mce.c revision a07e4156a2ee6359d31a44946d7ee7f85dbf6bca
1/*
2 * Machine check handler.
3 *
4 * K8 parts Copyright 2002,2003 Andi Kleen, SuSE Labs.
5 * Rest from unknown author(s).
6 * 2004 Andi Kleen. Rewrote most of it.
7 * Copyright 2008 Intel Corporation
8 * Author: Andi Kleen
9 */
10#include <linux/thread_info.h>
11#include <linux/capability.h>
12#include <linux/miscdevice.h>
13#include <linux/interrupt.h>
14#include <linux/ratelimit.h>
15#include <linux/kallsyms.h>
16#include <linux/rcupdate.h>
17#include <linux/kobject.h>
18#include <linux/uaccess.h>
19#include <linux/kdebug.h>
20#include <linux/kernel.h>
21#include <linux/percpu.h>
22#include <linux/string.h>
23#include <linux/sysdev.h>
24#include <linux/delay.h>
25#include <linux/ctype.h>
26#include <linux/sched.h>
27#include <linux/sysfs.h>
28#include <linux/types.h>
29#include <linux/init.h>
30#include <linux/kmod.h>
31#include <linux/poll.h>
32#include <linux/nmi.h>
33#include <linux/cpu.h>
34#include <linux/smp.h>
35#include <linux/fs.h>
36#include <linux/mm.h>
37#include <linux/debugfs.h>
38
39#include <asm/processor.h>
40#include <asm/hw_irq.h>
41#include <asm/apic.h>
42#include <asm/idle.h>
43#include <asm/ipi.h>
44#include <asm/mce.h>
45#include <asm/msr.h>
46
47#include "mce-internal.h"
48
49#define CREATE_TRACE_POINTS
50#include <trace/events/mce.h>
51
52int mce_disabled __read_mostly;
53
54#define MISC_MCELOG_MINOR	227
55
56#define SPINUNIT 100	/* 100ns */
57
58atomic_t mce_entry;
59
60DEFINE_PER_CPU(unsigned, mce_exception_count);
61
62/*
63 * Tolerant levels:
64 *   0: always panic on uncorrected errors, log corrected errors
65 *   1: panic or SIGBUS on uncorrected errors, log corrected errors
66 *   2: SIGBUS or log uncorrected errors (if possible), log corrected errors
67 *   3: never panic or SIGBUS, log all errors (for testing only)
68 */
69static int			tolerant		__read_mostly = 1;
70static int			banks			__read_mostly;
71static int			rip_msr			__read_mostly;
72static int			mce_bootlog		__read_mostly = -1;
73static int			monarch_timeout		__read_mostly = -1;
74static int			mce_panic_timeout	__read_mostly;
75static int			mce_dont_log_ce		__read_mostly;
76int				mce_cmci_disabled	__read_mostly;
77int				mce_ignore_ce		__read_mostly;
78int				mce_ser			__read_mostly;
79
80struct mce_bank                *mce_banks		__read_mostly;
81
82/* User mode helper program triggered by machine check event */
83static unsigned long		mce_need_notify;
84static char			mce_helper[128];
85static char			*mce_helper_argv[2] = { mce_helper, NULL };
86
87static DECLARE_WAIT_QUEUE_HEAD(mce_wait);
88static DEFINE_PER_CPU(struct mce, mces_seen);
89static int			cpu_missing;
90
91/*
92 * CPU/chipset specific EDAC code can register a notifier call here to print
93 * MCE errors in a human-readable form.
94 */
95ATOMIC_NOTIFIER_HEAD(x86_mce_decoder_chain);
96EXPORT_SYMBOL_GPL(x86_mce_decoder_chain);
97
98static int default_decode_mce(struct notifier_block *nb, unsigned long val,
99			       void *data)
100{
101	pr_emerg("No human readable MCE decoding support on this CPU type.\n");
102	pr_emerg("Run the message through 'mcelog --ascii' to decode.\n");
103
104	return NOTIFY_STOP;
105}
106
107static struct notifier_block mce_dec_nb = {
108	.notifier_call = default_decode_mce,
109	.priority      = -1,
110};
111
112/* MCA banks polled by the period polling timer for corrected events */
113DEFINE_PER_CPU(mce_banks_t, mce_poll_banks) = {
114	[0 ... BITS_TO_LONGS(MAX_NR_BANKS)-1] = ~0UL
115};
116
117static DEFINE_PER_CPU(struct work_struct, mce_work);
118
119/* Do initial initialization of a struct mce */
120void mce_setup(struct mce *m)
121{
122	memset(m, 0, sizeof(struct mce));
123	m->cpu = m->extcpu = smp_processor_id();
124	rdtscll(m->tsc);
125	/* We hope get_seconds stays lockless */
126	m->time = get_seconds();
127	m->cpuvendor = boot_cpu_data.x86_vendor;
128	m->cpuid = cpuid_eax(1);
129#ifdef CONFIG_SMP
130	m->socketid = cpu_data(m->extcpu).phys_proc_id;
131#endif
132	m->apicid = cpu_data(m->extcpu).initial_apicid;
133	rdmsrl(MSR_IA32_MCG_CAP, m->mcgcap);
134}
135
136DEFINE_PER_CPU(struct mce, injectm);
137EXPORT_PER_CPU_SYMBOL_GPL(injectm);
138
139/*
140 * Lockless MCE logging infrastructure.
141 * This avoids deadlocks on printk locks without having to break locks. Also
142 * separate MCEs from kernel messages to avoid bogus bug reports.
143 */
144
145static struct mce_log mcelog = {
146	.signature	= MCE_LOG_SIGNATURE,
147	.len		= MCE_LOG_LEN,
148	.recordlen	= sizeof(struct mce),
149};
150
151void mce_log(struct mce *mce)
152{
153	unsigned next, entry;
154
155	/* Emit the trace record: */
156	trace_mce_record(mce);
157
158	mce->finished = 0;
159	wmb();
160	for (;;) {
161		entry = rcu_dereference(mcelog.next);
162		for (;;) {
163			/*
164			 * When the buffer fills up discard new entries.
165			 * Assume that the earlier errors are the more
166			 * interesting ones:
167			 */
168			if (entry >= MCE_LOG_LEN) {
169				set_bit(MCE_OVERFLOW,
170					(unsigned long *)&mcelog.flags);
171				return;
172			}
173			/* Old left over entry. Skip: */
174			if (mcelog.entry[entry].finished) {
175				entry++;
176				continue;
177			}
178			break;
179		}
180		smp_rmb();
181		next = entry + 1;
182		if (cmpxchg(&mcelog.next, entry, next) == entry)
183			break;
184	}
185	memcpy(mcelog.entry + entry, mce, sizeof(struct mce));
186	wmb();
187	mcelog.entry[entry].finished = 1;
188	wmb();
189
190	mce->finished = 1;
191	set_bit(0, &mce_need_notify);
192}
193
194static void print_mce(struct mce *m)
195{
196	pr_emerg("CPU %d: Machine Check Exception: %16Lx Bank %d: %016Lx\n",
197	       m->extcpu, m->mcgstatus, m->bank, m->status);
198
199	if (m->ip) {
200		pr_emerg("RIP%s %02x:<%016Lx> ",
201			!(m->mcgstatus & MCG_STATUS_EIPV) ? " !INEXACT!" : "",
202				m->cs, m->ip);
203
204		if (m->cs == __KERNEL_CS)
205			print_symbol("{%s}", m->ip);
206		pr_cont("\n");
207	}
208
209	pr_emerg("TSC %llx ", m->tsc);
210	if (m->addr)
211		pr_cont("ADDR %llx ", m->addr);
212	if (m->misc)
213		pr_cont("MISC %llx ", m->misc);
214
215	pr_cont("\n");
216	pr_emerg("PROCESSOR %u:%x TIME %llu SOCKET %u APIC %x\n",
217		m->cpuvendor, m->cpuid, m->time, m->socketid, m->apicid);
218
219	/*
220	 * Print out human-readable details about the MCE error,
221	 * (if the CPU has an implementation for that)
222	 */
223	atomic_notifier_call_chain(&x86_mce_decoder_chain, 0, m);
224}
225
226static void print_mce_head(void)
227{
228	pr_emerg("\nHARDWARE ERROR\n");
229}
230
231static void print_mce_tail(void)
232{
233	pr_emerg("This is not a software problem!\n");
234}
235
236#define PANIC_TIMEOUT 5 /* 5 seconds */
237
238static atomic_t mce_paniced;
239
240static int fake_panic;
241static atomic_t mce_fake_paniced;
242
243/* Panic in progress. Enable interrupts and wait for final IPI */
244static void wait_for_panic(void)
245{
246	long timeout = PANIC_TIMEOUT*USEC_PER_SEC;
247
248	preempt_disable();
249	local_irq_enable();
250	while (timeout-- > 0)
251		udelay(1);
252	if (panic_timeout == 0)
253		panic_timeout = mce_panic_timeout;
254	panic("Panicing machine check CPU died");
255}
256
257static void mce_panic(char *msg, struct mce *final, char *exp)
258{
259	int i;
260
261	if (!fake_panic) {
262		/*
263		 * Make sure only one CPU runs in machine check panic
264		 */
265		if (atomic_inc_return(&mce_paniced) > 1)
266			wait_for_panic();
267		barrier();
268
269		bust_spinlocks(1);
270		console_verbose();
271	} else {
272		/* Don't log too much for fake panic */
273		if (atomic_inc_return(&mce_fake_paniced) > 1)
274			return;
275	}
276	print_mce_head();
277	/* First print corrected ones that are still unlogged */
278	for (i = 0; i < MCE_LOG_LEN; i++) {
279		struct mce *m = &mcelog.entry[i];
280		if (!(m->status & MCI_STATUS_VAL))
281			continue;
282		if (!(m->status & MCI_STATUS_UC))
283			print_mce(m);
284	}
285	/* Now print uncorrected but with the final one last */
286	for (i = 0; i < MCE_LOG_LEN; i++) {
287		struct mce *m = &mcelog.entry[i];
288		if (!(m->status & MCI_STATUS_VAL))
289			continue;
290		if (!(m->status & MCI_STATUS_UC))
291			continue;
292		if (!final || memcmp(m, final, sizeof(struct mce)))
293			print_mce(m);
294	}
295	if (final)
296		print_mce(final);
297	if (cpu_missing)
298		printk(KERN_EMERG "Some CPUs didn't answer in synchronization\n");
299	print_mce_tail();
300	if (exp)
301		printk(KERN_EMERG "Machine check: %s\n", exp);
302	if (!fake_panic) {
303		if (panic_timeout == 0)
304			panic_timeout = mce_panic_timeout;
305		panic(msg);
306	} else
307		printk(KERN_EMERG "Fake kernel panic: %s\n", msg);
308}
309
310/* Support code for software error injection */
311
312static int msr_to_offset(u32 msr)
313{
314	unsigned bank = __get_cpu_var(injectm.bank);
315
316	if (msr == rip_msr)
317		return offsetof(struct mce, ip);
318	if (msr == MSR_IA32_MCx_STATUS(bank))
319		return offsetof(struct mce, status);
320	if (msr == MSR_IA32_MCx_ADDR(bank))
321		return offsetof(struct mce, addr);
322	if (msr == MSR_IA32_MCx_MISC(bank))
323		return offsetof(struct mce, misc);
324	if (msr == MSR_IA32_MCG_STATUS)
325		return offsetof(struct mce, mcgstatus);
326	return -1;
327}
328
329/* MSR access wrappers used for error injection */
330static u64 mce_rdmsrl(u32 msr)
331{
332	u64 v;
333
334	if (__get_cpu_var(injectm).finished) {
335		int offset = msr_to_offset(msr);
336
337		if (offset < 0)
338			return 0;
339		return *(u64 *)((char *)&__get_cpu_var(injectm) + offset);
340	}
341
342	if (rdmsrl_safe(msr, &v)) {
343		WARN_ONCE(1, "mce: Unable to read msr %d!\n", msr);
344		/*
345		 * Return zero in case the access faulted. This should
346		 * not happen normally but can happen if the CPU does
347		 * something weird, or if the code is buggy.
348		 */
349		v = 0;
350	}
351
352	return v;
353}
354
355static void mce_wrmsrl(u32 msr, u64 v)
356{
357	if (__get_cpu_var(injectm).finished) {
358		int offset = msr_to_offset(msr);
359
360		if (offset >= 0)
361			*(u64 *)((char *)&__get_cpu_var(injectm) + offset) = v;
362		return;
363	}
364	wrmsrl(msr, v);
365}
366
367/*
368 * Simple lockless ring to communicate PFNs from the exception handler with the
369 * process context work function. This is vastly simplified because there's
370 * only a single reader and a single writer.
371 */
372#define MCE_RING_SIZE 16	/* we use one entry less */
373
374struct mce_ring {
375	unsigned short start;
376	unsigned short end;
377	unsigned long ring[MCE_RING_SIZE];
378};
379static DEFINE_PER_CPU(struct mce_ring, mce_ring);
380
381/* Runs with CPU affinity in workqueue */
382static int mce_ring_empty(void)
383{
384	struct mce_ring *r = &__get_cpu_var(mce_ring);
385
386	return r->start == r->end;
387}
388
389static int mce_ring_get(unsigned long *pfn)
390{
391	struct mce_ring *r;
392	int ret = 0;
393
394	*pfn = 0;
395	get_cpu();
396	r = &__get_cpu_var(mce_ring);
397	if (r->start == r->end)
398		goto out;
399	*pfn = r->ring[r->start];
400	r->start = (r->start + 1) % MCE_RING_SIZE;
401	ret = 1;
402out:
403	put_cpu();
404	return ret;
405}
406
407/* Always runs in MCE context with preempt off */
408static int mce_ring_add(unsigned long pfn)
409{
410	struct mce_ring *r = &__get_cpu_var(mce_ring);
411	unsigned next;
412
413	next = (r->end + 1) % MCE_RING_SIZE;
414	if (next == r->start)
415		return -1;
416	r->ring[r->end] = pfn;
417	wmb();
418	r->end = next;
419	return 0;
420}
421
422int mce_available(struct cpuinfo_x86 *c)
423{
424	if (mce_disabled)
425		return 0;
426	return cpu_has(c, X86_FEATURE_MCE) && cpu_has(c, X86_FEATURE_MCA);
427}
428
429static void mce_schedule_work(void)
430{
431	if (!mce_ring_empty()) {
432		struct work_struct *work = &__get_cpu_var(mce_work);
433		if (!work_pending(work))
434			schedule_work(work);
435	}
436}
437
438/*
439 * Get the address of the instruction at the time of the machine check
440 * error.
441 */
442static inline void mce_get_rip(struct mce *m, struct pt_regs *regs)
443{
444
445	if (regs && (m->mcgstatus & (MCG_STATUS_RIPV|MCG_STATUS_EIPV))) {
446		m->ip = regs->ip;
447		m->cs = regs->cs;
448	} else {
449		m->ip = 0;
450		m->cs = 0;
451	}
452	if (rip_msr)
453		m->ip = mce_rdmsrl(rip_msr);
454}
455
456#ifdef CONFIG_X86_LOCAL_APIC
457/*
458 * Called after interrupts have been reenabled again
459 * when a MCE happened during an interrupts off region
460 * in the kernel.
461 */
462asmlinkage void smp_mce_self_interrupt(struct pt_regs *regs)
463{
464	ack_APIC_irq();
465	exit_idle();
466	irq_enter();
467	mce_notify_irq();
468	mce_schedule_work();
469	irq_exit();
470}
471#endif
472
473static void mce_report_event(struct pt_regs *regs)
474{
475	if (regs->flags & (X86_VM_MASK|X86_EFLAGS_IF)) {
476		mce_notify_irq();
477		/*
478		 * Triggering the work queue here is just an insurance
479		 * policy in case the syscall exit notify handler
480		 * doesn't run soon enough or ends up running on the
481		 * wrong CPU (can happen when audit sleeps)
482		 */
483		mce_schedule_work();
484		return;
485	}
486
487#ifdef CONFIG_X86_LOCAL_APIC
488	/*
489	 * Without APIC do not notify. The event will be picked
490	 * up eventually.
491	 */
492	if (!cpu_has_apic)
493		return;
494
495	/*
496	 * When interrupts are disabled we cannot use
497	 * kernel services safely. Trigger an self interrupt
498	 * through the APIC to instead do the notification
499	 * after interrupts are reenabled again.
500	 */
501	apic->send_IPI_self(MCE_SELF_VECTOR);
502
503	/*
504	 * Wait for idle afterwards again so that we don't leave the
505	 * APIC in a non idle state because the normal APIC writes
506	 * cannot exclude us.
507	 */
508	apic_wait_icr_idle();
509#endif
510}
511
512DEFINE_PER_CPU(unsigned, mce_poll_count);
513
514/*
515 * Poll for corrected events or events that happened before reset.
516 * Those are just logged through /dev/mcelog.
517 *
518 * This is executed in standard interrupt context.
519 *
520 * Note: spec recommends to panic for fatal unsignalled
521 * errors here. However this would be quite problematic --
522 * we would need to reimplement the Monarch handling and
523 * it would mess up the exclusion between exception handler
524 * and poll hander -- * so we skip this for now.
525 * These cases should not happen anyways, or only when the CPU
526 * is already totally * confused. In this case it's likely it will
527 * not fully execute the machine check handler either.
528 */
529void machine_check_poll(enum mcp_flags flags, mce_banks_t *b)
530{
531	struct mce m;
532	int i;
533
534	__get_cpu_var(mce_poll_count)++;
535
536	mce_setup(&m);
537
538	m.mcgstatus = mce_rdmsrl(MSR_IA32_MCG_STATUS);
539	for (i = 0; i < banks; i++) {
540		if (!mce_banks[i].ctl || !test_bit(i, *b))
541			continue;
542
543		m.misc = 0;
544		m.addr = 0;
545		m.bank = i;
546		m.tsc = 0;
547
548		barrier();
549		m.status = mce_rdmsrl(MSR_IA32_MCx_STATUS(i));
550		if (!(m.status & MCI_STATUS_VAL))
551			continue;
552
553		/*
554		 * Uncorrected or signalled events are handled by the exception
555		 * handler when it is enabled, so don't process those here.
556		 *
557		 * TBD do the same check for MCI_STATUS_EN here?
558		 */
559		if (!(flags & MCP_UC) &&
560		    (m.status & (mce_ser ? MCI_STATUS_S : MCI_STATUS_UC)))
561			continue;
562
563		if (m.status & MCI_STATUS_MISCV)
564			m.misc = mce_rdmsrl(MSR_IA32_MCx_MISC(i));
565		if (m.status & MCI_STATUS_ADDRV)
566			m.addr = mce_rdmsrl(MSR_IA32_MCx_ADDR(i));
567
568		if (!(flags & MCP_TIMESTAMP))
569			m.tsc = 0;
570		/*
571		 * Don't get the IP here because it's unlikely to
572		 * have anything to do with the actual error location.
573		 */
574		if (!(flags & MCP_DONTLOG) && !mce_dont_log_ce) {
575			mce_log(&m);
576			add_taint(TAINT_MACHINE_CHECK);
577		}
578
579		/*
580		 * Clear state for this bank.
581		 */
582		mce_wrmsrl(MSR_IA32_MCx_STATUS(i), 0);
583	}
584
585	/*
586	 * Don't clear MCG_STATUS here because it's only defined for
587	 * exceptions.
588	 */
589
590	sync_core();
591}
592EXPORT_SYMBOL_GPL(machine_check_poll);
593
594/*
595 * Do a quick check if any of the events requires a panic.
596 * This decides if we keep the events around or clear them.
597 */
598static int mce_no_way_out(struct mce *m, char **msg)
599{
600	int i;
601
602	for (i = 0; i < banks; i++) {
603		m->status = mce_rdmsrl(MSR_IA32_MCx_STATUS(i));
604		if (mce_severity(m, tolerant, msg) >= MCE_PANIC_SEVERITY)
605			return 1;
606	}
607	return 0;
608}
609
610/*
611 * Variable to establish order between CPUs while scanning.
612 * Each CPU spins initially until executing is equal its number.
613 */
614static atomic_t mce_executing;
615
616/*
617 * Defines order of CPUs on entry. First CPU becomes Monarch.
618 */
619static atomic_t mce_callin;
620
621/*
622 * Check if a timeout waiting for other CPUs happened.
623 */
624static int mce_timed_out(u64 *t)
625{
626	/*
627	 * The others already did panic for some reason.
628	 * Bail out like in a timeout.
629	 * rmb() to tell the compiler that system_state
630	 * might have been modified by someone else.
631	 */
632	rmb();
633	if (atomic_read(&mce_paniced))
634		wait_for_panic();
635	if (!monarch_timeout)
636		goto out;
637	if ((s64)*t < SPINUNIT) {
638		/* CHECKME: Make panic default for 1 too? */
639		if (tolerant < 1)
640			mce_panic("Timeout synchronizing machine check over CPUs",
641				  NULL, NULL);
642		cpu_missing = 1;
643		return 1;
644	}
645	*t -= SPINUNIT;
646out:
647	touch_nmi_watchdog();
648	return 0;
649}
650
651/*
652 * The Monarch's reign.  The Monarch is the CPU who entered
653 * the machine check handler first. It waits for the others to
654 * raise the exception too and then grades them. When any
655 * error is fatal panic. Only then let the others continue.
656 *
657 * The other CPUs entering the MCE handler will be controlled by the
658 * Monarch. They are called Subjects.
659 *
660 * This way we prevent any potential data corruption in a unrecoverable case
661 * and also makes sure always all CPU's errors are examined.
662 *
663 * Also this detects the case of a machine check event coming from outer
664 * space (not detected by any CPUs) In this case some external agent wants
665 * us to shut down, so panic too.
666 *
667 * The other CPUs might still decide to panic if the handler happens
668 * in a unrecoverable place, but in this case the system is in a semi-stable
669 * state and won't corrupt anything by itself. It's ok to let the others
670 * continue for a bit first.
671 *
672 * All the spin loops have timeouts; when a timeout happens a CPU
673 * typically elects itself to be Monarch.
674 */
675static void mce_reign(void)
676{
677	int cpu;
678	struct mce *m = NULL;
679	int global_worst = 0;
680	char *msg = NULL;
681	char *nmsg = NULL;
682
683	/*
684	 * This CPU is the Monarch and the other CPUs have run
685	 * through their handlers.
686	 * Grade the severity of the errors of all the CPUs.
687	 */
688	for_each_possible_cpu(cpu) {
689		int severity = mce_severity(&per_cpu(mces_seen, cpu), tolerant,
690					    &nmsg);
691		if (severity > global_worst) {
692			msg = nmsg;
693			global_worst = severity;
694			m = &per_cpu(mces_seen, cpu);
695		}
696	}
697
698	/*
699	 * Cannot recover? Panic here then.
700	 * This dumps all the mces in the log buffer and stops the
701	 * other CPUs.
702	 */
703	if (m && global_worst >= MCE_PANIC_SEVERITY && tolerant < 3)
704		mce_panic("Fatal Machine check", m, msg);
705
706	/*
707	 * For UC somewhere we let the CPU who detects it handle it.
708	 * Also must let continue the others, otherwise the handling
709	 * CPU could deadlock on a lock.
710	 */
711
712	/*
713	 * No machine check event found. Must be some external
714	 * source or one CPU is hung. Panic.
715	 */
716	if (global_worst <= MCE_KEEP_SEVERITY && tolerant < 3)
717		mce_panic("Machine check from unknown source", NULL, NULL);
718
719	/*
720	 * Now clear all the mces_seen so that they don't reappear on
721	 * the next mce.
722	 */
723	for_each_possible_cpu(cpu)
724		memset(&per_cpu(mces_seen, cpu), 0, sizeof(struct mce));
725}
726
727static atomic_t global_nwo;
728
729/*
730 * Start of Monarch synchronization. This waits until all CPUs have
731 * entered the exception handler and then determines if any of them
732 * saw a fatal event that requires panic. Then it executes them
733 * in the entry order.
734 * TBD double check parallel CPU hotunplug
735 */
736static int mce_start(int *no_way_out)
737{
738	int order;
739	int cpus = num_online_cpus();
740	u64 timeout = (u64)monarch_timeout * NSEC_PER_USEC;
741
742	if (!timeout)
743		return -1;
744
745	atomic_add(*no_way_out, &global_nwo);
746	/*
747	 * global_nwo should be updated before mce_callin
748	 */
749	smp_wmb();
750	order = atomic_inc_return(&mce_callin);
751
752	/*
753	 * Wait for everyone.
754	 */
755	while (atomic_read(&mce_callin) != cpus) {
756		if (mce_timed_out(&timeout)) {
757			atomic_set(&global_nwo, 0);
758			return -1;
759		}
760		ndelay(SPINUNIT);
761	}
762
763	/*
764	 * mce_callin should be read before global_nwo
765	 */
766	smp_rmb();
767
768	if (order == 1) {
769		/*
770		 * Monarch: Starts executing now, the others wait.
771		 */
772		atomic_set(&mce_executing, 1);
773	} else {
774		/*
775		 * Subject: Now start the scanning loop one by one in
776		 * the original callin order.
777		 * This way when there are any shared banks it will be
778		 * only seen by one CPU before cleared, avoiding duplicates.
779		 */
780		while (atomic_read(&mce_executing) < order) {
781			if (mce_timed_out(&timeout)) {
782				atomic_set(&global_nwo, 0);
783				return -1;
784			}
785			ndelay(SPINUNIT);
786		}
787	}
788
789	/*
790	 * Cache the global no_way_out state.
791	 */
792	*no_way_out = atomic_read(&global_nwo);
793
794	return order;
795}
796
797/*
798 * Synchronize between CPUs after main scanning loop.
799 * This invokes the bulk of the Monarch processing.
800 */
801static int mce_end(int order)
802{
803	int ret = -1;
804	u64 timeout = (u64)monarch_timeout * NSEC_PER_USEC;
805
806	if (!timeout)
807		goto reset;
808	if (order < 0)
809		goto reset;
810
811	/*
812	 * Allow others to run.
813	 */
814	atomic_inc(&mce_executing);
815
816	if (order == 1) {
817		/* CHECKME: Can this race with a parallel hotplug? */
818		int cpus = num_online_cpus();
819
820		/*
821		 * Monarch: Wait for everyone to go through their scanning
822		 * loops.
823		 */
824		while (atomic_read(&mce_executing) <= cpus) {
825			if (mce_timed_out(&timeout))
826				goto reset;
827			ndelay(SPINUNIT);
828		}
829
830		mce_reign();
831		barrier();
832		ret = 0;
833	} else {
834		/*
835		 * Subject: Wait for Monarch to finish.
836		 */
837		while (atomic_read(&mce_executing) != 0) {
838			if (mce_timed_out(&timeout))
839				goto reset;
840			ndelay(SPINUNIT);
841		}
842
843		/*
844		 * Don't reset anything. That's done by the Monarch.
845		 */
846		return 0;
847	}
848
849	/*
850	 * Reset all global state.
851	 */
852reset:
853	atomic_set(&global_nwo, 0);
854	atomic_set(&mce_callin, 0);
855	barrier();
856
857	/*
858	 * Let others run again.
859	 */
860	atomic_set(&mce_executing, 0);
861	return ret;
862}
863
864/*
865 * Check if the address reported by the CPU is in a format we can parse.
866 * It would be possible to add code for most other cases, but all would
867 * be somewhat complicated (e.g. segment offset would require an instruction
868 * parser). So only support physical addresses upto page granuality for now.
869 */
870static int mce_usable_address(struct mce *m)
871{
872	if (!(m->status & MCI_STATUS_MISCV) || !(m->status & MCI_STATUS_ADDRV))
873		return 0;
874	if ((m->misc & 0x3f) > PAGE_SHIFT)
875		return 0;
876	if (((m->misc >> 6) & 7) != MCM_ADDR_PHYS)
877		return 0;
878	return 1;
879}
880
881static void mce_clear_state(unsigned long *toclear)
882{
883	int i;
884
885	for (i = 0; i < banks; i++) {
886		if (test_bit(i, toclear))
887			mce_wrmsrl(MSR_IA32_MCx_STATUS(i), 0);
888	}
889}
890
891/*
892 * The actual machine check handler. This only handles real
893 * exceptions when something got corrupted coming in through int 18.
894 *
895 * This is executed in NMI context not subject to normal locking rules. This
896 * implies that most kernel services cannot be safely used. Don't even
897 * think about putting a printk in there!
898 *
899 * On Intel systems this is entered on all CPUs in parallel through
900 * MCE broadcast. However some CPUs might be broken beyond repair,
901 * so be always careful when synchronizing with others.
902 */
903void do_machine_check(struct pt_regs *regs, long error_code)
904{
905	struct mce m, *final;
906	int i;
907	int worst = 0;
908	int severity;
909	/*
910	 * Establish sequential order between the CPUs entering the machine
911	 * check handler.
912	 */
913	int order;
914	/*
915	 * If no_way_out gets set, there is no safe way to recover from this
916	 * MCE.  If tolerant is cranked up, we'll try anyway.
917	 */
918	int no_way_out = 0;
919	/*
920	 * If kill_it gets set, there might be a way to recover from this
921	 * error.
922	 */
923	int kill_it = 0;
924	DECLARE_BITMAP(toclear, MAX_NR_BANKS);
925	char *msg = "Unknown";
926
927	atomic_inc(&mce_entry);
928
929	__get_cpu_var(mce_exception_count)++;
930
931	if (notify_die(DIE_NMI, "machine check", regs, error_code,
932			   18, SIGKILL) == NOTIFY_STOP)
933		goto out;
934	if (!banks)
935		goto out;
936
937	mce_setup(&m);
938
939	m.mcgstatus = mce_rdmsrl(MSR_IA32_MCG_STATUS);
940	final = &__get_cpu_var(mces_seen);
941	*final = m;
942
943	no_way_out = mce_no_way_out(&m, &msg);
944
945	barrier();
946
947	/*
948	 * When no restart IP must always kill or panic.
949	 */
950	if (!(m.mcgstatus & MCG_STATUS_RIPV))
951		kill_it = 1;
952
953	/*
954	 * Go through all the banks in exclusion of the other CPUs.
955	 * This way we don't report duplicated events on shared banks
956	 * because the first one to see it will clear it.
957	 */
958	order = mce_start(&no_way_out);
959	for (i = 0; i < banks; i++) {
960		__clear_bit(i, toclear);
961		if (!mce_banks[i].ctl)
962			continue;
963
964		m.misc = 0;
965		m.addr = 0;
966		m.bank = i;
967
968		m.status = mce_rdmsrl(MSR_IA32_MCx_STATUS(i));
969		if ((m.status & MCI_STATUS_VAL) == 0)
970			continue;
971
972		/*
973		 * Non uncorrected or non signaled errors are handled by
974		 * machine_check_poll. Leave them alone, unless this panics.
975		 */
976		if (!(m.status & (mce_ser ? MCI_STATUS_S : MCI_STATUS_UC)) &&
977			!no_way_out)
978			continue;
979
980		/*
981		 * Set taint even when machine check was not enabled.
982		 */
983		add_taint(TAINT_MACHINE_CHECK);
984
985		severity = mce_severity(&m, tolerant, NULL);
986
987		/*
988		 * When machine check was for corrected handler don't touch,
989		 * unless we're panicing.
990		 */
991		if (severity == MCE_KEEP_SEVERITY && !no_way_out)
992			continue;
993		__set_bit(i, toclear);
994		if (severity == MCE_NO_SEVERITY) {
995			/*
996			 * Machine check event was not enabled. Clear, but
997			 * ignore.
998			 */
999			continue;
1000		}
1001
1002		/*
1003		 * Kill on action required.
1004		 */
1005		if (severity == MCE_AR_SEVERITY)
1006			kill_it = 1;
1007
1008		if (m.status & MCI_STATUS_MISCV)
1009			m.misc = mce_rdmsrl(MSR_IA32_MCx_MISC(i));
1010		if (m.status & MCI_STATUS_ADDRV)
1011			m.addr = mce_rdmsrl(MSR_IA32_MCx_ADDR(i));
1012
1013		/*
1014		 * Action optional error. Queue address for later processing.
1015		 * When the ring overflows we just ignore the AO error.
1016		 * RED-PEN add some logging mechanism when
1017		 * usable_address or mce_add_ring fails.
1018		 * RED-PEN don't ignore overflow for tolerant == 0
1019		 */
1020		if (severity == MCE_AO_SEVERITY && mce_usable_address(&m))
1021			mce_ring_add(m.addr >> PAGE_SHIFT);
1022
1023		mce_get_rip(&m, regs);
1024		mce_log(&m);
1025
1026		if (severity > worst) {
1027			*final = m;
1028			worst = severity;
1029		}
1030	}
1031
1032	if (!no_way_out)
1033		mce_clear_state(toclear);
1034
1035	/*
1036	 * Do most of the synchronization with other CPUs.
1037	 * When there's any problem use only local no_way_out state.
1038	 */
1039	if (mce_end(order) < 0)
1040		no_way_out = worst >= MCE_PANIC_SEVERITY;
1041
1042	/*
1043	 * If we have decided that we just CAN'T continue, and the user
1044	 * has not set tolerant to an insane level, give up and die.
1045	 *
1046	 * This is mainly used in the case when the system doesn't
1047	 * support MCE broadcasting or it has been disabled.
1048	 */
1049	if (no_way_out && tolerant < 3)
1050		mce_panic("Fatal machine check on current CPU", final, msg);
1051
1052	/*
1053	 * If the error seems to be unrecoverable, something should be
1054	 * done.  Try to kill as little as possible.  If we can kill just
1055	 * one task, do that.  If the user has set the tolerance very
1056	 * high, don't try to do anything at all.
1057	 */
1058
1059	if (kill_it && tolerant < 3)
1060		force_sig(SIGBUS, current);
1061
1062	/* notify userspace ASAP */
1063	set_thread_flag(TIF_MCE_NOTIFY);
1064
1065	if (worst > 0)
1066		mce_report_event(regs);
1067	mce_wrmsrl(MSR_IA32_MCG_STATUS, 0);
1068out:
1069	atomic_dec(&mce_entry);
1070	sync_core();
1071}
1072EXPORT_SYMBOL_GPL(do_machine_check);
1073
1074/* dummy to break dependency. actual code is in mm/memory-failure.c */
1075void __attribute__((weak)) memory_failure(unsigned long pfn, int vector)
1076{
1077	printk(KERN_ERR "Action optional memory failure at %lx ignored\n", pfn);
1078}
1079
1080/*
1081 * Called after mce notification in process context. This code
1082 * is allowed to sleep. Call the high level VM handler to process
1083 * any corrupted pages.
1084 * Assume that the work queue code only calls this one at a time
1085 * per CPU.
1086 * Note we don't disable preemption, so this code might run on the wrong
1087 * CPU. In this case the event is picked up by the scheduled work queue.
1088 * This is merely a fast path to expedite processing in some common
1089 * cases.
1090 */
1091void mce_notify_process(void)
1092{
1093	unsigned long pfn;
1094	mce_notify_irq();
1095	while (mce_ring_get(&pfn))
1096		memory_failure(pfn, MCE_VECTOR);
1097}
1098
1099static void mce_process_work(struct work_struct *dummy)
1100{
1101	mce_notify_process();
1102}
1103
1104#ifdef CONFIG_X86_MCE_INTEL
1105/***
1106 * mce_log_therm_throt_event - Logs the thermal throttling event to mcelog
1107 * @cpu: The CPU on which the event occurred.
1108 * @status: Event status information
1109 *
1110 * This function should be called by the thermal interrupt after the
1111 * event has been processed and the decision was made to log the event
1112 * further.
1113 *
1114 * The status parameter will be saved to the 'status' field of 'struct mce'
1115 * and historically has been the register value of the
1116 * MSR_IA32_THERMAL_STATUS (Intel) msr.
1117 */
1118void mce_log_therm_throt_event(__u64 status)
1119{
1120	struct mce m;
1121
1122	mce_setup(&m);
1123	m.bank = MCE_THERMAL_BANK;
1124	m.status = status;
1125	mce_log(&m);
1126}
1127#endif /* CONFIG_X86_MCE_INTEL */
1128
1129/*
1130 * Periodic polling timer for "silent" machine check errors.  If the
1131 * poller finds an MCE, poll 2x faster.  When the poller finds no more
1132 * errors, poll 2x slower (up to check_interval seconds).
1133 */
1134static int check_interval = 5 * 60; /* 5 minutes */
1135
1136static DEFINE_PER_CPU(int, mce_next_interval); /* in jiffies */
1137static DEFINE_PER_CPU(struct timer_list, mce_timer);
1138
1139static void mce_start_timer(unsigned long data)
1140{
1141	struct timer_list *t = &per_cpu(mce_timer, data);
1142	int *n;
1143
1144	WARN_ON(smp_processor_id() != data);
1145
1146	if (mce_available(&current_cpu_data)) {
1147		machine_check_poll(MCP_TIMESTAMP,
1148				&__get_cpu_var(mce_poll_banks));
1149	}
1150
1151	/*
1152	 * Alert userspace if needed.  If we logged an MCE, reduce the
1153	 * polling interval, otherwise increase the polling interval.
1154	 */
1155	n = &__get_cpu_var(mce_next_interval);
1156	if (mce_notify_irq())
1157		*n = max(*n/2, HZ/100);
1158	else
1159		*n = min(*n*2, (int)round_jiffies_relative(check_interval*HZ));
1160
1161	t->expires = jiffies + *n;
1162	add_timer_on(t, smp_processor_id());
1163}
1164
1165static void mce_do_trigger(struct work_struct *work)
1166{
1167	call_usermodehelper(mce_helper, mce_helper_argv, NULL, UMH_NO_WAIT);
1168}
1169
1170static DECLARE_WORK(mce_trigger_work, mce_do_trigger);
1171
1172/*
1173 * Notify the user(s) about new machine check events.
1174 * Can be called from interrupt context, but not from machine check/NMI
1175 * context.
1176 */
1177int mce_notify_irq(void)
1178{
1179	/* Not more than two messages every minute */
1180	static DEFINE_RATELIMIT_STATE(ratelimit, 60*HZ, 2);
1181
1182	clear_thread_flag(TIF_MCE_NOTIFY);
1183
1184	if (test_and_clear_bit(0, &mce_need_notify)) {
1185		wake_up_interruptible(&mce_wait);
1186
1187		/*
1188		 * There is no risk of missing notifications because
1189		 * work_pending is always cleared before the function is
1190		 * executed.
1191		 */
1192		if (mce_helper[0] && !work_pending(&mce_trigger_work))
1193			schedule_work(&mce_trigger_work);
1194
1195		if (__ratelimit(&ratelimit))
1196			printk(KERN_INFO "Machine check events logged\n");
1197
1198		return 1;
1199	}
1200	return 0;
1201}
1202EXPORT_SYMBOL_GPL(mce_notify_irq);
1203
1204static int __cpuinit __mcheck_cpu_mce_banks_init(void)
1205{
1206	int i;
1207
1208	mce_banks = kzalloc(banks * sizeof(struct mce_bank), GFP_KERNEL);
1209	if (!mce_banks)
1210		return -ENOMEM;
1211	for (i = 0; i < banks; i++) {
1212		struct mce_bank *b = &mce_banks[i];
1213
1214		b->ctl = -1ULL;
1215		b->init = 1;
1216	}
1217	return 0;
1218}
1219
1220/*
1221 * Initialize Machine Checks for a CPU.
1222 */
1223static int __cpuinit __mcheck_cpu_cap_init(void)
1224{
1225	unsigned b;
1226	u64 cap;
1227
1228	rdmsrl(MSR_IA32_MCG_CAP, cap);
1229
1230	b = cap & MCG_BANKCNT_MASK;
1231	if (!banks)
1232		printk(KERN_INFO "mce: CPU supports %d MCE banks\n", b);
1233
1234	if (b > MAX_NR_BANKS) {
1235		printk(KERN_WARNING
1236		       "MCE: Using only %u machine check banks out of %u\n",
1237			MAX_NR_BANKS, b);
1238		b = MAX_NR_BANKS;
1239	}
1240
1241	/* Don't support asymmetric configurations today */
1242	WARN_ON(banks != 0 && b != banks);
1243	banks = b;
1244	if (!mce_banks) {
1245		int err = __mcheck_cpu_mce_banks_init();
1246
1247		if (err)
1248			return err;
1249	}
1250
1251	/* Use accurate RIP reporting if available. */
1252	if ((cap & MCG_EXT_P) && MCG_EXT_CNT(cap) >= 9)
1253		rip_msr = MSR_IA32_MCG_EIP;
1254
1255	if (cap & MCG_SER_P)
1256		mce_ser = 1;
1257
1258	return 0;
1259}
1260
1261static void __mcheck_cpu_init_generic(void)
1262{
1263	mce_banks_t all_banks;
1264	u64 cap;
1265	int i;
1266
1267	/*
1268	 * Log the machine checks left over from the previous reset.
1269	 */
1270	bitmap_fill(all_banks, MAX_NR_BANKS);
1271	machine_check_poll(MCP_UC|(!mce_bootlog ? MCP_DONTLOG : 0), &all_banks);
1272
1273	set_in_cr4(X86_CR4_MCE);
1274
1275	rdmsrl(MSR_IA32_MCG_CAP, cap);
1276	if (cap & MCG_CTL_P)
1277		wrmsr(MSR_IA32_MCG_CTL, 0xffffffff, 0xffffffff);
1278
1279	for (i = 0; i < banks; i++) {
1280		struct mce_bank *b = &mce_banks[i];
1281
1282		if (!b->init)
1283			continue;
1284		wrmsrl(MSR_IA32_MCx_CTL(i), b->ctl);
1285		wrmsrl(MSR_IA32_MCx_STATUS(i), 0);
1286	}
1287}
1288
1289/* Add per CPU specific workarounds here */
1290static int __cpuinit __mcheck_cpu_apply_quirks(struct cpuinfo_x86 *c)
1291{
1292	if (c->x86_vendor == X86_VENDOR_UNKNOWN) {
1293		pr_info("MCE: unknown CPU type - not enabling MCE support.\n");
1294		return -EOPNOTSUPP;
1295	}
1296
1297	/* This should be disabled by the BIOS, but isn't always */
1298	if (c->x86_vendor == X86_VENDOR_AMD) {
1299		if (c->x86 == 15 && banks > 4) {
1300			/*
1301			 * disable GART TBL walk error reporting, which
1302			 * trips off incorrectly with the IOMMU & 3ware
1303			 * & Cerberus:
1304			 */
1305			clear_bit(10, (unsigned long *)&mce_banks[4].ctl);
1306		}
1307		if (c->x86 <= 17 && mce_bootlog < 0) {
1308			/*
1309			 * Lots of broken BIOS around that don't clear them
1310			 * by default and leave crap in there. Don't log:
1311			 */
1312			mce_bootlog = 0;
1313		}
1314		/*
1315		 * Various K7s with broken bank 0 around. Always disable
1316		 * by default.
1317		 */
1318		 if (c->x86 == 6 && banks > 0)
1319			mce_banks[0].ctl = 0;
1320	}
1321
1322	if (c->x86_vendor == X86_VENDOR_INTEL) {
1323		/*
1324		 * SDM documents that on family 6 bank 0 should not be written
1325		 * because it aliases to another special BIOS controlled
1326		 * register.
1327		 * But it's not aliased anymore on model 0x1a+
1328		 * Don't ignore bank 0 completely because there could be a
1329		 * valid event later, merely don't write CTL0.
1330		 */
1331
1332		if (c->x86 == 6 && c->x86_model < 0x1A && banks > 0)
1333			mce_banks[0].init = 0;
1334
1335		/*
1336		 * All newer Intel systems support MCE broadcasting. Enable
1337		 * synchronization with a one second timeout.
1338		 */
1339		if ((c->x86 > 6 || (c->x86 == 6 && c->x86_model >= 0xe)) &&
1340			monarch_timeout < 0)
1341			monarch_timeout = USEC_PER_SEC;
1342
1343		/*
1344		 * There are also broken BIOSes on some Pentium M and
1345		 * earlier systems:
1346		 */
1347		if (c->x86 == 6 && c->x86_model <= 13 && mce_bootlog < 0)
1348			mce_bootlog = 0;
1349	}
1350	if (monarch_timeout < 0)
1351		monarch_timeout = 0;
1352	if (mce_bootlog != 0)
1353		mce_panic_timeout = 30;
1354
1355	return 0;
1356}
1357
1358static void __cpuinit __mcheck_cpu_ancient_init(struct cpuinfo_x86 *c)
1359{
1360	if (c->x86 != 5)
1361		return;
1362	switch (c->x86_vendor) {
1363	case X86_VENDOR_INTEL:
1364		intel_p5_mcheck_init(c);
1365		break;
1366	case X86_VENDOR_CENTAUR:
1367		winchip_mcheck_init(c);
1368		break;
1369	}
1370}
1371
1372static void __mcheck_cpu_init_vendor(struct cpuinfo_x86 *c)
1373{
1374	switch (c->x86_vendor) {
1375	case X86_VENDOR_INTEL:
1376		mce_intel_feature_init(c);
1377		break;
1378	case X86_VENDOR_AMD:
1379		mce_amd_feature_init(c);
1380		break;
1381	default:
1382		break;
1383	}
1384}
1385
1386static void __mcheck_cpu_init_timer(void)
1387{
1388	struct timer_list *t = &__get_cpu_var(mce_timer);
1389	int *n = &__get_cpu_var(mce_next_interval);
1390
1391	setup_timer(t, mce_start_timer, smp_processor_id());
1392
1393	if (mce_ignore_ce)
1394		return;
1395
1396	*n = check_interval * HZ;
1397	if (!*n)
1398		return;
1399	t->expires = round_jiffies(jiffies + *n);
1400	add_timer_on(t, smp_processor_id());
1401}
1402
1403/* Handle unconfigured int18 (should never happen) */
1404static void unexpected_machine_check(struct pt_regs *regs, long error_code)
1405{
1406	printk(KERN_ERR "CPU#%d: Unexpected int18 (Machine Check).\n",
1407	       smp_processor_id());
1408}
1409
1410/* Call the installed machine check handler for this CPU setup. */
1411void (*machine_check_vector)(struct pt_regs *, long error_code) =
1412						unexpected_machine_check;
1413
1414/*
1415 * Called for each booted CPU to set up machine checks.
1416 * Must be called with preempt off:
1417 */
1418void __cpuinit mcheck_cpu_init(struct cpuinfo_x86 *c)
1419{
1420	if (mce_disabled)
1421		return;
1422
1423	__mcheck_cpu_ancient_init(c);
1424
1425	if (!mce_available(c))
1426		return;
1427
1428	if (__mcheck_cpu_cap_init() < 0 || __mcheck_cpu_apply_quirks(c) < 0) {
1429		mce_disabled = 1;
1430		return;
1431	}
1432
1433	machine_check_vector = do_machine_check;
1434
1435	__mcheck_cpu_init_generic();
1436	__mcheck_cpu_init_vendor(c);
1437	__mcheck_cpu_init_timer();
1438	INIT_WORK(&__get_cpu_var(mce_work), mce_process_work);
1439
1440}
1441
1442/*
1443 * Character device to read and clear the MCE log.
1444 */
1445
1446static DEFINE_SPINLOCK(mce_state_lock);
1447static int		open_count;		/* #times opened */
1448static int		open_exclu;		/* already open exclusive? */
1449
1450static int mce_open(struct inode *inode, struct file *file)
1451{
1452	spin_lock(&mce_state_lock);
1453
1454	if (open_exclu || (open_count && (file->f_flags & O_EXCL))) {
1455		spin_unlock(&mce_state_lock);
1456
1457		return -EBUSY;
1458	}
1459
1460	if (file->f_flags & O_EXCL)
1461		open_exclu = 1;
1462	open_count++;
1463
1464	spin_unlock(&mce_state_lock);
1465
1466	return nonseekable_open(inode, file);
1467}
1468
1469static int mce_release(struct inode *inode, struct file *file)
1470{
1471	spin_lock(&mce_state_lock);
1472
1473	open_count--;
1474	open_exclu = 0;
1475
1476	spin_unlock(&mce_state_lock);
1477
1478	return 0;
1479}
1480
1481static void collect_tscs(void *data)
1482{
1483	unsigned long *cpu_tsc = (unsigned long *)data;
1484
1485	rdtscll(cpu_tsc[smp_processor_id()]);
1486}
1487
1488static DEFINE_MUTEX(mce_read_mutex);
1489
1490static ssize_t mce_read(struct file *filp, char __user *ubuf, size_t usize,
1491			loff_t *off)
1492{
1493	char __user *buf = ubuf;
1494	unsigned long *cpu_tsc;
1495	unsigned prev, next;
1496	int i, err;
1497
1498	cpu_tsc = kmalloc(nr_cpu_ids * sizeof(long), GFP_KERNEL);
1499	if (!cpu_tsc)
1500		return -ENOMEM;
1501
1502	mutex_lock(&mce_read_mutex);
1503	next = rcu_dereference(mcelog.next);
1504
1505	/* Only supports full reads right now */
1506	if (*off != 0 || usize < MCE_LOG_LEN*sizeof(struct mce)) {
1507		mutex_unlock(&mce_read_mutex);
1508		kfree(cpu_tsc);
1509
1510		return -EINVAL;
1511	}
1512
1513	err = 0;
1514	prev = 0;
1515	do {
1516		for (i = prev; i < next; i++) {
1517			unsigned long start = jiffies;
1518
1519			while (!mcelog.entry[i].finished) {
1520				if (time_after_eq(jiffies, start + 2)) {
1521					memset(mcelog.entry + i, 0,
1522					       sizeof(struct mce));
1523					goto timeout;
1524				}
1525				cpu_relax();
1526			}
1527			smp_rmb();
1528			err |= copy_to_user(buf, mcelog.entry + i,
1529					    sizeof(struct mce));
1530			buf += sizeof(struct mce);
1531timeout:
1532			;
1533		}
1534
1535		memset(mcelog.entry + prev, 0,
1536		       (next - prev) * sizeof(struct mce));
1537		prev = next;
1538		next = cmpxchg(&mcelog.next, prev, 0);
1539	} while (next != prev);
1540
1541	synchronize_sched();
1542
1543	/*
1544	 * Collect entries that were still getting written before the
1545	 * synchronize.
1546	 */
1547	on_each_cpu(collect_tscs, cpu_tsc, 1);
1548
1549	for (i = next; i < MCE_LOG_LEN; i++) {
1550		if (mcelog.entry[i].finished &&
1551		    mcelog.entry[i].tsc < cpu_tsc[mcelog.entry[i].cpu]) {
1552			err |= copy_to_user(buf, mcelog.entry+i,
1553					    sizeof(struct mce));
1554			smp_rmb();
1555			buf += sizeof(struct mce);
1556			memset(&mcelog.entry[i], 0, sizeof(struct mce));
1557		}
1558	}
1559	mutex_unlock(&mce_read_mutex);
1560	kfree(cpu_tsc);
1561
1562	return err ? -EFAULT : buf - ubuf;
1563}
1564
1565static unsigned int mce_poll(struct file *file, poll_table *wait)
1566{
1567	poll_wait(file, &mce_wait, wait);
1568	if (rcu_dereference(mcelog.next))
1569		return POLLIN | POLLRDNORM;
1570	return 0;
1571}
1572
1573static long mce_ioctl(struct file *f, unsigned int cmd, unsigned long arg)
1574{
1575	int __user *p = (int __user *)arg;
1576
1577	if (!capable(CAP_SYS_ADMIN))
1578		return -EPERM;
1579
1580	switch (cmd) {
1581	case MCE_GET_RECORD_LEN:
1582		return put_user(sizeof(struct mce), p);
1583	case MCE_GET_LOG_LEN:
1584		return put_user(MCE_LOG_LEN, p);
1585	case MCE_GETCLEAR_FLAGS: {
1586		unsigned flags;
1587
1588		do {
1589			flags = mcelog.flags;
1590		} while (cmpxchg(&mcelog.flags, flags, 0) != flags);
1591
1592		return put_user(flags, p);
1593	}
1594	default:
1595		return -ENOTTY;
1596	}
1597}
1598
1599/* Modified in mce-inject.c, so not static or const */
1600struct file_operations mce_chrdev_ops = {
1601	.open			= mce_open,
1602	.release		= mce_release,
1603	.read			= mce_read,
1604	.poll			= mce_poll,
1605	.unlocked_ioctl		= mce_ioctl,
1606};
1607EXPORT_SYMBOL_GPL(mce_chrdev_ops);
1608
1609static struct miscdevice mce_log_device = {
1610	MISC_MCELOG_MINOR,
1611	"mcelog",
1612	&mce_chrdev_ops,
1613};
1614
1615/*
1616 * mce=off Disables machine check
1617 * mce=no_cmci Disables CMCI
1618 * mce=dont_log_ce Clears corrected events silently, no log created for CEs.
1619 * mce=ignore_ce Disables polling and CMCI, corrected events are not cleared.
1620 * mce=TOLERANCELEVEL[,monarchtimeout] (number, see above)
1621 *	monarchtimeout is how long to wait for other CPUs on machine
1622 *	check, or 0 to not wait
1623 * mce=bootlog Log MCEs from before booting. Disabled by default on AMD.
1624 * mce=nobootlog Don't log MCEs from before booting.
1625 */
1626static int __init mcheck_enable(char *str)
1627{
1628	if (*str == 0) {
1629		enable_p5_mce();
1630		return 1;
1631	}
1632	if (*str == '=')
1633		str++;
1634	if (!strcmp(str, "off"))
1635		mce_disabled = 1;
1636	else if (!strcmp(str, "no_cmci"))
1637		mce_cmci_disabled = 1;
1638	else if (!strcmp(str, "dont_log_ce"))
1639		mce_dont_log_ce = 1;
1640	else if (!strcmp(str, "ignore_ce"))
1641		mce_ignore_ce = 1;
1642	else if (!strcmp(str, "bootlog") || !strcmp(str, "nobootlog"))
1643		mce_bootlog = (str[0] == 'b');
1644	else if (isdigit(str[0])) {
1645		get_option(&str, &tolerant);
1646		if (*str == ',') {
1647			++str;
1648			get_option(&str, &monarch_timeout);
1649		}
1650	} else {
1651		printk(KERN_INFO "mce argument %s ignored. Please use /sys\n",
1652		       str);
1653		return 0;
1654	}
1655	return 1;
1656}
1657__setup("mce", mcheck_enable);
1658
1659int __init mcheck_init(void)
1660{
1661	atomic_notifier_chain_register(&x86_mce_decoder_chain, &mce_dec_nb);
1662
1663	mcheck_intel_therm_init();
1664
1665	return 0;
1666}
1667
1668/*
1669 * Sysfs support
1670 */
1671
1672/*
1673 * Disable machine checks on suspend and shutdown. We can't really handle
1674 * them later.
1675 */
1676static int mce_disable_error_reporting(void)
1677{
1678	int i;
1679
1680	for (i = 0; i < banks; i++) {
1681		struct mce_bank *b = &mce_banks[i];
1682
1683		if (b->init)
1684			wrmsrl(MSR_IA32_MCx_CTL(i), 0);
1685	}
1686	return 0;
1687}
1688
1689static int mce_suspend(struct sys_device *dev, pm_message_t state)
1690{
1691	return mce_disable_error_reporting();
1692}
1693
1694static int mce_shutdown(struct sys_device *dev)
1695{
1696	return mce_disable_error_reporting();
1697}
1698
1699/*
1700 * On resume clear all MCE state. Don't want to see leftovers from the BIOS.
1701 * Only one CPU is active at this time, the others get re-added later using
1702 * CPU hotplug:
1703 */
1704static int mce_resume(struct sys_device *dev)
1705{
1706	__mcheck_cpu_init_generic();
1707	__mcheck_cpu_init_vendor(&current_cpu_data);
1708
1709	return 0;
1710}
1711
1712static void mce_cpu_restart(void *data)
1713{
1714	del_timer_sync(&__get_cpu_var(mce_timer));
1715	if (!mce_available(&current_cpu_data))
1716		return;
1717	__mcheck_cpu_init_generic();
1718	__mcheck_cpu_init_timer();
1719}
1720
1721/* Reinit MCEs after user configuration changes */
1722static void mce_restart(void)
1723{
1724	on_each_cpu(mce_cpu_restart, NULL, 1);
1725}
1726
1727/* Toggle features for corrected errors */
1728static void mce_disable_ce(void *all)
1729{
1730	if (!mce_available(&current_cpu_data))
1731		return;
1732	if (all)
1733		del_timer_sync(&__get_cpu_var(mce_timer));
1734	cmci_clear();
1735}
1736
1737static void mce_enable_ce(void *all)
1738{
1739	if (!mce_available(&current_cpu_data))
1740		return;
1741	cmci_reenable();
1742	cmci_recheck();
1743	if (all)
1744		__mcheck_cpu_init_timer();
1745}
1746
1747static struct sysdev_class mce_sysclass = {
1748	.suspend	= mce_suspend,
1749	.shutdown	= mce_shutdown,
1750	.resume		= mce_resume,
1751	.name		= "machinecheck",
1752};
1753
1754DEFINE_PER_CPU(struct sys_device, mce_dev);
1755
1756__cpuinitdata
1757void (*threshold_cpu_callback)(unsigned long action, unsigned int cpu);
1758
1759static inline struct mce_bank *attr_to_bank(struct sysdev_attribute *attr)
1760{
1761	return container_of(attr, struct mce_bank, attr);
1762}
1763
1764static ssize_t show_bank(struct sys_device *s, struct sysdev_attribute *attr,
1765			 char *buf)
1766{
1767	return sprintf(buf, "%llx\n", attr_to_bank(attr)->ctl);
1768}
1769
1770static ssize_t set_bank(struct sys_device *s, struct sysdev_attribute *attr,
1771			const char *buf, size_t size)
1772{
1773	u64 new;
1774
1775	if (strict_strtoull(buf, 0, &new) < 0)
1776		return -EINVAL;
1777
1778	attr_to_bank(attr)->ctl = new;
1779	mce_restart();
1780
1781	return size;
1782}
1783
1784static ssize_t
1785show_trigger(struct sys_device *s, struct sysdev_attribute *attr, char *buf)
1786{
1787	strcpy(buf, mce_helper);
1788	strcat(buf, "\n");
1789	return strlen(mce_helper) + 1;
1790}
1791
1792static ssize_t set_trigger(struct sys_device *s, struct sysdev_attribute *attr,
1793				const char *buf, size_t siz)
1794{
1795	char *p;
1796
1797	strncpy(mce_helper, buf, sizeof(mce_helper));
1798	mce_helper[sizeof(mce_helper)-1] = 0;
1799	p = strchr(mce_helper, '\n');
1800
1801	if (p)
1802		*p = 0;
1803
1804	return strlen(mce_helper) + !!p;
1805}
1806
1807static ssize_t set_ignore_ce(struct sys_device *s,
1808			     struct sysdev_attribute *attr,
1809			     const char *buf, size_t size)
1810{
1811	u64 new;
1812
1813	if (strict_strtoull(buf, 0, &new) < 0)
1814		return -EINVAL;
1815
1816	if (mce_ignore_ce ^ !!new) {
1817		if (new) {
1818			/* disable ce features */
1819			on_each_cpu(mce_disable_ce, (void *)1, 1);
1820			mce_ignore_ce = 1;
1821		} else {
1822			/* enable ce features */
1823			mce_ignore_ce = 0;
1824			on_each_cpu(mce_enable_ce, (void *)1, 1);
1825		}
1826	}
1827	return size;
1828}
1829
1830static ssize_t set_cmci_disabled(struct sys_device *s,
1831				 struct sysdev_attribute *attr,
1832				 const char *buf, size_t size)
1833{
1834	u64 new;
1835
1836	if (strict_strtoull(buf, 0, &new) < 0)
1837		return -EINVAL;
1838
1839	if (mce_cmci_disabled ^ !!new) {
1840		if (new) {
1841			/* disable cmci */
1842			on_each_cpu(mce_disable_ce, NULL, 1);
1843			mce_cmci_disabled = 1;
1844		} else {
1845			/* enable cmci */
1846			mce_cmci_disabled = 0;
1847			on_each_cpu(mce_enable_ce, NULL, 1);
1848		}
1849	}
1850	return size;
1851}
1852
1853static ssize_t store_int_with_restart(struct sys_device *s,
1854				      struct sysdev_attribute *attr,
1855				      const char *buf, size_t size)
1856{
1857	ssize_t ret = sysdev_store_int(s, attr, buf, size);
1858	mce_restart();
1859	return ret;
1860}
1861
1862static SYSDEV_ATTR(trigger, 0644, show_trigger, set_trigger);
1863static SYSDEV_INT_ATTR(tolerant, 0644, tolerant);
1864static SYSDEV_INT_ATTR(monarch_timeout, 0644, monarch_timeout);
1865static SYSDEV_INT_ATTR(dont_log_ce, 0644, mce_dont_log_ce);
1866
1867static struct sysdev_ext_attribute attr_check_interval = {
1868	_SYSDEV_ATTR(check_interval, 0644, sysdev_show_int,
1869		     store_int_with_restart),
1870	&check_interval
1871};
1872
1873static struct sysdev_ext_attribute attr_ignore_ce = {
1874	_SYSDEV_ATTR(ignore_ce, 0644, sysdev_show_int, set_ignore_ce),
1875	&mce_ignore_ce
1876};
1877
1878static struct sysdev_ext_attribute attr_cmci_disabled = {
1879	_SYSDEV_ATTR(cmci_disabled, 0644, sysdev_show_int, set_cmci_disabled),
1880	&mce_cmci_disabled
1881};
1882
1883static struct sysdev_attribute *mce_attrs[] = {
1884	&attr_tolerant.attr,
1885	&attr_check_interval.attr,
1886	&attr_trigger,
1887	&attr_monarch_timeout.attr,
1888	&attr_dont_log_ce.attr,
1889	&attr_ignore_ce.attr,
1890	&attr_cmci_disabled.attr,
1891	NULL
1892};
1893
1894static cpumask_var_t mce_dev_initialized;
1895
1896/* Per cpu sysdev init. All of the cpus still share the same ctrl bank: */
1897static __cpuinit int mce_create_device(unsigned int cpu)
1898{
1899	int err;
1900	int i, j;
1901
1902	if (!mce_available(&boot_cpu_data))
1903		return -EIO;
1904
1905	memset(&per_cpu(mce_dev, cpu).kobj, 0, sizeof(struct kobject));
1906	per_cpu(mce_dev, cpu).id	= cpu;
1907	per_cpu(mce_dev, cpu).cls	= &mce_sysclass;
1908
1909	err = sysdev_register(&per_cpu(mce_dev, cpu));
1910	if (err)
1911		return err;
1912
1913	for (i = 0; mce_attrs[i]; i++) {
1914		err = sysdev_create_file(&per_cpu(mce_dev, cpu), mce_attrs[i]);
1915		if (err)
1916			goto error;
1917	}
1918	for (j = 0; j < banks; j++) {
1919		err = sysdev_create_file(&per_cpu(mce_dev, cpu),
1920					&mce_banks[j].attr);
1921		if (err)
1922			goto error2;
1923	}
1924	cpumask_set_cpu(cpu, mce_dev_initialized);
1925
1926	return 0;
1927error2:
1928	while (--j >= 0)
1929		sysdev_remove_file(&per_cpu(mce_dev, cpu), &mce_banks[j].attr);
1930error:
1931	while (--i >= 0)
1932		sysdev_remove_file(&per_cpu(mce_dev, cpu), mce_attrs[i]);
1933
1934	sysdev_unregister(&per_cpu(mce_dev, cpu));
1935
1936	return err;
1937}
1938
1939static __cpuinit void mce_remove_device(unsigned int cpu)
1940{
1941	int i;
1942
1943	if (!cpumask_test_cpu(cpu, mce_dev_initialized))
1944		return;
1945
1946	for (i = 0; mce_attrs[i]; i++)
1947		sysdev_remove_file(&per_cpu(mce_dev, cpu), mce_attrs[i]);
1948
1949	for (i = 0; i < banks; i++)
1950		sysdev_remove_file(&per_cpu(mce_dev, cpu), &mce_banks[i].attr);
1951
1952	sysdev_unregister(&per_cpu(mce_dev, cpu));
1953	cpumask_clear_cpu(cpu, mce_dev_initialized);
1954}
1955
1956/* Make sure there are no machine checks on offlined CPUs. */
1957static void __cpuinit mce_disable_cpu(void *h)
1958{
1959	unsigned long action = *(unsigned long *)h;
1960	int i;
1961
1962	if (!mce_available(&current_cpu_data))
1963		return;
1964
1965	if (!(action & CPU_TASKS_FROZEN))
1966		cmci_clear();
1967	for (i = 0; i < banks; i++) {
1968		struct mce_bank *b = &mce_banks[i];
1969
1970		if (b->init)
1971			wrmsrl(MSR_IA32_MCx_CTL(i), 0);
1972	}
1973}
1974
1975static void __cpuinit mce_reenable_cpu(void *h)
1976{
1977	unsigned long action = *(unsigned long *)h;
1978	int i;
1979
1980	if (!mce_available(&current_cpu_data))
1981		return;
1982
1983	if (!(action & CPU_TASKS_FROZEN))
1984		cmci_reenable();
1985	for (i = 0; i < banks; i++) {
1986		struct mce_bank *b = &mce_banks[i];
1987
1988		if (b->init)
1989			wrmsrl(MSR_IA32_MCx_CTL(i), b->ctl);
1990	}
1991}
1992
1993/* Get notified when a cpu comes on/off. Be hotplug friendly. */
1994static int __cpuinit
1995mce_cpu_callback(struct notifier_block *nfb, unsigned long action, void *hcpu)
1996{
1997	unsigned int cpu = (unsigned long)hcpu;
1998	struct timer_list *t = &per_cpu(mce_timer, cpu);
1999
2000	switch (action) {
2001	case CPU_ONLINE:
2002	case CPU_ONLINE_FROZEN:
2003		mce_create_device(cpu);
2004		if (threshold_cpu_callback)
2005			threshold_cpu_callback(action, cpu);
2006		break;
2007	case CPU_DEAD:
2008	case CPU_DEAD_FROZEN:
2009		if (threshold_cpu_callback)
2010			threshold_cpu_callback(action, cpu);
2011		mce_remove_device(cpu);
2012		break;
2013	case CPU_DOWN_PREPARE:
2014	case CPU_DOWN_PREPARE_FROZEN:
2015		del_timer_sync(t);
2016		smp_call_function_single(cpu, mce_disable_cpu, &action, 1);
2017		break;
2018	case CPU_DOWN_FAILED:
2019	case CPU_DOWN_FAILED_FROZEN:
2020		if (!mce_ignore_ce && check_interval) {
2021			t->expires = round_jiffies(jiffies +
2022					   __get_cpu_var(mce_next_interval));
2023			add_timer_on(t, cpu);
2024		}
2025		smp_call_function_single(cpu, mce_reenable_cpu, &action, 1);
2026		break;
2027	case CPU_POST_DEAD:
2028		/* intentionally ignoring frozen here */
2029		cmci_rediscover(cpu);
2030		break;
2031	}
2032	return NOTIFY_OK;
2033}
2034
2035static struct notifier_block mce_cpu_notifier __cpuinitdata = {
2036	.notifier_call = mce_cpu_callback,
2037};
2038
2039static __init void mce_init_banks(void)
2040{
2041	int i;
2042
2043	for (i = 0; i < banks; i++) {
2044		struct mce_bank *b = &mce_banks[i];
2045		struct sysdev_attribute *a = &b->attr;
2046
2047		sysfs_attr_init(&a->attr);
2048		a->attr.name	= b->attrname;
2049		snprintf(b->attrname, ATTR_LEN, "bank%d", i);
2050
2051		a->attr.mode	= 0644;
2052		a->show		= show_bank;
2053		a->store	= set_bank;
2054	}
2055}
2056
2057static __init int mcheck_init_device(void)
2058{
2059	int err;
2060	int i = 0;
2061
2062	if (!mce_available(&boot_cpu_data))
2063		return -EIO;
2064
2065	zalloc_cpumask_var(&mce_dev_initialized, GFP_KERNEL);
2066
2067	mce_init_banks();
2068
2069	err = sysdev_class_register(&mce_sysclass);
2070	if (err)
2071		return err;
2072
2073	for_each_online_cpu(i) {
2074		err = mce_create_device(i);
2075		if (err)
2076			return err;
2077	}
2078
2079	register_hotcpu_notifier(&mce_cpu_notifier);
2080	misc_register(&mce_log_device);
2081
2082	return err;
2083}
2084
2085device_initcall(mcheck_init_device);
2086
2087/*
2088 * Old style boot options parsing. Only for compatibility.
2089 */
2090static int __init mcheck_disable(char *str)
2091{
2092	mce_disabled = 1;
2093	return 1;
2094}
2095__setup("nomce", mcheck_disable);
2096
2097#ifdef CONFIG_DEBUG_FS
2098struct dentry *mce_get_debugfs_dir(void)
2099{
2100	static struct dentry *dmce;
2101
2102	if (!dmce)
2103		dmce = debugfs_create_dir("mce", NULL);
2104
2105	return dmce;
2106}
2107
2108static void mce_reset(void)
2109{
2110	cpu_missing = 0;
2111	atomic_set(&mce_fake_paniced, 0);
2112	atomic_set(&mce_executing, 0);
2113	atomic_set(&mce_callin, 0);
2114	atomic_set(&global_nwo, 0);
2115}
2116
2117static int fake_panic_get(void *data, u64 *val)
2118{
2119	*val = fake_panic;
2120	return 0;
2121}
2122
2123static int fake_panic_set(void *data, u64 val)
2124{
2125	mce_reset();
2126	fake_panic = val;
2127	return 0;
2128}
2129
2130DEFINE_SIMPLE_ATTRIBUTE(fake_panic_fops, fake_panic_get,
2131			fake_panic_set, "%llu\n");
2132
2133static int __init mcheck_debugfs_init(void)
2134{
2135	struct dentry *dmce, *ffake_panic;
2136
2137	dmce = mce_get_debugfs_dir();
2138	if (!dmce)
2139		return -ENOMEM;
2140	ffake_panic = debugfs_create_file("fake_panic", 0444, dmce, NULL,
2141					  &fake_panic_fops);
2142	if (!ffake_panic)
2143		return -ENOMEM;
2144
2145	return 0;
2146}
2147late_initcall(mcheck_debugfs_init);
2148#endif
2149