mce.c revision 98a5ae2d99b78d29d2d31283cd8b481a44f41fd3
1/*
2 * Machine check handler.
3 *
4 * K8 parts Copyright 2002,2003 Andi Kleen, SuSE Labs.
5 * Rest from unknown author(s).
6 * 2004 Andi Kleen. Rewrote most of it.
7 * Copyright 2008 Intel Corporation
8 * Author: Andi Kleen
9 */
10#include <linux/thread_info.h>
11#include <linux/capability.h>
12#include <linux/miscdevice.h>
13#include <linux/interrupt.h>
14#include <linux/ratelimit.h>
15#include <linux/kallsyms.h>
16#include <linux/rcupdate.h>
17#include <linux/kobject.h>
18#include <linux/uaccess.h>
19#include <linux/kdebug.h>
20#include <linux/kernel.h>
21#include <linux/percpu.h>
22#include <linux/string.h>
23#include <linux/sysdev.h>
24#include <linux/delay.h>
25#include <linux/ctype.h>
26#include <linux/sched.h>
27#include <linux/sysfs.h>
28#include <linux/types.h>
29#include <linux/slab.h>
30#include <linux/init.h>
31#include <linux/kmod.h>
32#include <linux/poll.h>
33#include <linux/nmi.h>
34#include <linux/cpu.h>
35#include <linux/smp.h>
36#include <linux/fs.h>
37#include <linux/mm.h>
38#include <linux/debugfs.h>
39#include <linux/edac_mce.h>
40
41#include <asm/processor.h>
42#include <asm/hw_irq.h>
43#include <asm/apic.h>
44#include <asm/idle.h>
45#include <asm/ipi.h>
46#include <asm/mce.h>
47#include <asm/msr.h>
48
49#include "mce-internal.h"
50
51static DEFINE_MUTEX(mce_read_mutex);
52
53#define rcu_dereference_check_mce(p) \
54	rcu_dereference_check((p), \
55			      rcu_read_lock_sched_held() || \
56			      lockdep_is_held(&mce_read_mutex))
57
58#define CREATE_TRACE_POINTS
59#include <trace/events/mce.h>
60
61int mce_disabled __read_mostly;
62
63#define MISC_MCELOG_MINOR	227
64
65#define SPINUNIT 100	/* 100ns */
66
67atomic_t mce_entry;
68
69DEFINE_PER_CPU(unsigned, mce_exception_count);
70
71/*
72 * Tolerant levels:
73 *   0: always panic on uncorrected errors, log corrected errors
74 *   1: panic or SIGBUS on uncorrected errors, log corrected errors
75 *   2: SIGBUS or log uncorrected errors (if possible), log corrected errors
76 *   3: never panic or SIGBUS, log all errors (for testing only)
77 */
78static int			tolerant		__read_mostly = 1;
79static int			banks			__read_mostly;
80static int			rip_msr			__read_mostly;
81static int			mce_bootlog		__read_mostly = -1;
82static int			monarch_timeout		__read_mostly = -1;
83static int			mce_panic_timeout	__read_mostly;
84static int			mce_dont_log_ce		__read_mostly;
85int				mce_cmci_disabled	__read_mostly;
86int				mce_ignore_ce		__read_mostly;
87int				mce_ser			__read_mostly;
88
89struct mce_bank                *mce_banks		__read_mostly;
90
91/* User mode helper program triggered by machine check event */
92static unsigned long		mce_need_notify;
93static char			mce_helper[128];
94static char			*mce_helper_argv[2] = { mce_helper, NULL };
95
96static DECLARE_WAIT_QUEUE_HEAD(mce_wait);
97static DEFINE_PER_CPU(struct mce, mces_seen);
98static int			cpu_missing;
99
100/*
101 * CPU/chipset specific EDAC code can register a notifier call here to print
102 * MCE errors in a human-readable form.
103 */
104ATOMIC_NOTIFIER_HEAD(x86_mce_decoder_chain);
105EXPORT_SYMBOL_GPL(x86_mce_decoder_chain);
106
107static int default_decode_mce(struct notifier_block *nb, unsigned long val,
108			       void *data)
109{
110	pr_emerg("No human readable MCE decoding support on this CPU type.\n");
111	pr_emerg("Run the message through 'mcelog --ascii' to decode.\n");
112
113	return NOTIFY_STOP;
114}
115
116static struct notifier_block mce_dec_nb = {
117	.notifier_call = default_decode_mce,
118	.priority      = -1,
119};
120
121/* MCA banks polled by the period polling timer for corrected events */
122DEFINE_PER_CPU(mce_banks_t, mce_poll_banks) = {
123	[0 ... BITS_TO_LONGS(MAX_NR_BANKS)-1] = ~0UL
124};
125
126static DEFINE_PER_CPU(struct work_struct, mce_work);
127
128/* Do initial initialization of a struct mce */
129void mce_setup(struct mce *m)
130{
131	memset(m, 0, sizeof(struct mce));
132	m->cpu = m->extcpu = smp_processor_id();
133	rdtscll(m->tsc);
134	/* We hope get_seconds stays lockless */
135	m->time = get_seconds();
136	m->cpuvendor = boot_cpu_data.x86_vendor;
137	m->cpuid = cpuid_eax(1);
138#ifdef CONFIG_SMP
139	m->socketid = cpu_data(m->extcpu).phys_proc_id;
140#endif
141	m->apicid = cpu_data(m->extcpu).initial_apicid;
142	rdmsrl(MSR_IA32_MCG_CAP, m->mcgcap);
143}
144
145DEFINE_PER_CPU(struct mce, injectm);
146EXPORT_PER_CPU_SYMBOL_GPL(injectm);
147
148/*
149 * Lockless MCE logging infrastructure.
150 * This avoids deadlocks on printk locks without having to break locks. Also
151 * separate MCEs from kernel messages to avoid bogus bug reports.
152 */
153
154static struct mce_log mcelog = {
155	.signature	= MCE_LOG_SIGNATURE,
156	.len		= MCE_LOG_LEN,
157	.recordlen	= sizeof(struct mce),
158};
159
160void mce_log(struct mce *mce)
161{
162	unsigned next, entry;
163
164	/* Emit the trace record: */
165	trace_mce_record(mce);
166
167	mce->finished = 0;
168	wmb();
169	for (;;) {
170		entry = rcu_dereference_check_mce(mcelog.next);
171		for (;;) {
172			/*
173			 * If edac_mce is enabled, it will check the error type
174			 * and will process it, if it is a known error.
175			 * Otherwise, the error will be sent through mcelog
176			 * interface
177			 */
178			if (edac_mce_parse(mce))
179				return;
180
181			/*
182			 * When the buffer fills up discard new entries.
183			 * Assume that the earlier errors are the more
184			 * interesting ones:
185			 */
186			if (entry >= MCE_LOG_LEN) {
187				set_bit(MCE_OVERFLOW,
188					(unsigned long *)&mcelog.flags);
189				return;
190			}
191			/* Old left over entry. Skip: */
192			if (mcelog.entry[entry].finished) {
193				entry++;
194				continue;
195			}
196			break;
197		}
198		smp_rmb();
199		next = entry + 1;
200		if (cmpxchg(&mcelog.next, entry, next) == entry)
201			break;
202	}
203	memcpy(mcelog.entry + entry, mce, sizeof(struct mce));
204	wmb();
205	mcelog.entry[entry].finished = 1;
206	wmb();
207
208	mce->finished = 1;
209	set_bit(0, &mce_need_notify);
210}
211
212static void print_mce(struct mce *m)
213{
214	pr_emerg("CPU %d: Machine Check Exception: %16Lx Bank %d: %016Lx\n",
215	       m->extcpu, m->mcgstatus, m->bank, m->status);
216
217	if (m->ip) {
218		pr_emerg("RIP%s %02x:<%016Lx> ",
219			!(m->mcgstatus & MCG_STATUS_EIPV) ? " !INEXACT!" : "",
220				m->cs, m->ip);
221
222		if (m->cs == __KERNEL_CS)
223			print_symbol("{%s}", m->ip);
224		pr_cont("\n");
225	}
226
227	pr_emerg("TSC %llx ", m->tsc);
228	if (m->addr)
229		pr_cont("ADDR %llx ", m->addr);
230	if (m->misc)
231		pr_cont("MISC %llx ", m->misc);
232
233	pr_cont("\n");
234	pr_emerg("PROCESSOR %u:%x TIME %llu SOCKET %u APIC %x\n",
235		m->cpuvendor, m->cpuid, m->time, m->socketid, m->apicid);
236
237	/*
238	 * Print out human-readable details about the MCE error,
239	 * (if the CPU has an implementation for that)
240	 */
241	atomic_notifier_call_chain(&x86_mce_decoder_chain, 0, m);
242}
243
244static void print_mce_head(void)
245{
246	pr_emerg("\nHARDWARE ERROR\n");
247}
248
249static void print_mce_tail(void)
250{
251	pr_emerg("This is not a software problem!\n");
252}
253
254#define PANIC_TIMEOUT 5 /* 5 seconds */
255
256static atomic_t mce_paniced;
257
258static int fake_panic;
259static atomic_t mce_fake_paniced;
260
261/* Panic in progress. Enable interrupts and wait for final IPI */
262static void wait_for_panic(void)
263{
264	long timeout = PANIC_TIMEOUT*USEC_PER_SEC;
265
266	preempt_disable();
267	local_irq_enable();
268	while (timeout-- > 0)
269		udelay(1);
270	if (panic_timeout == 0)
271		panic_timeout = mce_panic_timeout;
272	panic("Panicing machine check CPU died");
273}
274
275static void mce_panic(char *msg, struct mce *final, char *exp)
276{
277	int i, apei_err = 0;
278
279	if (!fake_panic) {
280		/*
281		 * Make sure only one CPU runs in machine check panic
282		 */
283		if (atomic_inc_return(&mce_paniced) > 1)
284			wait_for_panic();
285		barrier();
286
287		bust_spinlocks(1);
288		console_verbose();
289	} else {
290		/* Don't log too much for fake panic */
291		if (atomic_inc_return(&mce_fake_paniced) > 1)
292			return;
293	}
294	print_mce_head();
295	/* First print corrected ones that are still unlogged */
296	for (i = 0; i < MCE_LOG_LEN; i++) {
297		struct mce *m = &mcelog.entry[i];
298		if (!(m->status & MCI_STATUS_VAL))
299			continue;
300		if (!(m->status & MCI_STATUS_UC)) {
301			print_mce(m);
302			if (!apei_err)
303				apei_err = apei_write_mce(m);
304		}
305	}
306	/* Now print uncorrected but with the final one last */
307	for (i = 0; i < MCE_LOG_LEN; i++) {
308		struct mce *m = &mcelog.entry[i];
309		if (!(m->status & MCI_STATUS_VAL))
310			continue;
311		if (!(m->status & MCI_STATUS_UC))
312			continue;
313		if (!final || memcmp(m, final, sizeof(struct mce))) {
314			print_mce(m);
315			if (!apei_err)
316				apei_err = apei_write_mce(m);
317		}
318	}
319	if (final) {
320		print_mce(final);
321		if (!apei_err)
322			apei_err = apei_write_mce(final);
323	}
324	if (cpu_missing)
325		printk(KERN_EMERG "Some CPUs didn't answer in synchronization\n");
326	print_mce_tail();
327	if (exp)
328		printk(KERN_EMERG "Machine check: %s\n", exp);
329	if (!fake_panic) {
330		if (panic_timeout == 0)
331			panic_timeout = mce_panic_timeout;
332		panic(msg);
333	} else
334		printk(KERN_EMERG "Fake kernel panic: %s\n", msg);
335}
336
337/* Support code for software error injection */
338
339static int msr_to_offset(u32 msr)
340{
341	unsigned bank = __get_cpu_var(injectm.bank);
342
343	if (msr == rip_msr)
344		return offsetof(struct mce, ip);
345	if (msr == MSR_IA32_MCx_STATUS(bank))
346		return offsetof(struct mce, status);
347	if (msr == MSR_IA32_MCx_ADDR(bank))
348		return offsetof(struct mce, addr);
349	if (msr == MSR_IA32_MCx_MISC(bank))
350		return offsetof(struct mce, misc);
351	if (msr == MSR_IA32_MCG_STATUS)
352		return offsetof(struct mce, mcgstatus);
353	return -1;
354}
355
356/* MSR access wrappers used for error injection */
357static u64 mce_rdmsrl(u32 msr)
358{
359	u64 v;
360
361	if (__get_cpu_var(injectm).finished) {
362		int offset = msr_to_offset(msr);
363
364		if (offset < 0)
365			return 0;
366		return *(u64 *)((char *)&__get_cpu_var(injectm) + offset);
367	}
368
369	if (rdmsrl_safe(msr, &v)) {
370		WARN_ONCE(1, "mce: Unable to read msr %d!\n", msr);
371		/*
372		 * Return zero in case the access faulted. This should
373		 * not happen normally but can happen if the CPU does
374		 * something weird, or if the code is buggy.
375		 */
376		v = 0;
377	}
378
379	return v;
380}
381
382static void mce_wrmsrl(u32 msr, u64 v)
383{
384	if (__get_cpu_var(injectm).finished) {
385		int offset = msr_to_offset(msr);
386
387		if (offset >= 0)
388			*(u64 *)((char *)&__get_cpu_var(injectm) + offset) = v;
389		return;
390	}
391	wrmsrl(msr, v);
392}
393
394/*
395 * Simple lockless ring to communicate PFNs from the exception handler with the
396 * process context work function. This is vastly simplified because there's
397 * only a single reader and a single writer.
398 */
399#define MCE_RING_SIZE 16	/* we use one entry less */
400
401struct mce_ring {
402	unsigned short start;
403	unsigned short end;
404	unsigned long ring[MCE_RING_SIZE];
405};
406static DEFINE_PER_CPU(struct mce_ring, mce_ring);
407
408/* Runs with CPU affinity in workqueue */
409static int mce_ring_empty(void)
410{
411	struct mce_ring *r = &__get_cpu_var(mce_ring);
412
413	return r->start == r->end;
414}
415
416static int mce_ring_get(unsigned long *pfn)
417{
418	struct mce_ring *r;
419	int ret = 0;
420
421	*pfn = 0;
422	get_cpu();
423	r = &__get_cpu_var(mce_ring);
424	if (r->start == r->end)
425		goto out;
426	*pfn = r->ring[r->start];
427	r->start = (r->start + 1) % MCE_RING_SIZE;
428	ret = 1;
429out:
430	put_cpu();
431	return ret;
432}
433
434/* Always runs in MCE context with preempt off */
435static int mce_ring_add(unsigned long pfn)
436{
437	struct mce_ring *r = &__get_cpu_var(mce_ring);
438	unsigned next;
439
440	next = (r->end + 1) % MCE_RING_SIZE;
441	if (next == r->start)
442		return -1;
443	r->ring[r->end] = pfn;
444	wmb();
445	r->end = next;
446	return 0;
447}
448
449int mce_available(struct cpuinfo_x86 *c)
450{
451	if (mce_disabled)
452		return 0;
453	return cpu_has(c, X86_FEATURE_MCE) && cpu_has(c, X86_FEATURE_MCA);
454}
455
456static void mce_schedule_work(void)
457{
458	if (!mce_ring_empty()) {
459		struct work_struct *work = &__get_cpu_var(mce_work);
460		if (!work_pending(work))
461			schedule_work(work);
462	}
463}
464
465/*
466 * Get the address of the instruction at the time of the machine check
467 * error.
468 */
469static inline void mce_get_rip(struct mce *m, struct pt_regs *regs)
470{
471
472	if (regs && (m->mcgstatus & (MCG_STATUS_RIPV|MCG_STATUS_EIPV))) {
473		m->ip = regs->ip;
474		m->cs = regs->cs;
475	} else {
476		m->ip = 0;
477		m->cs = 0;
478	}
479	if (rip_msr)
480		m->ip = mce_rdmsrl(rip_msr);
481}
482
483#ifdef CONFIG_X86_LOCAL_APIC
484/*
485 * Called after interrupts have been reenabled again
486 * when a MCE happened during an interrupts off region
487 * in the kernel.
488 */
489asmlinkage void smp_mce_self_interrupt(struct pt_regs *regs)
490{
491	ack_APIC_irq();
492	exit_idle();
493	irq_enter();
494	mce_notify_irq();
495	mce_schedule_work();
496	irq_exit();
497}
498#endif
499
500static void mce_report_event(struct pt_regs *regs)
501{
502	if (regs->flags & (X86_VM_MASK|X86_EFLAGS_IF)) {
503		mce_notify_irq();
504		/*
505		 * Triggering the work queue here is just an insurance
506		 * policy in case the syscall exit notify handler
507		 * doesn't run soon enough or ends up running on the
508		 * wrong CPU (can happen when audit sleeps)
509		 */
510		mce_schedule_work();
511		return;
512	}
513
514#ifdef CONFIG_X86_LOCAL_APIC
515	/*
516	 * Without APIC do not notify. The event will be picked
517	 * up eventually.
518	 */
519	if (!cpu_has_apic)
520		return;
521
522	/*
523	 * When interrupts are disabled we cannot use
524	 * kernel services safely. Trigger an self interrupt
525	 * through the APIC to instead do the notification
526	 * after interrupts are reenabled again.
527	 */
528	apic->send_IPI_self(MCE_SELF_VECTOR);
529
530	/*
531	 * Wait for idle afterwards again so that we don't leave the
532	 * APIC in a non idle state because the normal APIC writes
533	 * cannot exclude us.
534	 */
535	apic_wait_icr_idle();
536#endif
537}
538
539DEFINE_PER_CPU(unsigned, mce_poll_count);
540
541/*
542 * Poll for corrected events or events that happened before reset.
543 * Those are just logged through /dev/mcelog.
544 *
545 * This is executed in standard interrupt context.
546 *
547 * Note: spec recommends to panic for fatal unsignalled
548 * errors here. However this would be quite problematic --
549 * we would need to reimplement the Monarch handling and
550 * it would mess up the exclusion between exception handler
551 * and poll hander -- * so we skip this for now.
552 * These cases should not happen anyways, or only when the CPU
553 * is already totally * confused. In this case it's likely it will
554 * not fully execute the machine check handler either.
555 */
556void machine_check_poll(enum mcp_flags flags, mce_banks_t *b)
557{
558	struct mce m;
559	int i;
560
561	percpu_inc(mce_poll_count);
562
563	mce_setup(&m);
564
565	m.mcgstatus = mce_rdmsrl(MSR_IA32_MCG_STATUS);
566	for (i = 0; i < banks; i++) {
567		if (!mce_banks[i].ctl || !test_bit(i, *b))
568			continue;
569
570		m.misc = 0;
571		m.addr = 0;
572		m.bank = i;
573		m.tsc = 0;
574
575		barrier();
576		m.status = mce_rdmsrl(MSR_IA32_MCx_STATUS(i));
577		if (!(m.status & MCI_STATUS_VAL))
578			continue;
579
580		/*
581		 * Uncorrected or signalled events are handled by the exception
582		 * handler when it is enabled, so don't process those here.
583		 *
584		 * TBD do the same check for MCI_STATUS_EN here?
585		 */
586		if (!(flags & MCP_UC) &&
587		    (m.status & (mce_ser ? MCI_STATUS_S : MCI_STATUS_UC)))
588			continue;
589
590		if (m.status & MCI_STATUS_MISCV)
591			m.misc = mce_rdmsrl(MSR_IA32_MCx_MISC(i));
592		if (m.status & MCI_STATUS_ADDRV)
593			m.addr = mce_rdmsrl(MSR_IA32_MCx_ADDR(i));
594
595		if (!(flags & MCP_TIMESTAMP))
596			m.tsc = 0;
597		/*
598		 * Don't get the IP here because it's unlikely to
599		 * have anything to do with the actual error location.
600		 */
601		if (!(flags & MCP_DONTLOG) && !mce_dont_log_ce) {
602			mce_log(&m);
603			atomic_notifier_call_chain(&x86_mce_decoder_chain, 0, &m);
604			add_taint(TAINT_MACHINE_CHECK);
605		}
606
607		/*
608		 * Clear state for this bank.
609		 */
610		mce_wrmsrl(MSR_IA32_MCx_STATUS(i), 0);
611	}
612
613	/*
614	 * Don't clear MCG_STATUS here because it's only defined for
615	 * exceptions.
616	 */
617
618	sync_core();
619}
620EXPORT_SYMBOL_GPL(machine_check_poll);
621
622/*
623 * Do a quick check if any of the events requires a panic.
624 * This decides if we keep the events around or clear them.
625 */
626static int mce_no_way_out(struct mce *m, char **msg)
627{
628	int i;
629
630	for (i = 0; i < banks; i++) {
631		m->status = mce_rdmsrl(MSR_IA32_MCx_STATUS(i));
632		if (mce_severity(m, tolerant, msg) >= MCE_PANIC_SEVERITY)
633			return 1;
634	}
635	return 0;
636}
637
638/*
639 * Variable to establish order between CPUs while scanning.
640 * Each CPU spins initially until executing is equal its number.
641 */
642static atomic_t mce_executing;
643
644/*
645 * Defines order of CPUs on entry. First CPU becomes Monarch.
646 */
647static atomic_t mce_callin;
648
649/*
650 * Check if a timeout waiting for other CPUs happened.
651 */
652static int mce_timed_out(u64 *t)
653{
654	/*
655	 * The others already did panic for some reason.
656	 * Bail out like in a timeout.
657	 * rmb() to tell the compiler that system_state
658	 * might have been modified by someone else.
659	 */
660	rmb();
661	if (atomic_read(&mce_paniced))
662		wait_for_panic();
663	if (!monarch_timeout)
664		goto out;
665	if ((s64)*t < SPINUNIT) {
666		/* CHECKME: Make panic default for 1 too? */
667		if (tolerant < 1)
668			mce_panic("Timeout synchronizing machine check over CPUs",
669				  NULL, NULL);
670		cpu_missing = 1;
671		return 1;
672	}
673	*t -= SPINUNIT;
674out:
675	touch_nmi_watchdog();
676	return 0;
677}
678
679/*
680 * The Monarch's reign.  The Monarch is the CPU who entered
681 * the machine check handler first. It waits for the others to
682 * raise the exception too and then grades them. When any
683 * error is fatal panic. Only then let the others continue.
684 *
685 * The other CPUs entering the MCE handler will be controlled by the
686 * Monarch. They are called Subjects.
687 *
688 * This way we prevent any potential data corruption in a unrecoverable case
689 * and also makes sure always all CPU's errors are examined.
690 *
691 * Also this detects the case of a machine check event coming from outer
692 * space (not detected by any CPUs) In this case some external agent wants
693 * us to shut down, so panic too.
694 *
695 * The other CPUs might still decide to panic if the handler happens
696 * in a unrecoverable place, but in this case the system is in a semi-stable
697 * state and won't corrupt anything by itself. It's ok to let the others
698 * continue for a bit first.
699 *
700 * All the spin loops have timeouts; when a timeout happens a CPU
701 * typically elects itself to be Monarch.
702 */
703static void mce_reign(void)
704{
705	int cpu;
706	struct mce *m = NULL;
707	int global_worst = 0;
708	char *msg = NULL;
709	char *nmsg = NULL;
710
711	/*
712	 * This CPU is the Monarch and the other CPUs have run
713	 * through their handlers.
714	 * Grade the severity of the errors of all the CPUs.
715	 */
716	for_each_possible_cpu(cpu) {
717		int severity = mce_severity(&per_cpu(mces_seen, cpu), tolerant,
718					    &nmsg);
719		if (severity > global_worst) {
720			msg = nmsg;
721			global_worst = severity;
722			m = &per_cpu(mces_seen, cpu);
723		}
724	}
725
726	/*
727	 * Cannot recover? Panic here then.
728	 * This dumps all the mces in the log buffer and stops the
729	 * other CPUs.
730	 */
731	if (m && global_worst >= MCE_PANIC_SEVERITY && tolerant < 3)
732		mce_panic("Fatal Machine check", m, msg);
733
734	/*
735	 * For UC somewhere we let the CPU who detects it handle it.
736	 * Also must let continue the others, otherwise the handling
737	 * CPU could deadlock on a lock.
738	 */
739
740	/*
741	 * No machine check event found. Must be some external
742	 * source or one CPU is hung. Panic.
743	 */
744	if (global_worst <= MCE_KEEP_SEVERITY && tolerant < 3)
745		mce_panic("Machine check from unknown source", NULL, NULL);
746
747	/*
748	 * Now clear all the mces_seen so that they don't reappear on
749	 * the next mce.
750	 */
751	for_each_possible_cpu(cpu)
752		memset(&per_cpu(mces_seen, cpu), 0, sizeof(struct mce));
753}
754
755static atomic_t global_nwo;
756
757/*
758 * Start of Monarch synchronization. This waits until all CPUs have
759 * entered the exception handler and then determines if any of them
760 * saw a fatal event that requires panic. Then it executes them
761 * in the entry order.
762 * TBD double check parallel CPU hotunplug
763 */
764static int mce_start(int *no_way_out)
765{
766	int order;
767	int cpus = num_online_cpus();
768	u64 timeout = (u64)monarch_timeout * NSEC_PER_USEC;
769
770	if (!timeout)
771		return -1;
772
773	atomic_add(*no_way_out, &global_nwo);
774	/*
775	 * global_nwo should be updated before mce_callin
776	 */
777	smp_wmb();
778	order = atomic_inc_return(&mce_callin);
779
780	/*
781	 * Wait for everyone.
782	 */
783	while (atomic_read(&mce_callin) != cpus) {
784		if (mce_timed_out(&timeout)) {
785			atomic_set(&global_nwo, 0);
786			return -1;
787		}
788		ndelay(SPINUNIT);
789	}
790
791	/*
792	 * mce_callin should be read before global_nwo
793	 */
794	smp_rmb();
795
796	if (order == 1) {
797		/*
798		 * Monarch: Starts executing now, the others wait.
799		 */
800		atomic_set(&mce_executing, 1);
801	} else {
802		/*
803		 * Subject: Now start the scanning loop one by one in
804		 * the original callin order.
805		 * This way when there are any shared banks it will be
806		 * only seen by one CPU before cleared, avoiding duplicates.
807		 */
808		while (atomic_read(&mce_executing) < order) {
809			if (mce_timed_out(&timeout)) {
810				atomic_set(&global_nwo, 0);
811				return -1;
812			}
813			ndelay(SPINUNIT);
814		}
815	}
816
817	/*
818	 * Cache the global no_way_out state.
819	 */
820	*no_way_out = atomic_read(&global_nwo);
821
822	return order;
823}
824
825/*
826 * Synchronize between CPUs after main scanning loop.
827 * This invokes the bulk of the Monarch processing.
828 */
829static int mce_end(int order)
830{
831	int ret = -1;
832	u64 timeout = (u64)monarch_timeout * NSEC_PER_USEC;
833
834	if (!timeout)
835		goto reset;
836	if (order < 0)
837		goto reset;
838
839	/*
840	 * Allow others to run.
841	 */
842	atomic_inc(&mce_executing);
843
844	if (order == 1) {
845		/* CHECKME: Can this race with a parallel hotplug? */
846		int cpus = num_online_cpus();
847
848		/*
849		 * Monarch: Wait for everyone to go through their scanning
850		 * loops.
851		 */
852		while (atomic_read(&mce_executing) <= cpus) {
853			if (mce_timed_out(&timeout))
854				goto reset;
855			ndelay(SPINUNIT);
856		}
857
858		mce_reign();
859		barrier();
860		ret = 0;
861	} else {
862		/*
863		 * Subject: Wait for Monarch to finish.
864		 */
865		while (atomic_read(&mce_executing) != 0) {
866			if (mce_timed_out(&timeout))
867				goto reset;
868			ndelay(SPINUNIT);
869		}
870
871		/*
872		 * Don't reset anything. That's done by the Monarch.
873		 */
874		return 0;
875	}
876
877	/*
878	 * Reset all global state.
879	 */
880reset:
881	atomic_set(&global_nwo, 0);
882	atomic_set(&mce_callin, 0);
883	barrier();
884
885	/*
886	 * Let others run again.
887	 */
888	atomic_set(&mce_executing, 0);
889	return ret;
890}
891
892/*
893 * Check if the address reported by the CPU is in a format we can parse.
894 * It would be possible to add code for most other cases, but all would
895 * be somewhat complicated (e.g. segment offset would require an instruction
896 * parser). So only support physical addresses upto page granuality for now.
897 */
898static int mce_usable_address(struct mce *m)
899{
900	if (!(m->status & MCI_STATUS_MISCV) || !(m->status & MCI_STATUS_ADDRV))
901		return 0;
902	if ((m->misc & 0x3f) > PAGE_SHIFT)
903		return 0;
904	if (((m->misc >> 6) & 7) != MCM_ADDR_PHYS)
905		return 0;
906	return 1;
907}
908
909static void mce_clear_state(unsigned long *toclear)
910{
911	int i;
912
913	for (i = 0; i < banks; i++) {
914		if (test_bit(i, toclear))
915			mce_wrmsrl(MSR_IA32_MCx_STATUS(i), 0);
916	}
917}
918
919/*
920 * The actual machine check handler. This only handles real
921 * exceptions when something got corrupted coming in through int 18.
922 *
923 * This is executed in NMI context not subject to normal locking rules. This
924 * implies that most kernel services cannot be safely used. Don't even
925 * think about putting a printk in there!
926 *
927 * On Intel systems this is entered on all CPUs in parallel through
928 * MCE broadcast. However some CPUs might be broken beyond repair,
929 * so be always careful when synchronizing with others.
930 */
931void do_machine_check(struct pt_regs *regs, long error_code)
932{
933	struct mce m, *final;
934	int i;
935	int worst = 0;
936	int severity;
937	/*
938	 * Establish sequential order between the CPUs entering the machine
939	 * check handler.
940	 */
941	int order;
942	/*
943	 * If no_way_out gets set, there is no safe way to recover from this
944	 * MCE.  If tolerant is cranked up, we'll try anyway.
945	 */
946	int no_way_out = 0;
947	/*
948	 * If kill_it gets set, there might be a way to recover from this
949	 * error.
950	 */
951	int kill_it = 0;
952	DECLARE_BITMAP(toclear, MAX_NR_BANKS);
953	char *msg = "Unknown";
954
955	atomic_inc(&mce_entry);
956
957	percpu_inc(mce_exception_count);
958
959	if (notify_die(DIE_NMI, "machine check", regs, error_code,
960			   18, SIGKILL) == NOTIFY_STOP)
961		goto out;
962	if (!banks)
963		goto out;
964
965	mce_setup(&m);
966
967	m.mcgstatus = mce_rdmsrl(MSR_IA32_MCG_STATUS);
968	final = &__get_cpu_var(mces_seen);
969	*final = m;
970
971	no_way_out = mce_no_way_out(&m, &msg);
972
973	barrier();
974
975	/*
976	 * When no restart IP must always kill or panic.
977	 */
978	if (!(m.mcgstatus & MCG_STATUS_RIPV))
979		kill_it = 1;
980
981	/*
982	 * Go through all the banks in exclusion of the other CPUs.
983	 * This way we don't report duplicated events on shared banks
984	 * because the first one to see it will clear it.
985	 */
986	order = mce_start(&no_way_out);
987	for (i = 0; i < banks; i++) {
988		__clear_bit(i, toclear);
989		if (!mce_banks[i].ctl)
990			continue;
991
992		m.misc = 0;
993		m.addr = 0;
994		m.bank = i;
995
996		m.status = mce_rdmsrl(MSR_IA32_MCx_STATUS(i));
997		if ((m.status & MCI_STATUS_VAL) == 0)
998			continue;
999
1000		/*
1001		 * Non uncorrected or non signaled errors are handled by
1002		 * machine_check_poll. Leave them alone, unless this panics.
1003		 */
1004		if (!(m.status & (mce_ser ? MCI_STATUS_S : MCI_STATUS_UC)) &&
1005			!no_way_out)
1006			continue;
1007
1008		/*
1009		 * Set taint even when machine check was not enabled.
1010		 */
1011		add_taint(TAINT_MACHINE_CHECK);
1012
1013		severity = mce_severity(&m, tolerant, NULL);
1014
1015		/*
1016		 * When machine check was for corrected handler don't touch,
1017		 * unless we're panicing.
1018		 */
1019		if (severity == MCE_KEEP_SEVERITY && !no_way_out)
1020			continue;
1021		__set_bit(i, toclear);
1022		if (severity == MCE_NO_SEVERITY) {
1023			/*
1024			 * Machine check event was not enabled. Clear, but
1025			 * ignore.
1026			 */
1027			continue;
1028		}
1029
1030		/*
1031		 * Kill on action required.
1032		 */
1033		if (severity == MCE_AR_SEVERITY)
1034			kill_it = 1;
1035
1036		if (m.status & MCI_STATUS_MISCV)
1037			m.misc = mce_rdmsrl(MSR_IA32_MCx_MISC(i));
1038		if (m.status & MCI_STATUS_ADDRV)
1039			m.addr = mce_rdmsrl(MSR_IA32_MCx_ADDR(i));
1040
1041		/*
1042		 * Action optional error. Queue address for later processing.
1043		 * When the ring overflows we just ignore the AO error.
1044		 * RED-PEN add some logging mechanism when
1045		 * usable_address or mce_add_ring fails.
1046		 * RED-PEN don't ignore overflow for tolerant == 0
1047		 */
1048		if (severity == MCE_AO_SEVERITY && mce_usable_address(&m))
1049			mce_ring_add(m.addr >> PAGE_SHIFT);
1050
1051		mce_get_rip(&m, regs);
1052		mce_log(&m);
1053
1054		if (severity > worst) {
1055			*final = m;
1056			worst = severity;
1057		}
1058	}
1059
1060	if (!no_way_out)
1061		mce_clear_state(toclear);
1062
1063	/*
1064	 * Do most of the synchronization with other CPUs.
1065	 * When there's any problem use only local no_way_out state.
1066	 */
1067	if (mce_end(order) < 0)
1068		no_way_out = worst >= MCE_PANIC_SEVERITY;
1069
1070	/*
1071	 * If we have decided that we just CAN'T continue, and the user
1072	 * has not set tolerant to an insane level, give up and die.
1073	 *
1074	 * This is mainly used in the case when the system doesn't
1075	 * support MCE broadcasting or it has been disabled.
1076	 */
1077	if (no_way_out && tolerant < 3)
1078		mce_panic("Fatal machine check on current CPU", final, msg);
1079
1080	/*
1081	 * If the error seems to be unrecoverable, something should be
1082	 * done.  Try to kill as little as possible.  If we can kill just
1083	 * one task, do that.  If the user has set the tolerance very
1084	 * high, don't try to do anything at all.
1085	 */
1086
1087	if (kill_it && tolerant < 3)
1088		force_sig(SIGBUS, current);
1089
1090	/* notify userspace ASAP */
1091	set_thread_flag(TIF_MCE_NOTIFY);
1092
1093	if (worst > 0)
1094		mce_report_event(regs);
1095	mce_wrmsrl(MSR_IA32_MCG_STATUS, 0);
1096out:
1097	atomic_dec(&mce_entry);
1098	sync_core();
1099}
1100EXPORT_SYMBOL_GPL(do_machine_check);
1101
1102/* dummy to break dependency. actual code is in mm/memory-failure.c */
1103void __attribute__((weak)) memory_failure(unsigned long pfn, int vector)
1104{
1105	printk(KERN_ERR "Action optional memory failure at %lx ignored\n", pfn);
1106}
1107
1108/*
1109 * Called after mce notification in process context. This code
1110 * is allowed to sleep. Call the high level VM handler to process
1111 * any corrupted pages.
1112 * Assume that the work queue code only calls this one at a time
1113 * per CPU.
1114 * Note we don't disable preemption, so this code might run on the wrong
1115 * CPU. In this case the event is picked up by the scheduled work queue.
1116 * This is merely a fast path to expedite processing in some common
1117 * cases.
1118 */
1119void mce_notify_process(void)
1120{
1121	unsigned long pfn;
1122	mce_notify_irq();
1123	while (mce_ring_get(&pfn))
1124		memory_failure(pfn, MCE_VECTOR);
1125}
1126
1127static void mce_process_work(struct work_struct *dummy)
1128{
1129	mce_notify_process();
1130}
1131
1132#ifdef CONFIG_X86_MCE_INTEL
1133/***
1134 * mce_log_therm_throt_event - Logs the thermal throttling event to mcelog
1135 * @cpu: The CPU on which the event occurred.
1136 * @status: Event status information
1137 *
1138 * This function should be called by the thermal interrupt after the
1139 * event has been processed and the decision was made to log the event
1140 * further.
1141 *
1142 * The status parameter will be saved to the 'status' field of 'struct mce'
1143 * and historically has been the register value of the
1144 * MSR_IA32_THERMAL_STATUS (Intel) msr.
1145 */
1146void mce_log_therm_throt_event(__u64 status)
1147{
1148	struct mce m;
1149
1150	mce_setup(&m);
1151	m.bank = MCE_THERMAL_BANK;
1152	m.status = status;
1153	mce_log(&m);
1154}
1155#endif /* CONFIG_X86_MCE_INTEL */
1156
1157/*
1158 * Periodic polling timer for "silent" machine check errors.  If the
1159 * poller finds an MCE, poll 2x faster.  When the poller finds no more
1160 * errors, poll 2x slower (up to check_interval seconds).
1161 */
1162static int check_interval = 5 * 60; /* 5 minutes */
1163
1164static DEFINE_PER_CPU(int, mce_next_interval); /* in jiffies */
1165static DEFINE_PER_CPU(struct timer_list, mce_timer);
1166
1167static void mce_start_timer(unsigned long data)
1168{
1169	struct timer_list *t = &per_cpu(mce_timer, data);
1170	int *n;
1171
1172	WARN_ON(smp_processor_id() != data);
1173
1174	if (mce_available(&current_cpu_data)) {
1175		machine_check_poll(MCP_TIMESTAMP,
1176				&__get_cpu_var(mce_poll_banks));
1177	}
1178
1179	/*
1180	 * Alert userspace if needed.  If we logged an MCE, reduce the
1181	 * polling interval, otherwise increase the polling interval.
1182	 */
1183	n = &__get_cpu_var(mce_next_interval);
1184	if (mce_notify_irq())
1185		*n = max(*n/2, HZ/100);
1186	else
1187		*n = min(*n*2, (int)round_jiffies_relative(check_interval*HZ));
1188
1189	t->expires = jiffies + *n;
1190	add_timer_on(t, smp_processor_id());
1191}
1192
1193static void mce_do_trigger(struct work_struct *work)
1194{
1195	call_usermodehelper(mce_helper, mce_helper_argv, NULL, UMH_NO_WAIT);
1196}
1197
1198static DECLARE_WORK(mce_trigger_work, mce_do_trigger);
1199
1200/*
1201 * Notify the user(s) about new machine check events.
1202 * Can be called from interrupt context, but not from machine check/NMI
1203 * context.
1204 */
1205int mce_notify_irq(void)
1206{
1207	/* Not more than two messages every minute */
1208	static DEFINE_RATELIMIT_STATE(ratelimit, 60*HZ, 2);
1209
1210	clear_thread_flag(TIF_MCE_NOTIFY);
1211
1212	if (test_and_clear_bit(0, &mce_need_notify)) {
1213		wake_up_interruptible(&mce_wait);
1214
1215		/*
1216		 * There is no risk of missing notifications because
1217		 * work_pending is always cleared before the function is
1218		 * executed.
1219		 */
1220		if (mce_helper[0] && !work_pending(&mce_trigger_work))
1221			schedule_work(&mce_trigger_work);
1222
1223		if (__ratelimit(&ratelimit))
1224			printk(KERN_INFO "Machine check events logged\n");
1225
1226		return 1;
1227	}
1228	return 0;
1229}
1230EXPORT_SYMBOL_GPL(mce_notify_irq);
1231
1232static int __cpuinit __mcheck_cpu_mce_banks_init(void)
1233{
1234	int i;
1235
1236	mce_banks = kzalloc(banks * sizeof(struct mce_bank), GFP_KERNEL);
1237	if (!mce_banks)
1238		return -ENOMEM;
1239	for (i = 0; i < banks; i++) {
1240		struct mce_bank *b = &mce_banks[i];
1241
1242		b->ctl = -1ULL;
1243		b->init = 1;
1244	}
1245	return 0;
1246}
1247
1248/*
1249 * Initialize Machine Checks for a CPU.
1250 */
1251static int __cpuinit __mcheck_cpu_cap_init(void)
1252{
1253	unsigned b;
1254	u64 cap;
1255
1256	rdmsrl(MSR_IA32_MCG_CAP, cap);
1257
1258	b = cap & MCG_BANKCNT_MASK;
1259	if (!banks)
1260		printk(KERN_INFO "mce: CPU supports %d MCE banks\n", b);
1261
1262	if (b > MAX_NR_BANKS) {
1263		printk(KERN_WARNING
1264		       "MCE: Using only %u machine check banks out of %u\n",
1265			MAX_NR_BANKS, b);
1266		b = MAX_NR_BANKS;
1267	}
1268
1269	/* Don't support asymmetric configurations today */
1270	WARN_ON(banks != 0 && b != banks);
1271	banks = b;
1272	if (!mce_banks) {
1273		int err = __mcheck_cpu_mce_banks_init();
1274
1275		if (err)
1276			return err;
1277	}
1278
1279	/* Use accurate RIP reporting if available. */
1280	if ((cap & MCG_EXT_P) && MCG_EXT_CNT(cap) >= 9)
1281		rip_msr = MSR_IA32_MCG_EIP;
1282
1283	if (cap & MCG_SER_P)
1284		mce_ser = 1;
1285
1286	return 0;
1287}
1288
1289static void __mcheck_cpu_init_generic(void)
1290{
1291	mce_banks_t all_banks;
1292	u64 cap;
1293	int i;
1294
1295	/*
1296	 * Log the machine checks left over from the previous reset.
1297	 */
1298	bitmap_fill(all_banks, MAX_NR_BANKS);
1299	machine_check_poll(MCP_UC|(!mce_bootlog ? MCP_DONTLOG : 0), &all_banks);
1300
1301	set_in_cr4(X86_CR4_MCE);
1302
1303	rdmsrl(MSR_IA32_MCG_CAP, cap);
1304	if (cap & MCG_CTL_P)
1305		wrmsr(MSR_IA32_MCG_CTL, 0xffffffff, 0xffffffff);
1306
1307	for (i = 0; i < banks; i++) {
1308		struct mce_bank *b = &mce_banks[i];
1309
1310		if (!b->init)
1311			continue;
1312		wrmsrl(MSR_IA32_MCx_CTL(i), b->ctl);
1313		wrmsrl(MSR_IA32_MCx_STATUS(i), 0);
1314	}
1315}
1316
1317/* Add per CPU specific workarounds here */
1318static int __cpuinit __mcheck_cpu_apply_quirks(struct cpuinfo_x86 *c)
1319{
1320	if (c->x86_vendor == X86_VENDOR_UNKNOWN) {
1321		pr_info("MCE: unknown CPU type - not enabling MCE support.\n");
1322		return -EOPNOTSUPP;
1323	}
1324
1325	/* This should be disabled by the BIOS, but isn't always */
1326	if (c->x86_vendor == X86_VENDOR_AMD) {
1327		if (c->x86 == 15 && banks > 4) {
1328			/*
1329			 * disable GART TBL walk error reporting, which
1330			 * trips off incorrectly with the IOMMU & 3ware
1331			 * & Cerberus:
1332			 */
1333			clear_bit(10, (unsigned long *)&mce_banks[4].ctl);
1334		}
1335		if (c->x86 <= 17 && mce_bootlog < 0) {
1336			/*
1337			 * Lots of broken BIOS around that don't clear them
1338			 * by default and leave crap in there. Don't log:
1339			 */
1340			mce_bootlog = 0;
1341		}
1342		/*
1343		 * Various K7s with broken bank 0 around. Always disable
1344		 * by default.
1345		 */
1346		 if (c->x86 == 6 && banks > 0)
1347			mce_banks[0].ctl = 0;
1348	}
1349
1350	if (c->x86_vendor == X86_VENDOR_INTEL) {
1351		/*
1352		 * SDM documents that on family 6 bank 0 should not be written
1353		 * because it aliases to another special BIOS controlled
1354		 * register.
1355		 * But it's not aliased anymore on model 0x1a+
1356		 * Don't ignore bank 0 completely because there could be a
1357		 * valid event later, merely don't write CTL0.
1358		 */
1359
1360		if (c->x86 == 6 && c->x86_model < 0x1A && banks > 0)
1361			mce_banks[0].init = 0;
1362
1363		/*
1364		 * All newer Intel systems support MCE broadcasting. Enable
1365		 * synchronization with a one second timeout.
1366		 */
1367		if ((c->x86 > 6 || (c->x86 == 6 && c->x86_model >= 0xe)) &&
1368			monarch_timeout < 0)
1369			monarch_timeout = USEC_PER_SEC;
1370
1371		/*
1372		 * There are also broken BIOSes on some Pentium M and
1373		 * earlier systems:
1374		 */
1375		if (c->x86 == 6 && c->x86_model <= 13 && mce_bootlog < 0)
1376			mce_bootlog = 0;
1377	}
1378	if (monarch_timeout < 0)
1379		monarch_timeout = 0;
1380	if (mce_bootlog != 0)
1381		mce_panic_timeout = 30;
1382
1383	return 0;
1384}
1385
1386static void __cpuinit __mcheck_cpu_ancient_init(struct cpuinfo_x86 *c)
1387{
1388	if (c->x86 != 5)
1389		return;
1390	switch (c->x86_vendor) {
1391	case X86_VENDOR_INTEL:
1392		intel_p5_mcheck_init(c);
1393		break;
1394	case X86_VENDOR_CENTAUR:
1395		winchip_mcheck_init(c);
1396		break;
1397	}
1398}
1399
1400static void __mcheck_cpu_init_vendor(struct cpuinfo_x86 *c)
1401{
1402	switch (c->x86_vendor) {
1403	case X86_VENDOR_INTEL:
1404		mce_intel_feature_init(c);
1405		break;
1406	case X86_VENDOR_AMD:
1407		mce_amd_feature_init(c);
1408		break;
1409	default:
1410		break;
1411	}
1412}
1413
1414static void __mcheck_cpu_init_timer(void)
1415{
1416	struct timer_list *t = &__get_cpu_var(mce_timer);
1417	int *n = &__get_cpu_var(mce_next_interval);
1418
1419	setup_timer(t, mce_start_timer, smp_processor_id());
1420
1421	if (mce_ignore_ce)
1422		return;
1423
1424	*n = check_interval * HZ;
1425	if (!*n)
1426		return;
1427	t->expires = round_jiffies(jiffies + *n);
1428	add_timer_on(t, smp_processor_id());
1429}
1430
1431/* Handle unconfigured int18 (should never happen) */
1432static void unexpected_machine_check(struct pt_regs *regs, long error_code)
1433{
1434	printk(KERN_ERR "CPU#%d: Unexpected int18 (Machine Check).\n",
1435	       smp_processor_id());
1436}
1437
1438/* Call the installed machine check handler for this CPU setup. */
1439void (*machine_check_vector)(struct pt_regs *, long error_code) =
1440						unexpected_machine_check;
1441
1442/*
1443 * Called for each booted CPU to set up machine checks.
1444 * Must be called with preempt off:
1445 */
1446void __cpuinit mcheck_cpu_init(struct cpuinfo_x86 *c)
1447{
1448	if (mce_disabled)
1449		return;
1450
1451	__mcheck_cpu_ancient_init(c);
1452
1453	if (!mce_available(c))
1454		return;
1455
1456	if (__mcheck_cpu_cap_init() < 0 || __mcheck_cpu_apply_quirks(c) < 0) {
1457		mce_disabled = 1;
1458		return;
1459	}
1460
1461	machine_check_vector = do_machine_check;
1462
1463	__mcheck_cpu_init_generic();
1464	__mcheck_cpu_init_vendor(c);
1465	__mcheck_cpu_init_timer();
1466	INIT_WORK(&__get_cpu_var(mce_work), mce_process_work);
1467
1468}
1469
1470/*
1471 * Character device to read and clear the MCE log.
1472 */
1473
1474static DEFINE_SPINLOCK(mce_state_lock);
1475static int		open_count;		/* #times opened */
1476static int		open_exclu;		/* already open exclusive? */
1477
1478static int mce_open(struct inode *inode, struct file *file)
1479{
1480	spin_lock(&mce_state_lock);
1481
1482	if (open_exclu || (open_count && (file->f_flags & O_EXCL))) {
1483		spin_unlock(&mce_state_lock);
1484
1485		return -EBUSY;
1486	}
1487
1488	if (file->f_flags & O_EXCL)
1489		open_exclu = 1;
1490	open_count++;
1491
1492	spin_unlock(&mce_state_lock);
1493
1494	return nonseekable_open(inode, file);
1495}
1496
1497static int mce_release(struct inode *inode, struct file *file)
1498{
1499	spin_lock(&mce_state_lock);
1500
1501	open_count--;
1502	open_exclu = 0;
1503
1504	spin_unlock(&mce_state_lock);
1505
1506	return 0;
1507}
1508
1509static void collect_tscs(void *data)
1510{
1511	unsigned long *cpu_tsc = (unsigned long *)data;
1512
1513	rdtscll(cpu_tsc[smp_processor_id()]);
1514}
1515
1516static int mce_apei_read_done;
1517
1518/* Collect MCE record of previous boot in persistent storage via APEI ERST. */
1519static int __mce_read_apei(char __user **ubuf, size_t usize)
1520{
1521	int rc;
1522	u64 record_id;
1523	struct mce m;
1524
1525	if (usize < sizeof(struct mce))
1526		return -EINVAL;
1527
1528	rc = apei_read_mce(&m, &record_id);
1529	/* Error or no more MCE record */
1530	if (rc <= 0) {
1531		mce_apei_read_done = 1;
1532		return rc;
1533	}
1534	rc = -EFAULT;
1535	if (copy_to_user(*ubuf, &m, sizeof(struct mce)))
1536		return rc;
1537	/*
1538	 * In fact, we should have cleared the record after that has
1539	 * been flushed to the disk or sent to network in
1540	 * /sbin/mcelog, but we have no interface to support that now,
1541	 * so just clear it to avoid duplication.
1542	 */
1543	rc = apei_clear_mce(record_id);
1544	if (rc) {
1545		mce_apei_read_done = 1;
1546		return rc;
1547	}
1548	*ubuf += sizeof(struct mce);
1549
1550	return 0;
1551}
1552
1553static ssize_t mce_read(struct file *filp, char __user *ubuf, size_t usize,
1554			loff_t *off)
1555{
1556	char __user *buf = ubuf;
1557	unsigned long *cpu_tsc;
1558	unsigned prev, next;
1559	int i, err;
1560
1561	cpu_tsc = kmalloc(nr_cpu_ids * sizeof(long), GFP_KERNEL);
1562	if (!cpu_tsc)
1563		return -ENOMEM;
1564
1565	mutex_lock(&mce_read_mutex);
1566
1567	if (!mce_apei_read_done) {
1568		err = __mce_read_apei(&buf, usize);
1569		if (err || buf != ubuf)
1570			goto out;
1571	}
1572
1573	next = rcu_dereference_check_mce(mcelog.next);
1574
1575	/* Only supports full reads right now */
1576	err = -EINVAL;
1577	if (*off != 0 || usize < MCE_LOG_LEN*sizeof(struct mce))
1578		goto out;
1579
1580	err = 0;
1581	prev = 0;
1582	do {
1583		for (i = prev; i < next; i++) {
1584			unsigned long start = jiffies;
1585
1586			while (!mcelog.entry[i].finished) {
1587				if (time_after_eq(jiffies, start + 2)) {
1588					memset(mcelog.entry + i, 0,
1589					       sizeof(struct mce));
1590					goto timeout;
1591				}
1592				cpu_relax();
1593			}
1594			smp_rmb();
1595			err |= copy_to_user(buf, mcelog.entry + i,
1596					    sizeof(struct mce));
1597			buf += sizeof(struct mce);
1598timeout:
1599			;
1600		}
1601
1602		memset(mcelog.entry + prev, 0,
1603		       (next - prev) * sizeof(struct mce));
1604		prev = next;
1605		next = cmpxchg(&mcelog.next, prev, 0);
1606	} while (next != prev);
1607
1608	synchronize_sched();
1609
1610	/*
1611	 * Collect entries that were still getting written before the
1612	 * synchronize.
1613	 */
1614	on_each_cpu(collect_tscs, cpu_tsc, 1);
1615
1616	for (i = next; i < MCE_LOG_LEN; i++) {
1617		if (mcelog.entry[i].finished &&
1618		    mcelog.entry[i].tsc < cpu_tsc[mcelog.entry[i].cpu]) {
1619			err |= copy_to_user(buf, mcelog.entry+i,
1620					    sizeof(struct mce));
1621			smp_rmb();
1622			buf += sizeof(struct mce);
1623			memset(&mcelog.entry[i], 0, sizeof(struct mce));
1624		}
1625	}
1626
1627	if (err)
1628		err = -EFAULT;
1629
1630out:
1631	mutex_unlock(&mce_read_mutex);
1632	kfree(cpu_tsc);
1633
1634	return err ? err : buf - ubuf;
1635}
1636
1637static unsigned int mce_poll(struct file *file, poll_table *wait)
1638{
1639	poll_wait(file, &mce_wait, wait);
1640	if (rcu_dereference_check_mce(mcelog.next))
1641		return POLLIN | POLLRDNORM;
1642	if (!mce_apei_read_done && apei_check_mce())
1643		return POLLIN | POLLRDNORM;
1644	return 0;
1645}
1646
1647static long mce_ioctl(struct file *f, unsigned int cmd, unsigned long arg)
1648{
1649	int __user *p = (int __user *)arg;
1650
1651	if (!capable(CAP_SYS_ADMIN))
1652		return -EPERM;
1653
1654	switch (cmd) {
1655	case MCE_GET_RECORD_LEN:
1656		return put_user(sizeof(struct mce), p);
1657	case MCE_GET_LOG_LEN:
1658		return put_user(MCE_LOG_LEN, p);
1659	case MCE_GETCLEAR_FLAGS: {
1660		unsigned flags;
1661
1662		do {
1663			flags = mcelog.flags;
1664		} while (cmpxchg(&mcelog.flags, flags, 0) != flags);
1665
1666		return put_user(flags, p);
1667	}
1668	default:
1669		return -ENOTTY;
1670	}
1671}
1672
1673/* Modified in mce-inject.c, so not static or const */
1674struct file_operations mce_chrdev_ops = {
1675	.open			= mce_open,
1676	.release		= mce_release,
1677	.read			= mce_read,
1678	.poll			= mce_poll,
1679	.unlocked_ioctl		= mce_ioctl,
1680};
1681EXPORT_SYMBOL_GPL(mce_chrdev_ops);
1682
1683static struct miscdevice mce_log_device = {
1684	MISC_MCELOG_MINOR,
1685	"mcelog",
1686	&mce_chrdev_ops,
1687};
1688
1689/*
1690 * mce=off Disables machine check
1691 * mce=no_cmci Disables CMCI
1692 * mce=dont_log_ce Clears corrected events silently, no log created for CEs.
1693 * mce=ignore_ce Disables polling and CMCI, corrected events are not cleared.
1694 * mce=TOLERANCELEVEL[,monarchtimeout] (number, see above)
1695 *	monarchtimeout is how long to wait for other CPUs on machine
1696 *	check, or 0 to not wait
1697 * mce=bootlog Log MCEs from before booting. Disabled by default on AMD.
1698 * mce=nobootlog Don't log MCEs from before booting.
1699 */
1700static int __init mcheck_enable(char *str)
1701{
1702	if (*str == 0) {
1703		enable_p5_mce();
1704		return 1;
1705	}
1706	if (*str == '=')
1707		str++;
1708	if (!strcmp(str, "off"))
1709		mce_disabled = 1;
1710	else if (!strcmp(str, "no_cmci"))
1711		mce_cmci_disabled = 1;
1712	else if (!strcmp(str, "dont_log_ce"))
1713		mce_dont_log_ce = 1;
1714	else if (!strcmp(str, "ignore_ce"))
1715		mce_ignore_ce = 1;
1716	else if (!strcmp(str, "bootlog") || !strcmp(str, "nobootlog"))
1717		mce_bootlog = (str[0] == 'b');
1718	else if (isdigit(str[0])) {
1719		get_option(&str, &tolerant);
1720		if (*str == ',') {
1721			++str;
1722			get_option(&str, &monarch_timeout);
1723		}
1724	} else {
1725		printk(KERN_INFO "mce argument %s ignored. Please use /sys\n",
1726		       str);
1727		return 0;
1728	}
1729	return 1;
1730}
1731__setup("mce", mcheck_enable);
1732
1733int __init mcheck_init(void)
1734{
1735	atomic_notifier_chain_register(&x86_mce_decoder_chain, &mce_dec_nb);
1736
1737	mcheck_intel_therm_init();
1738
1739	return 0;
1740}
1741
1742/*
1743 * Sysfs support
1744 */
1745
1746/*
1747 * Disable machine checks on suspend and shutdown. We can't really handle
1748 * them later.
1749 */
1750static int mce_disable_error_reporting(void)
1751{
1752	int i;
1753
1754	for (i = 0; i < banks; i++) {
1755		struct mce_bank *b = &mce_banks[i];
1756
1757		if (b->init)
1758			wrmsrl(MSR_IA32_MCx_CTL(i), 0);
1759	}
1760	return 0;
1761}
1762
1763static int mce_suspend(struct sys_device *dev, pm_message_t state)
1764{
1765	return mce_disable_error_reporting();
1766}
1767
1768static int mce_shutdown(struct sys_device *dev)
1769{
1770	return mce_disable_error_reporting();
1771}
1772
1773/*
1774 * On resume clear all MCE state. Don't want to see leftovers from the BIOS.
1775 * Only one CPU is active at this time, the others get re-added later using
1776 * CPU hotplug:
1777 */
1778static int mce_resume(struct sys_device *dev)
1779{
1780	__mcheck_cpu_init_generic();
1781	__mcheck_cpu_init_vendor(&current_cpu_data);
1782
1783	return 0;
1784}
1785
1786static void mce_cpu_restart(void *data)
1787{
1788	del_timer_sync(&__get_cpu_var(mce_timer));
1789	if (!mce_available(&current_cpu_data))
1790		return;
1791	__mcheck_cpu_init_generic();
1792	__mcheck_cpu_init_timer();
1793}
1794
1795/* Reinit MCEs after user configuration changes */
1796static void mce_restart(void)
1797{
1798	on_each_cpu(mce_cpu_restart, NULL, 1);
1799}
1800
1801/* Toggle features for corrected errors */
1802static void mce_disable_ce(void *all)
1803{
1804	if (!mce_available(&current_cpu_data))
1805		return;
1806	if (all)
1807		del_timer_sync(&__get_cpu_var(mce_timer));
1808	cmci_clear();
1809}
1810
1811static void mce_enable_ce(void *all)
1812{
1813	if (!mce_available(&current_cpu_data))
1814		return;
1815	cmci_reenable();
1816	cmci_recheck();
1817	if (all)
1818		__mcheck_cpu_init_timer();
1819}
1820
1821static struct sysdev_class mce_sysclass = {
1822	.suspend	= mce_suspend,
1823	.shutdown	= mce_shutdown,
1824	.resume		= mce_resume,
1825	.name		= "machinecheck",
1826};
1827
1828DEFINE_PER_CPU(struct sys_device, mce_dev);
1829
1830__cpuinitdata
1831void (*threshold_cpu_callback)(unsigned long action, unsigned int cpu);
1832
1833static inline struct mce_bank *attr_to_bank(struct sysdev_attribute *attr)
1834{
1835	return container_of(attr, struct mce_bank, attr);
1836}
1837
1838static ssize_t show_bank(struct sys_device *s, struct sysdev_attribute *attr,
1839			 char *buf)
1840{
1841	return sprintf(buf, "%llx\n", attr_to_bank(attr)->ctl);
1842}
1843
1844static ssize_t set_bank(struct sys_device *s, struct sysdev_attribute *attr,
1845			const char *buf, size_t size)
1846{
1847	u64 new;
1848
1849	if (strict_strtoull(buf, 0, &new) < 0)
1850		return -EINVAL;
1851
1852	attr_to_bank(attr)->ctl = new;
1853	mce_restart();
1854
1855	return size;
1856}
1857
1858static ssize_t
1859show_trigger(struct sys_device *s, struct sysdev_attribute *attr, char *buf)
1860{
1861	strcpy(buf, mce_helper);
1862	strcat(buf, "\n");
1863	return strlen(mce_helper) + 1;
1864}
1865
1866static ssize_t set_trigger(struct sys_device *s, struct sysdev_attribute *attr,
1867				const char *buf, size_t siz)
1868{
1869	char *p;
1870
1871	strncpy(mce_helper, buf, sizeof(mce_helper));
1872	mce_helper[sizeof(mce_helper)-1] = 0;
1873	p = strchr(mce_helper, '\n');
1874
1875	if (p)
1876		*p = 0;
1877
1878	return strlen(mce_helper) + !!p;
1879}
1880
1881static ssize_t set_ignore_ce(struct sys_device *s,
1882			     struct sysdev_attribute *attr,
1883			     const char *buf, size_t size)
1884{
1885	u64 new;
1886
1887	if (strict_strtoull(buf, 0, &new) < 0)
1888		return -EINVAL;
1889
1890	if (mce_ignore_ce ^ !!new) {
1891		if (new) {
1892			/* disable ce features */
1893			on_each_cpu(mce_disable_ce, (void *)1, 1);
1894			mce_ignore_ce = 1;
1895		} else {
1896			/* enable ce features */
1897			mce_ignore_ce = 0;
1898			on_each_cpu(mce_enable_ce, (void *)1, 1);
1899		}
1900	}
1901	return size;
1902}
1903
1904static ssize_t set_cmci_disabled(struct sys_device *s,
1905				 struct sysdev_attribute *attr,
1906				 const char *buf, size_t size)
1907{
1908	u64 new;
1909
1910	if (strict_strtoull(buf, 0, &new) < 0)
1911		return -EINVAL;
1912
1913	if (mce_cmci_disabled ^ !!new) {
1914		if (new) {
1915			/* disable cmci */
1916			on_each_cpu(mce_disable_ce, NULL, 1);
1917			mce_cmci_disabled = 1;
1918		} else {
1919			/* enable cmci */
1920			mce_cmci_disabled = 0;
1921			on_each_cpu(mce_enable_ce, NULL, 1);
1922		}
1923	}
1924	return size;
1925}
1926
1927static ssize_t store_int_with_restart(struct sys_device *s,
1928				      struct sysdev_attribute *attr,
1929				      const char *buf, size_t size)
1930{
1931	ssize_t ret = sysdev_store_int(s, attr, buf, size);
1932	mce_restart();
1933	return ret;
1934}
1935
1936static SYSDEV_ATTR(trigger, 0644, show_trigger, set_trigger);
1937static SYSDEV_INT_ATTR(tolerant, 0644, tolerant);
1938static SYSDEV_INT_ATTR(monarch_timeout, 0644, monarch_timeout);
1939static SYSDEV_INT_ATTR(dont_log_ce, 0644, mce_dont_log_ce);
1940
1941static struct sysdev_ext_attribute attr_check_interval = {
1942	_SYSDEV_ATTR(check_interval, 0644, sysdev_show_int,
1943		     store_int_with_restart),
1944	&check_interval
1945};
1946
1947static struct sysdev_ext_attribute attr_ignore_ce = {
1948	_SYSDEV_ATTR(ignore_ce, 0644, sysdev_show_int, set_ignore_ce),
1949	&mce_ignore_ce
1950};
1951
1952static struct sysdev_ext_attribute attr_cmci_disabled = {
1953	_SYSDEV_ATTR(cmci_disabled, 0644, sysdev_show_int, set_cmci_disabled),
1954	&mce_cmci_disabled
1955};
1956
1957static struct sysdev_attribute *mce_attrs[] = {
1958	&attr_tolerant.attr,
1959	&attr_check_interval.attr,
1960	&attr_trigger,
1961	&attr_monarch_timeout.attr,
1962	&attr_dont_log_ce.attr,
1963	&attr_ignore_ce.attr,
1964	&attr_cmci_disabled.attr,
1965	NULL
1966};
1967
1968static cpumask_var_t mce_dev_initialized;
1969
1970/* Per cpu sysdev init. All of the cpus still share the same ctrl bank: */
1971static __cpuinit int mce_create_device(unsigned int cpu)
1972{
1973	int err;
1974	int i, j;
1975
1976	if (!mce_available(&boot_cpu_data))
1977		return -EIO;
1978
1979	memset(&per_cpu(mce_dev, cpu).kobj, 0, sizeof(struct kobject));
1980	per_cpu(mce_dev, cpu).id	= cpu;
1981	per_cpu(mce_dev, cpu).cls	= &mce_sysclass;
1982
1983	err = sysdev_register(&per_cpu(mce_dev, cpu));
1984	if (err)
1985		return err;
1986
1987	for (i = 0; mce_attrs[i]; i++) {
1988		err = sysdev_create_file(&per_cpu(mce_dev, cpu), mce_attrs[i]);
1989		if (err)
1990			goto error;
1991	}
1992	for (j = 0; j < banks; j++) {
1993		err = sysdev_create_file(&per_cpu(mce_dev, cpu),
1994					&mce_banks[j].attr);
1995		if (err)
1996			goto error2;
1997	}
1998	cpumask_set_cpu(cpu, mce_dev_initialized);
1999
2000	return 0;
2001error2:
2002	while (--j >= 0)
2003		sysdev_remove_file(&per_cpu(mce_dev, cpu), &mce_banks[j].attr);
2004error:
2005	while (--i >= 0)
2006		sysdev_remove_file(&per_cpu(mce_dev, cpu), mce_attrs[i]);
2007
2008	sysdev_unregister(&per_cpu(mce_dev, cpu));
2009
2010	return err;
2011}
2012
2013static __cpuinit void mce_remove_device(unsigned int cpu)
2014{
2015	int i;
2016
2017	if (!cpumask_test_cpu(cpu, mce_dev_initialized))
2018		return;
2019
2020	for (i = 0; mce_attrs[i]; i++)
2021		sysdev_remove_file(&per_cpu(mce_dev, cpu), mce_attrs[i]);
2022
2023	for (i = 0; i < banks; i++)
2024		sysdev_remove_file(&per_cpu(mce_dev, cpu), &mce_banks[i].attr);
2025
2026	sysdev_unregister(&per_cpu(mce_dev, cpu));
2027	cpumask_clear_cpu(cpu, mce_dev_initialized);
2028}
2029
2030/* Make sure there are no machine checks on offlined CPUs. */
2031static void __cpuinit mce_disable_cpu(void *h)
2032{
2033	unsigned long action = *(unsigned long *)h;
2034	int i;
2035
2036	if (!mce_available(&current_cpu_data))
2037		return;
2038
2039	if (!(action & CPU_TASKS_FROZEN))
2040		cmci_clear();
2041	for (i = 0; i < banks; i++) {
2042		struct mce_bank *b = &mce_banks[i];
2043
2044		if (b->init)
2045			wrmsrl(MSR_IA32_MCx_CTL(i), 0);
2046	}
2047}
2048
2049static void __cpuinit mce_reenable_cpu(void *h)
2050{
2051	unsigned long action = *(unsigned long *)h;
2052	int i;
2053
2054	if (!mce_available(&current_cpu_data))
2055		return;
2056
2057	if (!(action & CPU_TASKS_FROZEN))
2058		cmci_reenable();
2059	for (i = 0; i < banks; i++) {
2060		struct mce_bank *b = &mce_banks[i];
2061
2062		if (b->init)
2063			wrmsrl(MSR_IA32_MCx_CTL(i), b->ctl);
2064	}
2065}
2066
2067/* Get notified when a cpu comes on/off. Be hotplug friendly. */
2068static int __cpuinit
2069mce_cpu_callback(struct notifier_block *nfb, unsigned long action, void *hcpu)
2070{
2071	unsigned int cpu = (unsigned long)hcpu;
2072	struct timer_list *t = &per_cpu(mce_timer, cpu);
2073
2074	switch (action) {
2075	case CPU_ONLINE:
2076	case CPU_ONLINE_FROZEN:
2077		mce_create_device(cpu);
2078		if (threshold_cpu_callback)
2079			threshold_cpu_callback(action, cpu);
2080		break;
2081	case CPU_DEAD:
2082	case CPU_DEAD_FROZEN:
2083		if (threshold_cpu_callback)
2084			threshold_cpu_callback(action, cpu);
2085		mce_remove_device(cpu);
2086		break;
2087	case CPU_DOWN_PREPARE:
2088	case CPU_DOWN_PREPARE_FROZEN:
2089		del_timer_sync(t);
2090		smp_call_function_single(cpu, mce_disable_cpu, &action, 1);
2091		break;
2092	case CPU_DOWN_FAILED:
2093	case CPU_DOWN_FAILED_FROZEN:
2094		if (!mce_ignore_ce && check_interval) {
2095			t->expires = round_jiffies(jiffies +
2096					   __get_cpu_var(mce_next_interval));
2097			add_timer_on(t, cpu);
2098		}
2099		smp_call_function_single(cpu, mce_reenable_cpu, &action, 1);
2100		break;
2101	case CPU_POST_DEAD:
2102		/* intentionally ignoring frozen here */
2103		cmci_rediscover(cpu);
2104		break;
2105	}
2106	return NOTIFY_OK;
2107}
2108
2109static struct notifier_block mce_cpu_notifier __cpuinitdata = {
2110	.notifier_call = mce_cpu_callback,
2111};
2112
2113static __init void mce_init_banks(void)
2114{
2115	int i;
2116
2117	for (i = 0; i < banks; i++) {
2118		struct mce_bank *b = &mce_banks[i];
2119		struct sysdev_attribute *a = &b->attr;
2120
2121		sysfs_attr_init(&a->attr);
2122		a->attr.name	= b->attrname;
2123		snprintf(b->attrname, ATTR_LEN, "bank%d", i);
2124
2125		a->attr.mode	= 0644;
2126		a->show		= show_bank;
2127		a->store	= set_bank;
2128	}
2129}
2130
2131static __init int mcheck_init_device(void)
2132{
2133	int err;
2134	int i = 0;
2135
2136	if (!mce_available(&boot_cpu_data))
2137		return -EIO;
2138
2139	zalloc_cpumask_var(&mce_dev_initialized, GFP_KERNEL);
2140
2141	mce_init_banks();
2142
2143	err = sysdev_class_register(&mce_sysclass);
2144	if (err)
2145		return err;
2146
2147	for_each_online_cpu(i) {
2148		err = mce_create_device(i);
2149		if (err)
2150			return err;
2151	}
2152
2153	register_hotcpu_notifier(&mce_cpu_notifier);
2154	misc_register(&mce_log_device);
2155
2156	return err;
2157}
2158
2159device_initcall(mcheck_init_device);
2160
2161/*
2162 * Old style boot options parsing. Only for compatibility.
2163 */
2164static int __init mcheck_disable(char *str)
2165{
2166	mce_disabled = 1;
2167	return 1;
2168}
2169__setup("nomce", mcheck_disable);
2170
2171#ifdef CONFIG_DEBUG_FS
2172struct dentry *mce_get_debugfs_dir(void)
2173{
2174	static struct dentry *dmce;
2175
2176	if (!dmce)
2177		dmce = debugfs_create_dir("mce", NULL);
2178
2179	return dmce;
2180}
2181
2182static void mce_reset(void)
2183{
2184	cpu_missing = 0;
2185	atomic_set(&mce_fake_paniced, 0);
2186	atomic_set(&mce_executing, 0);
2187	atomic_set(&mce_callin, 0);
2188	atomic_set(&global_nwo, 0);
2189}
2190
2191static int fake_panic_get(void *data, u64 *val)
2192{
2193	*val = fake_panic;
2194	return 0;
2195}
2196
2197static int fake_panic_set(void *data, u64 val)
2198{
2199	mce_reset();
2200	fake_panic = val;
2201	return 0;
2202}
2203
2204DEFINE_SIMPLE_ATTRIBUTE(fake_panic_fops, fake_panic_get,
2205			fake_panic_set, "%llu\n");
2206
2207static int __init mcheck_debugfs_init(void)
2208{
2209	struct dentry *dmce, *ffake_panic;
2210
2211	dmce = mce_get_debugfs_dir();
2212	if (!dmce)
2213		return -ENOMEM;
2214	ffake_panic = debugfs_create_file("fake_panic", 0444, dmce, NULL,
2215					  &fake_panic_fops);
2216	if (!ffake_panic)
2217		return -ENOMEM;
2218
2219	return 0;
2220}
2221late_initcall(mcheck_debugfs_init);
2222#endif
2223