mce.c revision a3301b751b19f0efbafddc4034f8e7ce6bf3007b
1/*
2 * Machine check handler.
3 *
4 * K8 parts Copyright 2002,2003 Andi Kleen, SuSE Labs.
5 * Rest from unknown author(s).
6 * 2004 Andi Kleen. Rewrote most of it.
7 * Copyright 2008 Intel Corporation
8 * Author: Andi Kleen
9 */
10#include <linux/thread_info.h>
11#include <linux/capability.h>
12#include <linux/miscdevice.h>
13#include <linux/ratelimit.h>
14#include <linux/kallsyms.h>
15#include <linux/rcupdate.h>
16#include <linux/kobject.h>
17#include <linux/uaccess.h>
18#include <linux/kdebug.h>
19#include <linux/kernel.h>
20#include <linux/percpu.h>
21#include <linux/string.h>
22#include <linux/device.h>
23#include <linux/syscore_ops.h>
24#include <linux/delay.h>
25#include <linux/ctype.h>
26#include <linux/sched.h>
27#include <linux/sysfs.h>
28#include <linux/types.h>
29#include <linux/slab.h>
30#include <linux/init.h>
31#include <linux/kmod.h>
32#include <linux/poll.h>
33#include <linux/nmi.h>
34#include <linux/cpu.h>
35#include <linux/smp.h>
36#include <linux/fs.h>
37#include <linux/mm.h>
38#include <linux/debugfs.h>
39#include <linux/irq_work.h>
40#include <linux/export.h>
41
42#include <asm/processor.h>
43#include <asm/mce.h>
44#include <asm/msr.h>
45
46#include "mce-internal.h"
47
48static DEFINE_MUTEX(mce_chrdev_read_mutex);
49
50#define rcu_dereference_check_mce(p) \
51	rcu_dereference_index_check((p), \
52			      rcu_read_lock_sched_held() || \
53			      lockdep_is_held(&mce_chrdev_read_mutex))
54
55#define CREATE_TRACE_POINTS
56#include <trace/events/mce.h>
57
58int mce_disabled __read_mostly;
59
60#define MISC_MCELOG_MINOR	227
61
62#define SPINUNIT 100	/* 100ns */
63
64atomic_t mce_entry;
65
66DEFINE_PER_CPU(unsigned, mce_exception_count);
67
68/*
69 * Tolerant levels:
70 *   0: always panic on uncorrected errors, log corrected errors
71 *   1: panic or SIGBUS on uncorrected errors, log corrected errors
72 *   2: SIGBUS or log uncorrected errors (if possible), log corrected errors
73 *   3: never panic or SIGBUS, log all errors (for testing only)
74 */
75static int			tolerant		__read_mostly = 1;
76static int			banks			__read_mostly;
77static int			rip_msr			__read_mostly;
78static int			mce_bootlog		__read_mostly = -1;
79static int			monarch_timeout		__read_mostly = -1;
80static int			mce_panic_timeout	__read_mostly;
81static int			mce_dont_log_ce		__read_mostly;
82int				mce_cmci_disabled	__read_mostly;
83int				mce_ignore_ce		__read_mostly;
84int				mce_ser			__read_mostly;
85
86struct mce_bank                *mce_banks		__read_mostly;
87
88/* User mode helper program triggered by machine check event */
89static unsigned long		mce_need_notify;
90static char			mce_helper[128];
91static char			*mce_helper_argv[2] = { mce_helper, NULL };
92
93static DECLARE_WAIT_QUEUE_HEAD(mce_chrdev_wait);
94
95static DEFINE_PER_CPU(struct mce, mces_seen);
96static int			cpu_missing;
97
98/* MCA banks polled by the period polling timer for corrected events */
99DEFINE_PER_CPU(mce_banks_t, mce_poll_banks) = {
100	[0 ... BITS_TO_LONGS(MAX_NR_BANKS)-1] = ~0UL
101};
102
103static DEFINE_PER_CPU(struct work_struct, mce_work);
104
105/*
106 * CPU/chipset specific EDAC code can register a notifier call here to print
107 * MCE errors in a human-readable form.
108 */
109ATOMIC_NOTIFIER_HEAD(x86_mce_decoder_chain);
110
111/* Do initial initialization of a struct mce */
112void mce_setup(struct mce *m)
113{
114	memset(m, 0, sizeof(struct mce));
115	m->cpu = m->extcpu = smp_processor_id();
116	rdtscll(m->tsc);
117	/* We hope get_seconds stays lockless */
118	m->time = get_seconds();
119	m->cpuvendor = boot_cpu_data.x86_vendor;
120	m->cpuid = cpuid_eax(1);
121	m->socketid = cpu_data(m->extcpu).phys_proc_id;
122	m->apicid = cpu_data(m->extcpu).initial_apicid;
123	rdmsrl(MSR_IA32_MCG_CAP, m->mcgcap);
124}
125
126DEFINE_PER_CPU(struct mce, injectm);
127EXPORT_PER_CPU_SYMBOL_GPL(injectm);
128
129/*
130 * Lockless MCE logging infrastructure.
131 * This avoids deadlocks on printk locks without having to break locks. Also
132 * separate MCEs from kernel messages to avoid bogus bug reports.
133 */
134
135static struct mce_log mcelog = {
136	.signature	= MCE_LOG_SIGNATURE,
137	.len		= MCE_LOG_LEN,
138	.recordlen	= sizeof(struct mce),
139};
140
141void mce_log(struct mce *mce)
142{
143	unsigned next, entry;
144	int ret = 0;
145
146	/* Emit the trace record: */
147	trace_mce_record(mce);
148
149	ret = atomic_notifier_call_chain(&x86_mce_decoder_chain, 0, mce);
150	if (ret == NOTIFY_STOP)
151		return;
152
153	mce->finished = 0;
154	wmb();
155	for (;;) {
156		entry = rcu_dereference_check_mce(mcelog.next);
157		for (;;) {
158
159			/*
160			 * When the buffer fills up discard new entries.
161			 * Assume that the earlier errors are the more
162			 * interesting ones:
163			 */
164			if (entry >= MCE_LOG_LEN) {
165				set_bit(MCE_OVERFLOW,
166					(unsigned long *)&mcelog.flags);
167				return;
168			}
169			/* Old left over entry. Skip: */
170			if (mcelog.entry[entry].finished) {
171				entry++;
172				continue;
173			}
174			break;
175		}
176		smp_rmb();
177		next = entry + 1;
178		if (cmpxchg(&mcelog.next, entry, next) == entry)
179			break;
180	}
181	memcpy(mcelog.entry + entry, mce, sizeof(struct mce));
182	wmb();
183	mcelog.entry[entry].finished = 1;
184	wmb();
185
186	mce->finished = 1;
187	set_bit(0, &mce_need_notify);
188}
189
190static void drain_mcelog_buffer(void)
191{
192	unsigned int next, i, prev = 0;
193
194	next = rcu_dereference_check_mce(mcelog.next);
195
196	do {
197		struct mce *m;
198
199		/* drain what was logged during boot */
200		for (i = prev; i < next; i++) {
201			unsigned long start = jiffies;
202			unsigned retries = 1;
203
204			m = &mcelog.entry[i];
205
206			while (!m->finished) {
207				if (time_after_eq(jiffies, start + 2*retries))
208					retries++;
209
210				cpu_relax();
211
212				if (!m->finished && retries >= 4) {
213					pr_err("MCE: skipping error being logged currently!\n");
214					break;
215				}
216			}
217			smp_rmb();
218			atomic_notifier_call_chain(&x86_mce_decoder_chain, 0, m);
219		}
220
221		memset(mcelog.entry + prev, 0, (next - prev) * sizeof(*m));
222		prev = next;
223		next = cmpxchg(&mcelog.next, prev, 0);
224	} while (next != prev);
225}
226
227
228void mce_register_decode_chain(struct notifier_block *nb)
229{
230	atomic_notifier_chain_register(&x86_mce_decoder_chain, nb);
231	drain_mcelog_buffer();
232}
233EXPORT_SYMBOL_GPL(mce_register_decode_chain);
234
235void mce_unregister_decode_chain(struct notifier_block *nb)
236{
237	atomic_notifier_chain_unregister(&x86_mce_decoder_chain, nb);
238}
239EXPORT_SYMBOL_GPL(mce_unregister_decode_chain);
240
241static void print_mce(struct mce *m)
242{
243	int ret = 0;
244
245	pr_emerg(HW_ERR "CPU %d: Machine Check Exception: %Lx Bank %d: %016Lx\n",
246	       m->extcpu, m->mcgstatus, m->bank, m->status);
247
248	if (m->ip) {
249		pr_emerg(HW_ERR "RIP%s %02x:<%016Lx> ",
250			!(m->mcgstatus & MCG_STATUS_EIPV) ? " !INEXACT!" : "",
251				m->cs, m->ip);
252
253		if (m->cs == __KERNEL_CS)
254			print_symbol("{%s}", m->ip);
255		pr_cont("\n");
256	}
257
258	pr_emerg(HW_ERR "TSC %llx ", m->tsc);
259	if (m->addr)
260		pr_cont("ADDR %llx ", m->addr);
261	if (m->misc)
262		pr_cont("MISC %llx ", m->misc);
263
264	pr_cont("\n");
265	/*
266	 * Note this output is parsed by external tools and old fields
267	 * should not be changed.
268	 */
269	pr_emerg(HW_ERR "PROCESSOR %u:%x TIME %llu SOCKET %u APIC %x microcode %x\n",
270		m->cpuvendor, m->cpuid, m->time, m->socketid, m->apicid,
271		cpu_data(m->extcpu).microcode);
272
273	/*
274	 * Print out human-readable details about the MCE error,
275	 * (if the CPU has an implementation for that)
276	 */
277	ret = atomic_notifier_call_chain(&x86_mce_decoder_chain, 0, m);
278	if (ret == NOTIFY_STOP)
279		return;
280
281	pr_emerg_ratelimited(HW_ERR "Run the above through 'mcelog --ascii'\n");
282}
283
284#define PANIC_TIMEOUT 5 /* 5 seconds */
285
286static atomic_t mce_paniced;
287
288static int fake_panic;
289static atomic_t mce_fake_paniced;
290
291/* Panic in progress. Enable interrupts and wait for final IPI */
292static void wait_for_panic(void)
293{
294	long timeout = PANIC_TIMEOUT*USEC_PER_SEC;
295
296	preempt_disable();
297	local_irq_enable();
298	while (timeout-- > 0)
299		udelay(1);
300	if (panic_timeout == 0)
301		panic_timeout = mce_panic_timeout;
302	panic("Panicing machine check CPU died");
303}
304
305static void mce_panic(char *msg, struct mce *final, char *exp)
306{
307	int i, apei_err = 0;
308
309	if (!fake_panic) {
310		/*
311		 * Make sure only one CPU runs in machine check panic
312		 */
313		if (atomic_inc_return(&mce_paniced) > 1)
314			wait_for_panic();
315		barrier();
316
317		bust_spinlocks(1);
318		console_verbose();
319	} else {
320		/* Don't log too much for fake panic */
321		if (atomic_inc_return(&mce_fake_paniced) > 1)
322			return;
323	}
324	/* First print corrected ones that are still unlogged */
325	for (i = 0; i < MCE_LOG_LEN; i++) {
326		struct mce *m = &mcelog.entry[i];
327		if (!(m->status & MCI_STATUS_VAL))
328			continue;
329		if (!(m->status & MCI_STATUS_UC)) {
330			print_mce(m);
331			if (!apei_err)
332				apei_err = apei_write_mce(m);
333		}
334	}
335	/* Now print uncorrected but with the final one last */
336	for (i = 0; i < MCE_LOG_LEN; i++) {
337		struct mce *m = &mcelog.entry[i];
338		if (!(m->status & MCI_STATUS_VAL))
339			continue;
340		if (!(m->status & MCI_STATUS_UC))
341			continue;
342		if (!final || memcmp(m, final, sizeof(struct mce))) {
343			print_mce(m);
344			if (!apei_err)
345				apei_err = apei_write_mce(m);
346		}
347	}
348	if (final) {
349		print_mce(final);
350		if (!apei_err)
351			apei_err = apei_write_mce(final);
352	}
353	if (cpu_missing)
354		pr_emerg(HW_ERR "Some CPUs didn't answer in synchronization\n");
355	if (exp)
356		pr_emerg(HW_ERR "Machine check: %s\n", exp);
357	if (!fake_panic) {
358		if (panic_timeout == 0)
359			panic_timeout = mce_panic_timeout;
360		panic(msg);
361	} else
362		pr_emerg(HW_ERR "Fake kernel panic: %s\n", msg);
363}
364
365/* Support code for software error injection */
366
367static int msr_to_offset(u32 msr)
368{
369	unsigned bank = __this_cpu_read(injectm.bank);
370
371	if (msr == rip_msr)
372		return offsetof(struct mce, ip);
373	if (msr == MSR_IA32_MCx_STATUS(bank))
374		return offsetof(struct mce, status);
375	if (msr == MSR_IA32_MCx_ADDR(bank))
376		return offsetof(struct mce, addr);
377	if (msr == MSR_IA32_MCx_MISC(bank))
378		return offsetof(struct mce, misc);
379	if (msr == MSR_IA32_MCG_STATUS)
380		return offsetof(struct mce, mcgstatus);
381	return -1;
382}
383
384/* MSR access wrappers used for error injection */
385static u64 mce_rdmsrl(u32 msr)
386{
387	u64 v;
388
389	if (__this_cpu_read(injectm.finished)) {
390		int offset = msr_to_offset(msr);
391
392		if (offset < 0)
393			return 0;
394		return *(u64 *)((char *)&__get_cpu_var(injectm) + offset);
395	}
396
397	if (rdmsrl_safe(msr, &v)) {
398		WARN_ONCE(1, "mce: Unable to read msr %d!\n", msr);
399		/*
400		 * Return zero in case the access faulted. This should
401		 * not happen normally but can happen if the CPU does
402		 * something weird, or if the code is buggy.
403		 */
404		v = 0;
405	}
406
407	return v;
408}
409
410static void mce_wrmsrl(u32 msr, u64 v)
411{
412	if (__this_cpu_read(injectm.finished)) {
413		int offset = msr_to_offset(msr);
414
415		if (offset >= 0)
416			*(u64 *)((char *)&__get_cpu_var(injectm) + offset) = v;
417		return;
418	}
419	wrmsrl(msr, v);
420}
421
422/*
423 * Collect all global (w.r.t. this processor) status about this machine
424 * check into our "mce" struct so that we can use it later to assess
425 * the severity of the problem as we read per-bank specific details.
426 */
427static inline void mce_gather_info(struct mce *m, struct pt_regs *regs)
428{
429	mce_setup(m);
430
431	m->mcgstatus = mce_rdmsrl(MSR_IA32_MCG_STATUS);
432	if (regs) {
433		/*
434		 * Get the address of the instruction at the time of
435		 * the machine check error.
436		 */
437		if (m->mcgstatus & (MCG_STATUS_RIPV|MCG_STATUS_EIPV)) {
438			m->ip = regs->ip;
439			m->cs = regs->cs;
440		}
441		/* Use accurate RIP reporting if available. */
442		if (rip_msr)
443			m->ip = mce_rdmsrl(rip_msr);
444	}
445}
446
447/*
448 * Simple lockless ring to communicate PFNs from the exception handler with the
449 * process context work function. This is vastly simplified because there's
450 * only a single reader and a single writer.
451 */
452#define MCE_RING_SIZE 16	/* we use one entry less */
453
454struct mce_ring {
455	unsigned short start;
456	unsigned short end;
457	unsigned long ring[MCE_RING_SIZE];
458};
459static DEFINE_PER_CPU(struct mce_ring, mce_ring);
460
461/* Runs with CPU affinity in workqueue */
462static int mce_ring_empty(void)
463{
464	struct mce_ring *r = &__get_cpu_var(mce_ring);
465
466	return r->start == r->end;
467}
468
469static int mce_ring_get(unsigned long *pfn)
470{
471	struct mce_ring *r;
472	int ret = 0;
473
474	*pfn = 0;
475	get_cpu();
476	r = &__get_cpu_var(mce_ring);
477	if (r->start == r->end)
478		goto out;
479	*pfn = r->ring[r->start];
480	r->start = (r->start + 1) % MCE_RING_SIZE;
481	ret = 1;
482out:
483	put_cpu();
484	return ret;
485}
486
487/* Always runs in MCE context with preempt off */
488static int mce_ring_add(unsigned long pfn)
489{
490	struct mce_ring *r = &__get_cpu_var(mce_ring);
491	unsigned next;
492
493	next = (r->end + 1) % MCE_RING_SIZE;
494	if (next == r->start)
495		return -1;
496	r->ring[r->end] = pfn;
497	wmb();
498	r->end = next;
499	return 0;
500}
501
502int mce_available(struct cpuinfo_x86 *c)
503{
504	if (mce_disabled)
505		return 0;
506	return cpu_has(c, X86_FEATURE_MCE) && cpu_has(c, X86_FEATURE_MCA);
507}
508
509static void mce_schedule_work(void)
510{
511	if (!mce_ring_empty()) {
512		struct work_struct *work = &__get_cpu_var(mce_work);
513		if (!work_pending(work))
514			schedule_work(work);
515	}
516}
517
518DEFINE_PER_CPU(struct irq_work, mce_irq_work);
519
520static void mce_irq_work_cb(struct irq_work *entry)
521{
522	mce_notify_irq();
523	mce_schedule_work();
524}
525
526static void mce_report_event(struct pt_regs *regs)
527{
528	if (regs->flags & (X86_VM_MASK|X86_EFLAGS_IF)) {
529		mce_notify_irq();
530		/*
531		 * Triggering the work queue here is just an insurance
532		 * policy in case the syscall exit notify handler
533		 * doesn't run soon enough or ends up running on the
534		 * wrong CPU (can happen when audit sleeps)
535		 */
536		mce_schedule_work();
537		return;
538	}
539
540	irq_work_queue(&__get_cpu_var(mce_irq_work));
541}
542
543DEFINE_PER_CPU(unsigned, mce_poll_count);
544
545/*
546 * Poll for corrected events or events that happened before reset.
547 * Those are just logged through /dev/mcelog.
548 *
549 * This is executed in standard interrupt context.
550 *
551 * Note: spec recommends to panic for fatal unsignalled
552 * errors here. However this would be quite problematic --
553 * we would need to reimplement the Monarch handling and
554 * it would mess up the exclusion between exception handler
555 * and poll hander -- * so we skip this for now.
556 * These cases should not happen anyways, or only when the CPU
557 * is already totally * confused. In this case it's likely it will
558 * not fully execute the machine check handler either.
559 */
560void machine_check_poll(enum mcp_flags flags, mce_banks_t *b)
561{
562	struct mce m;
563	int i;
564
565	percpu_inc(mce_poll_count);
566
567	mce_gather_info(&m, NULL);
568
569	for (i = 0; i < banks; i++) {
570		if (!mce_banks[i].ctl || !test_bit(i, *b))
571			continue;
572
573		m.misc = 0;
574		m.addr = 0;
575		m.bank = i;
576		m.tsc = 0;
577
578		barrier();
579		m.status = mce_rdmsrl(MSR_IA32_MCx_STATUS(i));
580		if (!(m.status & MCI_STATUS_VAL))
581			continue;
582
583		/*
584		 * Uncorrected or signalled events are handled by the exception
585		 * handler when it is enabled, so don't process those here.
586		 *
587		 * TBD do the same check for MCI_STATUS_EN here?
588		 */
589		if (!(flags & MCP_UC) &&
590		    (m.status & (mce_ser ? MCI_STATUS_S : MCI_STATUS_UC)))
591			continue;
592
593		if (m.status & MCI_STATUS_MISCV)
594			m.misc = mce_rdmsrl(MSR_IA32_MCx_MISC(i));
595		if (m.status & MCI_STATUS_ADDRV)
596			m.addr = mce_rdmsrl(MSR_IA32_MCx_ADDR(i));
597
598		if (!(flags & MCP_TIMESTAMP))
599			m.tsc = 0;
600		/*
601		 * Don't get the IP here because it's unlikely to
602		 * have anything to do with the actual error location.
603		 */
604		if (!(flags & MCP_DONTLOG) && !mce_dont_log_ce)
605			mce_log(&m);
606
607		/*
608		 * Clear state for this bank.
609		 */
610		mce_wrmsrl(MSR_IA32_MCx_STATUS(i), 0);
611	}
612
613	/*
614	 * Don't clear MCG_STATUS here because it's only defined for
615	 * exceptions.
616	 */
617
618	sync_core();
619}
620EXPORT_SYMBOL_GPL(machine_check_poll);
621
622/*
623 * Do a quick check if any of the events requires a panic.
624 * This decides if we keep the events around or clear them.
625 */
626static int mce_no_way_out(struct mce *m, char **msg)
627{
628	int i;
629
630	for (i = 0; i < banks; i++) {
631		m->status = mce_rdmsrl(MSR_IA32_MCx_STATUS(i));
632		if (mce_severity(m, tolerant, msg) >= MCE_PANIC_SEVERITY)
633			return 1;
634	}
635	return 0;
636}
637
638/*
639 * Variable to establish order between CPUs while scanning.
640 * Each CPU spins initially until executing is equal its number.
641 */
642static atomic_t mce_executing;
643
644/*
645 * Defines order of CPUs on entry. First CPU becomes Monarch.
646 */
647static atomic_t mce_callin;
648
649/*
650 * Check if a timeout waiting for other CPUs happened.
651 */
652static int mce_timed_out(u64 *t)
653{
654	/*
655	 * The others already did panic for some reason.
656	 * Bail out like in a timeout.
657	 * rmb() to tell the compiler that system_state
658	 * might have been modified by someone else.
659	 */
660	rmb();
661	if (atomic_read(&mce_paniced))
662		wait_for_panic();
663	if (!monarch_timeout)
664		goto out;
665	if ((s64)*t < SPINUNIT) {
666		/* CHECKME: Make panic default for 1 too? */
667		if (tolerant < 1)
668			mce_panic("Timeout synchronizing machine check over CPUs",
669				  NULL, NULL);
670		cpu_missing = 1;
671		return 1;
672	}
673	*t -= SPINUNIT;
674out:
675	touch_nmi_watchdog();
676	return 0;
677}
678
679/*
680 * The Monarch's reign.  The Monarch is the CPU who entered
681 * the machine check handler first. It waits for the others to
682 * raise the exception too and then grades them. When any
683 * error is fatal panic. Only then let the others continue.
684 *
685 * The other CPUs entering the MCE handler will be controlled by the
686 * Monarch. They are called Subjects.
687 *
688 * This way we prevent any potential data corruption in a unrecoverable case
689 * and also makes sure always all CPU's errors are examined.
690 *
691 * Also this detects the case of a machine check event coming from outer
692 * space (not detected by any CPUs) In this case some external agent wants
693 * us to shut down, so panic too.
694 *
695 * The other CPUs might still decide to panic if the handler happens
696 * in a unrecoverable place, but in this case the system is in a semi-stable
697 * state and won't corrupt anything by itself. It's ok to let the others
698 * continue for a bit first.
699 *
700 * All the spin loops have timeouts; when a timeout happens a CPU
701 * typically elects itself to be Monarch.
702 */
703static void mce_reign(void)
704{
705	int cpu;
706	struct mce *m = NULL;
707	int global_worst = 0;
708	char *msg = NULL;
709	char *nmsg = NULL;
710
711	/*
712	 * This CPU is the Monarch and the other CPUs have run
713	 * through their handlers.
714	 * Grade the severity of the errors of all the CPUs.
715	 */
716	for_each_possible_cpu(cpu) {
717		int severity = mce_severity(&per_cpu(mces_seen, cpu), tolerant,
718					    &nmsg);
719		if (severity > global_worst) {
720			msg = nmsg;
721			global_worst = severity;
722			m = &per_cpu(mces_seen, cpu);
723		}
724	}
725
726	/*
727	 * Cannot recover? Panic here then.
728	 * This dumps all the mces in the log buffer and stops the
729	 * other CPUs.
730	 */
731	if (m && global_worst >= MCE_PANIC_SEVERITY && tolerant < 3)
732		mce_panic("Fatal Machine check", m, msg);
733
734	/*
735	 * For UC somewhere we let the CPU who detects it handle it.
736	 * Also must let continue the others, otherwise the handling
737	 * CPU could deadlock on a lock.
738	 */
739
740	/*
741	 * No machine check event found. Must be some external
742	 * source or one CPU is hung. Panic.
743	 */
744	if (global_worst <= MCE_KEEP_SEVERITY && tolerant < 3)
745		mce_panic("Machine check from unknown source", NULL, NULL);
746
747	/*
748	 * Now clear all the mces_seen so that they don't reappear on
749	 * the next mce.
750	 */
751	for_each_possible_cpu(cpu)
752		memset(&per_cpu(mces_seen, cpu), 0, sizeof(struct mce));
753}
754
755static atomic_t global_nwo;
756
757/*
758 * Start of Monarch synchronization. This waits until all CPUs have
759 * entered the exception handler and then determines if any of them
760 * saw a fatal event that requires panic. Then it executes them
761 * in the entry order.
762 * TBD double check parallel CPU hotunplug
763 */
764static int mce_start(int *no_way_out)
765{
766	int order;
767	int cpus = num_online_cpus();
768	u64 timeout = (u64)monarch_timeout * NSEC_PER_USEC;
769
770	if (!timeout)
771		return -1;
772
773	atomic_add(*no_way_out, &global_nwo);
774	/*
775	 * global_nwo should be updated before mce_callin
776	 */
777	smp_wmb();
778	order = atomic_inc_return(&mce_callin);
779
780	/*
781	 * Wait for everyone.
782	 */
783	while (atomic_read(&mce_callin) != cpus) {
784		if (mce_timed_out(&timeout)) {
785			atomic_set(&global_nwo, 0);
786			return -1;
787		}
788		ndelay(SPINUNIT);
789	}
790
791	/*
792	 * mce_callin should be read before global_nwo
793	 */
794	smp_rmb();
795
796	if (order == 1) {
797		/*
798		 * Monarch: Starts executing now, the others wait.
799		 */
800		atomic_set(&mce_executing, 1);
801	} else {
802		/*
803		 * Subject: Now start the scanning loop one by one in
804		 * the original callin order.
805		 * This way when there are any shared banks it will be
806		 * only seen by one CPU before cleared, avoiding duplicates.
807		 */
808		while (atomic_read(&mce_executing) < order) {
809			if (mce_timed_out(&timeout)) {
810				atomic_set(&global_nwo, 0);
811				return -1;
812			}
813			ndelay(SPINUNIT);
814		}
815	}
816
817	/*
818	 * Cache the global no_way_out state.
819	 */
820	*no_way_out = atomic_read(&global_nwo);
821
822	return order;
823}
824
825/*
826 * Synchronize between CPUs after main scanning loop.
827 * This invokes the bulk of the Monarch processing.
828 */
829static int mce_end(int order)
830{
831	int ret = -1;
832	u64 timeout = (u64)monarch_timeout * NSEC_PER_USEC;
833
834	if (!timeout)
835		goto reset;
836	if (order < 0)
837		goto reset;
838
839	/*
840	 * Allow others to run.
841	 */
842	atomic_inc(&mce_executing);
843
844	if (order == 1) {
845		/* CHECKME: Can this race with a parallel hotplug? */
846		int cpus = num_online_cpus();
847
848		/*
849		 * Monarch: Wait for everyone to go through their scanning
850		 * loops.
851		 */
852		while (atomic_read(&mce_executing) <= cpus) {
853			if (mce_timed_out(&timeout))
854				goto reset;
855			ndelay(SPINUNIT);
856		}
857
858		mce_reign();
859		barrier();
860		ret = 0;
861	} else {
862		/*
863		 * Subject: Wait for Monarch to finish.
864		 */
865		while (atomic_read(&mce_executing) != 0) {
866			if (mce_timed_out(&timeout))
867				goto reset;
868			ndelay(SPINUNIT);
869		}
870
871		/*
872		 * Don't reset anything. That's done by the Monarch.
873		 */
874		return 0;
875	}
876
877	/*
878	 * Reset all global state.
879	 */
880reset:
881	atomic_set(&global_nwo, 0);
882	atomic_set(&mce_callin, 0);
883	barrier();
884
885	/*
886	 * Let others run again.
887	 */
888	atomic_set(&mce_executing, 0);
889	return ret;
890}
891
892/*
893 * Check if the address reported by the CPU is in a format we can parse.
894 * It would be possible to add code for most other cases, but all would
895 * be somewhat complicated (e.g. segment offset would require an instruction
896 * parser). So only support physical addresses up to page granuality for now.
897 */
898static int mce_usable_address(struct mce *m)
899{
900	if (!(m->status & MCI_STATUS_MISCV) || !(m->status & MCI_STATUS_ADDRV))
901		return 0;
902	if (MCI_MISC_ADDR_LSB(m->misc) > PAGE_SHIFT)
903		return 0;
904	if (MCI_MISC_ADDR_MODE(m->misc) != MCI_MISC_ADDR_PHYS)
905		return 0;
906	return 1;
907}
908
909static void mce_clear_state(unsigned long *toclear)
910{
911	int i;
912
913	for (i = 0; i < banks; i++) {
914		if (test_bit(i, toclear))
915			mce_wrmsrl(MSR_IA32_MCx_STATUS(i), 0);
916	}
917}
918
919/*
920 * The actual machine check handler. This only handles real
921 * exceptions when something got corrupted coming in through int 18.
922 *
923 * This is executed in NMI context not subject to normal locking rules. This
924 * implies that most kernel services cannot be safely used. Don't even
925 * think about putting a printk in there!
926 *
927 * On Intel systems this is entered on all CPUs in parallel through
928 * MCE broadcast. However some CPUs might be broken beyond repair,
929 * so be always careful when synchronizing with others.
930 */
931void do_machine_check(struct pt_regs *regs, long error_code)
932{
933	struct mce m, *final;
934	int i;
935	int worst = 0;
936	int severity;
937	/*
938	 * Establish sequential order between the CPUs entering the machine
939	 * check handler.
940	 */
941	int order;
942	/*
943	 * If no_way_out gets set, there is no safe way to recover from this
944	 * MCE.  If tolerant is cranked up, we'll try anyway.
945	 */
946	int no_way_out = 0;
947	/*
948	 * If kill_it gets set, there might be a way to recover from this
949	 * error.
950	 */
951	int kill_it = 0;
952	DECLARE_BITMAP(toclear, MAX_NR_BANKS);
953	char *msg = "Unknown";
954
955	atomic_inc(&mce_entry);
956
957	percpu_inc(mce_exception_count);
958
959	if (!banks)
960		goto out;
961
962	mce_gather_info(&m, regs);
963
964	final = &__get_cpu_var(mces_seen);
965	*final = m;
966
967	no_way_out = mce_no_way_out(&m, &msg);
968
969	barrier();
970
971	/*
972	 * When no restart IP must always kill or panic.
973	 */
974	if (!(m.mcgstatus & MCG_STATUS_RIPV))
975		kill_it = 1;
976
977	/*
978	 * Go through all the banks in exclusion of the other CPUs.
979	 * This way we don't report duplicated events on shared banks
980	 * because the first one to see it will clear it.
981	 */
982	order = mce_start(&no_way_out);
983	for (i = 0; i < banks; i++) {
984		__clear_bit(i, toclear);
985		if (!mce_banks[i].ctl)
986			continue;
987
988		m.misc = 0;
989		m.addr = 0;
990		m.bank = i;
991
992		m.status = mce_rdmsrl(MSR_IA32_MCx_STATUS(i));
993		if ((m.status & MCI_STATUS_VAL) == 0)
994			continue;
995
996		/*
997		 * Non uncorrected or non signaled errors are handled by
998		 * machine_check_poll. Leave them alone, unless this panics.
999		 */
1000		if (!(m.status & (mce_ser ? MCI_STATUS_S : MCI_STATUS_UC)) &&
1001			!no_way_out)
1002			continue;
1003
1004		/*
1005		 * Set taint even when machine check was not enabled.
1006		 */
1007		add_taint(TAINT_MACHINE_CHECK);
1008
1009		severity = mce_severity(&m, tolerant, NULL);
1010
1011		/*
1012		 * When machine check was for corrected handler don't touch,
1013		 * unless we're panicing.
1014		 */
1015		if (severity == MCE_KEEP_SEVERITY && !no_way_out)
1016			continue;
1017		__set_bit(i, toclear);
1018		if (severity == MCE_NO_SEVERITY) {
1019			/*
1020			 * Machine check event was not enabled. Clear, but
1021			 * ignore.
1022			 */
1023			continue;
1024		}
1025
1026		/*
1027		 * Kill on action required.
1028		 */
1029		if (severity == MCE_AR_SEVERITY)
1030			kill_it = 1;
1031
1032		if (m.status & MCI_STATUS_MISCV)
1033			m.misc = mce_rdmsrl(MSR_IA32_MCx_MISC(i));
1034		if (m.status & MCI_STATUS_ADDRV)
1035			m.addr = mce_rdmsrl(MSR_IA32_MCx_ADDR(i));
1036
1037		/*
1038		 * Action optional error. Queue address for later processing.
1039		 * When the ring overflows we just ignore the AO error.
1040		 * RED-PEN add some logging mechanism when
1041		 * usable_address or mce_add_ring fails.
1042		 * RED-PEN don't ignore overflow for tolerant == 0
1043		 */
1044		if (severity == MCE_AO_SEVERITY && mce_usable_address(&m))
1045			mce_ring_add(m.addr >> PAGE_SHIFT);
1046
1047		mce_log(&m);
1048
1049		if (severity > worst) {
1050			*final = m;
1051			worst = severity;
1052		}
1053	}
1054
1055	if (!no_way_out)
1056		mce_clear_state(toclear);
1057
1058	/*
1059	 * Do most of the synchronization with other CPUs.
1060	 * When there's any problem use only local no_way_out state.
1061	 */
1062	if (mce_end(order) < 0)
1063		no_way_out = worst >= MCE_PANIC_SEVERITY;
1064
1065	/*
1066	 * If we have decided that we just CAN'T continue, and the user
1067	 * has not set tolerant to an insane level, give up and die.
1068	 *
1069	 * This is mainly used in the case when the system doesn't
1070	 * support MCE broadcasting or it has been disabled.
1071	 */
1072	if (no_way_out && tolerant < 3)
1073		mce_panic("Fatal machine check on current CPU", final, msg);
1074
1075	/*
1076	 * If the error seems to be unrecoverable, something should be
1077	 * done.  Try to kill as little as possible.  If we can kill just
1078	 * one task, do that.  If the user has set the tolerance very
1079	 * high, don't try to do anything at all.
1080	 */
1081
1082	if (kill_it && tolerant < 3)
1083		force_sig(SIGBUS, current);
1084
1085	/* notify userspace ASAP */
1086	set_thread_flag(TIF_MCE_NOTIFY);
1087
1088	if (worst > 0)
1089		mce_report_event(regs);
1090	mce_wrmsrl(MSR_IA32_MCG_STATUS, 0);
1091out:
1092	atomic_dec(&mce_entry);
1093	sync_core();
1094}
1095EXPORT_SYMBOL_GPL(do_machine_check);
1096
1097/* dummy to break dependency. actual code is in mm/memory-failure.c */
1098void __attribute__((weak)) memory_failure(unsigned long pfn, int vector)
1099{
1100	printk(KERN_ERR "Action optional memory failure at %lx ignored\n", pfn);
1101}
1102
1103/*
1104 * Called after mce notification in process context. This code
1105 * is allowed to sleep. Call the high level VM handler to process
1106 * any corrupted pages.
1107 * Assume that the work queue code only calls this one at a time
1108 * per CPU.
1109 * Note we don't disable preemption, so this code might run on the wrong
1110 * CPU. In this case the event is picked up by the scheduled work queue.
1111 * This is merely a fast path to expedite processing in some common
1112 * cases.
1113 */
1114void mce_notify_process(void)
1115{
1116	unsigned long pfn;
1117	mce_notify_irq();
1118	while (mce_ring_get(&pfn))
1119		memory_failure(pfn, MCE_VECTOR);
1120}
1121
1122static void mce_process_work(struct work_struct *dummy)
1123{
1124	mce_notify_process();
1125}
1126
1127#ifdef CONFIG_X86_MCE_INTEL
1128/***
1129 * mce_log_therm_throt_event - Logs the thermal throttling event to mcelog
1130 * @cpu: The CPU on which the event occurred.
1131 * @status: Event status information
1132 *
1133 * This function should be called by the thermal interrupt after the
1134 * event has been processed and the decision was made to log the event
1135 * further.
1136 *
1137 * The status parameter will be saved to the 'status' field of 'struct mce'
1138 * and historically has been the register value of the
1139 * MSR_IA32_THERMAL_STATUS (Intel) msr.
1140 */
1141void mce_log_therm_throt_event(__u64 status)
1142{
1143	struct mce m;
1144
1145	mce_setup(&m);
1146	m.bank = MCE_THERMAL_BANK;
1147	m.status = status;
1148	mce_log(&m);
1149}
1150#endif /* CONFIG_X86_MCE_INTEL */
1151
1152/*
1153 * Periodic polling timer for "silent" machine check errors.  If the
1154 * poller finds an MCE, poll 2x faster.  When the poller finds no more
1155 * errors, poll 2x slower (up to check_interval seconds).
1156 */
1157static int check_interval = 5 * 60; /* 5 minutes */
1158
1159static DEFINE_PER_CPU(int, mce_next_interval); /* in jiffies */
1160static DEFINE_PER_CPU(struct timer_list, mce_timer);
1161
1162static void mce_start_timer(unsigned long data)
1163{
1164	struct timer_list *t = &per_cpu(mce_timer, data);
1165	int *n;
1166
1167	WARN_ON(smp_processor_id() != data);
1168
1169	if (mce_available(__this_cpu_ptr(&cpu_info))) {
1170		machine_check_poll(MCP_TIMESTAMP,
1171				&__get_cpu_var(mce_poll_banks));
1172	}
1173
1174	/*
1175	 * Alert userspace if needed.  If we logged an MCE, reduce the
1176	 * polling interval, otherwise increase the polling interval.
1177	 */
1178	n = &__get_cpu_var(mce_next_interval);
1179	if (mce_notify_irq())
1180		*n = max(*n/2, HZ/100);
1181	else
1182		*n = min(*n*2, (int)round_jiffies_relative(check_interval*HZ));
1183
1184	t->expires = jiffies + *n;
1185	add_timer_on(t, smp_processor_id());
1186}
1187
1188/* Must not be called in IRQ context where del_timer_sync() can deadlock */
1189static void mce_timer_delete_all(void)
1190{
1191	int cpu;
1192
1193	for_each_online_cpu(cpu)
1194		del_timer_sync(&per_cpu(mce_timer, cpu));
1195}
1196
1197static void mce_do_trigger(struct work_struct *work)
1198{
1199	call_usermodehelper(mce_helper, mce_helper_argv, NULL, UMH_NO_WAIT);
1200}
1201
1202static DECLARE_WORK(mce_trigger_work, mce_do_trigger);
1203
1204/*
1205 * Notify the user(s) about new machine check events.
1206 * Can be called from interrupt context, but not from machine check/NMI
1207 * context.
1208 */
1209int mce_notify_irq(void)
1210{
1211	/* Not more than two messages every minute */
1212	static DEFINE_RATELIMIT_STATE(ratelimit, 60*HZ, 2);
1213
1214	clear_thread_flag(TIF_MCE_NOTIFY);
1215
1216	if (test_and_clear_bit(0, &mce_need_notify)) {
1217		/* wake processes polling /dev/mcelog */
1218		wake_up_interruptible(&mce_chrdev_wait);
1219
1220		/*
1221		 * There is no risk of missing notifications because
1222		 * work_pending is always cleared before the function is
1223		 * executed.
1224		 */
1225		if (mce_helper[0] && !work_pending(&mce_trigger_work))
1226			schedule_work(&mce_trigger_work);
1227
1228		if (__ratelimit(&ratelimit))
1229			pr_info(HW_ERR "Machine check events logged\n");
1230
1231		return 1;
1232	}
1233	return 0;
1234}
1235EXPORT_SYMBOL_GPL(mce_notify_irq);
1236
1237static int __cpuinit __mcheck_cpu_mce_banks_init(void)
1238{
1239	int i;
1240
1241	mce_banks = kzalloc(banks * sizeof(struct mce_bank), GFP_KERNEL);
1242	if (!mce_banks)
1243		return -ENOMEM;
1244	for (i = 0; i < banks; i++) {
1245		struct mce_bank *b = &mce_banks[i];
1246
1247		b->ctl = -1ULL;
1248		b->init = 1;
1249	}
1250	return 0;
1251}
1252
1253/*
1254 * Initialize Machine Checks for a CPU.
1255 */
1256static int __cpuinit __mcheck_cpu_cap_init(void)
1257{
1258	unsigned b;
1259	u64 cap;
1260
1261	rdmsrl(MSR_IA32_MCG_CAP, cap);
1262
1263	b = cap & MCG_BANKCNT_MASK;
1264	if (!banks)
1265		printk(KERN_INFO "mce: CPU supports %d MCE banks\n", b);
1266
1267	if (b > MAX_NR_BANKS) {
1268		printk(KERN_WARNING
1269		       "MCE: Using only %u machine check banks out of %u\n",
1270			MAX_NR_BANKS, b);
1271		b = MAX_NR_BANKS;
1272	}
1273
1274	/* Don't support asymmetric configurations today */
1275	WARN_ON(banks != 0 && b != banks);
1276	banks = b;
1277	if (!mce_banks) {
1278		int err = __mcheck_cpu_mce_banks_init();
1279
1280		if (err)
1281			return err;
1282	}
1283
1284	/* Use accurate RIP reporting if available. */
1285	if ((cap & MCG_EXT_P) && MCG_EXT_CNT(cap) >= 9)
1286		rip_msr = MSR_IA32_MCG_EIP;
1287
1288	if (cap & MCG_SER_P)
1289		mce_ser = 1;
1290
1291	return 0;
1292}
1293
1294static void __mcheck_cpu_init_generic(void)
1295{
1296	mce_banks_t all_banks;
1297	u64 cap;
1298	int i;
1299
1300	/*
1301	 * Log the machine checks left over from the previous reset.
1302	 */
1303	bitmap_fill(all_banks, MAX_NR_BANKS);
1304	machine_check_poll(MCP_UC|(!mce_bootlog ? MCP_DONTLOG : 0), &all_banks);
1305
1306	set_in_cr4(X86_CR4_MCE);
1307
1308	rdmsrl(MSR_IA32_MCG_CAP, cap);
1309	if (cap & MCG_CTL_P)
1310		wrmsr(MSR_IA32_MCG_CTL, 0xffffffff, 0xffffffff);
1311
1312	for (i = 0; i < banks; i++) {
1313		struct mce_bank *b = &mce_banks[i];
1314
1315		if (!b->init)
1316			continue;
1317		wrmsrl(MSR_IA32_MCx_CTL(i), b->ctl);
1318		wrmsrl(MSR_IA32_MCx_STATUS(i), 0);
1319	}
1320}
1321
1322/* Add per CPU specific workarounds here */
1323static int __cpuinit __mcheck_cpu_apply_quirks(struct cpuinfo_x86 *c)
1324{
1325	if (c->x86_vendor == X86_VENDOR_UNKNOWN) {
1326		pr_info("MCE: unknown CPU type - not enabling MCE support.\n");
1327		return -EOPNOTSUPP;
1328	}
1329
1330	/* This should be disabled by the BIOS, but isn't always */
1331	if (c->x86_vendor == X86_VENDOR_AMD) {
1332		if (c->x86 == 15 && banks > 4) {
1333			/*
1334			 * disable GART TBL walk error reporting, which
1335			 * trips off incorrectly with the IOMMU & 3ware
1336			 * & Cerberus:
1337			 */
1338			clear_bit(10, (unsigned long *)&mce_banks[4].ctl);
1339		}
1340		if (c->x86 <= 17 && mce_bootlog < 0) {
1341			/*
1342			 * Lots of broken BIOS around that don't clear them
1343			 * by default and leave crap in there. Don't log:
1344			 */
1345			mce_bootlog = 0;
1346		}
1347		/*
1348		 * Various K7s with broken bank 0 around. Always disable
1349		 * by default.
1350		 */
1351		 if (c->x86 == 6 && banks > 0)
1352			mce_banks[0].ctl = 0;
1353	}
1354
1355	if (c->x86_vendor == X86_VENDOR_INTEL) {
1356		/*
1357		 * SDM documents that on family 6 bank 0 should not be written
1358		 * because it aliases to another special BIOS controlled
1359		 * register.
1360		 * But it's not aliased anymore on model 0x1a+
1361		 * Don't ignore bank 0 completely because there could be a
1362		 * valid event later, merely don't write CTL0.
1363		 */
1364
1365		if (c->x86 == 6 && c->x86_model < 0x1A && banks > 0)
1366			mce_banks[0].init = 0;
1367
1368		/*
1369		 * All newer Intel systems support MCE broadcasting. Enable
1370		 * synchronization with a one second timeout.
1371		 */
1372		if ((c->x86 > 6 || (c->x86 == 6 && c->x86_model >= 0xe)) &&
1373			monarch_timeout < 0)
1374			monarch_timeout = USEC_PER_SEC;
1375
1376		/*
1377		 * There are also broken BIOSes on some Pentium M and
1378		 * earlier systems:
1379		 */
1380		if (c->x86 == 6 && c->x86_model <= 13 && mce_bootlog < 0)
1381			mce_bootlog = 0;
1382	}
1383	if (monarch_timeout < 0)
1384		monarch_timeout = 0;
1385	if (mce_bootlog != 0)
1386		mce_panic_timeout = 30;
1387
1388	return 0;
1389}
1390
1391static int __cpuinit __mcheck_cpu_ancient_init(struct cpuinfo_x86 *c)
1392{
1393	if (c->x86 != 5)
1394		return 0;
1395
1396	switch (c->x86_vendor) {
1397	case X86_VENDOR_INTEL:
1398		intel_p5_mcheck_init(c);
1399		return 1;
1400		break;
1401	case X86_VENDOR_CENTAUR:
1402		winchip_mcheck_init(c);
1403		return 1;
1404		break;
1405	}
1406
1407	return 0;
1408}
1409
1410static void __mcheck_cpu_init_vendor(struct cpuinfo_x86 *c)
1411{
1412	switch (c->x86_vendor) {
1413	case X86_VENDOR_INTEL:
1414		mce_intel_feature_init(c);
1415		break;
1416	case X86_VENDOR_AMD:
1417		mce_amd_feature_init(c);
1418		break;
1419	default:
1420		break;
1421	}
1422}
1423
1424static void __mcheck_cpu_init_timer(void)
1425{
1426	struct timer_list *t = &__get_cpu_var(mce_timer);
1427	int *n = &__get_cpu_var(mce_next_interval);
1428
1429	setup_timer(t, mce_start_timer, smp_processor_id());
1430
1431	if (mce_ignore_ce)
1432		return;
1433
1434	*n = check_interval * HZ;
1435	if (!*n)
1436		return;
1437	t->expires = round_jiffies(jiffies + *n);
1438	add_timer_on(t, smp_processor_id());
1439}
1440
1441/* Handle unconfigured int18 (should never happen) */
1442static void unexpected_machine_check(struct pt_regs *regs, long error_code)
1443{
1444	printk(KERN_ERR "CPU#%d: Unexpected int18 (Machine Check).\n",
1445	       smp_processor_id());
1446}
1447
1448/* Call the installed machine check handler for this CPU setup. */
1449void (*machine_check_vector)(struct pt_regs *, long error_code) =
1450						unexpected_machine_check;
1451
1452/*
1453 * Called for each booted CPU to set up machine checks.
1454 * Must be called with preempt off:
1455 */
1456void __cpuinit mcheck_cpu_init(struct cpuinfo_x86 *c)
1457{
1458	if (mce_disabled)
1459		return;
1460
1461	if (__mcheck_cpu_ancient_init(c))
1462		return;
1463
1464	if (!mce_available(c))
1465		return;
1466
1467	if (__mcheck_cpu_cap_init() < 0 || __mcheck_cpu_apply_quirks(c) < 0) {
1468		mce_disabled = 1;
1469		return;
1470	}
1471
1472	machine_check_vector = do_machine_check;
1473
1474	__mcheck_cpu_init_generic();
1475	__mcheck_cpu_init_vendor(c);
1476	__mcheck_cpu_init_timer();
1477	INIT_WORK(&__get_cpu_var(mce_work), mce_process_work);
1478	init_irq_work(&__get_cpu_var(mce_irq_work), &mce_irq_work_cb);
1479}
1480
1481/*
1482 * mce_chrdev: Character device /dev/mcelog to read and clear the MCE log.
1483 */
1484
1485static DEFINE_SPINLOCK(mce_chrdev_state_lock);
1486static int mce_chrdev_open_count;	/* #times opened */
1487static int mce_chrdev_open_exclu;	/* already open exclusive? */
1488
1489static int mce_chrdev_open(struct inode *inode, struct file *file)
1490{
1491	spin_lock(&mce_chrdev_state_lock);
1492
1493	if (mce_chrdev_open_exclu ||
1494	    (mce_chrdev_open_count && (file->f_flags & O_EXCL))) {
1495		spin_unlock(&mce_chrdev_state_lock);
1496
1497		return -EBUSY;
1498	}
1499
1500	if (file->f_flags & O_EXCL)
1501		mce_chrdev_open_exclu = 1;
1502	mce_chrdev_open_count++;
1503
1504	spin_unlock(&mce_chrdev_state_lock);
1505
1506	return nonseekable_open(inode, file);
1507}
1508
1509static int mce_chrdev_release(struct inode *inode, struct file *file)
1510{
1511	spin_lock(&mce_chrdev_state_lock);
1512
1513	mce_chrdev_open_count--;
1514	mce_chrdev_open_exclu = 0;
1515
1516	spin_unlock(&mce_chrdev_state_lock);
1517
1518	return 0;
1519}
1520
1521static void collect_tscs(void *data)
1522{
1523	unsigned long *cpu_tsc = (unsigned long *)data;
1524
1525	rdtscll(cpu_tsc[smp_processor_id()]);
1526}
1527
1528static int mce_apei_read_done;
1529
1530/* Collect MCE record of previous boot in persistent storage via APEI ERST. */
1531static int __mce_read_apei(char __user **ubuf, size_t usize)
1532{
1533	int rc;
1534	u64 record_id;
1535	struct mce m;
1536
1537	if (usize < sizeof(struct mce))
1538		return -EINVAL;
1539
1540	rc = apei_read_mce(&m, &record_id);
1541	/* Error or no more MCE record */
1542	if (rc <= 0) {
1543		mce_apei_read_done = 1;
1544		return rc;
1545	}
1546	rc = -EFAULT;
1547	if (copy_to_user(*ubuf, &m, sizeof(struct mce)))
1548		return rc;
1549	/*
1550	 * In fact, we should have cleared the record after that has
1551	 * been flushed to the disk or sent to network in
1552	 * /sbin/mcelog, but we have no interface to support that now,
1553	 * so just clear it to avoid duplication.
1554	 */
1555	rc = apei_clear_mce(record_id);
1556	if (rc) {
1557		mce_apei_read_done = 1;
1558		return rc;
1559	}
1560	*ubuf += sizeof(struct mce);
1561
1562	return 0;
1563}
1564
1565static ssize_t mce_chrdev_read(struct file *filp, char __user *ubuf,
1566				size_t usize, loff_t *off)
1567{
1568	char __user *buf = ubuf;
1569	unsigned long *cpu_tsc;
1570	unsigned prev, next;
1571	int i, err;
1572
1573	cpu_tsc = kmalloc(nr_cpu_ids * sizeof(long), GFP_KERNEL);
1574	if (!cpu_tsc)
1575		return -ENOMEM;
1576
1577	mutex_lock(&mce_chrdev_read_mutex);
1578
1579	if (!mce_apei_read_done) {
1580		err = __mce_read_apei(&buf, usize);
1581		if (err || buf != ubuf)
1582			goto out;
1583	}
1584
1585	next = rcu_dereference_check_mce(mcelog.next);
1586
1587	/* Only supports full reads right now */
1588	err = -EINVAL;
1589	if (*off != 0 || usize < MCE_LOG_LEN*sizeof(struct mce))
1590		goto out;
1591
1592	err = 0;
1593	prev = 0;
1594	do {
1595		for (i = prev; i < next; i++) {
1596			unsigned long start = jiffies;
1597			struct mce *m = &mcelog.entry[i];
1598
1599			while (!m->finished) {
1600				if (time_after_eq(jiffies, start + 2)) {
1601					memset(m, 0, sizeof(*m));
1602					goto timeout;
1603				}
1604				cpu_relax();
1605			}
1606			smp_rmb();
1607			err |= copy_to_user(buf, m, sizeof(*m));
1608			buf += sizeof(*m);
1609timeout:
1610			;
1611		}
1612
1613		memset(mcelog.entry + prev, 0,
1614		       (next - prev) * sizeof(struct mce));
1615		prev = next;
1616		next = cmpxchg(&mcelog.next, prev, 0);
1617	} while (next != prev);
1618
1619	synchronize_sched();
1620
1621	/*
1622	 * Collect entries that were still getting written before the
1623	 * synchronize.
1624	 */
1625	on_each_cpu(collect_tscs, cpu_tsc, 1);
1626
1627	for (i = next; i < MCE_LOG_LEN; i++) {
1628		struct mce *m = &mcelog.entry[i];
1629
1630		if (m->finished && m->tsc < cpu_tsc[m->cpu]) {
1631			err |= copy_to_user(buf, m, sizeof(*m));
1632			smp_rmb();
1633			buf += sizeof(*m);
1634			memset(m, 0, sizeof(*m));
1635		}
1636	}
1637
1638	if (err)
1639		err = -EFAULT;
1640
1641out:
1642	mutex_unlock(&mce_chrdev_read_mutex);
1643	kfree(cpu_tsc);
1644
1645	return err ? err : buf - ubuf;
1646}
1647
1648static unsigned int mce_chrdev_poll(struct file *file, poll_table *wait)
1649{
1650	poll_wait(file, &mce_chrdev_wait, wait);
1651	if (rcu_access_index(mcelog.next))
1652		return POLLIN | POLLRDNORM;
1653	if (!mce_apei_read_done && apei_check_mce())
1654		return POLLIN | POLLRDNORM;
1655	return 0;
1656}
1657
1658static long mce_chrdev_ioctl(struct file *f, unsigned int cmd,
1659				unsigned long arg)
1660{
1661	int __user *p = (int __user *)arg;
1662
1663	if (!capable(CAP_SYS_ADMIN))
1664		return -EPERM;
1665
1666	switch (cmd) {
1667	case MCE_GET_RECORD_LEN:
1668		return put_user(sizeof(struct mce), p);
1669	case MCE_GET_LOG_LEN:
1670		return put_user(MCE_LOG_LEN, p);
1671	case MCE_GETCLEAR_FLAGS: {
1672		unsigned flags;
1673
1674		do {
1675			flags = mcelog.flags;
1676		} while (cmpxchg(&mcelog.flags, flags, 0) != flags);
1677
1678		return put_user(flags, p);
1679	}
1680	default:
1681		return -ENOTTY;
1682	}
1683}
1684
1685static ssize_t (*mce_write)(struct file *filp, const char __user *ubuf,
1686			    size_t usize, loff_t *off);
1687
1688void register_mce_write_callback(ssize_t (*fn)(struct file *filp,
1689			     const char __user *ubuf,
1690			     size_t usize, loff_t *off))
1691{
1692	mce_write = fn;
1693}
1694EXPORT_SYMBOL_GPL(register_mce_write_callback);
1695
1696ssize_t mce_chrdev_write(struct file *filp, const char __user *ubuf,
1697			 size_t usize, loff_t *off)
1698{
1699	if (mce_write)
1700		return mce_write(filp, ubuf, usize, off);
1701	else
1702		return -EINVAL;
1703}
1704
1705static const struct file_operations mce_chrdev_ops = {
1706	.open			= mce_chrdev_open,
1707	.release		= mce_chrdev_release,
1708	.read			= mce_chrdev_read,
1709	.write			= mce_chrdev_write,
1710	.poll			= mce_chrdev_poll,
1711	.unlocked_ioctl		= mce_chrdev_ioctl,
1712	.llseek			= no_llseek,
1713};
1714
1715static struct miscdevice mce_chrdev_device = {
1716	MISC_MCELOG_MINOR,
1717	"mcelog",
1718	&mce_chrdev_ops,
1719};
1720
1721/*
1722 * mce=off Disables machine check
1723 * mce=no_cmci Disables CMCI
1724 * mce=dont_log_ce Clears corrected events silently, no log created for CEs.
1725 * mce=ignore_ce Disables polling and CMCI, corrected events are not cleared.
1726 * mce=TOLERANCELEVEL[,monarchtimeout] (number, see above)
1727 *	monarchtimeout is how long to wait for other CPUs on machine
1728 *	check, or 0 to not wait
1729 * mce=bootlog Log MCEs from before booting. Disabled by default on AMD.
1730 * mce=nobootlog Don't log MCEs from before booting.
1731 */
1732static int __init mcheck_enable(char *str)
1733{
1734	if (*str == 0) {
1735		enable_p5_mce();
1736		return 1;
1737	}
1738	if (*str == '=')
1739		str++;
1740	if (!strcmp(str, "off"))
1741		mce_disabled = 1;
1742	else if (!strcmp(str, "no_cmci"))
1743		mce_cmci_disabled = 1;
1744	else if (!strcmp(str, "dont_log_ce"))
1745		mce_dont_log_ce = 1;
1746	else if (!strcmp(str, "ignore_ce"))
1747		mce_ignore_ce = 1;
1748	else if (!strcmp(str, "bootlog") || !strcmp(str, "nobootlog"))
1749		mce_bootlog = (str[0] == 'b');
1750	else if (isdigit(str[0])) {
1751		get_option(&str, &tolerant);
1752		if (*str == ',') {
1753			++str;
1754			get_option(&str, &monarch_timeout);
1755		}
1756	} else {
1757		printk(KERN_INFO "mce argument %s ignored. Please use /sys\n",
1758		       str);
1759		return 0;
1760	}
1761	return 1;
1762}
1763__setup("mce", mcheck_enable);
1764
1765int __init mcheck_init(void)
1766{
1767	mcheck_intel_therm_init();
1768
1769	return 0;
1770}
1771
1772/*
1773 * mce_syscore: PM support
1774 */
1775
1776/*
1777 * Disable machine checks on suspend and shutdown. We can't really handle
1778 * them later.
1779 */
1780static int mce_disable_error_reporting(void)
1781{
1782	int i;
1783
1784	for (i = 0; i < banks; i++) {
1785		struct mce_bank *b = &mce_banks[i];
1786
1787		if (b->init)
1788			wrmsrl(MSR_IA32_MCx_CTL(i), 0);
1789	}
1790	return 0;
1791}
1792
1793static int mce_syscore_suspend(void)
1794{
1795	return mce_disable_error_reporting();
1796}
1797
1798static void mce_syscore_shutdown(void)
1799{
1800	mce_disable_error_reporting();
1801}
1802
1803/*
1804 * On resume clear all MCE state. Don't want to see leftovers from the BIOS.
1805 * Only one CPU is active at this time, the others get re-added later using
1806 * CPU hotplug:
1807 */
1808static void mce_syscore_resume(void)
1809{
1810	__mcheck_cpu_init_generic();
1811	__mcheck_cpu_init_vendor(__this_cpu_ptr(&cpu_info));
1812}
1813
1814static struct syscore_ops mce_syscore_ops = {
1815	.suspend	= mce_syscore_suspend,
1816	.shutdown	= mce_syscore_shutdown,
1817	.resume		= mce_syscore_resume,
1818};
1819
1820/*
1821 * mce_device: Sysfs support
1822 */
1823
1824static void mce_cpu_restart(void *data)
1825{
1826	if (!mce_available(__this_cpu_ptr(&cpu_info)))
1827		return;
1828	__mcheck_cpu_init_generic();
1829	__mcheck_cpu_init_timer();
1830}
1831
1832/* Reinit MCEs after user configuration changes */
1833static void mce_restart(void)
1834{
1835	mce_timer_delete_all();
1836	on_each_cpu(mce_cpu_restart, NULL, 1);
1837}
1838
1839/* Toggle features for corrected errors */
1840static void mce_disable_cmci(void *data)
1841{
1842	if (!mce_available(__this_cpu_ptr(&cpu_info)))
1843		return;
1844	cmci_clear();
1845}
1846
1847static void mce_enable_ce(void *all)
1848{
1849	if (!mce_available(__this_cpu_ptr(&cpu_info)))
1850		return;
1851	cmci_reenable();
1852	cmci_recheck();
1853	if (all)
1854		__mcheck_cpu_init_timer();
1855}
1856
1857static struct bus_type mce_subsys = {
1858	.name		= "machinecheck",
1859	.dev_name	= "machinecheck",
1860};
1861
1862DEFINE_PER_CPU(struct device, mce_device);
1863
1864__cpuinitdata
1865void (*threshold_cpu_callback)(unsigned long action, unsigned int cpu);
1866
1867static inline struct mce_bank *attr_to_bank(struct device_attribute *attr)
1868{
1869	return container_of(attr, struct mce_bank, attr);
1870}
1871
1872static ssize_t show_bank(struct device *s, struct device_attribute *attr,
1873			 char *buf)
1874{
1875	return sprintf(buf, "%llx\n", attr_to_bank(attr)->ctl);
1876}
1877
1878static ssize_t set_bank(struct device *s, struct device_attribute *attr,
1879			const char *buf, size_t size)
1880{
1881	u64 new;
1882
1883	if (strict_strtoull(buf, 0, &new) < 0)
1884		return -EINVAL;
1885
1886	attr_to_bank(attr)->ctl = new;
1887	mce_restart();
1888
1889	return size;
1890}
1891
1892static ssize_t
1893show_trigger(struct device *s, struct device_attribute *attr, char *buf)
1894{
1895	strcpy(buf, mce_helper);
1896	strcat(buf, "\n");
1897	return strlen(mce_helper) + 1;
1898}
1899
1900static ssize_t set_trigger(struct device *s, struct device_attribute *attr,
1901				const char *buf, size_t siz)
1902{
1903	char *p;
1904
1905	strncpy(mce_helper, buf, sizeof(mce_helper));
1906	mce_helper[sizeof(mce_helper)-1] = 0;
1907	p = strchr(mce_helper, '\n');
1908
1909	if (p)
1910		*p = 0;
1911
1912	return strlen(mce_helper) + !!p;
1913}
1914
1915static ssize_t set_ignore_ce(struct device *s,
1916			     struct device_attribute *attr,
1917			     const char *buf, size_t size)
1918{
1919	u64 new;
1920
1921	if (strict_strtoull(buf, 0, &new) < 0)
1922		return -EINVAL;
1923
1924	if (mce_ignore_ce ^ !!new) {
1925		if (new) {
1926			/* disable ce features */
1927			mce_timer_delete_all();
1928			on_each_cpu(mce_disable_cmci, NULL, 1);
1929			mce_ignore_ce = 1;
1930		} else {
1931			/* enable ce features */
1932			mce_ignore_ce = 0;
1933			on_each_cpu(mce_enable_ce, (void *)1, 1);
1934		}
1935	}
1936	return size;
1937}
1938
1939static ssize_t set_cmci_disabled(struct device *s,
1940				 struct device_attribute *attr,
1941				 const char *buf, size_t size)
1942{
1943	u64 new;
1944
1945	if (strict_strtoull(buf, 0, &new) < 0)
1946		return -EINVAL;
1947
1948	if (mce_cmci_disabled ^ !!new) {
1949		if (new) {
1950			/* disable cmci */
1951			on_each_cpu(mce_disable_cmci, NULL, 1);
1952			mce_cmci_disabled = 1;
1953		} else {
1954			/* enable cmci */
1955			mce_cmci_disabled = 0;
1956			on_each_cpu(mce_enable_ce, NULL, 1);
1957		}
1958	}
1959	return size;
1960}
1961
1962static ssize_t store_int_with_restart(struct device *s,
1963				      struct device_attribute *attr,
1964				      const char *buf, size_t size)
1965{
1966	ssize_t ret = device_store_int(s, attr, buf, size);
1967	mce_restart();
1968	return ret;
1969}
1970
1971static DEVICE_ATTR(trigger, 0644, show_trigger, set_trigger);
1972static DEVICE_INT_ATTR(tolerant, 0644, tolerant);
1973static DEVICE_INT_ATTR(monarch_timeout, 0644, monarch_timeout);
1974static DEVICE_INT_ATTR(dont_log_ce, 0644, mce_dont_log_ce);
1975
1976static struct dev_ext_attribute dev_attr_check_interval = {
1977	__ATTR(check_interval, 0644, device_show_int, store_int_with_restart),
1978	&check_interval
1979};
1980
1981static struct dev_ext_attribute dev_attr_ignore_ce = {
1982	__ATTR(ignore_ce, 0644, device_show_int, set_ignore_ce),
1983	&mce_ignore_ce
1984};
1985
1986static struct dev_ext_attribute dev_attr_cmci_disabled = {
1987	__ATTR(cmci_disabled, 0644, device_show_int, set_cmci_disabled),
1988	&mce_cmci_disabled
1989};
1990
1991static struct device_attribute *mce_device_attrs[] = {
1992	&dev_attr_tolerant.attr,
1993	&dev_attr_check_interval.attr,
1994	&dev_attr_trigger,
1995	&dev_attr_monarch_timeout.attr,
1996	&dev_attr_dont_log_ce.attr,
1997	&dev_attr_ignore_ce.attr,
1998	&dev_attr_cmci_disabled.attr,
1999	NULL
2000};
2001
2002static cpumask_var_t mce_device_initialized;
2003
2004/* Per cpu device init. All of the cpus still share the same ctrl bank: */
2005static __cpuinit int mce_device_create(unsigned int cpu)
2006{
2007	struct device *dev = &per_cpu(mce_device, cpu);
2008	int err;
2009	int i, j;
2010
2011	if (!mce_available(&boot_cpu_data))
2012		return -EIO;
2013
2014	memset(dev, 0, sizeof(struct device));
2015	dev->id  = cpu;
2016	dev->bus = &mce_subsys;
2017
2018	err = device_register(dev);
2019	if (err)
2020		return err;
2021
2022	for (i = 0; mce_device_attrs[i]; i++) {
2023		err = device_create_file(dev, mce_device_attrs[i]);
2024		if (err)
2025			goto error;
2026	}
2027	for (j = 0; j < banks; j++) {
2028		err = device_create_file(dev, &mce_banks[j].attr);
2029		if (err)
2030			goto error2;
2031	}
2032	cpumask_set_cpu(cpu, mce_device_initialized);
2033
2034	return 0;
2035error2:
2036	while (--j >= 0)
2037		device_remove_file(dev, &mce_banks[j].attr);
2038error:
2039	while (--i >= 0)
2040		device_remove_file(dev, mce_device_attrs[i]);
2041
2042	device_unregister(dev);
2043
2044	return err;
2045}
2046
2047static __cpuinit void mce_device_remove(unsigned int cpu)
2048{
2049	struct device *dev = &per_cpu(mce_device, cpu);
2050	int i;
2051
2052	if (!cpumask_test_cpu(cpu, mce_device_initialized))
2053		return;
2054
2055	for (i = 0; mce_device_attrs[i]; i++)
2056		device_remove_file(dev, mce_device_attrs[i]);
2057
2058	for (i = 0; i < banks; i++)
2059		device_remove_file(dev, &mce_banks[i].attr);
2060
2061	device_unregister(dev);
2062	cpumask_clear_cpu(cpu, mce_device_initialized);
2063}
2064
2065/* Make sure there are no machine checks on offlined CPUs. */
2066static void __cpuinit mce_disable_cpu(void *h)
2067{
2068	unsigned long action = *(unsigned long *)h;
2069	int i;
2070
2071	if (!mce_available(__this_cpu_ptr(&cpu_info)))
2072		return;
2073
2074	if (!(action & CPU_TASKS_FROZEN))
2075		cmci_clear();
2076	for (i = 0; i < banks; i++) {
2077		struct mce_bank *b = &mce_banks[i];
2078
2079		if (b->init)
2080			wrmsrl(MSR_IA32_MCx_CTL(i), 0);
2081	}
2082}
2083
2084static void __cpuinit mce_reenable_cpu(void *h)
2085{
2086	unsigned long action = *(unsigned long *)h;
2087	int i;
2088
2089	if (!mce_available(__this_cpu_ptr(&cpu_info)))
2090		return;
2091
2092	if (!(action & CPU_TASKS_FROZEN))
2093		cmci_reenable();
2094	for (i = 0; i < banks; i++) {
2095		struct mce_bank *b = &mce_banks[i];
2096
2097		if (b->init)
2098			wrmsrl(MSR_IA32_MCx_CTL(i), b->ctl);
2099	}
2100}
2101
2102/* Get notified when a cpu comes on/off. Be hotplug friendly. */
2103static int __cpuinit
2104mce_cpu_callback(struct notifier_block *nfb, unsigned long action, void *hcpu)
2105{
2106	unsigned int cpu = (unsigned long)hcpu;
2107	struct timer_list *t = &per_cpu(mce_timer, cpu);
2108
2109	switch (action) {
2110	case CPU_ONLINE:
2111	case CPU_ONLINE_FROZEN:
2112		mce_device_create(cpu);
2113		if (threshold_cpu_callback)
2114			threshold_cpu_callback(action, cpu);
2115		break;
2116	case CPU_DEAD:
2117	case CPU_DEAD_FROZEN:
2118		if (threshold_cpu_callback)
2119			threshold_cpu_callback(action, cpu);
2120		mce_device_remove(cpu);
2121		break;
2122	case CPU_DOWN_PREPARE:
2123	case CPU_DOWN_PREPARE_FROZEN:
2124		del_timer_sync(t);
2125		smp_call_function_single(cpu, mce_disable_cpu, &action, 1);
2126		break;
2127	case CPU_DOWN_FAILED:
2128	case CPU_DOWN_FAILED_FROZEN:
2129		if (!mce_ignore_ce && check_interval) {
2130			t->expires = round_jiffies(jiffies +
2131					   __get_cpu_var(mce_next_interval));
2132			add_timer_on(t, cpu);
2133		}
2134		smp_call_function_single(cpu, mce_reenable_cpu, &action, 1);
2135		break;
2136	case CPU_POST_DEAD:
2137		/* intentionally ignoring frozen here */
2138		cmci_rediscover(cpu);
2139		break;
2140	}
2141	return NOTIFY_OK;
2142}
2143
2144static struct notifier_block mce_cpu_notifier __cpuinitdata = {
2145	.notifier_call = mce_cpu_callback,
2146};
2147
2148static __init void mce_init_banks(void)
2149{
2150	int i;
2151
2152	for (i = 0; i < banks; i++) {
2153		struct mce_bank *b = &mce_banks[i];
2154		struct device_attribute *a = &b->attr;
2155
2156		sysfs_attr_init(&a->attr);
2157		a->attr.name	= b->attrname;
2158		snprintf(b->attrname, ATTR_LEN, "bank%d", i);
2159
2160		a->attr.mode	= 0644;
2161		a->show		= show_bank;
2162		a->store	= set_bank;
2163	}
2164}
2165
2166static __init int mcheck_init_device(void)
2167{
2168	int err;
2169	int i = 0;
2170
2171	if (!mce_available(&boot_cpu_data))
2172		return -EIO;
2173
2174	zalloc_cpumask_var(&mce_device_initialized, GFP_KERNEL);
2175
2176	mce_init_banks();
2177
2178	err = subsys_system_register(&mce_subsys, NULL);
2179	if (err)
2180		return err;
2181
2182	for_each_online_cpu(i) {
2183		err = mce_device_create(i);
2184		if (err)
2185			return err;
2186	}
2187
2188	register_syscore_ops(&mce_syscore_ops);
2189	register_hotcpu_notifier(&mce_cpu_notifier);
2190
2191	/* register character device /dev/mcelog */
2192	misc_register(&mce_chrdev_device);
2193
2194	return err;
2195}
2196device_initcall(mcheck_init_device);
2197
2198/*
2199 * Old style boot options parsing. Only for compatibility.
2200 */
2201static int __init mcheck_disable(char *str)
2202{
2203	mce_disabled = 1;
2204	return 1;
2205}
2206__setup("nomce", mcheck_disable);
2207
2208#ifdef CONFIG_DEBUG_FS
2209struct dentry *mce_get_debugfs_dir(void)
2210{
2211	static struct dentry *dmce;
2212
2213	if (!dmce)
2214		dmce = debugfs_create_dir("mce", NULL);
2215
2216	return dmce;
2217}
2218
2219static void mce_reset(void)
2220{
2221	cpu_missing = 0;
2222	atomic_set(&mce_fake_paniced, 0);
2223	atomic_set(&mce_executing, 0);
2224	atomic_set(&mce_callin, 0);
2225	atomic_set(&global_nwo, 0);
2226}
2227
2228static int fake_panic_get(void *data, u64 *val)
2229{
2230	*val = fake_panic;
2231	return 0;
2232}
2233
2234static int fake_panic_set(void *data, u64 val)
2235{
2236	mce_reset();
2237	fake_panic = val;
2238	return 0;
2239}
2240
2241DEFINE_SIMPLE_ATTRIBUTE(fake_panic_fops, fake_panic_get,
2242			fake_panic_set, "%llu\n");
2243
2244static int __init mcheck_debugfs_init(void)
2245{
2246	struct dentry *dmce, *ffake_panic;
2247
2248	dmce = mce_get_debugfs_dir();
2249	if (!dmce)
2250		return -ENOMEM;
2251	ffake_panic = debugfs_create_file("fake_panic", 0444, dmce, NULL,
2252					  &fake_panic_fops);
2253	if (!ffake_panic)
2254		return -ENOMEM;
2255
2256	return 0;
2257}
2258late_initcall(mcheck_debugfs_init);
2259#endif
2260