mce.c revision cd42f4a3b2b1c4cbd997363dc57821953d73fd87
1/*
2 * Machine check handler.
3 *
4 * K8 parts Copyright 2002,2003 Andi Kleen, SuSE Labs.
5 * Rest from unknown author(s).
6 * 2004 Andi Kleen. Rewrote most of it.
7 * Copyright 2008 Intel Corporation
8 * Author: Andi Kleen
9 */
10#include <linux/thread_info.h>
11#include <linux/capability.h>
12#include <linux/miscdevice.h>
13#include <linux/ratelimit.h>
14#include <linux/kallsyms.h>
15#include <linux/rcupdate.h>
16#include <linux/kobject.h>
17#include <linux/uaccess.h>
18#include <linux/kdebug.h>
19#include <linux/kernel.h>
20#include <linux/percpu.h>
21#include <linux/string.h>
22#include <linux/sysdev.h>
23#include <linux/syscore_ops.h>
24#include <linux/delay.h>
25#include <linux/ctype.h>
26#include <linux/sched.h>
27#include <linux/sysfs.h>
28#include <linux/types.h>
29#include <linux/slab.h>
30#include <linux/init.h>
31#include <linux/kmod.h>
32#include <linux/poll.h>
33#include <linux/nmi.h>
34#include <linux/cpu.h>
35#include <linux/smp.h>
36#include <linux/fs.h>
37#include <linux/mm.h>
38#include <linux/debugfs.h>
39#include <linux/irq_work.h>
40#include <linux/export.h>
41
42#include <asm/processor.h>
43#include <asm/mce.h>
44#include <asm/msr.h>
45
46#include "mce-internal.h"
47
48static DEFINE_MUTEX(mce_chrdev_read_mutex);
49
50#define rcu_dereference_check_mce(p) \
51	rcu_dereference_index_check((p), \
52			      rcu_read_lock_sched_held() || \
53			      lockdep_is_held(&mce_chrdev_read_mutex))
54
55#define CREATE_TRACE_POINTS
56#include <trace/events/mce.h>
57
58int mce_disabled __read_mostly;
59
60#define MISC_MCELOG_MINOR	227
61
62#define SPINUNIT 100	/* 100ns */
63
64atomic_t mce_entry;
65
66DEFINE_PER_CPU(unsigned, mce_exception_count);
67
68/*
69 * Tolerant levels:
70 *   0: always panic on uncorrected errors, log corrected errors
71 *   1: panic or SIGBUS on uncorrected errors, log corrected errors
72 *   2: SIGBUS or log uncorrected errors (if possible), log corrected errors
73 *   3: never panic or SIGBUS, log all errors (for testing only)
74 */
75static int			tolerant		__read_mostly = 1;
76static int			banks			__read_mostly;
77static int			rip_msr			__read_mostly;
78static int			mce_bootlog		__read_mostly = -1;
79static int			monarch_timeout		__read_mostly = -1;
80static int			mce_panic_timeout	__read_mostly;
81static int			mce_dont_log_ce		__read_mostly;
82int				mce_cmci_disabled	__read_mostly;
83int				mce_ignore_ce		__read_mostly;
84int				mce_ser			__read_mostly;
85
86struct mce_bank                *mce_banks		__read_mostly;
87
88/* User mode helper program triggered by machine check event */
89static unsigned long		mce_need_notify;
90static char			mce_helper[128];
91static char			*mce_helper_argv[2] = { mce_helper, NULL };
92
93static DECLARE_WAIT_QUEUE_HEAD(mce_chrdev_wait);
94
95static DEFINE_PER_CPU(struct mce, mces_seen);
96static int			cpu_missing;
97
98/*
99 * CPU/chipset specific EDAC code can register a notifier call here to print
100 * MCE errors in a human-readable form.
101 */
102ATOMIC_NOTIFIER_HEAD(x86_mce_decoder_chain);
103EXPORT_SYMBOL_GPL(x86_mce_decoder_chain);
104
105/* MCA banks polled by the period polling timer for corrected events */
106DEFINE_PER_CPU(mce_banks_t, mce_poll_banks) = {
107	[0 ... BITS_TO_LONGS(MAX_NR_BANKS)-1] = ~0UL
108};
109
110static DEFINE_PER_CPU(struct work_struct, mce_work);
111
112/* Do initial initialization of a struct mce */
113void mce_setup(struct mce *m)
114{
115	memset(m, 0, sizeof(struct mce));
116	m->cpu = m->extcpu = smp_processor_id();
117	rdtscll(m->tsc);
118	/* We hope get_seconds stays lockless */
119	m->time = get_seconds();
120	m->cpuvendor = boot_cpu_data.x86_vendor;
121	m->cpuid = cpuid_eax(1);
122#ifdef CONFIG_SMP
123	m->socketid = cpu_data(m->extcpu).phys_proc_id;
124#endif
125	m->apicid = cpu_data(m->extcpu).initial_apicid;
126	rdmsrl(MSR_IA32_MCG_CAP, m->mcgcap);
127}
128
129DEFINE_PER_CPU(struct mce, injectm);
130EXPORT_PER_CPU_SYMBOL_GPL(injectm);
131
132/*
133 * Lockless MCE logging infrastructure.
134 * This avoids deadlocks on printk locks without having to break locks. Also
135 * separate MCEs from kernel messages to avoid bogus bug reports.
136 */
137
138static struct mce_log mcelog = {
139	.signature	= MCE_LOG_SIGNATURE,
140	.len		= MCE_LOG_LEN,
141	.recordlen	= sizeof(struct mce),
142};
143
144void mce_log(struct mce *mce)
145{
146	unsigned next, entry;
147	int ret = 0;
148
149	/* Emit the trace record: */
150	trace_mce_record(mce);
151
152	ret = atomic_notifier_call_chain(&x86_mce_decoder_chain, 0, mce);
153	if (ret == NOTIFY_STOP)
154		return;
155
156	mce->finished = 0;
157	wmb();
158	for (;;) {
159		entry = rcu_dereference_check_mce(mcelog.next);
160		for (;;) {
161
162			/*
163			 * When the buffer fills up discard new entries.
164			 * Assume that the earlier errors are the more
165			 * interesting ones:
166			 */
167			if (entry >= MCE_LOG_LEN) {
168				set_bit(MCE_OVERFLOW,
169					(unsigned long *)&mcelog.flags);
170				return;
171			}
172			/* Old left over entry. Skip: */
173			if (mcelog.entry[entry].finished) {
174				entry++;
175				continue;
176			}
177			break;
178		}
179		smp_rmb();
180		next = entry + 1;
181		if (cmpxchg(&mcelog.next, entry, next) == entry)
182			break;
183	}
184	memcpy(mcelog.entry + entry, mce, sizeof(struct mce));
185	wmb();
186	mcelog.entry[entry].finished = 1;
187	wmb();
188
189	mce->finished = 1;
190	set_bit(0, &mce_need_notify);
191}
192
193static void print_mce(struct mce *m)
194{
195	int ret = 0;
196
197	pr_emerg(HW_ERR "CPU %d: Machine Check Exception: %Lx Bank %d: %016Lx\n",
198	       m->extcpu, m->mcgstatus, m->bank, m->status);
199
200	if (m->ip) {
201		pr_emerg(HW_ERR "RIP%s %02x:<%016Lx> ",
202			!(m->mcgstatus & MCG_STATUS_EIPV) ? " !INEXACT!" : "",
203				m->cs, m->ip);
204
205		if (m->cs == __KERNEL_CS)
206			print_symbol("{%s}", m->ip);
207		pr_cont("\n");
208	}
209
210	pr_emerg(HW_ERR "TSC %llx ", m->tsc);
211	if (m->addr)
212		pr_cont("ADDR %llx ", m->addr);
213	if (m->misc)
214		pr_cont("MISC %llx ", m->misc);
215
216	pr_cont("\n");
217	/*
218	 * Note this output is parsed by external tools and old fields
219	 * should not be changed.
220	 */
221	pr_emerg(HW_ERR "PROCESSOR %u:%x TIME %llu SOCKET %u APIC %x microcode %x\n",
222		m->cpuvendor, m->cpuid, m->time, m->socketid, m->apicid,
223		cpu_data(m->extcpu).microcode);
224
225	/*
226	 * Print out human-readable details about the MCE error,
227	 * (if the CPU has an implementation for that)
228	 */
229	ret = atomic_notifier_call_chain(&x86_mce_decoder_chain, 0, m);
230	if (ret == NOTIFY_STOP)
231		return;
232
233	pr_emerg_ratelimited(HW_ERR "Run the above through 'mcelog --ascii'\n");
234}
235
236#define PANIC_TIMEOUT 5 /* 5 seconds */
237
238static atomic_t mce_paniced;
239
240static int fake_panic;
241static atomic_t mce_fake_paniced;
242
243/* Panic in progress. Enable interrupts and wait for final IPI */
244static void wait_for_panic(void)
245{
246	long timeout = PANIC_TIMEOUT*USEC_PER_SEC;
247
248	preempt_disable();
249	local_irq_enable();
250	while (timeout-- > 0)
251		udelay(1);
252	if (panic_timeout == 0)
253		panic_timeout = mce_panic_timeout;
254	panic("Panicing machine check CPU died");
255}
256
257static void mce_panic(char *msg, struct mce *final, char *exp)
258{
259	int i, apei_err = 0;
260
261	if (!fake_panic) {
262		/*
263		 * Make sure only one CPU runs in machine check panic
264		 */
265		if (atomic_inc_return(&mce_paniced) > 1)
266			wait_for_panic();
267		barrier();
268
269		bust_spinlocks(1);
270		console_verbose();
271	} else {
272		/* Don't log too much for fake panic */
273		if (atomic_inc_return(&mce_fake_paniced) > 1)
274			return;
275	}
276	/* First print corrected ones that are still unlogged */
277	for (i = 0; i < MCE_LOG_LEN; i++) {
278		struct mce *m = &mcelog.entry[i];
279		if (!(m->status & MCI_STATUS_VAL))
280			continue;
281		if (!(m->status & MCI_STATUS_UC)) {
282			print_mce(m);
283			if (!apei_err)
284				apei_err = apei_write_mce(m);
285		}
286	}
287	/* Now print uncorrected but with the final one last */
288	for (i = 0; i < MCE_LOG_LEN; i++) {
289		struct mce *m = &mcelog.entry[i];
290		if (!(m->status & MCI_STATUS_VAL))
291			continue;
292		if (!(m->status & MCI_STATUS_UC))
293			continue;
294		if (!final || memcmp(m, final, sizeof(struct mce))) {
295			print_mce(m);
296			if (!apei_err)
297				apei_err = apei_write_mce(m);
298		}
299	}
300	if (final) {
301		print_mce(final);
302		if (!apei_err)
303			apei_err = apei_write_mce(final);
304	}
305	if (cpu_missing)
306		pr_emerg(HW_ERR "Some CPUs didn't answer in synchronization\n");
307	if (exp)
308		pr_emerg(HW_ERR "Machine check: %s\n", exp);
309	if (!fake_panic) {
310		if (panic_timeout == 0)
311			panic_timeout = mce_panic_timeout;
312		panic(msg);
313	} else
314		pr_emerg(HW_ERR "Fake kernel panic: %s\n", msg);
315}
316
317/* Support code for software error injection */
318
319static int msr_to_offset(u32 msr)
320{
321	unsigned bank = __this_cpu_read(injectm.bank);
322
323	if (msr == rip_msr)
324		return offsetof(struct mce, ip);
325	if (msr == MSR_IA32_MCx_STATUS(bank))
326		return offsetof(struct mce, status);
327	if (msr == MSR_IA32_MCx_ADDR(bank))
328		return offsetof(struct mce, addr);
329	if (msr == MSR_IA32_MCx_MISC(bank))
330		return offsetof(struct mce, misc);
331	if (msr == MSR_IA32_MCG_STATUS)
332		return offsetof(struct mce, mcgstatus);
333	return -1;
334}
335
336/* MSR access wrappers used for error injection */
337static u64 mce_rdmsrl(u32 msr)
338{
339	u64 v;
340
341	if (__this_cpu_read(injectm.finished)) {
342		int offset = msr_to_offset(msr);
343
344		if (offset < 0)
345			return 0;
346		return *(u64 *)((char *)&__get_cpu_var(injectm) + offset);
347	}
348
349	if (rdmsrl_safe(msr, &v)) {
350		WARN_ONCE(1, "mce: Unable to read msr %d!\n", msr);
351		/*
352		 * Return zero in case the access faulted. This should
353		 * not happen normally but can happen if the CPU does
354		 * something weird, or if the code is buggy.
355		 */
356		v = 0;
357	}
358
359	return v;
360}
361
362static void mce_wrmsrl(u32 msr, u64 v)
363{
364	if (__this_cpu_read(injectm.finished)) {
365		int offset = msr_to_offset(msr);
366
367		if (offset >= 0)
368			*(u64 *)((char *)&__get_cpu_var(injectm) + offset) = v;
369		return;
370	}
371	wrmsrl(msr, v);
372}
373
374/*
375 * Collect all global (w.r.t. this processor) status about this machine
376 * check into our "mce" struct so that we can use it later to assess
377 * the severity of the problem as we read per-bank specific details.
378 */
379static inline void mce_gather_info(struct mce *m, struct pt_regs *regs)
380{
381	mce_setup(m);
382
383	m->mcgstatus = mce_rdmsrl(MSR_IA32_MCG_STATUS);
384	if (regs) {
385		/*
386		 * Get the address of the instruction at the time of
387		 * the machine check error.
388		 */
389		if (m->mcgstatus & (MCG_STATUS_RIPV|MCG_STATUS_EIPV)) {
390			m->ip = regs->ip;
391			m->cs = regs->cs;
392		}
393		/* Use accurate RIP reporting if available. */
394		if (rip_msr)
395			m->ip = mce_rdmsrl(rip_msr);
396	}
397}
398
399/*
400 * Simple lockless ring to communicate PFNs from the exception handler with the
401 * process context work function. This is vastly simplified because there's
402 * only a single reader and a single writer.
403 */
404#define MCE_RING_SIZE 16	/* we use one entry less */
405
406struct mce_ring {
407	unsigned short start;
408	unsigned short end;
409	unsigned long ring[MCE_RING_SIZE];
410};
411static DEFINE_PER_CPU(struct mce_ring, mce_ring);
412
413/* Runs with CPU affinity in workqueue */
414static int mce_ring_empty(void)
415{
416	struct mce_ring *r = &__get_cpu_var(mce_ring);
417
418	return r->start == r->end;
419}
420
421static int mce_ring_get(unsigned long *pfn)
422{
423	struct mce_ring *r;
424	int ret = 0;
425
426	*pfn = 0;
427	get_cpu();
428	r = &__get_cpu_var(mce_ring);
429	if (r->start == r->end)
430		goto out;
431	*pfn = r->ring[r->start];
432	r->start = (r->start + 1) % MCE_RING_SIZE;
433	ret = 1;
434out:
435	put_cpu();
436	return ret;
437}
438
439/* Always runs in MCE context with preempt off */
440static int mce_ring_add(unsigned long pfn)
441{
442	struct mce_ring *r = &__get_cpu_var(mce_ring);
443	unsigned next;
444
445	next = (r->end + 1) % MCE_RING_SIZE;
446	if (next == r->start)
447		return -1;
448	r->ring[r->end] = pfn;
449	wmb();
450	r->end = next;
451	return 0;
452}
453
454int mce_available(struct cpuinfo_x86 *c)
455{
456	if (mce_disabled)
457		return 0;
458	return cpu_has(c, X86_FEATURE_MCE) && cpu_has(c, X86_FEATURE_MCA);
459}
460
461static void mce_schedule_work(void)
462{
463	if (!mce_ring_empty()) {
464		struct work_struct *work = &__get_cpu_var(mce_work);
465		if (!work_pending(work))
466			schedule_work(work);
467	}
468}
469
470DEFINE_PER_CPU(struct irq_work, mce_irq_work);
471
472static void mce_irq_work_cb(struct irq_work *entry)
473{
474	mce_notify_irq();
475	mce_schedule_work();
476}
477
478static void mce_report_event(struct pt_regs *regs)
479{
480	if (regs->flags & (X86_VM_MASK|X86_EFLAGS_IF)) {
481		mce_notify_irq();
482		/*
483		 * Triggering the work queue here is just an insurance
484		 * policy in case the syscall exit notify handler
485		 * doesn't run soon enough or ends up running on the
486		 * wrong CPU (can happen when audit sleeps)
487		 */
488		mce_schedule_work();
489		return;
490	}
491
492	irq_work_queue(&__get_cpu_var(mce_irq_work));
493}
494
495DEFINE_PER_CPU(unsigned, mce_poll_count);
496
497/*
498 * Poll for corrected events or events that happened before reset.
499 * Those are just logged through /dev/mcelog.
500 *
501 * This is executed in standard interrupt context.
502 *
503 * Note: spec recommends to panic for fatal unsignalled
504 * errors here. However this would be quite problematic --
505 * we would need to reimplement the Monarch handling and
506 * it would mess up the exclusion between exception handler
507 * and poll hander -- * so we skip this for now.
508 * These cases should not happen anyways, or only when the CPU
509 * is already totally * confused. In this case it's likely it will
510 * not fully execute the machine check handler either.
511 */
512void machine_check_poll(enum mcp_flags flags, mce_banks_t *b)
513{
514	struct mce m;
515	int i;
516
517	percpu_inc(mce_poll_count);
518
519	mce_gather_info(&m, NULL);
520
521	for (i = 0; i < banks; i++) {
522		if (!mce_banks[i].ctl || !test_bit(i, *b))
523			continue;
524
525		m.misc = 0;
526		m.addr = 0;
527		m.bank = i;
528		m.tsc = 0;
529
530		barrier();
531		m.status = mce_rdmsrl(MSR_IA32_MCx_STATUS(i));
532		if (!(m.status & MCI_STATUS_VAL))
533			continue;
534
535		/*
536		 * Uncorrected or signalled events are handled by the exception
537		 * handler when it is enabled, so don't process those here.
538		 *
539		 * TBD do the same check for MCI_STATUS_EN here?
540		 */
541		if (!(flags & MCP_UC) &&
542		    (m.status & (mce_ser ? MCI_STATUS_S : MCI_STATUS_UC)))
543			continue;
544
545		if (m.status & MCI_STATUS_MISCV)
546			m.misc = mce_rdmsrl(MSR_IA32_MCx_MISC(i));
547		if (m.status & MCI_STATUS_ADDRV)
548			m.addr = mce_rdmsrl(MSR_IA32_MCx_ADDR(i));
549
550		if (!(flags & MCP_TIMESTAMP))
551			m.tsc = 0;
552		/*
553		 * Don't get the IP here because it's unlikely to
554		 * have anything to do with the actual error location.
555		 */
556		if (!(flags & MCP_DONTLOG) && !mce_dont_log_ce)
557			mce_log(&m);
558
559		/*
560		 * Clear state for this bank.
561		 */
562		mce_wrmsrl(MSR_IA32_MCx_STATUS(i), 0);
563	}
564
565	/*
566	 * Don't clear MCG_STATUS here because it's only defined for
567	 * exceptions.
568	 */
569
570	sync_core();
571}
572EXPORT_SYMBOL_GPL(machine_check_poll);
573
574/*
575 * Do a quick check if any of the events requires a panic.
576 * This decides if we keep the events around or clear them.
577 */
578static int mce_no_way_out(struct mce *m, char **msg)
579{
580	int i;
581
582	for (i = 0; i < banks; i++) {
583		m->status = mce_rdmsrl(MSR_IA32_MCx_STATUS(i));
584		if (mce_severity(m, tolerant, msg) >= MCE_PANIC_SEVERITY)
585			return 1;
586	}
587	return 0;
588}
589
590/*
591 * Variable to establish order between CPUs while scanning.
592 * Each CPU spins initially until executing is equal its number.
593 */
594static atomic_t mce_executing;
595
596/*
597 * Defines order of CPUs on entry. First CPU becomes Monarch.
598 */
599static atomic_t mce_callin;
600
601/*
602 * Check if a timeout waiting for other CPUs happened.
603 */
604static int mce_timed_out(u64 *t)
605{
606	/*
607	 * The others already did panic for some reason.
608	 * Bail out like in a timeout.
609	 * rmb() to tell the compiler that system_state
610	 * might have been modified by someone else.
611	 */
612	rmb();
613	if (atomic_read(&mce_paniced))
614		wait_for_panic();
615	if (!monarch_timeout)
616		goto out;
617	if ((s64)*t < SPINUNIT) {
618		/* CHECKME: Make panic default for 1 too? */
619		if (tolerant < 1)
620			mce_panic("Timeout synchronizing machine check over CPUs",
621				  NULL, NULL);
622		cpu_missing = 1;
623		return 1;
624	}
625	*t -= SPINUNIT;
626out:
627	touch_nmi_watchdog();
628	return 0;
629}
630
631/*
632 * The Monarch's reign.  The Monarch is the CPU who entered
633 * the machine check handler first. It waits for the others to
634 * raise the exception too and then grades them. When any
635 * error is fatal panic. Only then let the others continue.
636 *
637 * The other CPUs entering the MCE handler will be controlled by the
638 * Monarch. They are called Subjects.
639 *
640 * This way we prevent any potential data corruption in a unrecoverable case
641 * and also makes sure always all CPU's errors are examined.
642 *
643 * Also this detects the case of a machine check event coming from outer
644 * space (not detected by any CPUs) In this case some external agent wants
645 * us to shut down, so panic too.
646 *
647 * The other CPUs might still decide to panic if the handler happens
648 * in a unrecoverable place, but in this case the system is in a semi-stable
649 * state and won't corrupt anything by itself. It's ok to let the others
650 * continue for a bit first.
651 *
652 * All the spin loops have timeouts; when a timeout happens a CPU
653 * typically elects itself to be Monarch.
654 */
655static void mce_reign(void)
656{
657	int cpu;
658	struct mce *m = NULL;
659	int global_worst = 0;
660	char *msg = NULL;
661	char *nmsg = NULL;
662
663	/*
664	 * This CPU is the Monarch and the other CPUs have run
665	 * through their handlers.
666	 * Grade the severity of the errors of all the CPUs.
667	 */
668	for_each_possible_cpu(cpu) {
669		int severity = mce_severity(&per_cpu(mces_seen, cpu), tolerant,
670					    &nmsg);
671		if (severity > global_worst) {
672			msg = nmsg;
673			global_worst = severity;
674			m = &per_cpu(mces_seen, cpu);
675		}
676	}
677
678	/*
679	 * Cannot recover? Panic here then.
680	 * This dumps all the mces in the log buffer and stops the
681	 * other CPUs.
682	 */
683	if (m && global_worst >= MCE_PANIC_SEVERITY && tolerant < 3)
684		mce_panic("Fatal Machine check", m, msg);
685
686	/*
687	 * For UC somewhere we let the CPU who detects it handle it.
688	 * Also must let continue the others, otherwise the handling
689	 * CPU could deadlock on a lock.
690	 */
691
692	/*
693	 * No machine check event found. Must be some external
694	 * source or one CPU is hung. Panic.
695	 */
696	if (global_worst <= MCE_KEEP_SEVERITY && tolerant < 3)
697		mce_panic("Machine check from unknown source", NULL, NULL);
698
699	/*
700	 * Now clear all the mces_seen so that they don't reappear on
701	 * the next mce.
702	 */
703	for_each_possible_cpu(cpu)
704		memset(&per_cpu(mces_seen, cpu), 0, sizeof(struct mce));
705}
706
707static atomic_t global_nwo;
708
709/*
710 * Start of Monarch synchronization. This waits until all CPUs have
711 * entered the exception handler and then determines if any of them
712 * saw a fatal event that requires panic. Then it executes them
713 * in the entry order.
714 * TBD double check parallel CPU hotunplug
715 */
716static int mce_start(int *no_way_out)
717{
718	int order;
719	int cpus = num_online_cpus();
720	u64 timeout = (u64)monarch_timeout * NSEC_PER_USEC;
721
722	if (!timeout)
723		return -1;
724
725	atomic_add(*no_way_out, &global_nwo);
726	/*
727	 * global_nwo should be updated before mce_callin
728	 */
729	smp_wmb();
730	order = atomic_inc_return(&mce_callin);
731
732	/*
733	 * Wait for everyone.
734	 */
735	while (atomic_read(&mce_callin) != cpus) {
736		if (mce_timed_out(&timeout)) {
737			atomic_set(&global_nwo, 0);
738			return -1;
739		}
740		ndelay(SPINUNIT);
741	}
742
743	/*
744	 * mce_callin should be read before global_nwo
745	 */
746	smp_rmb();
747
748	if (order == 1) {
749		/*
750		 * Monarch: Starts executing now, the others wait.
751		 */
752		atomic_set(&mce_executing, 1);
753	} else {
754		/*
755		 * Subject: Now start the scanning loop one by one in
756		 * the original callin order.
757		 * This way when there are any shared banks it will be
758		 * only seen by one CPU before cleared, avoiding duplicates.
759		 */
760		while (atomic_read(&mce_executing) < order) {
761			if (mce_timed_out(&timeout)) {
762				atomic_set(&global_nwo, 0);
763				return -1;
764			}
765			ndelay(SPINUNIT);
766		}
767	}
768
769	/*
770	 * Cache the global no_way_out state.
771	 */
772	*no_way_out = atomic_read(&global_nwo);
773
774	return order;
775}
776
777/*
778 * Synchronize between CPUs after main scanning loop.
779 * This invokes the bulk of the Monarch processing.
780 */
781static int mce_end(int order)
782{
783	int ret = -1;
784	u64 timeout = (u64)monarch_timeout * NSEC_PER_USEC;
785
786	if (!timeout)
787		goto reset;
788	if (order < 0)
789		goto reset;
790
791	/*
792	 * Allow others to run.
793	 */
794	atomic_inc(&mce_executing);
795
796	if (order == 1) {
797		/* CHECKME: Can this race with a parallel hotplug? */
798		int cpus = num_online_cpus();
799
800		/*
801		 * Monarch: Wait for everyone to go through their scanning
802		 * loops.
803		 */
804		while (atomic_read(&mce_executing) <= cpus) {
805			if (mce_timed_out(&timeout))
806				goto reset;
807			ndelay(SPINUNIT);
808		}
809
810		mce_reign();
811		barrier();
812		ret = 0;
813	} else {
814		/*
815		 * Subject: Wait for Monarch to finish.
816		 */
817		while (atomic_read(&mce_executing) != 0) {
818			if (mce_timed_out(&timeout))
819				goto reset;
820			ndelay(SPINUNIT);
821		}
822
823		/*
824		 * Don't reset anything. That's done by the Monarch.
825		 */
826		return 0;
827	}
828
829	/*
830	 * Reset all global state.
831	 */
832reset:
833	atomic_set(&global_nwo, 0);
834	atomic_set(&mce_callin, 0);
835	barrier();
836
837	/*
838	 * Let others run again.
839	 */
840	atomic_set(&mce_executing, 0);
841	return ret;
842}
843
844/*
845 * Check if the address reported by the CPU is in a format we can parse.
846 * It would be possible to add code for most other cases, but all would
847 * be somewhat complicated (e.g. segment offset would require an instruction
848 * parser). So only support physical addresses up to page granuality for now.
849 */
850static int mce_usable_address(struct mce *m)
851{
852	if (!(m->status & MCI_STATUS_MISCV) || !(m->status & MCI_STATUS_ADDRV))
853		return 0;
854	if (MCI_MISC_ADDR_LSB(m->misc) > PAGE_SHIFT)
855		return 0;
856	if (MCI_MISC_ADDR_MODE(m->misc) != MCI_MISC_ADDR_PHYS)
857		return 0;
858	return 1;
859}
860
861static void mce_clear_state(unsigned long *toclear)
862{
863	int i;
864
865	for (i = 0; i < banks; i++) {
866		if (test_bit(i, toclear))
867			mce_wrmsrl(MSR_IA32_MCx_STATUS(i), 0);
868	}
869}
870
871/*
872 * The actual machine check handler. This only handles real
873 * exceptions when something got corrupted coming in through int 18.
874 *
875 * This is executed in NMI context not subject to normal locking rules. This
876 * implies that most kernel services cannot be safely used. Don't even
877 * think about putting a printk in there!
878 *
879 * On Intel systems this is entered on all CPUs in parallel through
880 * MCE broadcast. However some CPUs might be broken beyond repair,
881 * so be always careful when synchronizing with others.
882 */
883void do_machine_check(struct pt_regs *regs, long error_code)
884{
885	struct mce m, *final;
886	int i;
887	int worst = 0;
888	int severity;
889	/*
890	 * Establish sequential order between the CPUs entering the machine
891	 * check handler.
892	 */
893	int order;
894	/*
895	 * If no_way_out gets set, there is no safe way to recover from this
896	 * MCE.  If tolerant is cranked up, we'll try anyway.
897	 */
898	int no_way_out = 0;
899	/*
900	 * If kill_it gets set, there might be a way to recover from this
901	 * error.
902	 */
903	int kill_it = 0;
904	DECLARE_BITMAP(toclear, MAX_NR_BANKS);
905	char *msg = "Unknown";
906
907	atomic_inc(&mce_entry);
908
909	percpu_inc(mce_exception_count);
910
911	if (!banks)
912		goto out;
913
914	mce_gather_info(&m, regs);
915
916	final = &__get_cpu_var(mces_seen);
917	*final = m;
918
919	no_way_out = mce_no_way_out(&m, &msg);
920
921	barrier();
922
923	/*
924	 * When no restart IP must always kill or panic.
925	 */
926	if (!(m.mcgstatus & MCG_STATUS_RIPV))
927		kill_it = 1;
928
929	/*
930	 * Go through all the banks in exclusion of the other CPUs.
931	 * This way we don't report duplicated events on shared banks
932	 * because the first one to see it will clear it.
933	 */
934	order = mce_start(&no_way_out);
935	for (i = 0; i < banks; i++) {
936		__clear_bit(i, toclear);
937		if (!mce_banks[i].ctl)
938			continue;
939
940		m.misc = 0;
941		m.addr = 0;
942		m.bank = i;
943
944		m.status = mce_rdmsrl(MSR_IA32_MCx_STATUS(i));
945		if ((m.status & MCI_STATUS_VAL) == 0)
946			continue;
947
948		/*
949		 * Non uncorrected or non signaled errors are handled by
950		 * machine_check_poll. Leave them alone, unless this panics.
951		 */
952		if (!(m.status & (mce_ser ? MCI_STATUS_S : MCI_STATUS_UC)) &&
953			!no_way_out)
954			continue;
955
956		/*
957		 * Set taint even when machine check was not enabled.
958		 */
959		add_taint(TAINT_MACHINE_CHECK);
960
961		severity = mce_severity(&m, tolerant, NULL);
962
963		/*
964		 * When machine check was for corrected handler don't touch,
965		 * unless we're panicing.
966		 */
967		if (severity == MCE_KEEP_SEVERITY && !no_way_out)
968			continue;
969		__set_bit(i, toclear);
970		if (severity == MCE_NO_SEVERITY) {
971			/*
972			 * Machine check event was not enabled. Clear, but
973			 * ignore.
974			 */
975			continue;
976		}
977
978		/*
979		 * Kill on action required.
980		 */
981		if (severity == MCE_AR_SEVERITY)
982			kill_it = 1;
983
984		if (m.status & MCI_STATUS_MISCV)
985			m.misc = mce_rdmsrl(MSR_IA32_MCx_MISC(i));
986		if (m.status & MCI_STATUS_ADDRV)
987			m.addr = mce_rdmsrl(MSR_IA32_MCx_ADDR(i));
988
989		/*
990		 * Action optional error. Queue address for later processing.
991		 * When the ring overflows we just ignore the AO error.
992		 * RED-PEN add some logging mechanism when
993		 * usable_address or mce_add_ring fails.
994		 * RED-PEN don't ignore overflow for tolerant == 0
995		 */
996		if (severity == MCE_AO_SEVERITY && mce_usable_address(&m))
997			mce_ring_add(m.addr >> PAGE_SHIFT);
998
999		mce_log(&m);
1000
1001		if (severity > worst) {
1002			*final = m;
1003			worst = severity;
1004		}
1005	}
1006
1007	if (!no_way_out)
1008		mce_clear_state(toclear);
1009
1010	/*
1011	 * Do most of the synchronization with other CPUs.
1012	 * When there's any problem use only local no_way_out state.
1013	 */
1014	if (mce_end(order) < 0)
1015		no_way_out = worst >= MCE_PANIC_SEVERITY;
1016
1017	/*
1018	 * If we have decided that we just CAN'T continue, and the user
1019	 * has not set tolerant to an insane level, give up and die.
1020	 *
1021	 * This is mainly used in the case when the system doesn't
1022	 * support MCE broadcasting or it has been disabled.
1023	 */
1024	if (no_way_out && tolerant < 3)
1025		mce_panic("Fatal machine check on current CPU", final, msg);
1026
1027	/*
1028	 * If the error seems to be unrecoverable, something should be
1029	 * done.  Try to kill as little as possible.  If we can kill just
1030	 * one task, do that.  If the user has set the tolerance very
1031	 * high, don't try to do anything at all.
1032	 */
1033
1034	if (kill_it && tolerant < 3)
1035		force_sig(SIGBUS, current);
1036
1037	/* notify userspace ASAP */
1038	set_thread_flag(TIF_MCE_NOTIFY);
1039
1040	if (worst > 0)
1041		mce_report_event(regs);
1042	mce_wrmsrl(MSR_IA32_MCG_STATUS, 0);
1043out:
1044	atomic_dec(&mce_entry);
1045	sync_core();
1046}
1047EXPORT_SYMBOL_GPL(do_machine_check);
1048
1049#ifndef CONFIG_MEMORY_FAILURE
1050int memory_failure(unsigned long pfn, int vector, int flags)
1051{
1052	printk(KERN_ERR "Uncorrected memory error in page 0x%lx ignored\n"
1053		"Rebuild kernel with CONFIG_MEMORY_FAILURE=y for smarter handling\n", pfn);
1054
1055	return 0;
1056}
1057#endif
1058
1059/*
1060 * Called after mce notification in process context. This code
1061 * is allowed to sleep. Call the high level VM handler to process
1062 * any corrupted pages.
1063 * Assume that the work queue code only calls this one at a time
1064 * per CPU.
1065 * Note we don't disable preemption, so this code might run on the wrong
1066 * CPU. In this case the event is picked up by the scheduled work queue.
1067 * This is merely a fast path to expedite processing in some common
1068 * cases.
1069 */
1070void mce_notify_process(void)
1071{
1072	unsigned long pfn;
1073	mce_notify_irq();
1074	while (mce_ring_get(&pfn))
1075		memory_failure(pfn, MCE_VECTOR, 0);
1076}
1077
1078static void mce_process_work(struct work_struct *dummy)
1079{
1080	mce_notify_process();
1081}
1082
1083#ifdef CONFIG_X86_MCE_INTEL
1084/***
1085 * mce_log_therm_throt_event - Logs the thermal throttling event to mcelog
1086 * @cpu: The CPU on which the event occurred.
1087 * @status: Event status information
1088 *
1089 * This function should be called by the thermal interrupt after the
1090 * event has been processed and the decision was made to log the event
1091 * further.
1092 *
1093 * The status parameter will be saved to the 'status' field of 'struct mce'
1094 * and historically has been the register value of the
1095 * MSR_IA32_THERMAL_STATUS (Intel) msr.
1096 */
1097void mce_log_therm_throt_event(__u64 status)
1098{
1099	struct mce m;
1100
1101	mce_setup(&m);
1102	m.bank = MCE_THERMAL_BANK;
1103	m.status = status;
1104	mce_log(&m);
1105}
1106#endif /* CONFIG_X86_MCE_INTEL */
1107
1108/*
1109 * Periodic polling timer for "silent" machine check errors.  If the
1110 * poller finds an MCE, poll 2x faster.  When the poller finds no more
1111 * errors, poll 2x slower (up to check_interval seconds).
1112 */
1113static int check_interval = 5 * 60; /* 5 minutes */
1114
1115static DEFINE_PER_CPU(int, mce_next_interval); /* in jiffies */
1116static DEFINE_PER_CPU(struct timer_list, mce_timer);
1117
1118static void mce_start_timer(unsigned long data)
1119{
1120	struct timer_list *t = &per_cpu(mce_timer, data);
1121	int *n;
1122
1123	WARN_ON(smp_processor_id() != data);
1124
1125	if (mce_available(__this_cpu_ptr(&cpu_info))) {
1126		machine_check_poll(MCP_TIMESTAMP,
1127				&__get_cpu_var(mce_poll_banks));
1128	}
1129
1130	/*
1131	 * Alert userspace if needed.  If we logged an MCE, reduce the
1132	 * polling interval, otherwise increase the polling interval.
1133	 */
1134	n = &__get_cpu_var(mce_next_interval);
1135	if (mce_notify_irq())
1136		*n = max(*n/2, HZ/100);
1137	else
1138		*n = min(*n*2, (int)round_jiffies_relative(check_interval*HZ));
1139
1140	t->expires = jiffies + *n;
1141	add_timer_on(t, smp_processor_id());
1142}
1143
1144/* Must not be called in IRQ context where del_timer_sync() can deadlock */
1145static void mce_timer_delete_all(void)
1146{
1147	int cpu;
1148
1149	for_each_online_cpu(cpu)
1150		del_timer_sync(&per_cpu(mce_timer, cpu));
1151}
1152
1153static void mce_do_trigger(struct work_struct *work)
1154{
1155	call_usermodehelper(mce_helper, mce_helper_argv, NULL, UMH_NO_WAIT);
1156}
1157
1158static DECLARE_WORK(mce_trigger_work, mce_do_trigger);
1159
1160/*
1161 * Notify the user(s) about new machine check events.
1162 * Can be called from interrupt context, but not from machine check/NMI
1163 * context.
1164 */
1165int mce_notify_irq(void)
1166{
1167	/* Not more than two messages every minute */
1168	static DEFINE_RATELIMIT_STATE(ratelimit, 60*HZ, 2);
1169
1170	clear_thread_flag(TIF_MCE_NOTIFY);
1171
1172	if (test_and_clear_bit(0, &mce_need_notify)) {
1173		/* wake processes polling /dev/mcelog */
1174		wake_up_interruptible(&mce_chrdev_wait);
1175
1176		/*
1177		 * There is no risk of missing notifications because
1178		 * work_pending is always cleared before the function is
1179		 * executed.
1180		 */
1181		if (mce_helper[0] && !work_pending(&mce_trigger_work))
1182			schedule_work(&mce_trigger_work);
1183
1184		if (__ratelimit(&ratelimit))
1185			pr_info(HW_ERR "Machine check events logged\n");
1186
1187		return 1;
1188	}
1189	return 0;
1190}
1191EXPORT_SYMBOL_GPL(mce_notify_irq);
1192
1193static int __cpuinit __mcheck_cpu_mce_banks_init(void)
1194{
1195	int i;
1196
1197	mce_banks = kzalloc(banks * sizeof(struct mce_bank), GFP_KERNEL);
1198	if (!mce_banks)
1199		return -ENOMEM;
1200	for (i = 0; i < banks; i++) {
1201		struct mce_bank *b = &mce_banks[i];
1202
1203		b->ctl = -1ULL;
1204		b->init = 1;
1205	}
1206	return 0;
1207}
1208
1209/*
1210 * Initialize Machine Checks for a CPU.
1211 */
1212static int __cpuinit __mcheck_cpu_cap_init(void)
1213{
1214	unsigned b;
1215	u64 cap;
1216
1217	rdmsrl(MSR_IA32_MCG_CAP, cap);
1218
1219	b = cap & MCG_BANKCNT_MASK;
1220	if (!banks)
1221		printk(KERN_INFO "mce: CPU supports %d MCE banks\n", b);
1222
1223	if (b > MAX_NR_BANKS) {
1224		printk(KERN_WARNING
1225		       "MCE: Using only %u machine check banks out of %u\n",
1226			MAX_NR_BANKS, b);
1227		b = MAX_NR_BANKS;
1228	}
1229
1230	/* Don't support asymmetric configurations today */
1231	WARN_ON(banks != 0 && b != banks);
1232	banks = b;
1233	if (!mce_banks) {
1234		int err = __mcheck_cpu_mce_banks_init();
1235
1236		if (err)
1237			return err;
1238	}
1239
1240	/* Use accurate RIP reporting if available. */
1241	if ((cap & MCG_EXT_P) && MCG_EXT_CNT(cap) >= 9)
1242		rip_msr = MSR_IA32_MCG_EIP;
1243
1244	if (cap & MCG_SER_P)
1245		mce_ser = 1;
1246
1247	return 0;
1248}
1249
1250static void __mcheck_cpu_init_generic(void)
1251{
1252	mce_banks_t all_banks;
1253	u64 cap;
1254	int i;
1255
1256	/*
1257	 * Log the machine checks left over from the previous reset.
1258	 */
1259	bitmap_fill(all_banks, MAX_NR_BANKS);
1260	machine_check_poll(MCP_UC|(!mce_bootlog ? MCP_DONTLOG : 0), &all_banks);
1261
1262	set_in_cr4(X86_CR4_MCE);
1263
1264	rdmsrl(MSR_IA32_MCG_CAP, cap);
1265	if (cap & MCG_CTL_P)
1266		wrmsr(MSR_IA32_MCG_CTL, 0xffffffff, 0xffffffff);
1267
1268	for (i = 0; i < banks; i++) {
1269		struct mce_bank *b = &mce_banks[i];
1270
1271		if (!b->init)
1272			continue;
1273		wrmsrl(MSR_IA32_MCx_CTL(i), b->ctl);
1274		wrmsrl(MSR_IA32_MCx_STATUS(i), 0);
1275	}
1276}
1277
1278/* Add per CPU specific workarounds here */
1279static int __cpuinit __mcheck_cpu_apply_quirks(struct cpuinfo_x86 *c)
1280{
1281	if (c->x86_vendor == X86_VENDOR_UNKNOWN) {
1282		pr_info("MCE: unknown CPU type - not enabling MCE support.\n");
1283		return -EOPNOTSUPP;
1284	}
1285
1286	/* This should be disabled by the BIOS, but isn't always */
1287	if (c->x86_vendor == X86_VENDOR_AMD) {
1288		if (c->x86 == 15 && banks > 4) {
1289			/*
1290			 * disable GART TBL walk error reporting, which
1291			 * trips off incorrectly with the IOMMU & 3ware
1292			 * & Cerberus:
1293			 */
1294			clear_bit(10, (unsigned long *)&mce_banks[4].ctl);
1295		}
1296		if (c->x86 <= 17 && mce_bootlog < 0) {
1297			/*
1298			 * Lots of broken BIOS around that don't clear them
1299			 * by default and leave crap in there. Don't log:
1300			 */
1301			mce_bootlog = 0;
1302		}
1303		/*
1304		 * Various K7s with broken bank 0 around. Always disable
1305		 * by default.
1306		 */
1307		 if (c->x86 == 6 && banks > 0)
1308			mce_banks[0].ctl = 0;
1309	}
1310
1311	if (c->x86_vendor == X86_VENDOR_INTEL) {
1312		/*
1313		 * SDM documents that on family 6 bank 0 should not be written
1314		 * because it aliases to another special BIOS controlled
1315		 * register.
1316		 * But it's not aliased anymore on model 0x1a+
1317		 * Don't ignore bank 0 completely because there could be a
1318		 * valid event later, merely don't write CTL0.
1319		 */
1320
1321		if (c->x86 == 6 && c->x86_model < 0x1A && banks > 0)
1322			mce_banks[0].init = 0;
1323
1324		/*
1325		 * All newer Intel systems support MCE broadcasting. Enable
1326		 * synchronization with a one second timeout.
1327		 */
1328		if ((c->x86 > 6 || (c->x86 == 6 && c->x86_model >= 0xe)) &&
1329			monarch_timeout < 0)
1330			monarch_timeout = USEC_PER_SEC;
1331
1332		/*
1333		 * There are also broken BIOSes on some Pentium M and
1334		 * earlier systems:
1335		 */
1336		if (c->x86 == 6 && c->x86_model <= 13 && mce_bootlog < 0)
1337			mce_bootlog = 0;
1338	}
1339	if (monarch_timeout < 0)
1340		monarch_timeout = 0;
1341	if (mce_bootlog != 0)
1342		mce_panic_timeout = 30;
1343
1344	return 0;
1345}
1346
1347static int __cpuinit __mcheck_cpu_ancient_init(struct cpuinfo_x86 *c)
1348{
1349	if (c->x86 != 5)
1350		return 0;
1351
1352	switch (c->x86_vendor) {
1353	case X86_VENDOR_INTEL:
1354		intel_p5_mcheck_init(c);
1355		return 1;
1356		break;
1357	case X86_VENDOR_CENTAUR:
1358		winchip_mcheck_init(c);
1359		return 1;
1360		break;
1361	}
1362
1363	return 0;
1364}
1365
1366static void __mcheck_cpu_init_vendor(struct cpuinfo_x86 *c)
1367{
1368	switch (c->x86_vendor) {
1369	case X86_VENDOR_INTEL:
1370		mce_intel_feature_init(c);
1371		break;
1372	case X86_VENDOR_AMD:
1373		mce_amd_feature_init(c);
1374		break;
1375	default:
1376		break;
1377	}
1378}
1379
1380static void __mcheck_cpu_init_timer(void)
1381{
1382	struct timer_list *t = &__get_cpu_var(mce_timer);
1383	int *n = &__get_cpu_var(mce_next_interval);
1384
1385	setup_timer(t, mce_start_timer, smp_processor_id());
1386
1387	if (mce_ignore_ce)
1388		return;
1389
1390	*n = check_interval * HZ;
1391	if (!*n)
1392		return;
1393	t->expires = round_jiffies(jiffies + *n);
1394	add_timer_on(t, smp_processor_id());
1395}
1396
1397/* Handle unconfigured int18 (should never happen) */
1398static void unexpected_machine_check(struct pt_regs *regs, long error_code)
1399{
1400	printk(KERN_ERR "CPU#%d: Unexpected int18 (Machine Check).\n",
1401	       smp_processor_id());
1402}
1403
1404/* Call the installed machine check handler for this CPU setup. */
1405void (*machine_check_vector)(struct pt_regs *, long error_code) =
1406						unexpected_machine_check;
1407
1408/*
1409 * Called for each booted CPU to set up machine checks.
1410 * Must be called with preempt off:
1411 */
1412void __cpuinit mcheck_cpu_init(struct cpuinfo_x86 *c)
1413{
1414	if (mce_disabled)
1415		return;
1416
1417	if (__mcheck_cpu_ancient_init(c))
1418		return;
1419
1420	if (!mce_available(c))
1421		return;
1422
1423	if (__mcheck_cpu_cap_init() < 0 || __mcheck_cpu_apply_quirks(c) < 0) {
1424		mce_disabled = 1;
1425		return;
1426	}
1427
1428	machine_check_vector = do_machine_check;
1429
1430	__mcheck_cpu_init_generic();
1431	__mcheck_cpu_init_vendor(c);
1432	__mcheck_cpu_init_timer();
1433	INIT_WORK(&__get_cpu_var(mce_work), mce_process_work);
1434	init_irq_work(&__get_cpu_var(mce_irq_work), &mce_irq_work_cb);
1435}
1436
1437/*
1438 * mce_chrdev: Character device /dev/mcelog to read and clear the MCE log.
1439 */
1440
1441static DEFINE_SPINLOCK(mce_chrdev_state_lock);
1442static int mce_chrdev_open_count;	/* #times opened */
1443static int mce_chrdev_open_exclu;	/* already open exclusive? */
1444
1445static int mce_chrdev_open(struct inode *inode, struct file *file)
1446{
1447	spin_lock(&mce_chrdev_state_lock);
1448
1449	if (mce_chrdev_open_exclu ||
1450	    (mce_chrdev_open_count && (file->f_flags & O_EXCL))) {
1451		spin_unlock(&mce_chrdev_state_lock);
1452
1453		return -EBUSY;
1454	}
1455
1456	if (file->f_flags & O_EXCL)
1457		mce_chrdev_open_exclu = 1;
1458	mce_chrdev_open_count++;
1459
1460	spin_unlock(&mce_chrdev_state_lock);
1461
1462	return nonseekable_open(inode, file);
1463}
1464
1465static int mce_chrdev_release(struct inode *inode, struct file *file)
1466{
1467	spin_lock(&mce_chrdev_state_lock);
1468
1469	mce_chrdev_open_count--;
1470	mce_chrdev_open_exclu = 0;
1471
1472	spin_unlock(&mce_chrdev_state_lock);
1473
1474	return 0;
1475}
1476
1477static void collect_tscs(void *data)
1478{
1479	unsigned long *cpu_tsc = (unsigned long *)data;
1480
1481	rdtscll(cpu_tsc[smp_processor_id()]);
1482}
1483
1484static int mce_apei_read_done;
1485
1486/* Collect MCE record of previous boot in persistent storage via APEI ERST. */
1487static int __mce_read_apei(char __user **ubuf, size_t usize)
1488{
1489	int rc;
1490	u64 record_id;
1491	struct mce m;
1492
1493	if (usize < sizeof(struct mce))
1494		return -EINVAL;
1495
1496	rc = apei_read_mce(&m, &record_id);
1497	/* Error or no more MCE record */
1498	if (rc <= 0) {
1499		mce_apei_read_done = 1;
1500		return rc;
1501	}
1502	rc = -EFAULT;
1503	if (copy_to_user(*ubuf, &m, sizeof(struct mce)))
1504		return rc;
1505	/*
1506	 * In fact, we should have cleared the record after that has
1507	 * been flushed to the disk or sent to network in
1508	 * /sbin/mcelog, but we have no interface to support that now,
1509	 * so just clear it to avoid duplication.
1510	 */
1511	rc = apei_clear_mce(record_id);
1512	if (rc) {
1513		mce_apei_read_done = 1;
1514		return rc;
1515	}
1516	*ubuf += sizeof(struct mce);
1517
1518	return 0;
1519}
1520
1521static ssize_t mce_chrdev_read(struct file *filp, char __user *ubuf,
1522				size_t usize, loff_t *off)
1523{
1524	char __user *buf = ubuf;
1525	unsigned long *cpu_tsc;
1526	unsigned prev, next;
1527	int i, err;
1528
1529	cpu_tsc = kmalloc(nr_cpu_ids * sizeof(long), GFP_KERNEL);
1530	if (!cpu_tsc)
1531		return -ENOMEM;
1532
1533	mutex_lock(&mce_chrdev_read_mutex);
1534
1535	if (!mce_apei_read_done) {
1536		err = __mce_read_apei(&buf, usize);
1537		if (err || buf != ubuf)
1538			goto out;
1539	}
1540
1541	next = rcu_dereference_check_mce(mcelog.next);
1542
1543	/* Only supports full reads right now */
1544	err = -EINVAL;
1545	if (*off != 0 || usize < MCE_LOG_LEN*sizeof(struct mce))
1546		goto out;
1547
1548	err = 0;
1549	prev = 0;
1550	do {
1551		for (i = prev; i < next; i++) {
1552			unsigned long start = jiffies;
1553			struct mce *m = &mcelog.entry[i];
1554
1555			while (!m->finished) {
1556				if (time_after_eq(jiffies, start + 2)) {
1557					memset(m, 0, sizeof(*m));
1558					goto timeout;
1559				}
1560				cpu_relax();
1561			}
1562			smp_rmb();
1563			err |= copy_to_user(buf, m, sizeof(*m));
1564			buf += sizeof(*m);
1565timeout:
1566			;
1567		}
1568
1569		memset(mcelog.entry + prev, 0,
1570		       (next - prev) * sizeof(struct mce));
1571		prev = next;
1572		next = cmpxchg(&mcelog.next, prev, 0);
1573	} while (next != prev);
1574
1575	synchronize_sched();
1576
1577	/*
1578	 * Collect entries that were still getting written before the
1579	 * synchronize.
1580	 */
1581	on_each_cpu(collect_tscs, cpu_tsc, 1);
1582
1583	for (i = next; i < MCE_LOG_LEN; i++) {
1584		struct mce *m = &mcelog.entry[i];
1585
1586		if (m->finished && m->tsc < cpu_tsc[m->cpu]) {
1587			err |= copy_to_user(buf, m, sizeof(*m));
1588			smp_rmb();
1589			buf += sizeof(*m);
1590			memset(m, 0, sizeof(*m));
1591		}
1592	}
1593
1594	if (err)
1595		err = -EFAULT;
1596
1597out:
1598	mutex_unlock(&mce_chrdev_read_mutex);
1599	kfree(cpu_tsc);
1600
1601	return err ? err : buf - ubuf;
1602}
1603
1604static unsigned int mce_chrdev_poll(struct file *file, poll_table *wait)
1605{
1606	poll_wait(file, &mce_chrdev_wait, wait);
1607	if (rcu_access_index(mcelog.next))
1608		return POLLIN | POLLRDNORM;
1609	if (!mce_apei_read_done && apei_check_mce())
1610		return POLLIN | POLLRDNORM;
1611	return 0;
1612}
1613
1614static long mce_chrdev_ioctl(struct file *f, unsigned int cmd,
1615				unsigned long arg)
1616{
1617	int __user *p = (int __user *)arg;
1618
1619	if (!capable(CAP_SYS_ADMIN))
1620		return -EPERM;
1621
1622	switch (cmd) {
1623	case MCE_GET_RECORD_LEN:
1624		return put_user(sizeof(struct mce), p);
1625	case MCE_GET_LOG_LEN:
1626		return put_user(MCE_LOG_LEN, p);
1627	case MCE_GETCLEAR_FLAGS: {
1628		unsigned flags;
1629
1630		do {
1631			flags = mcelog.flags;
1632		} while (cmpxchg(&mcelog.flags, flags, 0) != flags);
1633
1634		return put_user(flags, p);
1635	}
1636	default:
1637		return -ENOTTY;
1638	}
1639}
1640
1641static ssize_t (*mce_write)(struct file *filp, const char __user *ubuf,
1642			    size_t usize, loff_t *off);
1643
1644void register_mce_write_callback(ssize_t (*fn)(struct file *filp,
1645			     const char __user *ubuf,
1646			     size_t usize, loff_t *off))
1647{
1648	mce_write = fn;
1649}
1650EXPORT_SYMBOL_GPL(register_mce_write_callback);
1651
1652ssize_t mce_chrdev_write(struct file *filp, const char __user *ubuf,
1653			 size_t usize, loff_t *off)
1654{
1655	if (mce_write)
1656		return mce_write(filp, ubuf, usize, off);
1657	else
1658		return -EINVAL;
1659}
1660
1661static const struct file_operations mce_chrdev_ops = {
1662	.open			= mce_chrdev_open,
1663	.release		= mce_chrdev_release,
1664	.read			= mce_chrdev_read,
1665	.write			= mce_chrdev_write,
1666	.poll			= mce_chrdev_poll,
1667	.unlocked_ioctl		= mce_chrdev_ioctl,
1668	.llseek			= no_llseek,
1669};
1670
1671static struct miscdevice mce_chrdev_device = {
1672	MISC_MCELOG_MINOR,
1673	"mcelog",
1674	&mce_chrdev_ops,
1675};
1676
1677/*
1678 * mce=off Disables machine check
1679 * mce=no_cmci Disables CMCI
1680 * mce=dont_log_ce Clears corrected events silently, no log created for CEs.
1681 * mce=ignore_ce Disables polling and CMCI, corrected events are not cleared.
1682 * mce=TOLERANCELEVEL[,monarchtimeout] (number, see above)
1683 *	monarchtimeout is how long to wait for other CPUs on machine
1684 *	check, or 0 to not wait
1685 * mce=bootlog Log MCEs from before booting. Disabled by default on AMD.
1686 * mce=nobootlog Don't log MCEs from before booting.
1687 */
1688static int __init mcheck_enable(char *str)
1689{
1690	if (*str == 0) {
1691		enable_p5_mce();
1692		return 1;
1693	}
1694	if (*str == '=')
1695		str++;
1696	if (!strcmp(str, "off"))
1697		mce_disabled = 1;
1698	else if (!strcmp(str, "no_cmci"))
1699		mce_cmci_disabled = 1;
1700	else if (!strcmp(str, "dont_log_ce"))
1701		mce_dont_log_ce = 1;
1702	else if (!strcmp(str, "ignore_ce"))
1703		mce_ignore_ce = 1;
1704	else if (!strcmp(str, "bootlog") || !strcmp(str, "nobootlog"))
1705		mce_bootlog = (str[0] == 'b');
1706	else if (isdigit(str[0])) {
1707		get_option(&str, &tolerant);
1708		if (*str == ',') {
1709			++str;
1710			get_option(&str, &monarch_timeout);
1711		}
1712	} else {
1713		printk(KERN_INFO "mce argument %s ignored. Please use /sys\n",
1714		       str);
1715		return 0;
1716	}
1717	return 1;
1718}
1719__setup("mce", mcheck_enable);
1720
1721int __init mcheck_init(void)
1722{
1723	mcheck_intel_therm_init();
1724
1725	return 0;
1726}
1727
1728/*
1729 * mce_syscore: PM support
1730 */
1731
1732/*
1733 * Disable machine checks on suspend and shutdown. We can't really handle
1734 * them later.
1735 */
1736static int mce_disable_error_reporting(void)
1737{
1738	int i;
1739
1740	for (i = 0; i < banks; i++) {
1741		struct mce_bank *b = &mce_banks[i];
1742
1743		if (b->init)
1744			wrmsrl(MSR_IA32_MCx_CTL(i), 0);
1745	}
1746	return 0;
1747}
1748
1749static int mce_syscore_suspend(void)
1750{
1751	return mce_disable_error_reporting();
1752}
1753
1754static void mce_syscore_shutdown(void)
1755{
1756	mce_disable_error_reporting();
1757}
1758
1759/*
1760 * On resume clear all MCE state. Don't want to see leftovers from the BIOS.
1761 * Only one CPU is active at this time, the others get re-added later using
1762 * CPU hotplug:
1763 */
1764static void mce_syscore_resume(void)
1765{
1766	__mcheck_cpu_init_generic();
1767	__mcheck_cpu_init_vendor(__this_cpu_ptr(&cpu_info));
1768}
1769
1770static struct syscore_ops mce_syscore_ops = {
1771	.suspend	= mce_syscore_suspend,
1772	.shutdown	= mce_syscore_shutdown,
1773	.resume		= mce_syscore_resume,
1774};
1775
1776/*
1777 * mce_sysdev: Sysfs support
1778 */
1779
1780static void mce_cpu_restart(void *data)
1781{
1782	if (!mce_available(__this_cpu_ptr(&cpu_info)))
1783		return;
1784	__mcheck_cpu_init_generic();
1785	__mcheck_cpu_init_timer();
1786}
1787
1788/* Reinit MCEs after user configuration changes */
1789static void mce_restart(void)
1790{
1791	mce_timer_delete_all();
1792	on_each_cpu(mce_cpu_restart, NULL, 1);
1793}
1794
1795/* Toggle features for corrected errors */
1796static void mce_disable_cmci(void *data)
1797{
1798	if (!mce_available(__this_cpu_ptr(&cpu_info)))
1799		return;
1800	cmci_clear();
1801}
1802
1803static void mce_enable_ce(void *all)
1804{
1805	if (!mce_available(__this_cpu_ptr(&cpu_info)))
1806		return;
1807	cmci_reenable();
1808	cmci_recheck();
1809	if (all)
1810		__mcheck_cpu_init_timer();
1811}
1812
1813static struct sysdev_class mce_sysdev_class = {
1814	.name		= "machinecheck",
1815};
1816
1817DEFINE_PER_CPU(struct sys_device, mce_sysdev);
1818
1819__cpuinitdata
1820void (*threshold_cpu_callback)(unsigned long action, unsigned int cpu);
1821
1822static inline struct mce_bank *attr_to_bank(struct sysdev_attribute *attr)
1823{
1824	return container_of(attr, struct mce_bank, attr);
1825}
1826
1827static ssize_t show_bank(struct sys_device *s, struct sysdev_attribute *attr,
1828			 char *buf)
1829{
1830	return sprintf(buf, "%llx\n", attr_to_bank(attr)->ctl);
1831}
1832
1833static ssize_t set_bank(struct sys_device *s, struct sysdev_attribute *attr,
1834			const char *buf, size_t size)
1835{
1836	u64 new;
1837
1838	if (strict_strtoull(buf, 0, &new) < 0)
1839		return -EINVAL;
1840
1841	attr_to_bank(attr)->ctl = new;
1842	mce_restart();
1843
1844	return size;
1845}
1846
1847static ssize_t
1848show_trigger(struct sys_device *s, struct sysdev_attribute *attr, char *buf)
1849{
1850	strcpy(buf, mce_helper);
1851	strcat(buf, "\n");
1852	return strlen(mce_helper) + 1;
1853}
1854
1855static ssize_t set_trigger(struct sys_device *s, struct sysdev_attribute *attr,
1856				const char *buf, size_t siz)
1857{
1858	char *p;
1859
1860	strncpy(mce_helper, buf, sizeof(mce_helper));
1861	mce_helper[sizeof(mce_helper)-1] = 0;
1862	p = strchr(mce_helper, '\n');
1863
1864	if (p)
1865		*p = 0;
1866
1867	return strlen(mce_helper) + !!p;
1868}
1869
1870static ssize_t set_ignore_ce(struct sys_device *s,
1871			     struct sysdev_attribute *attr,
1872			     const char *buf, size_t size)
1873{
1874	u64 new;
1875
1876	if (strict_strtoull(buf, 0, &new) < 0)
1877		return -EINVAL;
1878
1879	if (mce_ignore_ce ^ !!new) {
1880		if (new) {
1881			/* disable ce features */
1882			mce_timer_delete_all();
1883			on_each_cpu(mce_disable_cmci, NULL, 1);
1884			mce_ignore_ce = 1;
1885		} else {
1886			/* enable ce features */
1887			mce_ignore_ce = 0;
1888			on_each_cpu(mce_enable_ce, (void *)1, 1);
1889		}
1890	}
1891	return size;
1892}
1893
1894static ssize_t set_cmci_disabled(struct sys_device *s,
1895				 struct sysdev_attribute *attr,
1896				 const char *buf, size_t size)
1897{
1898	u64 new;
1899
1900	if (strict_strtoull(buf, 0, &new) < 0)
1901		return -EINVAL;
1902
1903	if (mce_cmci_disabled ^ !!new) {
1904		if (new) {
1905			/* disable cmci */
1906			on_each_cpu(mce_disable_cmci, NULL, 1);
1907			mce_cmci_disabled = 1;
1908		} else {
1909			/* enable cmci */
1910			mce_cmci_disabled = 0;
1911			on_each_cpu(mce_enable_ce, NULL, 1);
1912		}
1913	}
1914	return size;
1915}
1916
1917static ssize_t store_int_with_restart(struct sys_device *s,
1918				      struct sysdev_attribute *attr,
1919				      const char *buf, size_t size)
1920{
1921	ssize_t ret = sysdev_store_int(s, attr, buf, size);
1922	mce_restart();
1923	return ret;
1924}
1925
1926static SYSDEV_ATTR(trigger, 0644, show_trigger, set_trigger);
1927static SYSDEV_INT_ATTR(tolerant, 0644, tolerant);
1928static SYSDEV_INT_ATTR(monarch_timeout, 0644, monarch_timeout);
1929static SYSDEV_INT_ATTR(dont_log_ce, 0644, mce_dont_log_ce);
1930
1931static struct sysdev_ext_attribute attr_check_interval = {
1932	_SYSDEV_ATTR(check_interval, 0644, sysdev_show_int,
1933		     store_int_with_restart),
1934	&check_interval
1935};
1936
1937static struct sysdev_ext_attribute attr_ignore_ce = {
1938	_SYSDEV_ATTR(ignore_ce, 0644, sysdev_show_int, set_ignore_ce),
1939	&mce_ignore_ce
1940};
1941
1942static struct sysdev_ext_attribute attr_cmci_disabled = {
1943	_SYSDEV_ATTR(cmci_disabled, 0644, sysdev_show_int, set_cmci_disabled),
1944	&mce_cmci_disabled
1945};
1946
1947static struct sysdev_attribute *mce_sysdev_attrs[] = {
1948	&attr_tolerant.attr,
1949	&attr_check_interval.attr,
1950	&attr_trigger,
1951	&attr_monarch_timeout.attr,
1952	&attr_dont_log_ce.attr,
1953	&attr_ignore_ce.attr,
1954	&attr_cmci_disabled.attr,
1955	NULL
1956};
1957
1958static cpumask_var_t mce_sysdev_initialized;
1959
1960/* Per cpu sysdev init. All of the cpus still share the same ctrl bank: */
1961static __cpuinit int mce_sysdev_create(unsigned int cpu)
1962{
1963	struct sys_device *sysdev = &per_cpu(mce_sysdev, cpu);
1964	int err;
1965	int i, j;
1966
1967	if (!mce_available(&boot_cpu_data))
1968		return -EIO;
1969
1970	memset(&sysdev->kobj, 0, sizeof(struct kobject));
1971	sysdev->id  = cpu;
1972	sysdev->cls = &mce_sysdev_class;
1973
1974	err = sysdev_register(sysdev);
1975	if (err)
1976		return err;
1977
1978	for (i = 0; mce_sysdev_attrs[i]; i++) {
1979		err = sysdev_create_file(sysdev, mce_sysdev_attrs[i]);
1980		if (err)
1981			goto error;
1982	}
1983	for (j = 0; j < banks; j++) {
1984		err = sysdev_create_file(sysdev, &mce_banks[j].attr);
1985		if (err)
1986			goto error2;
1987	}
1988	cpumask_set_cpu(cpu, mce_sysdev_initialized);
1989
1990	return 0;
1991error2:
1992	while (--j >= 0)
1993		sysdev_remove_file(sysdev, &mce_banks[j].attr);
1994error:
1995	while (--i >= 0)
1996		sysdev_remove_file(sysdev, mce_sysdev_attrs[i]);
1997
1998	sysdev_unregister(sysdev);
1999
2000	return err;
2001}
2002
2003static __cpuinit void mce_sysdev_remove(unsigned int cpu)
2004{
2005	struct sys_device *sysdev = &per_cpu(mce_sysdev, cpu);
2006	int i;
2007
2008	if (!cpumask_test_cpu(cpu, mce_sysdev_initialized))
2009		return;
2010
2011	for (i = 0; mce_sysdev_attrs[i]; i++)
2012		sysdev_remove_file(sysdev, mce_sysdev_attrs[i]);
2013
2014	for (i = 0; i < banks; i++)
2015		sysdev_remove_file(sysdev, &mce_banks[i].attr);
2016
2017	sysdev_unregister(sysdev);
2018	cpumask_clear_cpu(cpu, mce_sysdev_initialized);
2019}
2020
2021/* Make sure there are no machine checks on offlined CPUs. */
2022static void __cpuinit mce_disable_cpu(void *h)
2023{
2024	unsigned long action = *(unsigned long *)h;
2025	int i;
2026
2027	if (!mce_available(__this_cpu_ptr(&cpu_info)))
2028		return;
2029
2030	if (!(action & CPU_TASKS_FROZEN))
2031		cmci_clear();
2032	for (i = 0; i < banks; i++) {
2033		struct mce_bank *b = &mce_banks[i];
2034
2035		if (b->init)
2036			wrmsrl(MSR_IA32_MCx_CTL(i), 0);
2037	}
2038}
2039
2040static void __cpuinit mce_reenable_cpu(void *h)
2041{
2042	unsigned long action = *(unsigned long *)h;
2043	int i;
2044
2045	if (!mce_available(__this_cpu_ptr(&cpu_info)))
2046		return;
2047
2048	if (!(action & CPU_TASKS_FROZEN))
2049		cmci_reenable();
2050	for (i = 0; i < banks; i++) {
2051		struct mce_bank *b = &mce_banks[i];
2052
2053		if (b->init)
2054			wrmsrl(MSR_IA32_MCx_CTL(i), b->ctl);
2055	}
2056}
2057
2058/* Get notified when a cpu comes on/off. Be hotplug friendly. */
2059static int __cpuinit
2060mce_cpu_callback(struct notifier_block *nfb, unsigned long action, void *hcpu)
2061{
2062	unsigned int cpu = (unsigned long)hcpu;
2063	struct timer_list *t = &per_cpu(mce_timer, cpu);
2064
2065	switch (action) {
2066	case CPU_ONLINE:
2067	case CPU_ONLINE_FROZEN:
2068		mce_sysdev_create(cpu);
2069		if (threshold_cpu_callback)
2070			threshold_cpu_callback(action, cpu);
2071		break;
2072	case CPU_DEAD:
2073	case CPU_DEAD_FROZEN:
2074		if (threshold_cpu_callback)
2075			threshold_cpu_callback(action, cpu);
2076		mce_sysdev_remove(cpu);
2077		break;
2078	case CPU_DOWN_PREPARE:
2079	case CPU_DOWN_PREPARE_FROZEN:
2080		del_timer_sync(t);
2081		smp_call_function_single(cpu, mce_disable_cpu, &action, 1);
2082		break;
2083	case CPU_DOWN_FAILED:
2084	case CPU_DOWN_FAILED_FROZEN:
2085		if (!mce_ignore_ce && check_interval) {
2086			t->expires = round_jiffies(jiffies +
2087					   __get_cpu_var(mce_next_interval));
2088			add_timer_on(t, cpu);
2089		}
2090		smp_call_function_single(cpu, mce_reenable_cpu, &action, 1);
2091		break;
2092	case CPU_POST_DEAD:
2093		/* intentionally ignoring frozen here */
2094		cmci_rediscover(cpu);
2095		break;
2096	}
2097	return NOTIFY_OK;
2098}
2099
2100static struct notifier_block mce_cpu_notifier __cpuinitdata = {
2101	.notifier_call = mce_cpu_callback,
2102};
2103
2104static __init void mce_init_banks(void)
2105{
2106	int i;
2107
2108	for (i = 0; i < banks; i++) {
2109		struct mce_bank *b = &mce_banks[i];
2110		struct sysdev_attribute *a = &b->attr;
2111
2112		sysfs_attr_init(&a->attr);
2113		a->attr.name	= b->attrname;
2114		snprintf(b->attrname, ATTR_LEN, "bank%d", i);
2115
2116		a->attr.mode	= 0644;
2117		a->show		= show_bank;
2118		a->store	= set_bank;
2119	}
2120}
2121
2122static __init int mcheck_init_device(void)
2123{
2124	int err;
2125	int i = 0;
2126
2127	if (!mce_available(&boot_cpu_data))
2128		return -EIO;
2129
2130	zalloc_cpumask_var(&mce_sysdev_initialized, GFP_KERNEL);
2131
2132	mce_init_banks();
2133
2134	err = sysdev_class_register(&mce_sysdev_class);
2135	if (err)
2136		return err;
2137
2138	for_each_online_cpu(i) {
2139		err = mce_sysdev_create(i);
2140		if (err)
2141			return err;
2142	}
2143
2144	register_syscore_ops(&mce_syscore_ops);
2145	register_hotcpu_notifier(&mce_cpu_notifier);
2146
2147	/* register character device /dev/mcelog */
2148	misc_register(&mce_chrdev_device);
2149
2150	return err;
2151}
2152device_initcall(mcheck_init_device);
2153
2154/*
2155 * Old style boot options parsing. Only for compatibility.
2156 */
2157static int __init mcheck_disable(char *str)
2158{
2159	mce_disabled = 1;
2160	return 1;
2161}
2162__setup("nomce", mcheck_disable);
2163
2164#ifdef CONFIG_DEBUG_FS
2165struct dentry *mce_get_debugfs_dir(void)
2166{
2167	static struct dentry *dmce;
2168
2169	if (!dmce)
2170		dmce = debugfs_create_dir("mce", NULL);
2171
2172	return dmce;
2173}
2174
2175static void mce_reset(void)
2176{
2177	cpu_missing = 0;
2178	atomic_set(&mce_fake_paniced, 0);
2179	atomic_set(&mce_executing, 0);
2180	atomic_set(&mce_callin, 0);
2181	atomic_set(&global_nwo, 0);
2182}
2183
2184static int fake_panic_get(void *data, u64 *val)
2185{
2186	*val = fake_panic;
2187	return 0;
2188}
2189
2190static int fake_panic_set(void *data, u64 val)
2191{
2192	mce_reset();
2193	fake_panic = val;
2194	return 0;
2195}
2196
2197DEFINE_SIMPLE_ATTRIBUTE(fake_panic_fops, fake_panic_get,
2198			fake_panic_set, "%llu\n");
2199
2200static int __init mcheck_debugfs_init(void)
2201{
2202	struct dentry *dmce, *ffake_panic;
2203
2204	dmce = mce_get_debugfs_dir();
2205	if (!dmce)
2206		return -ENOMEM;
2207	ffake_panic = debugfs_create_file("fake_panic", 0444, dmce, NULL,
2208					  &fake_panic_fops);
2209	if (!ffake_panic)
2210		return -ENOMEM;
2211
2212	return 0;
2213}
2214late_initcall(mcheck_debugfs_init);
2215#endif
2216