mce.c revision ea431643d6c38728195e2c456801c3ef66bb9991
1/*
2 * Machine check handler.
3 *
4 * K8 parts Copyright 2002,2003 Andi Kleen, SuSE Labs.
5 * Rest from unknown author(s).
6 * 2004 Andi Kleen. Rewrote most of it.
7 * Copyright 2008 Intel Corporation
8 * Author: Andi Kleen
9 */
10
11#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
12
13#include <linux/thread_info.h>
14#include <linux/capability.h>
15#include <linux/miscdevice.h>
16#include <linux/ratelimit.h>
17#include <linux/kallsyms.h>
18#include <linux/rcupdate.h>
19#include <linux/kobject.h>
20#include <linux/uaccess.h>
21#include <linux/kdebug.h>
22#include <linux/kernel.h>
23#include <linux/percpu.h>
24#include <linux/string.h>
25#include <linux/device.h>
26#include <linux/syscore_ops.h>
27#include <linux/delay.h>
28#include <linux/ctype.h>
29#include <linux/sched.h>
30#include <linux/sysfs.h>
31#include <linux/types.h>
32#include <linux/slab.h>
33#include <linux/init.h>
34#include <linux/kmod.h>
35#include <linux/poll.h>
36#include <linux/nmi.h>
37#include <linux/cpu.h>
38#include <linux/smp.h>
39#include <linux/fs.h>
40#include <linux/mm.h>
41#include <linux/debugfs.h>
42#include <linux/irq_work.h>
43#include <linux/export.h>
44
45#include <asm/processor.h>
46#include <asm/mce.h>
47#include <asm/msr.h>
48
49#include "mce-internal.h"
50
51static DEFINE_MUTEX(mce_chrdev_read_mutex);
52
53#define rcu_dereference_check_mce(p) \
54	rcu_dereference_index_check((p), \
55			      rcu_read_lock_sched_held() || \
56			      lockdep_is_held(&mce_chrdev_read_mutex))
57
58#define CREATE_TRACE_POINTS
59#include <trace/events/mce.h>
60
61#define SPINUNIT 100	/* 100ns */
62
63atomic_t mce_entry;
64
65DEFINE_PER_CPU(unsigned, mce_exception_count);
66
67struct mce_bank *mce_banks __read_mostly;
68
69struct mca_config mca_cfg __read_mostly = {
70	.bootlog  = -1,
71	/*
72	 * Tolerant levels:
73	 * 0: always panic on uncorrected errors, log corrected errors
74	 * 1: panic or SIGBUS on uncorrected errors, log corrected errors
75	 * 2: SIGBUS or log uncorrected errors (if possible), log corr. errors
76	 * 3: never panic or SIGBUS, log all errors (for testing only)
77	 */
78	.tolerant = 1,
79	.monarch_timeout = -1
80};
81
82/* User mode helper program triggered by machine check event */
83static unsigned long		mce_need_notify;
84static char			mce_helper[128];
85static char			*mce_helper_argv[2] = { mce_helper, NULL };
86
87static DECLARE_WAIT_QUEUE_HEAD(mce_chrdev_wait);
88
89static DEFINE_PER_CPU(struct mce, mces_seen);
90static int			cpu_missing;
91
92/* CMCI storm detection filter */
93static DEFINE_PER_CPU(unsigned long, mce_polled_error);
94
95/*
96 * MCA banks polled by the period polling timer for corrected events.
97 * With Intel CMCI, this only has MCA banks which do not support CMCI (if any).
98 */
99DEFINE_PER_CPU(mce_banks_t, mce_poll_banks) = {
100	[0 ... BITS_TO_LONGS(MAX_NR_BANKS)-1] = ~0UL
101};
102
103/*
104 * MCA banks controlled through firmware first for corrected errors.
105 * This is a global list of banks for which we won't enable CMCI and we
106 * won't poll. Firmware controls these banks and is responsible for
107 * reporting corrected errors through GHES. Uncorrected/recoverable
108 * errors are still notified through a machine check.
109 */
110mce_banks_t mce_banks_ce_disabled;
111
112static DEFINE_PER_CPU(struct work_struct, mce_work);
113
114static void (*quirk_no_way_out)(int bank, struct mce *m, struct pt_regs *regs);
115
116/*
117 * CPU/chipset specific EDAC code can register a notifier call here to print
118 * MCE errors in a human-readable form.
119 */
120ATOMIC_NOTIFIER_HEAD(x86_mce_decoder_chain);
121
122/* Do initial initialization of a struct mce */
123void mce_setup(struct mce *m)
124{
125	memset(m, 0, sizeof(struct mce));
126	m->cpu = m->extcpu = smp_processor_id();
127	rdtscll(m->tsc);
128	/* We hope get_seconds stays lockless */
129	m->time = get_seconds();
130	m->cpuvendor = boot_cpu_data.x86_vendor;
131	m->cpuid = cpuid_eax(1);
132	m->socketid = cpu_data(m->extcpu).phys_proc_id;
133	m->apicid = cpu_data(m->extcpu).initial_apicid;
134	rdmsrl(MSR_IA32_MCG_CAP, m->mcgcap);
135}
136
137DEFINE_PER_CPU(struct mce, injectm);
138EXPORT_PER_CPU_SYMBOL_GPL(injectm);
139
140/*
141 * Lockless MCE logging infrastructure.
142 * This avoids deadlocks on printk locks without having to break locks. Also
143 * separate MCEs from kernel messages to avoid bogus bug reports.
144 */
145
146static struct mce_log mcelog = {
147	.signature	= MCE_LOG_SIGNATURE,
148	.len		= MCE_LOG_LEN,
149	.recordlen	= sizeof(struct mce),
150};
151
152void mce_log(struct mce *mce)
153{
154	unsigned next, entry;
155	int ret = 0;
156
157	/* Emit the trace record: */
158	trace_mce_record(mce);
159
160	ret = atomic_notifier_call_chain(&x86_mce_decoder_chain, 0, mce);
161	if (ret == NOTIFY_STOP)
162		return;
163
164	mce->finished = 0;
165	wmb();
166	for (;;) {
167		entry = rcu_dereference_check_mce(mcelog.next);
168		for (;;) {
169
170			/*
171			 * When the buffer fills up discard new entries.
172			 * Assume that the earlier errors are the more
173			 * interesting ones:
174			 */
175			if (entry >= MCE_LOG_LEN) {
176				set_bit(MCE_OVERFLOW,
177					(unsigned long *)&mcelog.flags);
178				return;
179			}
180			/* Old left over entry. Skip: */
181			if (mcelog.entry[entry].finished) {
182				entry++;
183				continue;
184			}
185			break;
186		}
187		smp_rmb();
188		next = entry + 1;
189		if (cmpxchg(&mcelog.next, entry, next) == entry)
190			break;
191	}
192	memcpy(mcelog.entry + entry, mce, sizeof(struct mce));
193	wmb();
194	mcelog.entry[entry].finished = 1;
195	wmb();
196
197	mce->finished = 1;
198	set_bit(0, &mce_need_notify);
199}
200
201static void drain_mcelog_buffer(void)
202{
203	unsigned int next, i, prev = 0;
204
205	next = ACCESS_ONCE(mcelog.next);
206
207	do {
208		struct mce *m;
209
210		/* drain what was logged during boot */
211		for (i = prev; i < next; i++) {
212			unsigned long start = jiffies;
213			unsigned retries = 1;
214
215			m = &mcelog.entry[i];
216
217			while (!m->finished) {
218				if (time_after_eq(jiffies, start + 2*retries))
219					retries++;
220
221				cpu_relax();
222
223				if (!m->finished && retries >= 4) {
224					pr_err("skipping error being logged currently!\n");
225					break;
226				}
227			}
228			smp_rmb();
229			atomic_notifier_call_chain(&x86_mce_decoder_chain, 0, m);
230		}
231
232		memset(mcelog.entry + prev, 0, (next - prev) * sizeof(*m));
233		prev = next;
234		next = cmpxchg(&mcelog.next, prev, 0);
235	} while (next != prev);
236}
237
238
239void mce_register_decode_chain(struct notifier_block *nb)
240{
241	atomic_notifier_chain_register(&x86_mce_decoder_chain, nb);
242	drain_mcelog_buffer();
243}
244EXPORT_SYMBOL_GPL(mce_register_decode_chain);
245
246void mce_unregister_decode_chain(struct notifier_block *nb)
247{
248	atomic_notifier_chain_unregister(&x86_mce_decoder_chain, nb);
249}
250EXPORT_SYMBOL_GPL(mce_unregister_decode_chain);
251
252static void print_mce(struct mce *m)
253{
254	int ret = 0;
255
256	pr_emerg(HW_ERR "CPU %d: Machine Check Exception: %Lx Bank %d: %016Lx\n",
257	       m->extcpu, m->mcgstatus, m->bank, m->status);
258
259	if (m->ip) {
260		pr_emerg(HW_ERR "RIP%s %02x:<%016Lx> ",
261			!(m->mcgstatus & MCG_STATUS_EIPV) ? " !INEXACT!" : "",
262				m->cs, m->ip);
263
264		if (m->cs == __KERNEL_CS)
265			print_symbol("{%s}", m->ip);
266		pr_cont("\n");
267	}
268
269	pr_emerg(HW_ERR "TSC %llx ", m->tsc);
270	if (m->addr)
271		pr_cont("ADDR %llx ", m->addr);
272	if (m->misc)
273		pr_cont("MISC %llx ", m->misc);
274
275	pr_cont("\n");
276	/*
277	 * Note this output is parsed by external tools and old fields
278	 * should not be changed.
279	 */
280	pr_emerg(HW_ERR "PROCESSOR %u:%x TIME %llu SOCKET %u APIC %x microcode %x\n",
281		m->cpuvendor, m->cpuid, m->time, m->socketid, m->apicid,
282		cpu_data(m->extcpu).microcode);
283
284	/*
285	 * Print out human-readable details about the MCE error,
286	 * (if the CPU has an implementation for that)
287	 */
288	ret = atomic_notifier_call_chain(&x86_mce_decoder_chain, 0, m);
289	if (ret == NOTIFY_STOP)
290		return;
291
292	pr_emerg_ratelimited(HW_ERR "Run the above through 'mcelog --ascii'\n");
293}
294
295#define PANIC_TIMEOUT 5 /* 5 seconds */
296
297static atomic_t mce_paniced;
298
299static int fake_panic;
300static atomic_t mce_fake_paniced;
301
302/* Panic in progress. Enable interrupts and wait for final IPI */
303static void wait_for_panic(void)
304{
305	long timeout = PANIC_TIMEOUT*USEC_PER_SEC;
306
307	preempt_disable();
308	local_irq_enable();
309	while (timeout-- > 0)
310		udelay(1);
311	if (panic_timeout == 0)
312		panic_timeout = mca_cfg.panic_timeout;
313	panic("Panicing machine check CPU died");
314}
315
316static void mce_panic(char *msg, struct mce *final, char *exp)
317{
318	int i, apei_err = 0;
319
320	if (!fake_panic) {
321		/*
322		 * Make sure only one CPU runs in machine check panic
323		 */
324		if (atomic_inc_return(&mce_paniced) > 1)
325			wait_for_panic();
326		barrier();
327
328		bust_spinlocks(1);
329		console_verbose();
330	} else {
331		/* Don't log too much for fake panic */
332		if (atomic_inc_return(&mce_fake_paniced) > 1)
333			return;
334	}
335	/* First print corrected ones that are still unlogged */
336	for (i = 0; i < MCE_LOG_LEN; i++) {
337		struct mce *m = &mcelog.entry[i];
338		if (!(m->status & MCI_STATUS_VAL))
339			continue;
340		if (!(m->status & MCI_STATUS_UC)) {
341			print_mce(m);
342			if (!apei_err)
343				apei_err = apei_write_mce(m);
344		}
345	}
346	/* Now print uncorrected but with the final one last */
347	for (i = 0; i < MCE_LOG_LEN; i++) {
348		struct mce *m = &mcelog.entry[i];
349		if (!(m->status & MCI_STATUS_VAL))
350			continue;
351		if (!(m->status & MCI_STATUS_UC))
352			continue;
353		if (!final || memcmp(m, final, sizeof(struct mce))) {
354			print_mce(m);
355			if (!apei_err)
356				apei_err = apei_write_mce(m);
357		}
358	}
359	if (final) {
360		print_mce(final);
361		if (!apei_err)
362			apei_err = apei_write_mce(final);
363	}
364	if (cpu_missing)
365		pr_emerg(HW_ERR "Some CPUs didn't answer in synchronization\n");
366	if (exp)
367		pr_emerg(HW_ERR "Machine check: %s\n", exp);
368	if (!fake_panic) {
369		if (panic_timeout == 0)
370			panic_timeout = mca_cfg.panic_timeout;
371		panic(msg);
372	} else
373		pr_emerg(HW_ERR "Fake kernel panic: %s\n", msg);
374}
375
376/* Support code for software error injection */
377
378static int msr_to_offset(u32 msr)
379{
380	unsigned bank = __this_cpu_read(injectm.bank);
381
382	if (msr == mca_cfg.rip_msr)
383		return offsetof(struct mce, ip);
384	if (msr == MSR_IA32_MCx_STATUS(bank))
385		return offsetof(struct mce, status);
386	if (msr == MSR_IA32_MCx_ADDR(bank))
387		return offsetof(struct mce, addr);
388	if (msr == MSR_IA32_MCx_MISC(bank))
389		return offsetof(struct mce, misc);
390	if (msr == MSR_IA32_MCG_STATUS)
391		return offsetof(struct mce, mcgstatus);
392	return -1;
393}
394
395/* MSR access wrappers used for error injection */
396static u64 mce_rdmsrl(u32 msr)
397{
398	u64 v;
399
400	if (__this_cpu_read(injectm.finished)) {
401		int offset = msr_to_offset(msr);
402
403		if (offset < 0)
404			return 0;
405		return *(u64 *)((char *)&__get_cpu_var(injectm) + offset);
406	}
407
408	if (rdmsrl_safe(msr, &v)) {
409		WARN_ONCE(1, "mce: Unable to read msr %d!\n", msr);
410		/*
411		 * Return zero in case the access faulted. This should
412		 * not happen normally but can happen if the CPU does
413		 * something weird, or if the code is buggy.
414		 */
415		v = 0;
416	}
417
418	return v;
419}
420
421static void mce_wrmsrl(u32 msr, u64 v)
422{
423	if (__this_cpu_read(injectm.finished)) {
424		int offset = msr_to_offset(msr);
425
426		if (offset >= 0)
427			*(u64 *)((char *)&__get_cpu_var(injectm) + offset) = v;
428		return;
429	}
430	wrmsrl(msr, v);
431}
432
433/*
434 * Collect all global (w.r.t. this processor) status about this machine
435 * check into our "mce" struct so that we can use it later to assess
436 * the severity of the problem as we read per-bank specific details.
437 */
438static inline void mce_gather_info(struct mce *m, struct pt_regs *regs)
439{
440	mce_setup(m);
441
442	m->mcgstatus = mce_rdmsrl(MSR_IA32_MCG_STATUS);
443	if (regs) {
444		/*
445		 * Get the address of the instruction at the time of
446		 * the machine check error.
447		 */
448		if (m->mcgstatus & (MCG_STATUS_RIPV|MCG_STATUS_EIPV)) {
449			m->ip = regs->ip;
450			m->cs = regs->cs;
451
452			/*
453			 * When in VM86 mode make the cs look like ring 3
454			 * always. This is a lie, but it's better than passing
455			 * the additional vm86 bit around everywhere.
456			 */
457			if (v8086_mode(regs))
458				m->cs |= 3;
459		}
460		/* Use accurate RIP reporting if available. */
461		if (mca_cfg.rip_msr)
462			m->ip = mce_rdmsrl(mca_cfg.rip_msr);
463	}
464}
465
466/*
467 * Simple lockless ring to communicate PFNs from the exception handler with the
468 * process context work function. This is vastly simplified because there's
469 * only a single reader and a single writer.
470 */
471#define MCE_RING_SIZE 16	/* we use one entry less */
472
473struct mce_ring {
474	unsigned short start;
475	unsigned short end;
476	unsigned long ring[MCE_RING_SIZE];
477};
478static DEFINE_PER_CPU(struct mce_ring, mce_ring);
479
480/* Runs with CPU affinity in workqueue */
481static int mce_ring_empty(void)
482{
483	struct mce_ring *r = &__get_cpu_var(mce_ring);
484
485	return r->start == r->end;
486}
487
488static int mce_ring_get(unsigned long *pfn)
489{
490	struct mce_ring *r;
491	int ret = 0;
492
493	*pfn = 0;
494	get_cpu();
495	r = &__get_cpu_var(mce_ring);
496	if (r->start == r->end)
497		goto out;
498	*pfn = r->ring[r->start];
499	r->start = (r->start + 1) % MCE_RING_SIZE;
500	ret = 1;
501out:
502	put_cpu();
503	return ret;
504}
505
506/* Always runs in MCE context with preempt off */
507static int mce_ring_add(unsigned long pfn)
508{
509	struct mce_ring *r = &__get_cpu_var(mce_ring);
510	unsigned next;
511
512	next = (r->end + 1) % MCE_RING_SIZE;
513	if (next == r->start)
514		return -1;
515	r->ring[r->end] = pfn;
516	wmb();
517	r->end = next;
518	return 0;
519}
520
521int mce_available(struct cpuinfo_x86 *c)
522{
523	if (mca_cfg.disabled)
524		return 0;
525	return cpu_has(c, X86_FEATURE_MCE) && cpu_has(c, X86_FEATURE_MCA);
526}
527
528static void mce_schedule_work(void)
529{
530	if (!mce_ring_empty())
531		schedule_work(&__get_cpu_var(mce_work));
532}
533
534DEFINE_PER_CPU(struct irq_work, mce_irq_work);
535
536static void mce_irq_work_cb(struct irq_work *entry)
537{
538	mce_notify_irq();
539	mce_schedule_work();
540}
541
542static void mce_report_event(struct pt_regs *regs)
543{
544	if (regs->flags & (X86_VM_MASK|X86_EFLAGS_IF)) {
545		mce_notify_irq();
546		/*
547		 * Triggering the work queue here is just an insurance
548		 * policy in case the syscall exit notify handler
549		 * doesn't run soon enough or ends up running on the
550		 * wrong CPU (can happen when audit sleeps)
551		 */
552		mce_schedule_work();
553		return;
554	}
555
556	irq_work_queue(&__get_cpu_var(mce_irq_work));
557}
558
559/*
560 * Read ADDR and MISC registers.
561 */
562static void mce_read_aux(struct mce *m, int i)
563{
564	if (m->status & MCI_STATUS_MISCV)
565		m->misc = mce_rdmsrl(MSR_IA32_MCx_MISC(i));
566	if (m->status & MCI_STATUS_ADDRV) {
567		m->addr = mce_rdmsrl(MSR_IA32_MCx_ADDR(i));
568
569		/*
570		 * Mask the reported address by the reported granularity.
571		 */
572		if (mca_cfg.ser && (m->status & MCI_STATUS_MISCV)) {
573			u8 shift = MCI_MISC_ADDR_LSB(m->misc);
574			m->addr >>= shift;
575			m->addr <<= shift;
576		}
577	}
578}
579
580DEFINE_PER_CPU(unsigned, mce_poll_count);
581
582/*
583 * Poll for corrected events or events that happened before reset.
584 * Those are just logged through /dev/mcelog.
585 *
586 * This is executed in standard interrupt context.
587 *
588 * Note: spec recommends to panic for fatal unsignalled
589 * errors here. However this would be quite problematic --
590 * we would need to reimplement the Monarch handling and
591 * it would mess up the exclusion between exception handler
592 * and poll hander -- * so we skip this for now.
593 * These cases should not happen anyways, or only when the CPU
594 * is already totally * confused. In this case it's likely it will
595 * not fully execute the machine check handler either.
596 */
597void machine_check_poll(enum mcp_flags flags, mce_banks_t *b)
598{
599	struct mce m;
600	int i;
601
602	this_cpu_inc(mce_poll_count);
603
604	mce_gather_info(&m, NULL);
605
606	for (i = 0; i < mca_cfg.banks; i++) {
607		if (!mce_banks[i].ctl || !test_bit(i, *b))
608			continue;
609
610		m.misc = 0;
611		m.addr = 0;
612		m.bank = i;
613		m.tsc = 0;
614
615		barrier();
616		m.status = mce_rdmsrl(MSR_IA32_MCx_STATUS(i));
617		if (!(m.status & MCI_STATUS_VAL))
618			continue;
619
620		this_cpu_write(mce_polled_error, 1);
621		/*
622		 * Uncorrected or signalled events are handled by the exception
623		 * handler when it is enabled, so don't process those here.
624		 *
625		 * TBD do the same check for MCI_STATUS_EN here?
626		 */
627		if (!(flags & MCP_UC) &&
628		    (m.status & (mca_cfg.ser ? MCI_STATUS_S : MCI_STATUS_UC)))
629			continue;
630
631		mce_read_aux(&m, i);
632
633		if (!(flags & MCP_TIMESTAMP))
634			m.tsc = 0;
635		/*
636		 * Don't get the IP here because it's unlikely to
637		 * have anything to do with the actual error location.
638		 */
639		if (!(flags & MCP_DONTLOG) && !mca_cfg.dont_log_ce)
640			mce_log(&m);
641
642		/*
643		 * Clear state for this bank.
644		 */
645		mce_wrmsrl(MSR_IA32_MCx_STATUS(i), 0);
646	}
647
648	/*
649	 * Don't clear MCG_STATUS here because it's only defined for
650	 * exceptions.
651	 */
652
653	sync_core();
654}
655EXPORT_SYMBOL_GPL(machine_check_poll);
656
657/*
658 * Do a quick check if any of the events requires a panic.
659 * This decides if we keep the events around or clear them.
660 */
661static int mce_no_way_out(struct mce *m, char **msg, unsigned long *validp,
662			  struct pt_regs *regs)
663{
664	int i, ret = 0;
665
666	for (i = 0; i < mca_cfg.banks; i++) {
667		m->status = mce_rdmsrl(MSR_IA32_MCx_STATUS(i));
668		if (m->status & MCI_STATUS_VAL) {
669			__set_bit(i, validp);
670			if (quirk_no_way_out)
671				quirk_no_way_out(i, m, regs);
672		}
673		if (mce_severity(m, mca_cfg.tolerant, msg) >= MCE_PANIC_SEVERITY)
674			ret = 1;
675	}
676	return ret;
677}
678
679/*
680 * Variable to establish order between CPUs while scanning.
681 * Each CPU spins initially until executing is equal its number.
682 */
683static atomic_t mce_executing;
684
685/*
686 * Defines order of CPUs on entry. First CPU becomes Monarch.
687 */
688static atomic_t mce_callin;
689
690/*
691 * Check if a timeout waiting for other CPUs happened.
692 */
693static int mce_timed_out(u64 *t)
694{
695	/*
696	 * The others already did panic for some reason.
697	 * Bail out like in a timeout.
698	 * rmb() to tell the compiler that system_state
699	 * might have been modified by someone else.
700	 */
701	rmb();
702	if (atomic_read(&mce_paniced))
703		wait_for_panic();
704	if (!mca_cfg.monarch_timeout)
705		goto out;
706	if ((s64)*t < SPINUNIT) {
707		/* CHECKME: Make panic default for 1 too? */
708		if (mca_cfg.tolerant < 1)
709			mce_panic("Timeout synchronizing machine check over CPUs",
710				  NULL, NULL);
711		cpu_missing = 1;
712		return 1;
713	}
714	*t -= SPINUNIT;
715out:
716	touch_nmi_watchdog();
717	return 0;
718}
719
720/*
721 * The Monarch's reign.  The Monarch is the CPU who entered
722 * the machine check handler first. It waits for the others to
723 * raise the exception too and then grades them. When any
724 * error is fatal panic. Only then let the others continue.
725 *
726 * The other CPUs entering the MCE handler will be controlled by the
727 * Monarch. They are called Subjects.
728 *
729 * This way we prevent any potential data corruption in a unrecoverable case
730 * and also makes sure always all CPU's errors are examined.
731 *
732 * Also this detects the case of a machine check event coming from outer
733 * space (not detected by any CPUs) In this case some external agent wants
734 * us to shut down, so panic too.
735 *
736 * The other CPUs might still decide to panic if the handler happens
737 * in a unrecoverable place, but in this case the system is in a semi-stable
738 * state and won't corrupt anything by itself. It's ok to let the others
739 * continue for a bit first.
740 *
741 * All the spin loops have timeouts; when a timeout happens a CPU
742 * typically elects itself to be Monarch.
743 */
744static void mce_reign(void)
745{
746	int cpu;
747	struct mce *m = NULL;
748	int global_worst = 0;
749	char *msg = NULL;
750	char *nmsg = NULL;
751
752	/*
753	 * This CPU is the Monarch and the other CPUs have run
754	 * through their handlers.
755	 * Grade the severity of the errors of all the CPUs.
756	 */
757	for_each_possible_cpu(cpu) {
758		int severity = mce_severity(&per_cpu(mces_seen, cpu),
759					    mca_cfg.tolerant,
760					    &nmsg);
761		if (severity > global_worst) {
762			msg = nmsg;
763			global_worst = severity;
764			m = &per_cpu(mces_seen, cpu);
765		}
766	}
767
768	/*
769	 * Cannot recover? Panic here then.
770	 * This dumps all the mces in the log buffer and stops the
771	 * other CPUs.
772	 */
773	if (m && global_worst >= MCE_PANIC_SEVERITY && mca_cfg.tolerant < 3)
774		mce_panic("Fatal Machine check", m, msg);
775
776	/*
777	 * For UC somewhere we let the CPU who detects it handle it.
778	 * Also must let continue the others, otherwise the handling
779	 * CPU could deadlock on a lock.
780	 */
781
782	/*
783	 * No machine check event found. Must be some external
784	 * source or one CPU is hung. Panic.
785	 */
786	if (global_worst <= MCE_KEEP_SEVERITY && mca_cfg.tolerant < 3)
787		mce_panic("Machine check from unknown source", NULL, NULL);
788
789	/*
790	 * Now clear all the mces_seen so that they don't reappear on
791	 * the next mce.
792	 */
793	for_each_possible_cpu(cpu)
794		memset(&per_cpu(mces_seen, cpu), 0, sizeof(struct mce));
795}
796
797static atomic_t global_nwo;
798
799/*
800 * Start of Monarch synchronization. This waits until all CPUs have
801 * entered the exception handler and then determines if any of them
802 * saw a fatal event that requires panic. Then it executes them
803 * in the entry order.
804 * TBD double check parallel CPU hotunplug
805 */
806static int mce_start(int *no_way_out)
807{
808	int order;
809	int cpus = num_online_cpus();
810	u64 timeout = (u64)mca_cfg.monarch_timeout * NSEC_PER_USEC;
811
812	if (!timeout)
813		return -1;
814
815	atomic_add(*no_way_out, &global_nwo);
816	/*
817	 * global_nwo should be updated before mce_callin
818	 */
819	smp_wmb();
820	order = atomic_inc_return(&mce_callin);
821
822	/*
823	 * Wait for everyone.
824	 */
825	while (atomic_read(&mce_callin) != cpus) {
826		if (mce_timed_out(&timeout)) {
827			atomic_set(&global_nwo, 0);
828			return -1;
829		}
830		ndelay(SPINUNIT);
831	}
832
833	/*
834	 * mce_callin should be read before global_nwo
835	 */
836	smp_rmb();
837
838	if (order == 1) {
839		/*
840		 * Monarch: Starts executing now, the others wait.
841		 */
842		atomic_set(&mce_executing, 1);
843	} else {
844		/*
845		 * Subject: Now start the scanning loop one by one in
846		 * the original callin order.
847		 * This way when there are any shared banks it will be
848		 * only seen by one CPU before cleared, avoiding duplicates.
849		 */
850		while (atomic_read(&mce_executing) < order) {
851			if (mce_timed_out(&timeout)) {
852				atomic_set(&global_nwo, 0);
853				return -1;
854			}
855			ndelay(SPINUNIT);
856		}
857	}
858
859	/*
860	 * Cache the global no_way_out state.
861	 */
862	*no_way_out = atomic_read(&global_nwo);
863
864	return order;
865}
866
867/*
868 * Synchronize between CPUs after main scanning loop.
869 * This invokes the bulk of the Monarch processing.
870 */
871static int mce_end(int order)
872{
873	int ret = -1;
874	u64 timeout = (u64)mca_cfg.monarch_timeout * NSEC_PER_USEC;
875
876	if (!timeout)
877		goto reset;
878	if (order < 0)
879		goto reset;
880
881	/*
882	 * Allow others to run.
883	 */
884	atomic_inc(&mce_executing);
885
886	if (order == 1) {
887		/* CHECKME: Can this race with a parallel hotplug? */
888		int cpus = num_online_cpus();
889
890		/*
891		 * Monarch: Wait for everyone to go through their scanning
892		 * loops.
893		 */
894		while (atomic_read(&mce_executing) <= cpus) {
895			if (mce_timed_out(&timeout))
896				goto reset;
897			ndelay(SPINUNIT);
898		}
899
900		mce_reign();
901		barrier();
902		ret = 0;
903	} else {
904		/*
905		 * Subject: Wait for Monarch to finish.
906		 */
907		while (atomic_read(&mce_executing) != 0) {
908			if (mce_timed_out(&timeout))
909				goto reset;
910			ndelay(SPINUNIT);
911		}
912
913		/*
914		 * Don't reset anything. That's done by the Monarch.
915		 */
916		return 0;
917	}
918
919	/*
920	 * Reset all global state.
921	 */
922reset:
923	atomic_set(&global_nwo, 0);
924	atomic_set(&mce_callin, 0);
925	barrier();
926
927	/*
928	 * Let others run again.
929	 */
930	atomic_set(&mce_executing, 0);
931	return ret;
932}
933
934/*
935 * Check if the address reported by the CPU is in a format we can parse.
936 * It would be possible to add code for most other cases, but all would
937 * be somewhat complicated (e.g. segment offset would require an instruction
938 * parser). So only support physical addresses up to page granuality for now.
939 */
940static int mce_usable_address(struct mce *m)
941{
942	if (!(m->status & MCI_STATUS_MISCV) || !(m->status & MCI_STATUS_ADDRV))
943		return 0;
944	if (MCI_MISC_ADDR_LSB(m->misc) > PAGE_SHIFT)
945		return 0;
946	if (MCI_MISC_ADDR_MODE(m->misc) != MCI_MISC_ADDR_PHYS)
947		return 0;
948	return 1;
949}
950
951static void mce_clear_state(unsigned long *toclear)
952{
953	int i;
954
955	for (i = 0; i < mca_cfg.banks; i++) {
956		if (test_bit(i, toclear))
957			mce_wrmsrl(MSR_IA32_MCx_STATUS(i), 0);
958	}
959}
960
961/*
962 * Need to save faulting physical address associated with a process
963 * in the machine check handler some place where we can grab it back
964 * later in mce_notify_process()
965 */
966#define	MCE_INFO_MAX	16
967
968struct mce_info {
969	atomic_t		inuse;
970	struct task_struct	*t;
971	__u64			paddr;
972	int			restartable;
973} mce_info[MCE_INFO_MAX];
974
975static void mce_save_info(__u64 addr, int c)
976{
977	struct mce_info *mi;
978
979	for (mi = mce_info; mi < &mce_info[MCE_INFO_MAX]; mi++) {
980		if (atomic_cmpxchg(&mi->inuse, 0, 1) == 0) {
981			mi->t = current;
982			mi->paddr = addr;
983			mi->restartable = c;
984			return;
985		}
986	}
987
988	mce_panic("Too many concurrent recoverable errors", NULL, NULL);
989}
990
991static struct mce_info *mce_find_info(void)
992{
993	struct mce_info *mi;
994
995	for (mi = mce_info; mi < &mce_info[MCE_INFO_MAX]; mi++)
996		if (atomic_read(&mi->inuse) && mi->t == current)
997			return mi;
998	return NULL;
999}
1000
1001static void mce_clear_info(struct mce_info *mi)
1002{
1003	atomic_set(&mi->inuse, 0);
1004}
1005
1006/*
1007 * The actual machine check handler. This only handles real
1008 * exceptions when something got corrupted coming in through int 18.
1009 *
1010 * This is executed in NMI context not subject to normal locking rules. This
1011 * implies that most kernel services cannot be safely used. Don't even
1012 * think about putting a printk in there!
1013 *
1014 * On Intel systems this is entered on all CPUs in parallel through
1015 * MCE broadcast. However some CPUs might be broken beyond repair,
1016 * so be always careful when synchronizing with others.
1017 */
1018void do_machine_check(struct pt_regs *regs, long error_code)
1019{
1020	struct mca_config *cfg = &mca_cfg;
1021	struct mce m, *final;
1022	int i;
1023	int worst = 0;
1024	int severity;
1025	/*
1026	 * Establish sequential order between the CPUs entering the machine
1027	 * check handler.
1028	 */
1029	int order;
1030	/*
1031	 * If no_way_out gets set, there is no safe way to recover from this
1032	 * MCE.  If mca_cfg.tolerant is cranked up, we'll try anyway.
1033	 */
1034	int no_way_out = 0;
1035	/*
1036	 * If kill_it gets set, there might be a way to recover from this
1037	 * error.
1038	 */
1039	int kill_it = 0;
1040	DECLARE_BITMAP(toclear, MAX_NR_BANKS);
1041	DECLARE_BITMAP(valid_banks, MAX_NR_BANKS);
1042	char *msg = "Unknown";
1043
1044	atomic_inc(&mce_entry);
1045
1046	this_cpu_inc(mce_exception_count);
1047
1048	if (!cfg->banks)
1049		goto out;
1050
1051	mce_gather_info(&m, regs);
1052
1053	final = &__get_cpu_var(mces_seen);
1054	*final = m;
1055
1056	memset(valid_banks, 0, sizeof(valid_banks));
1057	no_way_out = mce_no_way_out(&m, &msg, valid_banks, regs);
1058
1059	barrier();
1060
1061	/*
1062	 * When no restart IP might need to kill or panic.
1063	 * Assume the worst for now, but if we find the
1064	 * severity is MCE_AR_SEVERITY we have other options.
1065	 */
1066	if (!(m.mcgstatus & MCG_STATUS_RIPV))
1067		kill_it = 1;
1068
1069	/*
1070	 * Go through all the banks in exclusion of the other CPUs.
1071	 * This way we don't report duplicated events on shared banks
1072	 * because the first one to see it will clear it.
1073	 */
1074	order = mce_start(&no_way_out);
1075	for (i = 0; i < cfg->banks; i++) {
1076		__clear_bit(i, toclear);
1077		if (!test_bit(i, valid_banks))
1078			continue;
1079		if (!mce_banks[i].ctl)
1080			continue;
1081
1082		m.misc = 0;
1083		m.addr = 0;
1084		m.bank = i;
1085
1086		m.status = mce_rdmsrl(MSR_IA32_MCx_STATUS(i));
1087		if ((m.status & MCI_STATUS_VAL) == 0)
1088			continue;
1089
1090		/*
1091		 * Non uncorrected or non signaled errors are handled by
1092		 * machine_check_poll. Leave them alone, unless this panics.
1093		 */
1094		if (!(m.status & (cfg->ser ? MCI_STATUS_S : MCI_STATUS_UC)) &&
1095			!no_way_out)
1096			continue;
1097
1098		/*
1099		 * Set taint even when machine check was not enabled.
1100		 */
1101		add_taint(TAINT_MACHINE_CHECK, LOCKDEP_NOW_UNRELIABLE);
1102
1103		severity = mce_severity(&m, cfg->tolerant, NULL);
1104
1105		/*
1106		 * When machine check was for corrected handler don't touch,
1107		 * unless we're panicing.
1108		 */
1109		if (severity == MCE_KEEP_SEVERITY && !no_way_out)
1110			continue;
1111		__set_bit(i, toclear);
1112		if (severity == MCE_NO_SEVERITY) {
1113			/*
1114			 * Machine check event was not enabled. Clear, but
1115			 * ignore.
1116			 */
1117			continue;
1118		}
1119
1120		mce_read_aux(&m, i);
1121
1122		/*
1123		 * Action optional error. Queue address for later processing.
1124		 * When the ring overflows we just ignore the AO error.
1125		 * RED-PEN add some logging mechanism when
1126		 * usable_address or mce_add_ring fails.
1127		 * RED-PEN don't ignore overflow for mca_cfg.tolerant == 0
1128		 */
1129		if (severity == MCE_AO_SEVERITY && mce_usable_address(&m))
1130			mce_ring_add(m.addr >> PAGE_SHIFT);
1131
1132		mce_log(&m);
1133
1134		if (severity > worst) {
1135			*final = m;
1136			worst = severity;
1137		}
1138	}
1139
1140	/* mce_clear_state will clear *final, save locally for use later */
1141	m = *final;
1142
1143	if (!no_way_out)
1144		mce_clear_state(toclear);
1145
1146	/*
1147	 * Do most of the synchronization with other CPUs.
1148	 * When there's any problem use only local no_way_out state.
1149	 */
1150	if (mce_end(order) < 0)
1151		no_way_out = worst >= MCE_PANIC_SEVERITY;
1152
1153	/*
1154	 * At insane "tolerant" levels we take no action. Otherwise
1155	 * we only die if we have no other choice. For less serious
1156	 * issues we try to recover, or limit damage to the current
1157	 * process.
1158	 */
1159	if (cfg->tolerant < 3) {
1160		if (no_way_out)
1161			mce_panic("Fatal machine check on current CPU", &m, msg);
1162		if (worst == MCE_AR_SEVERITY) {
1163			/* schedule action before return to userland */
1164			mce_save_info(m.addr, m.mcgstatus & MCG_STATUS_RIPV);
1165			set_thread_flag(TIF_MCE_NOTIFY);
1166		} else if (kill_it) {
1167			force_sig(SIGBUS, current);
1168		}
1169	}
1170
1171	if (worst > 0)
1172		mce_report_event(regs);
1173	mce_wrmsrl(MSR_IA32_MCG_STATUS, 0);
1174out:
1175	atomic_dec(&mce_entry);
1176	sync_core();
1177}
1178EXPORT_SYMBOL_GPL(do_machine_check);
1179
1180#ifndef CONFIG_MEMORY_FAILURE
1181int memory_failure(unsigned long pfn, int vector, int flags)
1182{
1183	/* mce_severity() should not hand us an ACTION_REQUIRED error */
1184	BUG_ON(flags & MF_ACTION_REQUIRED);
1185	pr_err("Uncorrected memory error in page 0x%lx ignored\n"
1186	       "Rebuild kernel with CONFIG_MEMORY_FAILURE=y for smarter handling\n",
1187	       pfn);
1188
1189	return 0;
1190}
1191#endif
1192
1193/*
1194 * Called in process context that interrupted by MCE and marked with
1195 * TIF_MCE_NOTIFY, just before returning to erroneous userland.
1196 * This code is allowed to sleep.
1197 * Attempt possible recovery such as calling the high level VM handler to
1198 * process any corrupted pages, and kill/signal current process if required.
1199 * Action required errors are handled here.
1200 */
1201void mce_notify_process(void)
1202{
1203	unsigned long pfn;
1204	struct mce_info *mi = mce_find_info();
1205	int flags = MF_ACTION_REQUIRED;
1206
1207	if (!mi)
1208		mce_panic("Lost physical address for unconsumed uncorrectable error", NULL, NULL);
1209	pfn = mi->paddr >> PAGE_SHIFT;
1210
1211	clear_thread_flag(TIF_MCE_NOTIFY);
1212
1213	pr_err("Uncorrected hardware memory error in user-access at %llx",
1214		 mi->paddr);
1215	/*
1216	 * We must call memory_failure() here even if the current process is
1217	 * doomed. We still need to mark the page as poisoned and alert any
1218	 * other users of the page.
1219	 */
1220	if (!mi->restartable)
1221		flags |= MF_MUST_KILL;
1222	if (memory_failure(pfn, MCE_VECTOR, flags) < 0) {
1223		pr_err("Memory error not recovered");
1224		force_sig(SIGBUS, current);
1225	}
1226	mce_clear_info(mi);
1227}
1228
1229/*
1230 * Action optional processing happens here (picking up
1231 * from the list of faulting pages that do_machine_check()
1232 * placed into the "ring").
1233 */
1234static void mce_process_work(struct work_struct *dummy)
1235{
1236	unsigned long pfn;
1237
1238	while (mce_ring_get(&pfn))
1239		memory_failure(pfn, MCE_VECTOR, 0);
1240}
1241
1242#ifdef CONFIG_X86_MCE_INTEL
1243/***
1244 * mce_log_therm_throt_event - Logs the thermal throttling event to mcelog
1245 * @cpu: The CPU on which the event occurred.
1246 * @status: Event status information
1247 *
1248 * This function should be called by the thermal interrupt after the
1249 * event has been processed and the decision was made to log the event
1250 * further.
1251 *
1252 * The status parameter will be saved to the 'status' field of 'struct mce'
1253 * and historically has been the register value of the
1254 * MSR_IA32_THERMAL_STATUS (Intel) msr.
1255 */
1256void mce_log_therm_throt_event(__u64 status)
1257{
1258	struct mce m;
1259
1260	mce_setup(&m);
1261	m.bank = MCE_THERMAL_BANK;
1262	m.status = status;
1263	mce_log(&m);
1264}
1265#endif /* CONFIG_X86_MCE_INTEL */
1266
1267/*
1268 * Periodic polling timer for "silent" machine check errors.  If the
1269 * poller finds an MCE, poll 2x faster.  When the poller finds no more
1270 * errors, poll 2x slower (up to check_interval seconds).
1271 */
1272static unsigned long check_interval = 5 * 60; /* 5 minutes */
1273
1274static DEFINE_PER_CPU(unsigned long, mce_next_interval); /* in jiffies */
1275static DEFINE_PER_CPU(struct timer_list, mce_timer);
1276
1277static unsigned long mce_adjust_timer_default(unsigned long interval)
1278{
1279	return interval;
1280}
1281
1282static unsigned long (*mce_adjust_timer)(unsigned long interval) =
1283	mce_adjust_timer_default;
1284
1285static int cmc_error_seen(void)
1286{
1287	unsigned long *v = &__get_cpu_var(mce_polled_error);
1288
1289	return test_and_clear_bit(0, v);
1290}
1291
1292static void mce_timer_fn(unsigned long data)
1293{
1294	struct timer_list *t = &__get_cpu_var(mce_timer);
1295	unsigned long iv;
1296	int notify;
1297
1298	WARN_ON(smp_processor_id() != data);
1299
1300	if (mce_available(__this_cpu_ptr(&cpu_info))) {
1301		machine_check_poll(MCP_TIMESTAMP,
1302				&__get_cpu_var(mce_poll_banks));
1303		mce_intel_cmci_poll();
1304	}
1305
1306	/*
1307	 * Alert userspace if needed.  If we logged an MCE, reduce the
1308	 * polling interval, otherwise increase the polling interval.
1309	 */
1310	iv = __this_cpu_read(mce_next_interval);
1311	notify = mce_notify_irq();
1312	notify |= cmc_error_seen();
1313	if (notify) {
1314		iv = max(iv / 2, (unsigned long) HZ/100);
1315	} else {
1316		iv = min(iv * 2, round_jiffies_relative(check_interval * HZ));
1317		iv = mce_adjust_timer(iv);
1318	}
1319	__this_cpu_write(mce_next_interval, iv);
1320	/* Might have become 0 after CMCI storm subsided */
1321	if (iv) {
1322		t->expires = jiffies + iv;
1323		add_timer_on(t, smp_processor_id());
1324	}
1325}
1326
1327/*
1328 * Ensure that the timer is firing in @interval from now.
1329 */
1330void mce_timer_kick(unsigned long interval)
1331{
1332	struct timer_list *t = &__get_cpu_var(mce_timer);
1333	unsigned long when = jiffies + interval;
1334	unsigned long iv = __this_cpu_read(mce_next_interval);
1335
1336	if (timer_pending(t)) {
1337		if (time_before(when, t->expires))
1338			mod_timer_pinned(t, when);
1339	} else {
1340		t->expires = round_jiffies(when);
1341		add_timer_on(t, smp_processor_id());
1342	}
1343	if (interval < iv)
1344		__this_cpu_write(mce_next_interval, interval);
1345}
1346
1347/* Must not be called in IRQ context where del_timer_sync() can deadlock */
1348static void mce_timer_delete_all(void)
1349{
1350	int cpu;
1351
1352	for_each_online_cpu(cpu)
1353		del_timer_sync(&per_cpu(mce_timer, cpu));
1354}
1355
1356static void mce_do_trigger(struct work_struct *work)
1357{
1358	call_usermodehelper(mce_helper, mce_helper_argv, NULL, UMH_NO_WAIT);
1359}
1360
1361static DECLARE_WORK(mce_trigger_work, mce_do_trigger);
1362
1363/*
1364 * Notify the user(s) about new machine check events.
1365 * Can be called from interrupt context, but not from machine check/NMI
1366 * context.
1367 */
1368int mce_notify_irq(void)
1369{
1370	/* Not more than two messages every minute */
1371	static DEFINE_RATELIMIT_STATE(ratelimit, 60*HZ, 2);
1372
1373	if (test_and_clear_bit(0, &mce_need_notify)) {
1374		/* wake processes polling /dev/mcelog */
1375		wake_up_interruptible(&mce_chrdev_wait);
1376
1377		if (mce_helper[0])
1378			schedule_work(&mce_trigger_work);
1379
1380		if (__ratelimit(&ratelimit))
1381			pr_info(HW_ERR "Machine check events logged\n");
1382
1383		return 1;
1384	}
1385	return 0;
1386}
1387EXPORT_SYMBOL_GPL(mce_notify_irq);
1388
1389static int __mcheck_cpu_mce_banks_init(void)
1390{
1391	int i;
1392	u8 num_banks = mca_cfg.banks;
1393
1394	mce_banks = kzalloc(num_banks * sizeof(struct mce_bank), GFP_KERNEL);
1395	if (!mce_banks)
1396		return -ENOMEM;
1397
1398	for (i = 0; i < num_banks; i++) {
1399		struct mce_bank *b = &mce_banks[i];
1400
1401		b->ctl = -1ULL;
1402		b->init = 1;
1403	}
1404	return 0;
1405}
1406
1407/*
1408 * Initialize Machine Checks for a CPU.
1409 */
1410static int __mcheck_cpu_cap_init(void)
1411{
1412	unsigned b;
1413	u64 cap;
1414
1415	rdmsrl(MSR_IA32_MCG_CAP, cap);
1416
1417	b = cap & MCG_BANKCNT_MASK;
1418	if (!mca_cfg.banks)
1419		pr_info("CPU supports %d MCE banks\n", b);
1420
1421	if (b > MAX_NR_BANKS) {
1422		pr_warn("Using only %u machine check banks out of %u\n",
1423			MAX_NR_BANKS, b);
1424		b = MAX_NR_BANKS;
1425	}
1426
1427	/* Don't support asymmetric configurations today */
1428	WARN_ON(mca_cfg.banks != 0 && b != mca_cfg.banks);
1429	mca_cfg.banks = b;
1430
1431	if (!mce_banks) {
1432		int err = __mcheck_cpu_mce_banks_init();
1433
1434		if (err)
1435			return err;
1436	}
1437
1438	/* Use accurate RIP reporting if available. */
1439	if ((cap & MCG_EXT_P) && MCG_EXT_CNT(cap) >= 9)
1440		mca_cfg.rip_msr = MSR_IA32_MCG_EIP;
1441
1442	if (cap & MCG_SER_P)
1443		mca_cfg.ser = true;
1444
1445	return 0;
1446}
1447
1448static void __mcheck_cpu_init_generic(void)
1449{
1450	enum mcp_flags m_fl = 0;
1451	mce_banks_t all_banks;
1452	u64 cap;
1453	int i;
1454
1455	if (!mca_cfg.bootlog)
1456		m_fl = MCP_DONTLOG;
1457
1458	/*
1459	 * Log the machine checks left over from the previous reset.
1460	 */
1461	bitmap_fill(all_banks, MAX_NR_BANKS);
1462	machine_check_poll(MCP_UC | m_fl, &all_banks);
1463
1464	set_in_cr4(X86_CR4_MCE);
1465
1466	rdmsrl(MSR_IA32_MCG_CAP, cap);
1467	if (cap & MCG_CTL_P)
1468		wrmsr(MSR_IA32_MCG_CTL, 0xffffffff, 0xffffffff);
1469
1470	for (i = 0; i < mca_cfg.banks; i++) {
1471		struct mce_bank *b = &mce_banks[i];
1472
1473		if (!b->init)
1474			continue;
1475		wrmsrl(MSR_IA32_MCx_CTL(i), b->ctl);
1476		wrmsrl(MSR_IA32_MCx_STATUS(i), 0);
1477	}
1478}
1479
1480/*
1481 * During IFU recovery Sandy Bridge -EP4S processors set the RIPV and
1482 * EIPV bits in MCG_STATUS to zero on the affected logical processor (SDM
1483 * Vol 3B Table 15-20). But this confuses both the code that determines
1484 * whether the machine check occurred in kernel or user mode, and also
1485 * the severity assessment code. Pretend that EIPV was set, and take the
1486 * ip/cs values from the pt_regs that mce_gather_info() ignored earlier.
1487 */
1488static void quirk_sandybridge_ifu(int bank, struct mce *m, struct pt_regs *regs)
1489{
1490	if (bank != 0)
1491		return;
1492	if ((m->mcgstatus & (MCG_STATUS_EIPV|MCG_STATUS_RIPV)) != 0)
1493		return;
1494	if ((m->status & (MCI_STATUS_OVER|MCI_STATUS_UC|
1495		          MCI_STATUS_EN|MCI_STATUS_MISCV|MCI_STATUS_ADDRV|
1496			  MCI_STATUS_PCC|MCI_STATUS_S|MCI_STATUS_AR|
1497			  MCACOD)) !=
1498			 (MCI_STATUS_UC|MCI_STATUS_EN|
1499			  MCI_STATUS_MISCV|MCI_STATUS_ADDRV|MCI_STATUS_S|
1500			  MCI_STATUS_AR|MCACOD_INSTR))
1501		return;
1502
1503	m->mcgstatus |= MCG_STATUS_EIPV;
1504	m->ip = regs->ip;
1505	m->cs = regs->cs;
1506}
1507
1508/* Add per CPU specific workarounds here */
1509static int __mcheck_cpu_apply_quirks(struct cpuinfo_x86 *c)
1510{
1511	struct mca_config *cfg = &mca_cfg;
1512
1513	if (c->x86_vendor == X86_VENDOR_UNKNOWN) {
1514		pr_info("unknown CPU type - not enabling MCE support\n");
1515		return -EOPNOTSUPP;
1516	}
1517
1518	/* This should be disabled by the BIOS, but isn't always */
1519	if (c->x86_vendor == X86_VENDOR_AMD) {
1520		if (c->x86 == 15 && cfg->banks > 4) {
1521			/*
1522			 * disable GART TBL walk error reporting, which
1523			 * trips off incorrectly with the IOMMU & 3ware
1524			 * & Cerberus:
1525			 */
1526			clear_bit(10, (unsigned long *)&mce_banks[4].ctl);
1527		}
1528		if (c->x86 <= 17 && cfg->bootlog < 0) {
1529			/*
1530			 * Lots of broken BIOS around that don't clear them
1531			 * by default and leave crap in there. Don't log:
1532			 */
1533			cfg->bootlog = 0;
1534		}
1535		/*
1536		 * Various K7s with broken bank 0 around. Always disable
1537		 * by default.
1538		 */
1539		 if (c->x86 == 6 && cfg->banks > 0)
1540			mce_banks[0].ctl = 0;
1541
1542		 /*
1543		  * Turn off MC4_MISC thresholding banks on those models since
1544		  * they're not supported there.
1545		  */
1546		 if (c->x86 == 0x15 &&
1547		     (c->x86_model >= 0x10 && c->x86_model <= 0x1f)) {
1548			 int i;
1549			 u64 val, hwcr;
1550			 bool need_toggle;
1551			 u32 msrs[] = {
1552				0x00000413, /* MC4_MISC0 */
1553				0xc0000408, /* MC4_MISC1 */
1554			 };
1555
1556			 rdmsrl(MSR_K7_HWCR, hwcr);
1557
1558			 /* McStatusWrEn has to be set */
1559			 need_toggle = !(hwcr & BIT(18));
1560
1561			 if (need_toggle)
1562				 wrmsrl(MSR_K7_HWCR, hwcr | BIT(18));
1563
1564			 for (i = 0; i < ARRAY_SIZE(msrs); i++) {
1565				 rdmsrl(msrs[i], val);
1566
1567				 /* CntP bit set? */
1568				 if (val & BIT_64(62)) {
1569					val &= ~BIT_64(62);
1570					wrmsrl(msrs[i], val);
1571				 }
1572			 }
1573
1574			 /* restore old settings */
1575			 if (need_toggle)
1576				 wrmsrl(MSR_K7_HWCR, hwcr);
1577		 }
1578	}
1579
1580	if (c->x86_vendor == X86_VENDOR_INTEL) {
1581		/*
1582		 * SDM documents that on family 6 bank 0 should not be written
1583		 * because it aliases to another special BIOS controlled
1584		 * register.
1585		 * But it's not aliased anymore on model 0x1a+
1586		 * Don't ignore bank 0 completely because there could be a
1587		 * valid event later, merely don't write CTL0.
1588		 */
1589
1590		if (c->x86 == 6 && c->x86_model < 0x1A && cfg->banks > 0)
1591			mce_banks[0].init = 0;
1592
1593		/*
1594		 * All newer Intel systems support MCE broadcasting. Enable
1595		 * synchronization with a one second timeout.
1596		 */
1597		if ((c->x86 > 6 || (c->x86 == 6 && c->x86_model >= 0xe)) &&
1598			cfg->monarch_timeout < 0)
1599			cfg->monarch_timeout = USEC_PER_SEC;
1600
1601		/*
1602		 * There are also broken BIOSes on some Pentium M and
1603		 * earlier systems:
1604		 */
1605		if (c->x86 == 6 && c->x86_model <= 13 && cfg->bootlog < 0)
1606			cfg->bootlog = 0;
1607
1608		if (c->x86 == 6 && c->x86_model == 45)
1609			quirk_no_way_out = quirk_sandybridge_ifu;
1610	}
1611	if (cfg->monarch_timeout < 0)
1612		cfg->monarch_timeout = 0;
1613	if (cfg->bootlog != 0)
1614		cfg->panic_timeout = 30;
1615
1616	return 0;
1617}
1618
1619static int __mcheck_cpu_ancient_init(struct cpuinfo_x86 *c)
1620{
1621	if (c->x86 != 5)
1622		return 0;
1623
1624	switch (c->x86_vendor) {
1625	case X86_VENDOR_INTEL:
1626		intel_p5_mcheck_init(c);
1627		return 1;
1628		break;
1629	case X86_VENDOR_CENTAUR:
1630		winchip_mcheck_init(c);
1631		return 1;
1632		break;
1633	}
1634
1635	return 0;
1636}
1637
1638static void __mcheck_cpu_init_vendor(struct cpuinfo_x86 *c)
1639{
1640	switch (c->x86_vendor) {
1641	case X86_VENDOR_INTEL:
1642		mce_intel_feature_init(c);
1643		mce_adjust_timer = mce_intel_adjust_timer;
1644		break;
1645	case X86_VENDOR_AMD:
1646		mce_amd_feature_init(c);
1647		break;
1648	default:
1649		break;
1650	}
1651}
1652
1653static void mce_start_timer(unsigned int cpu, struct timer_list *t)
1654{
1655	unsigned long iv = check_interval * HZ;
1656
1657	if (mca_cfg.ignore_ce || !iv)
1658		return;
1659
1660	per_cpu(mce_next_interval, cpu) = iv;
1661
1662	t->expires = round_jiffies(jiffies + iv);
1663	add_timer_on(t, cpu);
1664}
1665
1666static void __mcheck_cpu_init_timer(void)
1667{
1668	struct timer_list *t = &__get_cpu_var(mce_timer);
1669	unsigned int cpu = smp_processor_id();
1670
1671	setup_timer(t, mce_timer_fn, cpu);
1672	mce_start_timer(cpu, t);
1673}
1674
1675/* Handle unconfigured int18 (should never happen) */
1676static void unexpected_machine_check(struct pt_regs *regs, long error_code)
1677{
1678	pr_err("CPU#%d: Unexpected int18 (Machine Check)\n",
1679	       smp_processor_id());
1680}
1681
1682/* Call the installed machine check handler for this CPU setup. */
1683void (*machine_check_vector)(struct pt_regs *, long error_code) =
1684						unexpected_machine_check;
1685
1686/*
1687 * Called for each booted CPU to set up machine checks.
1688 * Must be called with preempt off:
1689 */
1690void mcheck_cpu_init(struct cpuinfo_x86 *c)
1691{
1692	if (mca_cfg.disabled)
1693		return;
1694
1695	if (__mcheck_cpu_ancient_init(c))
1696		return;
1697
1698	if (!mce_available(c))
1699		return;
1700
1701	if (__mcheck_cpu_cap_init() < 0 || __mcheck_cpu_apply_quirks(c) < 0) {
1702		mca_cfg.disabled = true;
1703		return;
1704	}
1705
1706	machine_check_vector = do_machine_check;
1707
1708	__mcheck_cpu_init_generic();
1709	__mcheck_cpu_init_vendor(c);
1710	__mcheck_cpu_init_timer();
1711	INIT_WORK(&__get_cpu_var(mce_work), mce_process_work);
1712	init_irq_work(&__get_cpu_var(mce_irq_work), &mce_irq_work_cb);
1713}
1714
1715/*
1716 * mce_chrdev: Character device /dev/mcelog to read and clear the MCE log.
1717 */
1718
1719static DEFINE_SPINLOCK(mce_chrdev_state_lock);
1720static int mce_chrdev_open_count;	/* #times opened */
1721static int mce_chrdev_open_exclu;	/* already open exclusive? */
1722
1723static int mce_chrdev_open(struct inode *inode, struct file *file)
1724{
1725	spin_lock(&mce_chrdev_state_lock);
1726
1727	if (mce_chrdev_open_exclu ||
1728	    (mce_chrdev_open_count && (file->f_flags & O_EXCL))) {
1729		spin_unlock(&mce_chrdev_state_lock);
1730
1731		return -EBUSY;
1732	}
1733
1734	if (file->f_flags & O_EXCL)
1735		mce_chrdev_open_exclu = 1;
1736	mce_chrdev_open_count++;
1737
1738	spin_unlock(&mce_chrdev_state_lock);
1739
1740	return nonseekable_open(inode, file);
1741}
1742
1743static int mce_chrdev_release(struct inode *inode, struct file *file)
1744{
1745	spin_lock(&mce_chrdev_state_lock);
1746
1747	mce_chrdev_open_count--;
1748	mce_chrdev_open_exclu = 0;
1749
1750	spin_unlock(&mce_chrdev_state_lock);
1751
1752	return 0;
1753}
1754
1755static void collect_tscs(void *data)
1756{
1757	unsigned long *cpu_tsc = (unsigned long *)data;
1758
1759	rdtscll(cpu_tsc[smp_processor_id()]);
1760}
1761
1762static int mce_apei_read_done;
1763
1764/* Collect MCE record of previous boot in persistent storage via APEI ERST. */
1765static int __mce_read_apei(char __user **ubuf, size_t usize)
1766{
1767	int rc;
1768	u64 record_id;
1769	struct mce m;
1770
1771	if (usize < sizeof(struct mce))
1772		return -EINVAL;
1773
1774	rc = apei_read_mce(&m, &record_id);
1775	/* Error or no more MCE record */
1776	if (rc <= 0) {
1777		mce_apei_read_done = 1;
1778		/*
1779		 * When ERST is disabled, mce_chrdev_read() should return
1780		 * "no record" instead of "no device."
1781		 */
1782		if (rc == -ENODEV)
1783			return 0;
1784		return rc;
1785	}
1786	rc = -EFAULT;
1787	if (copy_to_user(*ubuf, &m, sizeof(struct mce)))
1788		return rc;
1789	/*
1790	 * In fact, we should have cleared the record after that has
1791	 * been flushed to the disk or sent to network in
1792	 * /sbin/mcelog, but we have no interface to support that now,
1793	 * so just clear it to avoid duplication.
1794	 */
1795	rc = apei_clear_mce(record_id);
1796	if (rc) {
1797		mce_apei_read_done = 1;
1798		return rc;
1799	}
1800	*ubuf += sizeof(struct mce);
1801
1802	return 0;
1803}
1804
1805static ssize_t mce_chrdev_read(struct file *filp, char __user *ubuf,
1806				size_t usize, loff_t *off)
1807{
1808	char __user *buf = ubuf;
1809	unsigned long *cpu_tsc;
1810	unsigned prev, next;
1811	int i, err;
1812
1813	cpu_tsc = kmalloc(nr_cpu_ids * sizeof(long), GFP_KERNEL);
1814	if (!cpu_tsc)
1815		return -ENOMEM;
1816
1817	mutex_lock(&mce_chrdev_read_mutex);
1818
1819	if (!mce_apei_read_done) {
1820		err = __mce_read_apei(&buf, usize);
1821		if (err || buf != ubuf)
1822			goto out;
1823	}
1824
1825	next = rcu_dereference_check_mce(mcelog.next);
1826
1827	/* Only supports full reads right now */
1828	err = -EINVAL;
1829	if (*off != 0 || usize < MCE_LOG_LEN*sizeof(struct mce))
1830		goto out;
1831
1832	err = 0;
1833	prev = 0;
1834	do {
1835		for (i = prev; i < next; i++) {
1836			unsigned long start = jiffies;
1837			struct mce *m = &mcelog.entry[i];
1838
1839			while (!m->finished) {
1840				if (time_after_eq(jiffies, start + 2)) {
1841					memset(m, 0, sizeof(*m));
1842					goto timeout;
1843				}
1844				cpu_relax();
1845			}
1846			smp_rmb();
1847			err |= copy_to_user(buf, m, sizeof(*m));
1848			buf += sizeof(*m);
1849timeout:
1850			;
1851		}
1852
1853		memset(mcelog.entry + prev, 0,
1854		       (next - prev) * sizeof(struct mce));
1855		prev = next;
1856		next = cmpxchg(&mcelog.next, prev, 0);
1857	} while (next != prev);
1858
1859	synchronize_sched();
1860
1861	/*
1862	 * Collect entries that were still getting written before the
1863	 * synchronize.
1864	 */
1865	on_each_cpu(collect_tscs, cpu_tsc, 1);
1866
1867	for (i = next; i < MCE_LOG_LEN; i++) {
1868		struct mce *m = &mcelog.entry[i];
1869
1870		if (m->finished && m->tsc < cpu_tsc[m->cpu]) {
1871			err |= copy_to_user(buf, m, sizeof(*m));
1872			smp_rmb();
1873			buf += sizeof(*m);
1874			memset(m, 0, sizeof(*m));
1875		}
1876	}
1877
1878	if (err)
1879		err = -EFAULT;
1880
1881out:
1882	mutex_unlock(&mce_chrdev_read_mutex);
1883	kfree(cpu_tsc);
1884
1885	return err ? err : buf - ubuf;
1886}
1887
1888static unsigned int mce_chrdev_poll(struct file *file, poll_table *wait)
1889{
1890	poll_wait(file, &mce_chrdev_wait, wait);
1891	if (rcu_access_index(mcelog.next))
1892		return POLLIN | POLLRDNORM;
1893	if (!mce_apei_read_done && apei_check_mce())
1894		return POLLIN | POLLRDNORM;
1895	return 0;
1896}
1897
1898static long mce_chrdev_ioctl(struct file *f, unsigned int cmd,
1899				unsigned long arg)
1900{
1901	int __user *p = (int __user *)arg;
1902
1903	if (!capable(CAP_SYS_ADMIN))
1904		return -EPERM;
1905
1906	switch (cmd) {
1907	case MCE_GET_RECORD_LEN:
1908		return put_user(sizeof(struct mce), p);
1909	case MCE_GET_LOG_LEN:
1910		return put_user(MCE_LOG_LEN, p);
1911	case MCE_GETCLEAR_FLAGS: {
1912		unsigned flags;
1913
1914		do {
1915			flags = mcelog.flags;
1916		} while (cmpxchg(&mcelog.flags, flags, 0) != flags);
1917
1918		return put_user(flags, p);
1919	}
1920	default:
1921		return -ENOTTY;
1922	}
1923}
1924
1925static ssize_t (*mce_write)(struct file *filp, const char __user *ubuf,
1926			    size_t usize, loff_t *off);
1927
1928void register_mce_write_callback(ssize_t (*fn)(struct file *filp,
1929			     const char __user *ubuf,
1930			     size_t usize, loff_t *off))
1931{
1932	mce_write = fn;
1933}
1934EXPORT_SYMBOL_GPL(register_mce_write_callback);
1935
1936ssize_t mce_chrdev_write(struct file *filp, const char __user *ubuf,
1937			 size_t usize, loff_t *off)
1938{
1939	if (mce_write)
1940		return mce_write(filp, ubuf, usize, off);
1941	else
1942		return -EINVAL;
1943}
1944
1945static const struct file_operations mce_chrdev_ops = {
1946	.open			= mce_chrdev_open,
1947	.release		= mce_chrdev_release,
1948	.read			= mce_chrdev_read,
1949	.write			= mce_chrdev_write,
1950	.poll			= mce_chrdev_poll,
1951	.unlocked_ioctl		= mce_chrdev_ioctl,
1952	.llseek			= no_llseek,
1953};
1954
1955static struct miscdevice mce_chrdev_device = {
1956	MISC_MCELOG_MINOR,
1957	"mcelog",
1958	&mce_chrdev_ops,
1959};
1960
1961static void __mce_disable_bank(void *arg)
1962{
1963	int bank = *((int *)arg);
1964	__clear_bit(bank, __get_cpu_var(mce_poll_banks));
1965	cmci_disable_bank(bank);
1966}
1967
1968void mce_disable_bank(int bank)
1969{
1970	if (bank >= mca_cfg.banks) {
1971		pr_warn(FW_BUG
1972			"Ignoring request to disable invalid MCA bank %d.\n",
1973			bank);
1974		return;
1975	}
1976	set_bit(bank, mce_banks_ce_disabled);
1977	on_each_cpu(__mce_disable_bank, &bank, 1);
1978}
1979
1980/*
1981 * mce=off Disables machine check
1982 * mce=no_cmci Disables CMCI
1983 * mce=dont_log_ce Clears corrected events silently, no log created for CEs.
1984 * mce=ignore_ce Disables polling and CMCI, corrected events are not cleared.
1985 * mce=TOLERANCELEVEL[,monarchtimeout] (number, see above)
1986 *	monarchtimeout is how long to wait for other CPUs on machine
1987 *	check, or 0 to not wait
1988 * mce=bootlog Log MCEs from before booting. Disabled by default on AMD.
1989 * mce=nobootlog Don't log MCEs from before booting.
1990 * mce=bios_cmci_threshold Don't program the CMCI threshold
1991 */
1992static int __init mcheck_enable(char *str)
1993{
1994	struct mca_config *cfg = &mca_cfg;
1995
1996	if (*str == 0) {
1997		enable_p5_mce();
1998		return 1;
1999	}
2000	if (*str == '=')
2001		str++;
2002	if (!strcmp(str, "off"))
2003		cfg->disabled = true;
2004	else if (!strcmp(str, "no_cmci"))
2005		cfg->cmci_disabled = true;
2006	else if (!strcmp(str, "dont_log_ce"))
2007		cfg->dont_log_ce = true;
2008	else if (!strcmp(str, "ignore_ce"))
2009		cfg->ignore_ce = true;
2010	else if (!strcmp(str, "bootlog") || !strcmp(str, "nobootlog"))
2011		cfg->bootlog = (str[0] == 'b');
2012	else if (!strcmp(str, "bios_cmci_threshold"))
2013		cfg->bios_cmci_threshold = true;
2014	else if (isdigit(str[0])) {
2015		get_option(&str, &(cfg->tolerant));
2016		if (*str == ',') {
2017			++str;
2018			get_option(&str, &(cfg->monarch_timeout));
2019		}
2020	} else {
2021		pr_info("mce argument %s ignored. Please use /sys\n", str);
2022		return 0;
2023	}
2024	return 1;
2025}
2026__setup("mce", mcheck_enable);
2027
2028int __init mcheck_init(void)
2029{
2030	mcheck_intel_therm_init();
2031
2032	return 0;
2033}
2034
2035/*
2036 * mce_syscore: PM support
2037 */
2038
2039/*
2040 * Disable machine checks on suspend and shutdown. We can't really handle
2041 * them later.
2042 */
2043static int mce_disable_error_reporting(void)
2044{
2045	int i;
2046
2047	for (i = 0; i < mca_cfg.banks; i++) {
2048		struct mce_bank *b = &mce_banks[i];
2049
2050		if (b->init)
2051			wrmsrl(MSR_IA32_MCx_CTL(i), 0);
2052	}
2053	return 0;
2054}
2055
2056static int mce_syscore_suspend(void)
2057{
2058	return mce_disable_error_reporting();
2059}
2060
2061static void mce_syscore_shutdown(void)
2062{
2063	mce_disable_error_reporting();
2064}
2065
2066/*
2067 * On resume clear all MCE state. Don't want to see leftovers from the BIOS.
2068 * Only one CPU is active at this time, the others get re-added later using
2069 * CPU hotplug:
2070 */
2071static void mce_syscore_resume(void)
2072{
2073	__mcheck_cpu_init_generic();
2074	__mcheck_cpu_init_vendor(__this_cpu_ptr(&cpu_info));
2075}
2076
2077static struct syscore_ops mce_syscore_ops = {
2078	.suspend	= mce_syscore_suspend,
2079	.shutdown	= mce_syscore_shutdown,
2080	.resume		= mce_syscore_resume,
2081};
2082
2083/*
2084 * mce_device: Sysfs support
2085 */
2086
2087static void mce_cpu_restart(void *data)
2088{
2089	if (!mce_available(__this_cpu_ptr(&cpu_info)))
2090		return;
2091	__mcheck_cpu_init_generic();
2092	__mcheck_cpu_init_timer();
2093}
2094
2095/* Reinit MCEs after user configuration changes */
2096static void mce_restart(void)
2097{
2098	mce_timer_delete_all();
2099	on_each_cpu(mce_cpu_restart, NULL, 1);
2100}
2101
2102/* Toggle features for corrected errors */
2103static void mce_disable_cmci(void *data)
2104{
2105	if (!mce_available(__this_cpu_ptr(&cpu_info)))
2106		return;
2107	cmci_clear();
2108}
2109
2110static void mce_enable_ce(void *all)
2111{
2112	if (!mce_available(__this_cpu_ptr(&cpu_info)))
2113		return;
2114	cmci_reenable();
2115	cmci_recheck();
2116	if (all)
2117		__mcheck_cpu_init_timer();
2118}
2119
2120static struct bus_type mce_subsys = {
2121	.name		= "machinecheck",
2122	.dev_name	= "machinecheck",
2123};
2124
2125DEFINE_PER_CPU(struct device *, mce_device);
2126
2127void (*threshold_cpu_callback)(unsigned long action, unsigned int cpu);
2128
2129static inline struct mce_bank *attr_to_bank(struct device_attribute *attr)
2130{
2131	return container_of(attr, struct mce_bank, attr);
2132}
2133
2134static ssize_t show_bank(struct device *s, struct device_attribute *attr,
2135			 char *buf)
2136{
2137	return sprintf(buf, "%llx\n", attr_to_bank(attr)->ctl);
2138}
2139
2140static ssize_t set_bank(struct device *s, struct device_attribute *attr,
2141			const char *buf, size_t size)
2142{
2143	u64 new;
2144
2145	if (strict_strtoull(buf, 0, &new) < 0)
2146		return -EINVAL;
2147
2148	attr_to_bank(attr)->ctl = new;
2149	mce_restart();
2150
2151	return size;
2152}
2153
2154static ssize_t
2155show_trigger(struct device *s, struct device_attribute *attr, char *buf)
2156{
2157	strcpy(buf, mce_helper);
2158	strcat(buf, "\n");
2159	return strlen(mce_helper) + 1;
2160}
2161
2162static ssize_t set_trigger(struct device *s, struct device_attribute *attr,
2163				const char *buf, size_t siz)
2164{
2165	char *p;
2166
2167	strncpy(mce_helper, buf, sizeof(mce_helper));
2168	mce_helper[sizeof(mce_helper)-1] = 0;
2169	p = strchr(mce_helper, '\n');
2170
2171	if (p)
2172		*p = 0;
2173
2174	return strlen(mce_helper) + !!p;
2175}
2176
2177static ssize_t set_ignore_ce(struct device *s,
2178			     struct device_attribute *attr,
2179			     const char *buf, size_t size)
2180{
2181	u64 new;
2182
2183	if (strict_strtoull(buf, 0, &new) < 0)
2184		return -EINVAL;
2185
2186	if (mca_cfg.ignore_ce ^ !!new) {
2187		if (new) {
2188			/* disable ce features */
2189			mce_timer_delete_all();
2190			on_each_cpu(mce_disable_cmci, NULL, 1);
2191			mca_cfg.ignore_ce = true;
2192		} else {
2193			/* enable ce features */
2194			mca_cfg.ignore_ce = false;
2195			on_each_cpu(mce_enable_ce, (void *)1, 1);
2196		}
2197	}
2198	return size;
2199}
2200
2201static ssize_t set_cmci_disabled(struct device *s,
2202				 struct device_attribute *attr,
2203				 const char *buf, size_t size)
2204{
2205	u64 new;
2206
2207	if (strict_strtoull(buf, 0, &new) < 0)
2208		return -EINVAL;
2209
2210	if (mca_cfg.cmci_disabled ^ !!new) {
2211		if (new) {
2212			/* disable cmci */
2213			on_each_cpu(mce_disable_cmci, NULL, 1);
2214			mca_cfg.cmci_disabled = true;
2215		} else {
2216			/* enable cmci */
2217			mca_cfg.cmci_disabled = false;
2218			on_each_cpu(mce_enable_ce, NULL, 1);
2219		}
2220	}
2221	return size;
2222}
2223
2224static ssize_t store_int_with_restart(struct device *s,
2225				      struct device_attribute *attr,
2226				      const char *buf, size_t size)
2227{
2228	ssize_t ret = device_store_int(s, attr, buf, size);
2229	mce_restart();
2230	return ret;
2231}
2232
2233static DEVICE_ATTR(trigger, 0644, show_trigger, set_trigger);
2234static DEVICE_INT_ATTR(tolerant, 0644, mca_cfg.tolerant);
2235static DEVICE_INT_ATTR(monarch_timeout, 0644, mca_cfg.monarch_timeout);
2236static DEVICE_BOOL_ATTR(dont_log_ce, 0644, mca_cfg.dont_log_ce);
2237
2238static struct dev_ext_attribute dev_attr_check_interval = {
2239	__ATTR(check_interval, 0644, device_show_int, store_int_with_restart),
2240	&check_interval
2241};
2242
2243static struct dev_ext_attribute dev_attr_ignore_ce = {
2244	__ATTR(ignore_ce, 0644, device_show_bool, set_ignore_ce),
2245	&mca_cfg.ignore_ce
2246};
2247
2248static struct dev_ext_attribute dev_attr_cmci_disabled = {
2249	__ATTR(cmci_disabled, 0644, device_show_bool, set_cmci_disabled),
2250	&mca_cfg.cmci_disabled
2251};
2252
2253static struct device_attribute *mce_device_attrs[] = {
2254	&dev_attr_tolerant.attr,
2255	&dev_attr_check_interval.attr,
2256	&dev_attr_trigger,
2257	&dev_attr_monarch_timeout.attr,
2258	&dev_attr_dont_log_ce.attr,
2259	&dev_attr_ignore_ce.attr,
2260	&dev_attr_cmci_disabled.attr,
2261	NULL
2262};
2263
2264static cpumask_var_t mce_device_initialized;
2265
2266static void mce_device_release(struct device *dev)
2267{
2268	kfree(dev);
2269}
2270
2271/* Per cpu device init. All of the cpus still share the same ctrl bank: */
2272static int mce_device_create(unsigned int cpu)
2273{
2274	struct device *dev;
2275	int err;
2276	int i, j;
2277
2278	if (!mce_available(&boot_cpu_data))
2279		return -EIO;
2280
2281	dev = kzalloc(sizeof *dev, GFP_KERNEL);
2282	if (!dev)
2283		return -ENOMEM;
2284	dev->id  = cpu;
2285	dev->bus = &mce_subsys;
2286	dev->release = &mce_device_release;
2287
2288	err = device_register(dev);
2289	if (err) {
2290		put_device(dev);
2291		return err;
2292	}
2293
2294	for (i = 0; mce_device_attrs[i]; i++) {
2295		err = device_create_file(dev, mce_device_attrs[i]);
2296		if (err)
2297			goto error;
2298	}
2299	for (j = 0; j < mca_cfg.banks; j++) {
2300		err = device_create_file(dev, &mce_banks[j].attr);
2301		if (err)
2302			goto error2;
2303	}
2304	cpumask_set_cpu(cpu, mce_device_initialized);
2305	per_cpu(mce_device, cpu) = dev;
2306
2307	return 0;
2308error2:
2309	while (--j >= 0)
2310		device_remove_file(dev, &mce_banks[j].attr);
2311error:
2312	while (--i >= 0)
2313		device_remove_file(dev, mce_device_attrs[i]);
2314
2315	device_unregister(dev);
2316
2317	return err;
2318}
2319
2320static void mce_device_remove(unsigned int cpu)
2321{
2322	struct device *dev = per_cpu(mce_device, cpu);
2323	int i;
2324
2325	if (!cpumask_test_cpu(cpu, mce_device_initialized))
2326		return;
2327
2328	for (i = 0; mce_device_attrs[i]; i++)
2329		device_remove_file(dev, mce_device_attrs[i]);
2330
2331	for (i = 0; i < mca_cfg.banks; i++)
2332		device_remove_file(dev, &mce_banks[i].attr);
2333
2334	device_unregister(dev);
2335	cpumask_clear_cpu(cpu, mce_device_initialized);
2336	per_cpu(mce_device, cpu) = NULL;
2337}
2338
2339/* Make sure there are no machine checks on offlined CPUs. */
2340static void mce_disable_cpu(void *h)
2341{
2342	unsigned long action = *(unsigned long *)h;
2343	int i;
2344
2345	if (!mce_available(__this_cpu_ptr(&cpu_info)))
2346		return;
2347
2348	if (!(action & CPU_TASKS_FROZEN))
2349		cmci_clear();
2350	for (i = 0; i < mca_cfg.banks; i++) {
2351		struct mce_bank *b = &mce_banks[i];
2352
2353		if (b->init)
2354			wrmsrl(MSR_IA32_MCx_CTL(i), 0);
2355	}
2356}
2357
2358static void mce_reenable_cpu(void *h)
2359{
2360	unsigned long action = *(unsigned long *)h;
2361	int i;
2362
2363	if (!mce_available(__this_cpu_ptr(&cpu_info)))
2364		return;
2365
2366	if (!(action & CPU_TASKS_FROZEN))
2367		cmci_reenable();
2368	for (i = 0; i < mca_cfg.banks; i++) {
2369		struct mce_bank *b = &mce_banks[i];
2370
2371		if (b->init)
2372			wrmsrl(MSR_IA32_MCx_CTL(i), b->ctl);
2373	}
2374}
2375
2376/* Get notified when a cpu comes on/off. Be hotplug friendly. */
2377static int
2378mce_cpu_callback(struct notifier_block *nfb, unsigned long action, void *hcpu)
2379{
2380	unsigned int cpu = (unsigned long)hcpu;
2381	struct timer_list *t = &per_cpu(mce_timer, cpu);
2382
2383	switch (action & ~CPU_TASKS_FROZEN) {
2384	case CPU_ONLINE:
2385		mce_device_create(cpu);
2386		if (threshold_cpu_callback)
2387			threshold_cpu_callback(action, cpu);
2388		break;
2389	case CPU_DEAD:
2390		if (threshold_cpu_callback)
2391			threshold_cpu_callback(action, cpu);
2392		mce_device_remove(cpu);
2393		mce_intel_hcpu_update(cpu);
2394		break;
2395	case CPU_DOWN_PREPARE:
2396		smp_call_function_single(cpu, mce_disable_cpu, &action, 1);
2397		del_timer_sync(t);
2398		break;
2399	case CPU_DOWN_FAILED:
2400		smp_call_function_single(cpu, mce_reenable_cpu, &action, 1);
2401		mce_start_timer(cpu, t);
2402		break;
2403	}
2404
2405	if (action == CPU_POST_DEAD) {
2406		/* intentionally ignoring frozen here */
2407		cmci_rediscover();
2408	}
2409
2410	return NOTIFY_OK;
2411}
2412
2413static struct notifier_block mce_cpu_notifier = {
2414	.notifier_call = mce_cpu_callback,
2415};
2416
2417static __init void mce_init_banks(void)
2418{
2419	int i;
2420
2421	for (i = 0; i < mca_cfg.banks; i++) {
2422		struct mce_bank *b = &mce_banks[i];
2423		struct device_attribute *a = &b->attr;
2424
2425		sysfs_attr_init(&a->attr);
2426		a->attr.name	= b->attrname;
2427		snprintf(b->attrname, ATTR_LEN, "bank%d", i);
2428
2429		a->attr.mode	= 0644;
2430		a->show		= show_bank;
2431		a->store	= set_bank;
2432	}
2433}
2434
2435static __init int mcheck_init_device(void)
2436{
2437	int err;
2438	int i = 0;
2439
2440	if (!mce_available(&boot_cpu_data))
2441		return -EIO;
2442
2443	zalloc_cpumask_var(&mce_device_initialized, GFP_KERNEL);
2444
2445	mce_init_banks();
2446
2447	err = subsys_system_register(&mce_subsys, NULL);
2448	if (err)
2449		return err;
2450
2451	cpu_notifier_register_begin();
2452	for_each_online_cpu(i) {
2453		err = mce_device_create(i);
2454		if (err) {
2455			cpu_notifier_register_done();
2456			return err;
2457		}
2458	}
2459
2460	register_syscore_ops(&mce_syscore_ops);
2461	__register_hotcpu_notifier(&mce_cpu_notifier);
2462	cpu_notifier_register_done();
2463
2464	/* register character device /dev/mcelog */
2465	misc_register(&mce_chrdev_device);
2466
2467	return err;
2468}
2469device_initcall_sync(mcheck_init_device);
2470
2471/*
2472 * Old style boot options parsing. Only for compatibility.
2473 */
2474static int __init mcheck_disable(char *str)
2475{
2476	mca_cfg.disabled = true;
2477	return 1;
2478}
2479__setup("nomce", mcheck_disable);
2480
2481#ifdef CONFIG_DEBUG_FS
2482struct dentry *mce_get_debugfs_dir(void)
2483{
2484	static struct dentry *dmce;
2485
2486	if (!dmce)
2487		dmce = debugfs_create_dir("mce", NULL);
2488
2489	return dmce;
2490}
2491
2492static void mce_reset(void)
2493{
2494	cpu_missing = 0;
2495	atomic_set(&mce_fake_paniced, 0);
2496	atomic_set(&mce_executing, 0);
2497	atomic_set(&mce_callin, 0);
2498	atomic_set(&global_nwo, 0);
2499}
2500
2501static int fake_panic_get(void *data, u64 *val)
2502{
2503	*val = fake_panic;
2504	return 0;
2505}
2506
2507static int fake_panic_set(void *data, u64 val)
2508{
2509	mce_reset();
2510	fake_panic = val;
2511	return 0;
2512}
2513
2514DEFINE_SIMPLE_ATTRIBUTE(fake_panic_fops, fake_panic_get,
2515			fake_panic_set, "%llu\n");
2516
2517static int __init mcheck_debugfs_init(void)
2518{
2519	struct dentry *dmce, *ffake_panic;
2520
2521	dmce = mce_get_debugfs_dir();
2522	if (!dmce)
2523		return -ENOMEM;
2524	ffake_panic = debugfs_create_file("fake_panic", 0444, dmce, NULL,
2525					  &fake_panic_fops);
2526	if (!ffake_panic)
2527		return -ENOMEM;
2528
2529	return 0;
2530}
2531late_initcall(mcheck_debugfs_init);
2532#endif
2533