_after_eq(jiffies, start + 2)) {
1686					memset(m, 0, sizeof(*m));
1687					goto timeout;
1688				}
1689				cpu_relax();
1690			}
1691			smp_rmb();
1692			err |= copy_to_user(buf, m, sizeof(*m));
1693			buf += sizeof(*m);
1694timeout:
1695			;
1696		}
1697
1698		memset(mcelog.entry + prev, 0,
1699		       (next - prev) * sizeof(struct mce));
1700		prev = next;
1701		next = cmpxchg(&mcelog.next, prev, 0);
1702	} while (next != prev);
1703
1704	synchronize_sched();
1705
1706	/*
1707	 * Collect entries that were still getting written before the
1708	 * synchronize.
1709	 */
1710	on_each_cpu(collect_tscs, cpu_tsc, 1);
1711
1712	for (i = next; i < MCE_LOG_LEN; i++) {
1713		struct mce *m = &mcelog.entry[i];
1714
1715		if (m->finished && m->tsc < cpu_tsc[m->cpu]) {
1716			err |= copy_to_user(buf, m, sizeof(*m));
1717			smp_rmb();
1718			buf += sizeof(*m);
1719			memset(m, 0, sizeof(*m));
1720		}
1721	}
1722
1723	if (err)
1724		err = -EFAULT;
1725
1726out:
1727	mutex_unlock(&mce_chrdev_read_mutex);
1728	kfree(cpu_tsc);
1729
1730	return err ? err : buf - ubuf;
1731}
1732
1733static unsigned int mce_chrdev_poll(struct file *file, poll_table *wait)
1734{
1735	poll_wait(file, &mce_chrdev_wait, wait);
1736	if (rcu_access_index(mcelog.next))
1737		return POLLIN | POLLRDNORM;
1738	if (!mce_apei_read_done && apei_check_mce())
1739		return POLLIN | POLLRDNORM;
1740	return 0;
1741}
1742
1743static long mce_chrdev_ioctl(struct file *f, unsigned int cmd,
1744				unsigned long arg)
1745{
1746	int __user *p = (int __user *)arg;
1747
1748	if (!capable(CAP_SYS_ADMIN))
1749		return -EPERM;
1750
1751	switch (cmd) {
1752	case MCE_GET_RECORD_LEN:
1753		return put_user(sizeof(struct mce), p);
1754	case MCE_GET_LOG_LEN:
1755		return put_user(MCE_LOG_LEN, p);
1756	case MCE_GETCLEAR_FLAGS: {
1757		unsigned flags;
1758
1759		do {
1760			flags = mcelog.flags;
1761		} while (cmpxchg(&mcelog.flags, flags, 0) != flags);
1762
1763		return put_user(flags, p);
1764	}
1765	default:
1766		return -ENOTTY;
1767	}
1768}
1769
1770static ssize_t (*mce_write)(struct file *filp, const char __user *ubuf,
1771			    size_t usize, loff_t *off);
1772
1773void register_mce_write_callback(ssize_t (*fn)(struct file *filp,
1774			     const char __user *ubuf,
1775			     size_t usize, loff_t *off))
1776{
1777	mce_write = fn;
1778}
1779EXPORT_SYMBOL_GPL(register_mce_write_callback);
1780
1781ssize_t mce_chrdev_write(struct file *filp, const char __user *ubuf,
1782			 size_t usize, loff_t *off)
1783{
1784	if (mce_write)
1785		return mce_write(filp, ubuf, usize, off);
1786	else
1787		return -EINVAL;
1788}
1789
1790static const struct file_operations mce_chrdev_ops = {
1791	.open			= mce_chrdev_open,
1792	.release		= mce_chrdev_release,
1793	.read			= mce_chrdev_read,
1794	.write			= mce_chrdev_write,
1795	.poll			= mce_chrdev_poll,
1796	.unlocked_ioctl		= mce_chrdev_ioctl,
1797	.llseek			= no_llseek,
1798};
1799
1800static struct miscdevice mce_chrdev_device = {
1801	MISC_MCELOG_MINOR,
1802	"mcelog",
1803	&mce_chrdev_ops,
1804};
1805
1806/*
1807 * mce=off Disables machine check
1808 * mce=no_cmci Disables CMCI
1809 * mce=dont_log_ce Clears corrected events silently, no log created for CEs.
1810 * mce=ignore_ce Disables polling and CMCI, corrected events are not cleared.
1811 * mce=TOLERANCELEVEL[,monarchtimeout] (number, see above)
1812 *	monarchtimeout is how long to wait for other CPUs on machine
1813 *	check, or 0 to not wait
1814 * mce=bootlog Log MCEs from before booting. Disabled by default on AMD.
1815 * mce=nobootlog Don't log MCEs from before booting.
1816 */
1817static int __init mcheck_enable(char *str)
1818{
1819	if (*str == 0) {
1820		enable_p5_mce();
1821		return 1;
1822	}
1823	if (*str == '=')
1824		str++;
1825	if (!strcmp(str, "off"))
1826		mce_disabled = 1;
1827	else if (!strcmp(str, "no_cmci"))
1828		mce_cmci_disabled = 1;
1829	else if (!strcmp(str, "dont_log_ce"))
1830		mce_dont_log_ce = 1;
1831	else if (!strcmp(str, "ignore_ce"))
1832		mce_ignore_ce = 1;
1833	else if (!strcmp(str, "bootlog") || !strcmp(str, "nobootlog"))
1834		mce_bootlog = (str[0] == 'b');
1835	else if (isdigit(str[0])) {
1836		get_option(&str, &tolerant);
1837		if (*str == ',') {
1838			++str;
1839			get_option(&str, &monarch_timeout);
1840		}
1841	} else {
1842		printk(KERN_INFO "mce argument %s ignored. Please use /sys\n",
1843		       str);
1844		return 0;
1845	}
1846	return 1;
1847}
1848__setup("mce", mcheck_enable);
1849
1850int __init mcheck_init(void)
1851{
1852	mcheck_intel_therm_init();
1853
1854	return 0;
1855}
1856
1857/*
1858 * mce_syscore: PM support
1859 */
1860
1861/*
1862 * Disable machine checks on suspend and shutdown. We can't really handle
1863 * them later.
1864 */
1865static int mce_disable_error_reporting(void)
1866{
1867	int i;
1868
1869	for (i = 0; i < banks; i++) {
1870		struct mce_bank *b = &mce_banks[i];
1871
1872		if (b->init)
1873			wrmsrl(MSR_IA32_MCx_CTL(i), 0);
1874	}
1875	return 0;
1876}
1877
1878static int mce_syscore_suspend(void)
1879{
1880	return mce_disable_error_reporting();
1881}
1882
1883static void mce_syscore_shutdown(void)
1884{
1885	mce_disable_error_reporting();
1886}
1887
1888/*
1889 * On resume clear all MCE state. Don't want to see leftovers from the BIOS.
1890 * Only one CPU is active at this time, the others get re-added later using
1891 * CPU hotplug:
1892 */
1893static void mce_syscore_resume(void)
1894{
1895	__mcheck_cpu_init_generic();
1896	__mcheck_cpu_init_vendor(__this_cpu_ptr(&cpu_info));
1897}
1898
1899static struct syscore_ops mce_syscore_ops = {
1900	.suspend	= mce_syscore_suspend,
1901	.shutdown	= mce_syscore_shutdown,
1902	.resume		= mce_syscore_resume,
1903};
1904
1905/*
1906 * mce_device: Sysfs support
1907 */
1908
1909static void mce_cpu_restart(void *data)
1910{
1911	if (!mce_available(__this_cpu_ptr(&cpu_info)))
1912		return;
1913	__mcheck_cpu_init_generic();
1914	__mcheck_cpu_init_timer();
1915}
1916
1917/* Reinit MCEs after user configuration changes */
1918static void mce_restart(void)
1919{
1920	mce_timer_delete_all();
1921	on_each_cpu(mce_cpu_restart, NULL, 1);
1922}
1923
1924/* Toggle features for corrected errors */
1925static void mce_disable_cmci(void *data)
1926{
1927	if (!mce_available(__this_cpu_ptr(&cpu_info)))
1928		return;
1929	cmci_clear();
1930}
1931
1932static void mce_enable_ce(void *all)
1933{
1934	if (!mce_available(__this_cpu_ptr(&cpu_info)))
1935		return;
1936	cmci_reenable();
1937	cmci_recheck();
1938	if (all)
1939		__mcheck_cpu_init_timer();
1940}
1941
1942static struct bus_type mce_subsys = {
1943	.name		= "machinecheck",
1944	.dev_name	= "machinecheck",
1945};
1946
1947DEFINE_PER_CPU(struct device *, mce_device);
1948
1949__cpuinitdata
1950void (*threshold_cpu_callback)(unsigned long action, unsigned int cpu);
1951
1952static inline struct mce_bank *attr_to_bank(struct device_attribute *attr)
1953{
1954	return container_of(attr, struct mce_bank, attr);
1955}
1956
1957static ssize_t show_bank(struct device *s, struct device_attribute *attr,
1958			 char *buf)
1959{
1960	return sprintf(buf, "%llx\n", attr_to_bank(attr)->ctl);
1961}
1962
1963static ssize_t set_bank(struct device *s, struct device_attribute *attr,
1964			const char *buf, size_t size)
1965{
1966	u64 new;
1967
1968	if (strict_strtoull(buf, 0, &new) < 0)
1969		return -EINVAL;
1970
1971	attr_to_bank(attr)->ctl = new;
1972	mce_restart();
1973
1974	return size;
1975}
1976
1977static ssize_t
1978show_trigger(struct device *s, struct device_attribute *attr, char *buf)
1979{
1980	strcpy(buf, mce_helper);
1981	strcat(buf, "\n");
1982	return strlen(mce_helper) + 1;
1983}
1984
1985static ssize_t set_trigger(struct device *s, struct device_attribute *attr,
1986				const char *buf, size_t siz)
1987{
1988	char *p;
1989
1990	strncpy(mce_helper, buf, sizeof(mce_helper));
1991	mce_helper[sizeof(mce_helper)-1] = 0;
1992	p = strchr(mce_helper, '\n');
1993
1994	if (p)
1995		*p = 0;
1996
1997	return strlen(mce_helper) + !!p;
1998}
1999
2000static ssize_t set_ignore_ce(struct device *s,
2001			     struct device_attribute *attr,
2002			     const char *buf, size_t size)
2003{
2004	u64 new;
2005
2006	if (strict_strtoull(buf, 0, &new) < 0)
2007		return -EINVAL;
2008
2009	if (mce_ignore_ce ^ !!new) {
2010		if (new) {
2011			/* disable ce features */
2012			mce_timer_delete_all();
2013			on_each_cpu(mce_disable_cmci, NULL, 1);
2014			mce_ignore_ce = 1;
2015		} else {
2016			/* enable ce features */
2017			mce_ignore_ce = 0;
2018			on_each_cpu(mce_enable_ce, (void *)1, 1);
2019		}
2020	}
2021	return size;
2022}
2023
2024static ssize_t set_cmci_disabled(struct device *s,
2025				 struct device_attribute *attr,
2026				 const char *buf, size_t size)
2027{
2028	u64 new;
2029
2030	if (strict_strtoull(buf, 0, &new) < 0)
2031		return -EINVAL;
2032
2033	if (mce_cmci_disabled ^ !!new) {
2034		if (new) {
2035			/* disable cmci */
2036			on_each_cpu(mce_disable_cmci, NULL, 1);
2037			mce_cmci_disabled = 1;
2038		} else {
2039			/* enable cmci */
2040			mce_cmci_disabled = 0;
2041			on_each_cpu(mce_enable_ce, NULL, 1);
2042		}
2043	}
2044	return size;
2045}
2046
2047static ssize_t store_int_with_restart(struct device *s,
2048				      struct device_attribute *attr,
2049				      const char *buf, size_t size)
2050{
2051	ssize_t ret = device_store_int(s, attr, buf, size);
2052	mce_restart();
2053	return ret;
2054}
2055
2056static DEVICE_ATTR(trigger, 0644, show_trigger, set_trigger);
2057static DEVICE_INT_ATTR(tolerant, 0644, tolerant);
2058static DEVICE_INT_ATTR(monarch_timeout, 0644, monarch_timeout);
2059static DEVICE_INT_ATTR(dont_log_ce, 0644, mce_dont_log_ce);
2060
2061static struct dev_ext_attribute dev_attr_check_interval = {
2062	__ATTR(check_interval, 0644, device_show_int, store_int_with_restart),
2063	&check_interval
2064};
2065
2066static struct dev_ext_attribute dev_attr_ignore_ce = {
2067	__ATTR(ignore_ce, 0644, device_show_int, set_ignore_ce),
2068	&mce_ignore_ce
2069};
2070
2071static struct dev_ext_attribute dev_attr_cmci_disabled = {
2072	__ATTR(cmci_disabled, 0644, device_show_int, set_cmci_disabled),
2073	&mce_cmci_disabled
2074};
2075
2076static struct device_attribute *mce_device_attrs[] = {
2077	&dev_attr_tolerant.attr,
2078	&dev_attr_check_interval.attr,
2079	&dev_attr_trigger,
2080	&dev_attr_monarch_timeout.attr,
2081	&dev_attr_dont_log_ce.attr,
2082	&dev_attr_ignore_ce.attr,
2083	&dev_attr_cmci_disabled.attr,
2084	NULL
2085};
2086
2087static cpumask_var_t mce_device_initialized;
2088
2089static void mce_device_release(struct device *dev)
2090{
2091	kfree(dev);
2092}
2093
2094/* Per cpu device init. All of the cpus still share the same ctrl bank: */
2095static __cpuinit int mce_device_create(unsigned int cpu)
2096{
2097	struct device *dev;
2098	int err;
2099	int i, j;
2100
2101	if (!mce_available(&boot_cpu_data))
2102		return -EIO;
2103
2104	dev = kzalloc(sizeof *dev, GFP_KERNEL);
2105	if (!dev)
2106		return -ENOMEM;
2107	dev->id  = cpu;
2108	dev->bus = &mce_subsys;
2109	dev->release = &mce_device_release;
2110
2111	err = device_register(dev);
2112	if (err)
2113		return err;
2114
2115	for (i = 0; mce_device_attrs[i]; i++) {
2116		err = device_create_file(dev, mce_device_attrs[i]);
2117		if (err)
2118			goto error;
2119	}
2120	for (j = 0; j < banks; j++) {
2121		err = device_create_file(dev, &mce_banks[j].attr);
2122		if (err)
2123			goto error2;
2124	}
2125	cpumask_set_cpu(cpu, mce_device_initialized);
2126	per_cpu(mce_device, cpu) = dev;
2127
2128	return 0;
2129error2:
2130	while (--j >= 0)
2131		device_remove_file(dev, &mce_banks[j].attr);
2132error:
2133	while (--i >= 0)
2134		device_remove_file(dev, mce_device_attrs[i]);
2135
2136	device_unregister(dev);
2137
2138	return err;
2139}
2140
2141static __cpuinit void mce_device_remove(unsigned int cpu)
2142{
2143	struct device *dev = per_cpu(mce_device, cpu);
2144	int i;
2145
2146	if (!cpumask_test_cpu(cpu, mce_device_initialized))
2147		return;
2148
2149	for (i = 0; mce_device_attrs[i]; i++)
2150		device_remove_file(dev, mce_device_attrs[i]);
2151
2152	for (i = 0; i < banks; i++)
2153		device_remove_file(dev, &mce_banks[i].attr);
2154
2155	device_unregister(dev);
2156	cpumask_clear_cpu(cpu, mce_device_initialized);
2157	per_cpu(mce_device, cpu) = NULL;
2158}
2159
2160/* Make sure there are no machine checks on offlined CPUs. */
2161static void __cpuinit mce_disable_cpu(void *h)
2162{
2163	unsigned long action = *(unsigned long *)h;
2164	int i;
2165
2166	if (!mce_available(__this_cpu_ptr(&cpu_info)))
2167		return;
2168
2169	if (!(action & CPU_TASKS_FROZEN))
2170		cmci_clear();
2171	for (i = 0; i < banks; i++) {
2172		struct mce_bank *b = &mce_banks[i];
2173
2174		if (b->init)
2175			wrmsrl(MSR_IA32_MCx_CTL(i), 0);
2176	}
2177}
2178
2179static void __cpuinit mce_reenable_cpu(void *h)
2180{
2181	unsigned long action = *(unsigned long *)h;
2182	int i;
2183
2184	if (!mce_available(__this_cpu_ptr(&cpu_info)))
2185		return;
2186
2187	if (!(action & CPU_TASKS_FROZEN))
2188		cmci_reenable();
2189	for (i = 0; i < banks; i++) {
2190		struct mce_bank *b = &mce_banks[i];
2191
2192		if (b->init)
2193			wrmsrl(MSR_IA32_MCx_CTL(i), b->ctl);
2194	}
2195}
2196
2197/* Get notified when a cpu comes on/off. Be hotplug friendly. */
2198static int __cpuinit
2199mce_cpu_callback(struct notifier_block *nfb, unsigned long action, void *hcpu)
2200{
2201	unsigned int cpu = (unsigned long)hcpu;
2202	struct timer_list *t = &per_cpu(mce_timer, cpu);
2203
2204	switch (action) {
2205	case CPU_ONLINE:
2206	case CPU_ONLINE_FROZEN:
2207		mce_device_create(cpu);
2208		if (threshold_cpu_callback)
2209			threshold_cpu_callback(action, cpu);
2210		break;
2211	case CPU_DEAD:
2212	case CPU_DEAD_FROZEN:
2213		if (threshold_cpu_callback)
2214			threshold_cpu_callback(action, cpu);
2215		mce_device_remove(cpu);
2216		break;
2217	case CPU_DOWN_PREPARE:
2218	case CPU_DOWN_PREPARE_FROZEN:
2219		del_timer_sync(t);
2220		smp_call_function_single(cpu, mce_disable_cpu, &action, 1);
2221		break;
2222	case CPU_DOWN_FAILED:
2223	case CPU_DOWN_FAILED_FROZEN:
2224		if (!mce_ignore_ce && check_interval) {
2225			t->expires = round_jiffies(jiffies +
2226					   __get_cpu_var(mce_next_interval));
2227			add_timer_on(t, cpu);
2228		}
2229		smp_call_function_single(cpu, mce_reenable_cpu, &action, 1);
2230		break;
2231	case CPU_POST_DEAD:
2232		/* intentionally ignoring frozen here */
2233		cmci_rediscover(cpu);
2234		break;
2235	}
2236	return NOTIFY_OK;
2237}
2238
2239static struct notifier_block mce_cpu_notifier __cpuinitdata = {
2240	.notifier_call = mce_cpu_callback,
2241};
2242
2243static __init void mce_init_banks(void)
2244{
2245	int i;
2246
2247	for (i = 0; i < banks; i++) {
2248		struct mce_bank *b = &mce_banks[i];
2249		struct device_attribute *a = &b->attr;
2250
2251		sysfs_attr_init(&a->attr);
2252		a->attr.name	= b->attrname;
2253		snprintf(b->attrname, ATTR_LEN, "bank%d", i);
2254
2255		a->attr.mode	= 0644;
2256		a->show		= show_bank;
2257		a->store	= set_bank;
2258	}
2259}
2260
2261static __init int mcheck_init_device(void)
2262{
2263	int err;
2264	int i = 0;
2265
2266	if (!mce_available(&boot_cpu_data))
2267		return -EIO;
2268
2269	zalloc_cpumask_var(&mce_device_initialized, GFP_KERNEL);
2270
2271	mce_init_banks();
2272
2273	err = subsys_system_register(&mce_subsys, NULL);
2274	if (err)
2275		return err;
2276
2277	for_each_online_cpu(i) {
2278		err = mce_device_create(i);
2279		if (err)
2280			return err;
2281	}
2282
2283	register_syscore_ops(&mce_syscore_ops);
2284	register_hotcpu_notifier(&mce_cpu_notifier);
2285
2286	/* register character device /dev/mcelog */
2287	misc_register(&mce_chrdev_device);
2288
2289	return err;
2290}
2291device_initcall(mcheck_init_device);
2292
2293/*
2294 * Old style boot options parsing. Only for compatibility.
2295 */
2296static int __init mcheck_disable(char *str)
2297{
2298	mce_disabled = 1;
2299	return 1;
2300}
2301__setup("nomce", mcheck_disable);
2302
2303#ifdef CONFIG_DEBUG_FS
2304struct dentry *mce_get_debugfs_dir(void)
2305{
2306	static struct dentry *dmce;
2307
2308	if (!dmce)
2309		dmce = debugfs_create_dir("mce", NULL);
2310
2311	return dmce;
2312}
2313
2314static void mce_reset(void)
2315{
2316	cpu_missing = 0;
2317	atomic_set(&mce_fake_paniced, 0);
2318	atomic_set(&mce_executing, 0);
2319	atomic_set(&mce_callin, 0);
2320	atomic_set(&global_nwo, 0);
2321}
2322
2323static int fake_panic_get(void *data, u64 *val)
2324{
2325	*val = fake_panic;
2326	return 0;
2327}
2328
2329static int fake_panic_set(void *data, u64 val)
2330{
2331	mce_reset();
2332	fake_panic = val;
2333	return 0;
2334}
2335
2336DEFINE_SIMPLE_ATTRIBUTE(fake_panic_fops, fake_panic_get,
2337			fake_panic_set, "%llu\n");
2338
2339static int __init mcheck_debugfs_init(void)
2340{
2341	struct dentry *dmce, *ffake_panic;
2342
2343	dmce = mce_get_debugfs_dir();
2344	if (!dmce)
2345		return -ENOMEM;
2346	ffake_panic = debugfs_create_file("fake_panic", 0444, dmce, NULL,
2347					  &fake_panic_fops);
2348	if (!ffake_panic)
2349		return -ENOMEM;
2350
2351	return 0;
2352}
2353late_initcall(mcheck_debugfs_init);
2354#endif
2355